JP6301861B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6301861B2
JP6301861B2 JP2015042034A JP2015042034A JP6301861B2 JP 6301861 B2 JP6301861 B2 JP 6301861B2 JP 2015042034 A JP2015042034 A JP 2015042034A JP 2015042034 A JP2015042034 A JP 2015042034A JP 6301861 B2 JP6301861 B2 JP 6301861B2
Authority
JP
Japan
Prior art keywords
conductivity type
region
semiconductor region
semiconductor
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015042034A
Other languages
English (en)
Other versions
JP2016036009A (ja
Inventor
小野 昇太郎
昇太郎 小野
秀幸 浦
秀幸 浦
昌洋 志村
昌洋 志村
浩明 山下
浩明 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2015042034A priority Critical patent/JP6301861B2/ja
Priority to US14/642,345 priority patent/US9590093B2/en
Publication of JP2016036009A publication Critical patent/JP2016036009A/ja
Application granted granted Critical
Publication of JP6301861B2 publication Critical patent/JP6301861B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0869Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明の実施形態は、半導体装置に関する。
MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの半導体装置は、家庭用電気機器、通信機器、車載用モータ等のための電力変換機器や電力制御機器などに広く用いられている。これらの半導体装置には、高速スイッチング特性や、数十〜数百ボルトの逆方向阻止特性(耐圧)が要求される場合が多い。
これらの半導体装置のオン抵抗は、ドリフト領域の電気抵抗に大きく依存する。ドリフト領域の電気抵抗は、ドリフト領域の不純物濃度に依存する。ドリフト領域の不純物濃度の限界は、ベース領域とドリフト領域とが形成するp−n接合の耐圧に応じて決定される。すなわち、ドリフト領域の不純物濃度を高めると耐圧が低下し、耐圧を高めるとドリフト領域の不純物濃度が低下する。このため、耐圧とオン抵抗との間には、トレードオフの関係が存在する。
耐圧を保持しつつ、オン抵抗を低減する1つの手段として、ドリフト領域にスーパージャンクション構造を用いる方法がある。スーパージャンクション構造では、複数のp形ピラー領域と、複数のn形ピラー領域と、が、基板面内方向に交互に設けられている。このスーパージャンクション構造においては、p形ピラー領域に含まれる不純物量とn形ピラー領域に含まれる不純物量とを等しくすることにより、耐圧を保持しつつ、ドリフト領域の不純物濃度を高めることが可能となる。
しかし、半導体装置においては、オン抵抗の増加を抑制しつつ、耐圧をさらに向上させる技術が求められている。
特開2005−85990号公報 特許第3634848号公報
本発明が解決しようとする課題は、オン抵抗の増加を抑制しつつ、耐圧を向上させることが可能な半導体装置を提供することである。
実施形態の半導体装置は、第1半導体領域と、複数の第2半導体領域と、複数の第3半導体領域と、複数の第4半導体領域と、第5半導体領域と、ゲート電極と、を備える。
第1半導体領域は、第1導電形の半導体領域である。
第2半導体領域は、第1半導体領域上に選択的に設けられた第1導電形の半導体領域である。第2半導体領域は、第1半導体領域の第1導電形の不純物濃度よりも高い第1導電形の不純物濃度を有する。第2半導体領域は、第1方向に延びている。第2半導体領域は、第1方向に直交する第2方向に、互いに離間して設けられている。
第3半導体領域は、第1部分と、第2部分と、を含む。第3半導体領域は、第1方向に延びている。第3半導体領域は、第2導電形の半導体領域である。
第1部分は、隣り合う第2半導体領域の間に設けられている。第1部分における第2導電形の不純物量は、隣接する第2半導体領域に含まれる第1導電形の不純物量よりも大きい。
第2部分は、第1半導体領域の一部と第2方向において並んでいる。第2部分に含まれる第2導電形の不純物量は、第1半導体領域の当該一部に含まれる第1導電形の不純物量よりも小さい。
第4半導体領域は、第3半導体領域上に設けられている。第4半導体領域は、第2導電形の半導体領域である。
第5半導体領域は、第4半導体領域中に設けられている。
ゲート電極は、ゲート絶縁膜を介して第4半導体領域上に設けられている。
第1実施形態に係る半導体装置の一部を表す斜視断面図。 第1実施形態に係る半導体装置の製造工程を表す工程断面図。 第2実施形態に係る半導体装置の一部を表す斜視断面図。 第2実施形態の変形例に係る半導体装置の一部を表す斜視断面図。
以下に、本発明の各実施形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1は、第1実施形態に係る半導体装置の一部を表す斜視断面図である。
本実施形態では、第1導電形がn形、第2導電形がp形である場合について説明する。ただし、第1導電形をp形とし、第2導電形をn形としてもよい。
半導体装置100は、例えば、MOSFETである。
半導体装置100は、第1導電形の第1半導体領域と、複数の第1導電形の第2半導体領域と、複数の第2導電形の第3半導体領域と、第2導電形の第4半導体領域と、第1導電形の第5半導体領域と、ゲート電極と、を備える。
第1半導体領域は、例えば、n形半導体領域2である。第2半導体領域は、例えば、nピラー領域3である。第3半導体領域は、例えば、pピラー領域4である。第4半導体領域は、例えば、pベース領域5である。第5半導体領域は、例えば、ソース領域6である。
n形半導体領域2は、ドレイン領域1上に設けられている。n形半導体領域2の第1導電形の不純物濃度は、ドレイン領域1の第1導電形の不純物濃度よりも低い。
nピラー領域3は、n形半導体領域2上に選択的に設けられている。nピラー領域3の第1導電形の不純物濃度は、n形半導体領域2の第1導電形の不純物濃度よりも高い。nピラー領域3の第1導電形の不純物濃度は、ドレイン領域1の第1導電形の不純物濃度よりも低い。nピラー領域3は、Y方向(第1方向)に延びている。nピラー領域3は、Y方向に直交するZ方向(第2方向)に互いに離間して複数設けられている。
pピラー領域4は、Z方向において隣り合うnピラー領域3の間に位置するように、n形半導体領域2上に選択的に設けられている。すなわち、複数のnピラー領域3と複数のpピラー領域4は、Z方向において交互に設けられている。pピラー領域4の第2導電形の不純物濃度は、n形半導体領域2の第1導電形の不純物濃度よりも高い。pピラー領域4は、Y方向に延びている。pピラー領域4は、Z方向に互いに離間して複数設けられている。
n形半導体領域2は、部分2aを含む。
nピラー領域3は、部分3aを含む。
pピラー領域4は、部分4a(第1部分)と、部分4b(第2部分)と、を含む。
pピラー領域4の部分4aは、部分4aに隣接するnピラー領域3の間に設けられている。部分4aは、nピラー領域3の部分3aと同じ深さに設けられている。すなわち、部分4aは、部分3aと、Z方向において並んでいる。
pピラー領域4の部分4bは、n形半導体領域2中に設けられている。ただし、pピラー領域4は、ドレイン領域1に到達していない。すなわち、pピラー領域4とドレイン領域1との間には、n形半導体領域2が存在する。部分4bは、n形半導体領域2の部分2aと同じ深さに設けられている。すなわち、部分4bは、部分2aと、Z方向において並んでいる。
nピラー領域3のZ方向の寸法は、Y方向およびZ方向に直交するX方向において減少している。従って、nピラー領域3の上部におけるZ方向の寸法は、nピラー領域3の下部におけるZ方向の寸法よりも短い。
一方で、pピラー領域4は、Z方向における寸法が、X方向において増加している。従って、部分4aのZ方向における寸法は、部分4bのZ方向における寸法よりも長い。
部分4aの第2導電形の不純物濃度は、部分4aとZ方向において並ぶ部分3aの第1導電形の不純物濃度と等しい。そして、部分4aのZ方向における寸法は、部分3aのZ方向における寸法よりも長い。このため、部分4aに含まれる第2導電形の不純物量は、部分3aに含まれる第1導電形の不純物量よりも大きい。
部分4bの第2導電形の不純物濃度は、部分4bとZ方向において並ぶ部分2aの第1導電形の不純物濃度より高い。部分4bのZ方向における寸法は、部分2aのZ方向における寸法よりも短い。部分4bに含まれる第2導電形の不純物量は、部分2aに含まれる第1導電形の不純物量よりも小さい。
各領域における不純物量は、例えば、各領域の不純物濃度と、各領域の体積と、の積により求めることができる。
各半導体領域におけるキャリア濃度は、各半導体領域における不純物濃度に比例する。
従って、図1に表す例について、他の表現によると、部分3aにおいてZ方向の中心に位置する部分における第1導電形のキャリア濃度は、部分4aにおいてZ方向の中心に位置する部分における第2導電形のキャリア濃度と等しい。部分4aのZ方向における寸法は、部分3aのZ方向における寸法よりも長い。
また、部分4bにおいてZ方向の中心に位置する部分における第2導電形のキャリア濃度は、部分2aにおいてZ方向の中心に位置する部分における第1導電形のキャリア濃度よりも高い。部分4bのZ方向における寸法は、部分2aのZ方向における寸法よりも短い。
なお、各半導体領域におけるキャリア濃度および寸法は、例えば、SCM(走査型静電容量顕微鏡)を用いて確認することができる。
SCMを用いて、例えば、図1に表すA−A´線上におけるキャリア分布を調べることで、A−A´線上における、部分4aのZ方向の中心部分のキャリア濃度、部分3aのZ方向の中心部分のキャリア濃度、部分4aのZ方向の寸法、および部分3aのZ方向の寸法を調べることができる。
同様に、SCMを用いて、例えば、図1に表すB−B´線上におけるキャリア分布を調べることで、B−B´線上における、部分4bのZ方向の中心部分のキャリア濃度、部分2aのZ方向の中心部分のキャリア濃度、部分4bのZ方向の寸法、および部分2aのZ方向の寸法を調べることができる。
なお、A−A´線は、nピラー領域3のZ方向における中心を通り、X方向に延びる線である。B−B´線は、pピラー領域4のZ方向における中心を通り、X方向に延びる線である。
上述した各部分のキャリア濃度は、製造上のばらつきを含んでいてもよい。一方の部分におけるキャリア濃度が、他方の部分におけるキャリア濃度に対して0.85倍以上1.15倍以下であれば、これらの領域におけるキャリア濃度は、実質的に等しいとみなすことができる。
nピラー領域3とpピラー領域4の一部とは、いわゆるスーパージャンクション構造を形成している。
以下の説明において、nピラー領域3と部分4aからなり、スーパージャンクション構造を形成する領域を、ドリフト領域と称する。
pベース領域5は、ドリフト領域上に選択的に設けられている。
ソース領域6は、pベース領域5中に設けられている。ソース領域6の第1導電形の不純物濃度は、nピラー領域3の第1導電形の不純物濃度よりも高い。pベース領域5およびソース領域6は、Y方向に延びている。pベース領域5およびソース領域6は、Z方向において複数設けられている。
コンタクト領域7は、pベース領域5中に設けられている。また、コンタクト領域7は、同じpベース領域5中に設けられたソース領域6同士の間に設けられている。コンタクト領域7の第2導電形の不純物濃度は、pベース領域5の第2導電形の不純物濃度よりも高い。コンタクト領域7は、後述するソース電極11と接続されている。コンタクト領域7は、本実施形態に必須の構成では無い。しかしながら、nピラー領域3における正孔をソース電極11に効率的に排出するためには、コンタクト領域7が設けられていることが好ましい。コンタクト領域7は、Y方向に延びている。また、コンタクト領域7は、Z方向において複数設けられている。
ゲート電極9は、ゲート絶縁膜8を介して、nピラー領域3上およびpベース領域5上に設けられている。ゲート電極9は、nピラー領域3の一部およびpベース領域5の一部と対向している。ゲート電極9は、Y方向に延びている。また、ゲート電極9は、Z方向において複数設けられている。
ゲート電極9に閾値以上の電圧が加えられることで、MOSFETがオン状態となり、pベース領域5の表面にチャネル(反転層)が形成される。
MOSFETがオフ状態のときは、nピラー領域3とpピラー領域4のpn接合面からnピラー領域3およびpピラー領域4に空乏層が広がる。nピラー領域3およびpピラー領域4に広がる空乏層により、耐圧を向上させることができる。
ドレイン領域1の、n形半導体領域2と反対側の面には、ドレイン電極10が設けられている。ドレイン電極10は、ドレイン領域1に接続されている。
ソース電極11は、ソース領域6上およびコンタクト領域7上に設けられ、これらの領域と接続されている。
ここで、半導体装置100の製造方法の一例について、図2を用いて説明する。
図2は、第1実施形態に係る半導体装置100の製造工程を表す工程断面図である。
まず、図2(a)に表すように、第1導電形の半導体基板21を用意する。
次に、図2(b)に表すように、半導体基板21上に第1導電形の半導体層31をエピタキシャル成長させる。
次に、図2(c)に表すように、半導体基板21と、エピタキシャル成長された半導体層31と、にトレンチTを形成する。トレンチTは、例えば、RIE(Reactive Ion Etching)法により形成される。トレンチTは、トレンチTの上部における幅が、下部における幅よりも広くなるように、形成される。RIE法によりトレンチを形成する際の、反応性ガスの種類、反応性ガスの圧力、あるいは投入電力などを調整することで、トレンチTの上部における幅およびトレンチTの下部における幅を制御することができる。トレンチTを形成した後の半導体基板21は、n形半導体領域2に相当する。また、トレンチTを形成した後の半導体層31は、nピラー領域3に相当する。
次に、図2(d)に表すように、形成されたトレンチT内に、第2導電形の半導体層をエピタキシャル成長させ、pピラー領域4を形成する。
次に、ドリフト領域上に、ソース領域6、コンタクト領域7、ゲート絶縁膜8、ゲート電極9、およびソース電極11を形成する。そして、n形半導体領域2の、ドリフト領域と反対側の領域に、ドレイン領域1を形成し、ドレイン領域1上にドレイン電極10を形成することで、図1に表す半導体装置100が得られる。
図2では、RIE法によりトレンチを形成し、トレンチに半導体層をエピタキシャル成長させる例を示した。これに限らず、上部におけるZ方向の寸法が、下部におけるZ方向の寸法よりも長いpピラー領域4を、イオン注入により形成してもよい。ただし、製造の容易性、およびpピラー領域4における不純物濃度のばらつき低減のために、トレンチを形成して、pピラー領域4を形成する方法が好ましい。
本実施形態の作用および効果について説明する。
まず、部分4aにおける第2導電形の不純物量を、部分4aとZ方向において並ぶnピラー領域3の部分3aにおける第1導電形の不純物量よりも大きくすることにより、ドリフト領域における電界を強めることができる。
次に、n形半導体領域2中に部分4bを設けることにより、n形半導体領域2における電界を強めることができる。このとき、n形半導体領域2における電界強度は、ドリフト領域における電界強度に影響される。このため、上述した、部分4aにおける不純物量を部分3aにおける不純物量よりも大きくすることに加えて、n形半導体領域2中に部分4bを設けることで、n形半導体領域2において強い電界が生じる。この結果、耐圧を大きく向上させることができる。
一方、部分4bにおける第2導電形の不純物量を、部分4bとZ方向において並ぶバッファ領域の部分2aにおける第1導電形の不純物量よりも小さくすることにより、オン抵抗の増加を抑制できる。すなわち、n形半導体領域2に部分4bを設けた場合であっても、部分4bからZ方向およびZ方向と反対の方向に向けて延びる空乏層の広がりを抑え、オン抵抗の増加を抑制することが可能となる。
そして、ドリフト領域およびn形半導体領域2で強められた電界は、n形半導体領域2の第1導電形の不純物濃度が低いため、n形半導体領域2における電界の減衰を抑制し、電界をよりn形半導体領域2の下部まで延ばすことが可能となる。
以上の通り、本実施形態によれば、オン抵抗の増加を抑制しつつ、ドリフト領域およびn形半導体領域2における電界を強めることで耐圧を向上させることができる。
なお、n形半導体領域2における電界をより強めるためには、部分4bの、X方向における寸法は、4μm以上であることが好ましい。
半導体装置におけるオン抵抗の増加を抑制しつつ、耐圧をより高めるためには、以下の2つの条件を満たしていることが望ましい。
1つ目の条件は、部分4aにおける第2導電形の不純物量は、部分4aとZ方向において並ぶnピラー領域3の部分3aにおける第1導電形の不純物量の1.1倍以下にすることである。
これは、部分4aにおける第2導電形の不純物量が、部分3aにおける第1導電形の不純物量の1.1倍を超える場合、部分4aにおける第2導電形の不純物量と、部分3aにおける第1導電形の不純物量と、の差が大きくなり、ドリフト領域における耐圧が改善され難くなるためである。
2つ目の条件は、部分4bにおける第2導電形の不純物量は、部分4bとZ方向において並ぶn形半導体領域2の部分2aにおける第1導電形の不純物量の0.9倍以下にすることである。
これは、部分4bにおける第2導電形の不純物量が、部分2aにおける第1導電形の不純物量の0.9倍を超える場合、n形半導体領域2におけるオン抵抗が増加しうるためである。
また、nピラー領域3のZ方向の寸法は、X方向において減少し、pピラー領域4のZ方向の寸法は、X方向において増加していることが望ましい。この構成を採用することで、半導体装置100がオン状態のときに、より多くの電流を流すことが可能となる。
この理由は、以下の通りである。
ゲート電極9に閾値以上の電圧が加えられ、半導体装置100がオン状態になったとき、ドレイン電極10とソース電極11の間に電流が流れ出す。これに伴い、ドレイン電極10とソース電極11の間の電圧が増大する。そして、ドレイン電極10とソース電極11の間の電圧により、n形半導体領域2およびnピラー領域3と、pピラー領域4と、の間のpn接合面から空乏層が広がる。空乏層が広がることで、n形半導体領域2およびnピラー領域3における電流経路が狭くなる。このとき、空乏層が広がるほど、nピラー領域3における電流経路が狭くなり、飽和電流が小さくなってしまう。空乏層は、ソース電極11側よりも、ドレイン電極10側において広がりやすい。特に、本実施形態では、pピラー領域4の一部は、第1導電形の不純物濃度が低いn形半導体領域2に設けられているため、n形半導体領域2における空乏層が広がりやすい。
しかし、本実施形態のように、部分4bのZ方向における寸法を短くすることで、部分2aにおけるZ方向の寸法を長くすることができる。この結果、部分4aのZ方向における寸法が、部分4bのZ方向における寸法と等しい場合に比べて、半導体装置100がオン状態のときの、n形半導体領域2における電流経路の幅を広くすることができ、飽和電流を大きくすることが可能となる。
(第2実施形態)
本発明の第2実施形態について、図3を用いて説明する。
図3は、第2実施形態に係る半導体装置200の一部を表す斜視断面図である。
以下の各実施形態の説明において、第1実施形態と同様の構造あるいは機能を有する部分についての説明は省略し、主として第1実施形態と異なる部分について説明する。
第1実施形態では、nピラー領域3のZ方向における寸法、およびpピラー領域4のZ方向における寸法を、X方向において変化させることで、各領域の不純物量をX方向において変化させた。
これに対して、本実施形態では、nピラー領域3の不純物濃度、およびpピラー領域4の不純物濃度を、X方向において変化させることで、各領域の不純物量をX方向において変化させている。
nピラー領域3は、Z方向の寸法が、X方向において一定である。すなわち、nピラー領域3の下部におけるZ方向の寸法は、nピラー領域3の上部におけるZ方向の寸法と等しい。
同様に、pピラー領域4も、Z方向の寸法が、X方向において一定である。従って、部分4aのZ方向における寸法は、部分4bのZ方向における寸法と等しい。
部分4aの第2導電形の不純物濃度は、部分4bの第2導電形の不純物濃度よりも高い。
部分4aの第2導電形の不純物濃度は、部分3aの第1導電形の不純物濃度よりも高い。そして、部分4aのZ方向における寸法は、部分3aのZ方向における寸法と等しい。このため、部分4aにおける第2導電形の不純物量は、部分4aとZ方向において並ぶnピラー領域3の部分3aにおける第1導電形の不純物量よりも大きい。
部分4bの第2導電形の不純物濃度は、部分2aの第1導電形の不純物濃度よりも低い。そして、部分4bにおける第2導電形の不純物量は、部分4bとZ方向において並ぶバッファ領域の部分2aにおける第1導電形の不純物量よりも小さい。
図3に表す例について、他の表現によると、部分4aにおいてZ方向の中心に位置する部分における第2導電形のキャリア濃度は、部分3aにおいてZ方向の中心に位置する部分における第1導電形のキャリア濃度よりも高い。部分4aのZ方向における寸法は、部分3aのZ方向における寸法と等しい。
また、部分4bにおいてZ方向の中心に位置する部分における第2導電形のキャリア濃度は、部分2aにおいてZ方向の中心に位置する部分における第1導電形のキャリア濃度よりも低い。部分4bのZ方向における寸法は、部分2aのZ方向における寸法と等しい。
各半導体領域におけるキャリア濃度および寸法は、第1実施形態と同様に、例えば、SCM(走査型静電容量顕微鏡)を用いて確認することができる。
例えば、図3に表す半導体装置200について、SCMを用いてA−A´線上におけるキャリア分布およびB−B´線上におけるキャリア分布を調べることで、それぞれの線分上における各半導体領域のキャリア濃度および寸法を調べることができる。
A−A´は、nピラー領域3のZ方向における中心を通る線である。B−B´は、pピラー領域4のZ方向における中心を通る線である。
上述した各部分のZ方向における寸法は、製造上のばらつきを含んでいてもよい。一方の部分の寸法が、他方の部分の寸法の0.85倍以上1.15倍以下であれば、これらの部分における寸法は、実質的に等しいとみなすことができる。
上述した構成により、第1実施形態と同様に、半導体装置において、オン抵抗の増加を抑制しつつ、耐圧を向上させることができる。
(変形例)
次に、第2実施形態の変形例について、図4を用いて説明する。
図4は、第2実施形態の変形例に係る半導体装置250の一部を表す斜視断面図である。
本変形例において、nピラー領域3は、部分3aと部分3bを含む。部分3aは、部分3bよりも、X方向側に設けられている。すなわち、部分3bは、部分3aとn形半導体領域2との間に設けられている。部分3aの第1導電形の不純物濃度は、部分3bの第1導電形の不純物濃度よりも高い。
pピラー領域4は、部分4aと、部分4bと、部分4cと、を含む。部分4aは、部分3aと、Z方向において並んでいる。部分4cは、部分3bと、Z方向において並んでいる。部分4bは、n形半導体領域2中の部分2aと、Z方向において並んでいる。部分4aの第2導電形の不純物濃度は、部分4cの第2導電形の不純物濃度よりも高い。
部分4aの第2導電形の不純物濃度は、部分3aの第1導電形の不純物濃度よりも高い。そして、部分4aのZ方向における寸法は、部分3aのZ方向における寸法と等しい。このため、部分4aにおける第2導電形の不純物量は、部分4aとZ方向において並ぶnピラー領域3の部分3aにおける第1導電形の不純物量よりも大きい。
部分4cの第2導電形の不純物濃度は、部分3bの第1導電形の不純物濃度よりも高い。そして、部分4cのZ方向における寸法は、部分3bのZ方向における寸法と等しい。このため、部分4cにおける第2導電形の不純物量は、部分4cとZ方向において並ぶnピラー領域3の部分3aにおける第1導電形の不純物量よりも大きい。ただし、部分4cにおける第2導電形の不純物量と、部分3aにおける第1導電形の不純物量と、の差は、部分4aにおける第2導電形の不純物量と、部分3aにおける第1導電形の不純物量と、の差よりも小さい。
一方で、部分4bにおける第2導電形の不純物量は、部分4bとZ方向において並ぶバッファ領域の部分2aにおける第1導電形の不純物量よりも小さい。
本変形例においても、第1実施形態と同様に、半導体装置において、オン抵抗の増加を抑制しつつ、耐圧を向上させることができる。
なお、半導体装置200は、X方向において、nピラー領域3中に、互いに不純物濃度の異なる部分をさらに有していてもよい。同様に、半導体装置200は、X方向において、pピラー領域4中に、互いに不純物濃度の異なる部分をさらに有していてもよい。
あるいは、nピラー領域3の不純物濃度は、部分3aおよび部分3bを含むように、X方向において、連続的に変化していてもよい。同様に、pピラー領域4の不純物濃度は、部分4aと、部分4bと、部分4cと、を含むように、X方向において、連続的に変化していてもよい。
以上、各実施形態について具体的に説明した。
ただし、部分4aにおける第2導電形の不純物濃度およびZ方向における寸法と、部分3aにおける第1導電形の不純物濃度およびZ方向における寸法は、部分4aにおける第2導電形の不純物量が、部分3aにおける第1導電形の不純物量よりも大きくなる範囲において、適宜変更可能である。
同様に、部分4bにおける第2導電形の不純物濃度およびZ方向における寸法と、部分2aにおける第1導電形の不純物濃度およびZ方向における寸法は、部分4bにおける第2導電形の不純物量が、部分2aにおける第1導電形の不純物量よりも小さくなる範囲において、適宜変更可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…ドレイン領域 2…n形半導体領域 3…nピラー領域 4…pピラー領域 5…pベース領域 6…ソース領域 7…コンタクト領域 8…ゲート絶縁膜 9…ゲート電極 10…ドレイン電極 11…ソース電極

Claims (7)

  1. 第1導電形の第1半導体領域と、
    前記第1半導体領域上に選択的に設けられ、前記第1半導体領域の第1導電形の不純物濃度よりも高い第1導電形の不純物濃度を有し、第1方向に延び、且つ前記第1方向に直交する第2方向に互いに離間して設けられた複数の第2半導体領域と、
    隣り合う前記第2半導体領域の間に設けられ、隣接する前記第2半導体領域に含まれる第1導電形の不純物量よりも大きい第2導電形の不純物量を有する第1部分と、
    前記第1半導体領域の一部と前記第2方向において並び、前記第1半導体領域の前記一部に含まれる第1導電形の不純物量よりも小さい第2導電形の不純物量を有する第2部分と、
    を含み、前記第1方向に延びた複数の第2導電形の第3半導体領域と、
    前記第3半導体領域上に設けられた第2導電形の第4半導体領域と、
    前記第4半導体領域中に設けられた第5半導体領域と、
    ゲート絶縁膜を介して、前記第4半導体領域上に設けられたゲート電極と、
    を備えた半導体装置。
  2. 前記第1部分の前記第2方向における寸法が、前記第2部分の前記第2方向における寸法よりも長い請求項1記載の半導体装置。
  3. 前記第1部分の第2導電形の不純物濃度は、前記第2部分の第2導電形の不純物濃度と等しい請求項2記載の半導体装置。
  4. 前記第1部分の前記第2方向における寸法は、前記第2部分の前記第2方向における寸法と等しく、
    前記第1部分の第2導電形の不純物濃度は、前記第2部分の第2導電形の不純物濃度よりも高い請求項1記載の半導体装置。
  5. 前記第2部分の、前記第1方向および前記第2方向に直交する第3方向における寸法は、4μm以上である請求項1〜4のいずれか1つに記載の半導体装置。
  6. 前記第1部分における第2導電形の不純物量は、隣接する前記第2半導体領域に含まれる第1導電形の不純物量の1.1倍以下であり、
    前記第2部分における第2導電形の不純物量は、隣接する前記第1半導体領域に含まれる第1導電形の不純物量の0.9倍以下である請求項1〜5のいずれか1つに記載の半導体装置。
  7. 第1導電形の第1半導体領域と、
    前記第1半導体領域上に選択的に設けられ、第1方向に延び、且つ前記第1方向に直交する第2方向に互いに離間して設けられた複数の第2半導体領域と、
    隣り合う前記第2半導体領域の間に設けられ、前記第2方向において、中心に位置する部分の第2導電形のキャリア濃度が、前記第2半導体領域の中心に位置する部分の第1導電形のキャリア濃度と等しく、前記第2半導体領域の寸法よりも長い寸法を有する第1部分と、
    前記第1半導体領域の一部と前記第2方向において並び、前記第2方向において、中心に位置する部分の第2導電形のキャリア濃度が、前記第1半導体領域の前記一部の中心に位置する部分の第1導電形のキャリア濃度よりも高く、前記第1半導体領域の前記一部の寸法よりも短い寸法を有し、第2導電形の不純物量が、前記第1半導体領域の前記一部の第1導電形の不純物量よりも小さい第2部分と、
    を含み、前記第1方向に延びた複数の第2導電形の第3半導体領域と、
    前記第3半導体領域上に設けられた第2導電形の第4半導体領域と、
    前記第4半導体領域中に設けられた第5半導体領域と、
    ゲート絶縁膜を介して、前記第4半導体領域上に設けられたゲート電極と、
    を備えた半導体装置。
JP2015042034A 2014-07-31 2015-03-04 半導体装置 Active JP6301861B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015042034A JP6301861B2 (ja) 2014-07-31 2015-03-04 半導体装置
US14/642,345 US9590093B2 (en) 2014-07-31 2015-03-09 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014156048 2014-07-31
JP2014156048 2014-07-31
JP2015042034A JP6301861B2 (ja) 2014-07-31 2015-03-04 半導体装置

Publications (2)

Publication Number Publication Date
JP2016036009A JP2016036009A (ja) 2016-03-17
JP6301861B2 true JP6301861B2 (ja) 2018-03-28

Family

ID=55180891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042034A Active JP6301861B2 (ja) 2014-07-31 2015-03-04 半導体装置

Country Status (2)

Country Link
US (1) US9590093B2 (ja)
JP (1) JP6301861B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969041B (zh) * 2020-08-26 2022-03-29 电子科技大学 一种超结vdmos
CN111933691B (zh) * 2020-10-12 2021-01-29 中芯集成电路制造(绍兴)有限公司 超结器件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304433B2 (ja) * 2002-06-14 2009-07-29 富士電機デバイステクノロジー株式会社 半導体素子
JP3634830B2 (ja) * 2002-09-25 2005-03-30 株式会社東芝 電力用半導体素子
JP3634848B2 (ja) 2003-01-07 2005-03-30 株式会社東芝 電力用半導体素子
JP4393144B2 (ja) 2003-09-09 2010-01-06 株式会社東芝 電力用半導体装置
JP4768259B2 (ja) * 2004-12-21 2011-09-07 株式会社東芝 電力用半導体装置
JP5369372B2 (ja) 2005-11-28 2013-12-18 富士電機株式会社 半導体装置および半導体装置の製造方法
JP5052025B2 (ja) * 2006-03-29 2012-10-17 株式会社東芝 電力用半導体素子
JP4564509B2 (ja) * 2007-04-05 2010-10-20 株式会社東芝 電力用半導体素子
JP4564510B2 (ja) 2007-04-05 2010-10-20 株式会社東芝 電力用半導体素子
JP5365016B2 (ja) * 2008-02-06 2013-12-11 富士電機株式会社 半導体素子およびその製造方法
CN102804386B (zh) 2010-01-29 2016-07-06 富士电机株式会社 半导体器件

Also Published As

Publication number Publication date
US9590093B2 (en) 2017-03-07
JP2016036009A (ja) 2016-03-17
US20160035879A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6367760B2 (ja) 絶縁ゲート型スイッチング装置とその製造方法
US9024382B2 (en) Semiconductor device
JP5198030B2 (ja) 半導体素子
JP4416007B2 (ja) 半導体装置
WO2014125586A1 (ja) 半導体装置
JP6416056B2 (ja) 半導体装置
JP2012089822A (ja) 半導体装置
JP6199755B2 (ja) 半導体装置
US8592917B2 (en) Semiconductor device and method for manufacturing same
WO2017038518A1 (ja) 炭化珪素半導体装置
JP2014216572A (ja) 半導体装置
JP2016163019A (ja) 半導体装置
JP6169985B2 (ja) 半導体装置
US9905689B2 (en) Semiconductor device
KR20160026623A (ko) 반도체 장치
JP6301861B2 (ja) 半導体装置
US20160079350A1 (en) Semiconductor device and manufacturing method thereof
TWI606574B (zh) Semiconductor device
JP2015176974A (ja) 半導体装置
TW201803125A (zh) 垂直碳化矽金屬氧化物半導體場效電晶體
JP2013232561A (ja) 半導体装置
US9362359B2 (en) Semiconductor device
JP2021034528A (ja) スイッチング素子
JP6089070B2 (ja) 半導体装置
JP2020126932A (ja) トレンチゲート型半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150