JP6295005B1 - Mass production type vacuum low-pressure double-layer glass and method for producing the same - Google Patents

Mass production type vacuum low-pressure double-layer glass and method for producing the same Download PDF

Info

Publication number
JP6295005B1
JP6295005B1 JP2017221077A JP2017221077A JP6295005B1 JP 6295005 B1 JP6295005 B1 JP 6295005B1 JP 2017221077 A JP2017221077 A JP 2017221077A JP 2017221077 A JP2017221077 A JP 2017221077A JP 6295005 B1 JP6295005 B1 JP 6295005B1
Authority
JP
Japan
Prior art keywords
glass
vacuum
double
packing ring
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017221077A
Other languages
Japanese (ja)
Other versions
JP2019089679A (en
Inventor
茂巳 森川
茂巳 森川
Original Assignee
富士ソーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ソーラー株式会社 filed Critical 富士ソーラー株式会社
Priority to JP2017221077A priority Critical patent/JP6295005B1/en
Application granted granted Critical
Publication of JP6295005B1 publication Critical patent/JP6295005B1/en
Publication of JP2019089679A publication Critical patent/JP2019089679A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Landscapes

  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

【課題】対向する板状ガラス間の空気を吸引するために板状ガラスに穴をあけたり、取付部品の加工や取付け、また開けた穴を封止する必要をなくし、しかもガラス面に穴跡が残ることもなく、複層ガラス間のスペース内の熱対流伝導防止のために10パスカル以下に一度にかつ大量に真空低圧加工をすることができる大量生産型真空低圧複層ガラスおよびその製造方法を提供する。【解決手段】大気を2枚以上のガラス板間に残したままスペーサーを介在させ、前記ガラス板の周縁部には摺動性を有しているため、温度差によるガラスの膨張・収縮にも対応することが可能なシリコンゴム気密パッキングリングを取り付けるとともに、該シリコンゴム気密パッキングリング部分に逆止弁構造を形成することにより、大気が密封されたままで複数の複層ガラスが真空チャンバ内で真空減圧するようにしたことを特徴とする大量生産型真空低圧複層ガラス。【選択図】 図1[PROBLEMS] To eliminate the need to make holes in plate glass to process air between opposing plate glasses, to process and attach mounting parts, and to seal the opened holes. Mass production type vacuum low-pressure double-glazed glass that can be processed in a large amount of vacuum and low pressure at 10 Pascals or less at once to prevent thermal convection conduction in the space between the double-glazed glass I will provide a. A spacer is interposed while air is left between two or more glass plates, and the peripheral edge of the glass plate has sliding properties, so that the glass can expand and contract due to a temperature difference. By attaching a silicon rubber hermetic packing ring that can be accommodated and forming a check valve structure in the silicon rubber hermetic packing ring part, a plurality of glass layers are vacuumed in a vacuum chamber while the atmosphere is sealed. A mass-produced vacuum low-pressure double-glazed glass characterized by reducing the pressure. [Selection] Figure 1

Description

本発明は大量生産型真空低圧複層ガラスおよびその製造方法に係るものである。 The present invention relates to a mass production type vacuum low-pressure double-glazed glass and a method for producing the same.

従来より、単なる複層ガラスは内部において熱の対流が発生して熱伝導による断熱性や遮熱性を損なっているという事実があった。そこで、
1)クリア(透明)フロートガラス、強化ガラス、熱線吸収板ガラス、熱線反射ガラス、摺りガラスなどに、ジルコニウム、ビスマス、チタン、インジウム、スズ、亜鉛等からなる反射防止剤のコーティング処理をして複層ガラス資材とする。
2)また複層ガラスの空間にはクロム、アルミニウム、ニッケル、タングステン、銅、ステンレス、ニッケルクロム鋼等をスペーサーに用いて複層ガラスを形成する。
3)そのガラス板周縁部に半田硝子、低融点ガラス、ロー材等を充填封止する。
4)その上で真空引き作業を行う。
という作業手順が採用されていた。
Conventionally, there has been a fact that mere double-glazed glass generates heat convection inside and impairs heat insulation and heat insulation by heat conduction. there,
1) Multiple layers of clear (transparent) float glass, tempered glass, heat-absorbing plate glass, heat-reflective glass, frosted glass, etc., coated with an anti-reflective agent consisting of zirconium, bismuth, titanium, indium, tin, zinc, etc. Glass material.
2) Further, in the space of the multilayer glass, the multilayer glass is formed using chromium, aluminum, nickel, tungsten, copper, stainless steel, nickel chrome steel or the like as a spacer.
3) Fill and seal solder glass, low-melting-point glass, brazing material, etc. on the peripheral edge of the glass plate.
4) Perform vacuuming on it.
The work procedure was adopted.

そのため、パイプやチューブ、針等を複層ガラスの2枚のガラス板間のスペースに装着した上で、高温(200℃〜300℃)に加熱しながら、複層ガラス間をスペースを確保しつつ保持する工程、複層ガラス間を封止する工程によって複層ガラスを1枚づつ製造したのち、複層ガラス間の真空引きを行っており、品質が不安定で歩留まり率も悪く、安価でかつ安定した品質で大量生産するというには不向きな製造方法であった。 Therefore, while installing pipes, tubes, needles, etc. in the space between the two glass plates of the multilayer glass, while securing the space between the multilayer glasses while heating to a high temperature (200 ° C. to 300 ° C.) After producing the glass sheets one by one by the process of holding and sealing between the glass layers, vacuuming is performed between the glass layers, the quality is unstable, the yield rate is poor, the cost is low, and It was a manufacturing method unsuitable for mass production with stable quality.

また、真空低圧複層ガラスはガラスとしての特徴・特質である透明で気流や対流等による熱移動を防止できる長所を備えているが、対向する板状ガラス間の空気を吸引するために板状ガラスに穴をあけたり、取付部品の加工や取付け、また開けた穴を封止することはガラスが元来破損しやすいものであるため容易ではなく、また透明性を阻害することにもなっていた。しかもガラス面に穴跡が残っていたり、小さな弁を内蔵させるという困難さを伴うことがあった。
さらに、断熱性を備えた複層ガラスの還流率を下げるには複層ガラスを厚くしなければならず、大幅なコスト上昇を招きかねないという問題があった
したがって、1mm以下とした複層ガラス間のスペースの確保、また前記スペース内を熱対流伝導防止のために10パスカル以下に真空低圧加工をして真空封止をするか、その加工を一度に大量に行うことができるかということが大きな課題である。
In addition, vacuum low-pressure double-glazed glass has the advantage of being transparent and has the advantage of preventing heat transfer due to airflow and convection, which is a characteristic and characteristic of glass. It is not easy to make holes in glass, process and install mounting parts, and seal holes. Glass is naturally easy to break, and it also impedes transparency. It was. Moreover, there are cases where holes remain on the glass surface and there is a difficulty in incorporating a small valve.
Furthermore, in order to lower the reflux rate of the multi-layer glass with heat insulation, the multi-layer glass had to be thick, and there was a problem that could lead to a significant cost increase. In order to secure the space between them and to prevent thermal convection conduction in the space, it is possible to perform vacuum sealing by vacuum low-pressure processing to 10 Pascals or less, or whether the processing can be carried out in large quantities at once. It is a big issue.

例えば、厚さ4mmで1m×2mの長方形のフロートガラスを用い、複層ガラスの外側(外気側)ガラスが−30°で室内側ガラスが+25°の場合、55℃の温度差の環境に真空低圧複層ガラスが曝されることになる。この場合、2枚のガラス間の周縁部を密閉する素材として低融点ハンダガラスや低温溶融ガラス、ロー材等の硬くて強固な封止材を使用すると、前記温度差で内外両方のガラスに掛かる応力(ストレス)で、約2mmの膨張および収縮差が2枚のガラス間に発生することになる。そして、10回程度の膨張および収縮の繰り返しでガラス膨張応力がガラス周縁表面にまず浅くヒビを発生させる。やがて数回の膨張および収縮を繰り返すとひびがさらに増加して深部に達し、破損してしまうという大変不都合な課題があり、従来の真空低圧複層ガラスではおよそ40℃位の内外室温差の環境条件で使用制限されるものであった。
そのため、真空低圧複層ガラスは省エネ社会の実現のため企業、産業界、一般家庭等において大きな市場や需要があるにもかかわらず、その普及が遅れていたのである。
For example, if a rectangular float glass of 1m x 2m with a thickness of 4mm is used, the outer side (outside air) glass of the double-glazed glass is -30 ° and the indoor side glass is + 25 °, a vacuum is created in an environment with a temperature difference of 55 ° C. The low pressure multilayer glass will be exposed. In this case, if a hard and strong sealing material such as a low melting point solder glass, a low temperature melting glass, or a brazing material is used as a material for sealing the peripheral edge between the two sheets of glass, it is applied to both the inside and outside glass due to the temperature difference. With stress (stress), an expansion and contraction difference of about 2 mm occurs between the two glasses. Then, by repeating the expansion and contraction about 10 times, the glass expansion stress is first shallowly generated on the peripheral surface of the glass. Eventually there is a very inconvenient problem that cracks will increase further and reach deeper and break if repeated expansion and contraction several times in the past. The use was restricted by conditions.
Therefore, in order to realize an energy saving society, vacuum / low pressure double glazing has been delayed in spite of a large market and demand in companies, industries, general households, and the like.

特開平10−87350号公報JP 10-87350 A 特開2000−63156号公報JP 2000-63156 A 特開2000−352274号公報JP 2000-352274 A 特開2001−31449号公報JP 2001-31449 A 特開2009−167041号公報JP 2009-167041 A

そこで本発明は、対向する板状ガラス間の空気を吸引するために板状ガラスに穴をあけたり、取付部品の加工や取付け、また開けた穴を封止する必要をなくし、しかもガラス面に穴跡が残ることもなく、複層ガラス間のスペース内の熱対流伝導防止のために10パスカル以下に一度にかつ大量に真空低圧加工をすることができる大量生産型真空低圧複層ガラスおよびその製造方法を提供することを目的とするものである。 Therefore, the present invention eliminates the need to make holes in the plate glass to suck air between the opposed plate glasses, to process and attach the mounting parts, and to seal the opened holes. A mass-produced vacuum low-pressure double-glazed glass capable of being processed in vacuum and low-pressure at a time in large quantities to 10 Pascals or less at a time in order to prevent thermal convection conduction in the space between the double-glazed glass without leaving traces, The object is to provide a manufacturing method.

すなわちこの発明の大量生産型真空低圧複層ガラスは、大気を2枚以上のガラス板間に残したままスペーサーを介在させ、前記ガラス板の周縁部には摺動性を有しているため、温度差によるガラスの膨張・収縮にも対応することが可能なシリコンゴム気密パッキングリングを取り付けるとともに、該シリコンゴム気密パッキングリング部分に逆止弁構造を形成することにより、大気が密封されたままで複数の複層ガラスが真空チャンバ内で一括して真空減圧するようにしたことを特徴とするものである。 That is, the mass-produced vacuum low-pressure double-glazed glass of the present invention has a spacer while leaving the atmosphere between two or more glass plates, and the peripheral edge of the glass plate has slidability. A silicon rubber airtight packing ring that can handle expansion and contraction of glass due to temperature differences is attached, and a check valve structure is formed in the silicon rubber airtight packing ring part, so that a plurality of air can be kept sealed. The multi-layer glass is vacuum-depressurized collectively in a vacuum chamber.

この発明の大量生産型真空低圧複層ガラスにおいて、前記シリコンゴム気密パッキングリング部分に形成した逆止弁構造は、複層ガラス内空間の真空吸引時にはエア通路を開放し、真空吸引の終了時にはエア通路を自動的に閉鎖する弁体を備えていることをも特徴とするものである。 In the mass production type vacuum low-pressure double-layer glass of the present invention, the check valve structure formed in the silicon rubber hermetic packing ring portion opens an air passage when vacuuming the inner space of the double-layer glass, and air at the end of vacuum suction. A valve body that automatically closes the passage is also provided.

この発明の大量生産型真空低圧複層ガラスにおいて、前記シリコンゴム気密パッキングリング部分に形成した逆止弁構造は、真空吸引時には複層ガラス内空間を真空チャンバ内の真空減圧状態と同じに減圧することができるようにしてなることをも特徴とするものである。 In the mass production type vacuum low-pressure double-layer glass of the present invention, the check valve structure formed in the silicon rubber hermetic packing ring portion reduces the internal space of the double-layer glass to the same as the vacuum pressure reduction state in the vacuum chamber during vacuum suction. It is also characterized in that it is made possible.

この発明の大量生産型真空低圧複層ガラスにおいて、前記シリコンゴム気密パッキングリング部分に形成した逆止弁構造は、前記エア通路の片方の側に取り付けたマイクロ板バネを備えていることをも特徴とするものである。 In the mass-produced vacuum low-pressure double-layer glass according to the present invention, the check valve structure formed in the silicon rubber hermetic packing ring part includes a micro leaf spring attached to one side of the air passage. It is what.

この発明の大量生産型真空低圧複層ガラスの製造方法は、大気を2枚以上のガラス板間に残したままスペーサーを介在させ、前記ガラス板の周縁部には摺動性を有しているため、温度差によるガラスの膨張・収縮にも対応することが可能なシリコンゴム気密パッキングリングを取り付け、前記シリコンゴム気密パッキングリング部分に形成したエア通路の片方の側にマイクロ板バネを取り付けたまま、複層ガラスを真空チャンバ内で真空減圧密閉し、その後前記複層ガラスの周縁部にブチルゴムテープを巻き付けたことを特徴とするものである。 In the method for producing a mass-produced vacuum low-pressure double-layer glass according to the present invention, a spacer is interposed while the atmosphere is left between two or more glass plates, and the peripheral edge of the glass plate has sliding properties. Therefore, a silicon rubber airtight packing ring that can cope with the expansion and contraction of glass due to temperature difference is attached, and the micro leaf spring is attached to one side of the air passage formed in the silicon rubber airtight packing ring portion. The multilayer glass is hermetically sealed under vacuum in a vacuum chamber, and then a butyl rubber tape is wound around the peripheral edge of the multilayer glass.

この発明によれば、対向する板状ガラス間の空気を吸引するために板状ガラスに穴をあけたり、取付部品の加工や取付け、また開けた穴を封止する必要をなくし、しかもガラス面に穴跡が残ることもなく、複層ガラス間のスペース内を熱対流伝導防止のために10パスカル以下に一度にかつ大量に真空低圧加工をすることができる大量生産型真空低圧複層ガラスおよびその製造方法を提供することが可能となった。 According to the present invention, there is no need to make holes in the plate glass to suck air between the opposed plate glasses, processing and mounting of mounting parts, and sealing the opened holes, and the glass surface. Mass-produced vacuum low-pressure double-glazed glass that can be processed in vacuum and low-pressure at a time in large quantities to 10 pascals or less in the space between the double-glazed glass to prevent thermal convection conduction The manufacturing method can be provided.

本発明の大量生産型真空低圧複層ガラスの1実施例を示す概略正面図である。It is a schematic front view which shows one Example of the mass production type vacuum low pressure multilayer glass of this invention. その概略断面図である。It is the schematic sectional drawing. 真空減圧しようとする段階の概略正面図である。It is a schematic front view of the stage which is going to carry out vacuum pressure reduction. 逆止弁構造の要部を示し、真空減圧後に逆止弁構造を作動させた段階の概略拡大図である。FIG. 4 is a schematic enlarged view showing a main part of the check valve structure and operating the check valve structure after vacuum depressurization. 真空減圧後に逆止弁構造を作動させた段階の概略正面図である。It is a schematic front view of the stage which operated the check valve structure after vacuum pressure reduction.

以下、図面に基いて本発明の大量生産型真空低圧複層ガラスおよびその製造方法の実施の形態について詳細に説明する。
図1および図2は本発明の大量生産型真空低圧複層ガラスの1実施例を示すものである。
本発明の大量生産型真空低圧複層ガラスを示す図1および図2において、前記真空低圧複層ガラス11は2枚のガラス板11a,11bを備え、大気を前記2枚のガラス板11a,11b間に残したままスペーサー12を介在させて2枚のガラス板11a,11bを接合させる。
その上で前記2枚のガラス板11a,11bの周縁部の間にはシリコンゴム気密パッキングリング13を取り付けて密閉してある。前記スペーサー12による前記2枚のガラス板11a,11b間の間隔は0.2mm〜1mmの範囲が望ましく、またシリコンゴム気密パッキングリング13の幅は施工や取り付けるサッシ枠、寸法規格等を考慮すると約15mmの幅が望ましい。
前記スペーサー12の素材としては、従来使用されてきたクロム、アルミニウム、ニッケル、タングステン、銅、ステンレス、ニッケルクロム鋼等では2枚のガラス板11a,11b間に加わる膨張や収縮時の応力には対応できない場合、石英やクリスタル等の素材を使用することが望ましい。
Hereinafter, embodiments of a mass production type vacuum low-pressure double-layer glass and a method for producing the same according to the present invention will be described in detail with reference to the drawings.
1 and 2 show an embodiment of the mass production type vacuum low-pressure double-layer glass of the present invention.
In FIG. 1 and FIG. 2 showing the mass production type vacuum low-pressure double-glazed glass of the present invention, the vacuum low-pressure double-glazed glass 11 includes two glass plates 11a and 11b, and the atmosphere is used for the two glass plates 11a and 11b. The two glass plates 11a and 11b are joined together with the spacer 12 interposed therebetween.
In addition, a silicon rubber hermetic packing ring 13 is attached between the peripheral portions of the two glass plates 11a and 11b and sealed. The distance between the two glass plates 11a and 11b by the spacer 12 is preferably in the range of 0.2 mm to 1 mm, and the width of the silicon rubber hermetic packing ring 13 is approximately in consideration of construction, the attached sash frame, dimensional standards, and the like. A width of 15 mm is desirable.
As the material of the spacer 12, conventionally used chromium, aluminum, nickel, tungsten, copper, stainless steel, nickel chrome steel, etc. can cope with the stress at the time of expansion and contraction applied between the two glass plates 11 a and 11 b. If this is not possible, it is desirable to use materials such as quartz or crystal.

前記シリコンゴム気密パッキングリング13は摺動性を有しているため、温度差による2枚のガラス板11a,11bの膨張・収縮にも対応することが可能である。またそれとともに、該シリコンゴム気密パッキングリング13部分に逆止弁構造14が形成してある。そのため、大気が密封されたままで複数の真空低圧複層ガラス11を真空チャンバ(図示せず)内で真空減圧することができる。
前記シリコンゴム気密パッキングリング13は、1枚のシート状素材から矩形に切出し、切れ目のないリング状で使用すること望ましい。
その上で前記ガラス板11a,11bの周縁部にはブチルゴムテープ17が巻き付けてある。もちろんこのブチルゴムテープ17も、温度差による2枚のガラス板11a,11bの膨張・収縮にも対応することが可能である。
Since the silicon rubber hermetic packing ring 13 has slidability, it can cope with expansion and contraction of the two glass plates 11a and 11b due to a temperature difference. At the same time, a check valve structure 14 is formed in the silicon rubber hermetic packing ring 13 portion. Therefore, it is possible to reduce the vacuum of the plurality of vacuum low-pressure multi-layer glasses 11 in a vacuum chamber (not shown) while the atmosphere is sealed.
The silicon rubber hermetic packing ring 13 is preferably cut out into a rectangular shape from a single sheet-like material and used in the form of a continuous ring.
In addition, a butyl rubber tape 17 is wound around the peripheral edges of the glass plates 11a and 11b. Of course, this butyl rubber tape 17 can also cope with expansion and contraction of the two glass plates 11a and 11b due to a temperature difference.

ちなみに、前記シリコンゴム気密パッキングリング13部分に形成した逆止弁構造14は、2枚のガラス板11a,11b内の空間を真空吸引する時にはエア通路14aが自動開閉弁を開放(開弁)し、真空吸引の終了時にはエア通路14aが外部の大気圧で完全かつ自動的に閉鎖(閉弁)する2枚の弁体15を備えている。
そのため、前記シリコンゴム気密パッキングリング13部分に形成した逆止弁構造14は、真空吸引時には2枚のガラス板11a,11b内の空間を真空チャンバ内の真空減圧状態と同じに減圧することができる。
Incidentally, in the check valve structure 14 formed in the silicon rubber airtight packing ring 13 portion, the air passage 14a opens (opens) the automatic opening / closing valve when vacuuming the space in the two glass plates 11a, 11b. At the end of vacuum suction, the air passage 14a is provided with two valve bodies 15 that are completely and automatically closed (closed) at the external atmospheric pressure.
Therefore, the check valve structure 14 formed in the silicon rubber hermetic packing ring 13 portion can reduce the space in the two glass plates 11a and 11b to the same as the vacuum reduced state in the vacuum chamber at the time of vacuum suction. .

より詳しくは、前記シリコンゴム気密パッキングリング13部分に形成した逆止弁構造14は、前記エア通路14aの片方の側に取り付けた前記シリコンゴム気密パッキングリング13と同じ素材からなる2枚の弁体15内にマイクロ板バネ16を備えている。
もちろんこのマイクロ板バネ16は、常態では前記弁体15が前記エア通路14aを閉じる方向に付勢するようになっている。
More specifically, the check valve structure 14 formed in the silicon rubber hermetic packing ring 13 portion includes two valve bodies made of the same material as the silicon rubber hermetic packing ring 13 attached to one side of the air passage 14a. 15 is provided with a micro leaf spring 16.
Of course, the micro leaf spring 16 is normally biased in the direction in which the valve body 15 closes the air passage 14a.

次に、図3ないし図5を用いてこの発明の大量生産型真空低圧複層ガラスの製造方法を説明する。
まず、図1および図2に示したように、大気を2枚(あるいはそれ以上)のガラス板11a,11b間に残したままスペーサー12を介在させ、前記ガラス板11a,11bの周縁部にシリコンゴム気密パッキングリング13を取り付けている。
このシリコンゴム気密パッキングリング13部分に形成したエア通路14aの片方の側にマイクロ板バネ16を取り付けたまま、前記ガラス板11a,11b間を真空チャンバ内で真空減圧する。その上で、図2に示すように前記ガラス板11a,11bの周縁部にはブチルゴムテープ17が巻き付けてある。
Next, the manufacturing method of the mass production type vacuum low pressure multilayer glass of this invention is demonstrated using FIG. 3 thru | or FIG.
First, as shown in FIGS. 1 and 2, a spacer 12 is interposed with the atmosphere left between two (or more) glass plates 11a and 11b, and silicon is formed at the peripheral portions of the glass plates 11a and 11b. A rubber-tight packing ring 13 is attached.
While the micro leaf spring 16 is attached to one side of the air passage 14a formed in the silicon rubber hermetic packing ring 13 portion, the pressure between the glass plates 11a and 11b is reduced in a vacuum chamber. In addition, as shown in FIG. 2, a butyl rubber tape 17 is wound around the peripheral portions of the glass plates 11a and 11b.

図3は、前記ガラス板11a,11b間を真空チャンバ内で真空減圧する段階を示し、前記逆止弁構造14を構成する2枚の弁体15内のマイクロ板バネ16は、その付勢力に抗して真空チャンバ内での真空吸引作用によりエア通路14aを開放している。
図4は、前記ガラス板11a,11b間の真空減圧が終了した段階を示し、真空吸引作用の働かない状態において前記逆止弁構造14を構成する2枚の弁体15内のマイクロ板バネ16は、その付勢力と大気圧とで押し付けてエア通路14aに沿って密着し、エア通路14aを閉鎖している。図5はその全体を示すものである。
次いで、前記ガラス板11a,11bの周縁部にはブチルゴムテープ17を巻き付け、前記ガラス板11a,11bの周縁部をエア通路14a部分を含めて確実に密閉する。
FIG. 3 shows a stage in which the pressure between the glass plates 11a and 11b is reduced in a vacuum chamber, and the micro leaf springs 16 in the two valve bodies 15 constituting the check valve structure 14 are subjected to the biasing force. In contrast, the air passage 14a is opened by a vacuum suction action in the vacuum chamber.
FIG. 4 shows a stage in which the vacuum pressure reduction between the glass plates 11a and 11b is completed, and the micro leaf springs 16 in the two valve bodies 15 constituting the check valve structure 14 in a state where the vacuum suction action does not work. Is pressed by the urging force and the atmospheric pressure and is in close contact with the air passage 14a to close the air passage 14a. FIG. 5 shows the whole.
Next, a butyl rubber tape 17 is wound around the peripheral portions of the glass plates 11a and 11b to securely seal the peripheral portions of the glass plates 11a and 11b including the air passage 14a portion.

この発明によれば、対向するガラス板11a,11b間の空気を吸引するためにガラス板11a,11bに穴をあけたり、取付部品の加工や取付け、また開けた穴を封止する必要をなくし、しかもガラス面に穴跡が残ることはない。
さらに、ガラス板11a,11b間のスペース内を熱対流伝導防止のために10パスカル以下に一度にかつ大量に真空低圧加工をすることができるようになった。
According to the present invention, it is not necessary to make holes in the glass plates 11a and 11b in order to suck air between the opposing glass plates 11a and 11b, to process and attach the mounting parts, and to seal the opened holes. In addition, no hole marks remain on the glass surface.
Furthermore, in the space between the glass plates 11a and 11b, vacuum low-pressure processing can be performed at a time in large quantities at 10 Pascals or less in order to prevent thermal convection conduction.

本発明は以上の通りの構成を有するものであり、住宅の窓や天窓等の開口部のみならず、ソーラー発電やソーラー給湯等の各種の装置、自動車、船舶、温冷室、冷蔵温蔵庫、農業用ハウス、畜舎等に好適に使用することができる。
なお、前記真空低圧複層ガラス11の形状としては、正方形や長方形はもとより、丸形、三角形、六角形、五角形等とすることができ、ガラスの素材もシリコンゴム気密パッキングリング13で密閉できれば、50〜100枚程度の複層ガラスを短時間かつ少工程で一時に大量に生産することができる。
The present invention has a configuration as described above, and includes not only openings such as windows and skylights in houses, but also various devices such as solar power generation and solar hot water, automobiles, ships, hot and cold rooms, and cold storage rooms. It can be suitably used for agricultural houses, barns and the like.
In addition, as the shape of the vacuum low-pressure multi-layer glass 11, a square, a rectangle, a round, a triangle, a hexagon, a pentagon, and the like can be used. If the glass material can be sealed with the silicon rubber airtight packing ring 13, About 50 to 100 sheets of multi-layer glass can be produced in a large amount at a time in a short time and with a small number of steps.

11 真空低圧複層ガラス
11a,11b ガラス板
12 スペーサー
13 シリコンゴム気密パッキングリング
14 逆止弁構造
14a エア通路
15 弁体
16 マイクロ板バネ
17 ブチルゴムテープ
DESCRIPTION OF SYMBOLS 11 Vacuum low pressure multilayer glass 11a, 11b Glass plate 12 Spacer 13 Silicon rubber airtight packing ring 14 Check valve structure 14a Air passage 15 Valve body 16 Micro leaf spring 17 Butyl rubber tape

Claims (3)

大気を2枚以上のガラス板間に残したままスペーサーを介在させ、
前記ガラス板の周縁部には摺動性を有しているため、温度差によるガラスの膨張・収縮にも対応することが可能なシリコンゴム気密パッキングリングを取り付けるとともに、
該シリコンゴム気密パッキングリング部分に逆止弁構造を形成することにより、
大気が密封されたままで複数の複層ガラスが真空チャンバ内で同時かつ大量に真空減圧するようにした大量生産型真空低圧複層ガラスにおいて、
前記シリコンゴム気密パッキングリング部分に形成した逆止弁構造は、複層ガラス内空間の真空吸引時にはエア通路を開放し、真空吸引の終了時にはエア通路を自動的に閉鎖する弁体を備えており、かつ該弁体は前記エア通路内の片方の側に取り付けたマイクロ板バネからなることを特徴とする大量生産型真空低圧複層ガラス。
Interposing a spacer while leaving the atmosphere between two or more glass plates,
Since the peripheral edge of the glass plate has slidability, a silicon rubber airtight packing ring that can cope with expansion and contraction of the glass due to temperature difference is attached,
By forming a check valve structure in the silicone rubber hermetic packing ring part,
In mass-produced vacuum low-pressure double-glazed glass in which a plurality of double-glazed glasses are simultaneously vacuum-depressurized in large quantities in a vacuum chamber while the atmosphere is sealed,
The check valve structure formed in the silicone rubber hermetic packing ring part has a valve element that opens the air passage when vacuuming the inner space of the double-glazed glass and automatically closes the air passage when the vacuum suction ends. The mass production type vacuum low-pressure double-glazed glass is characterized in that the valve body comprises a micro leaf spring attached to one side in the air passage.
前記シリコンゴム気密パッキングリング部分に形成した逆止弁構造は、真空吸引時には複層ガラス内空間を真空チャンバ内の真空減圧状態と同じに減圧することができるようにしてなることを特徴とする請求項1に記載の大量生産型真空低圧複層ガラス。The check valve structure formed in the silicon rubber hermetic packing ring portion is configured to be able to depressurize the inner space of the double-glazed glass at the same time as the vacuum depressurized state in the vacuum chamber during vacuum suction. Item 2. The mass-produced vacuum low-pressure multilayer glass according to Item 1. 大気を2枚以上のガラス板間に残したままスペーサーを介在させ、前記ガラス板の周縁部には摺動性を有しているため、温度差によるガラスの膨張・収縮にも対応することが可能なシリコンゴム気密パッキングリングを取り付け、Spacers are interposed while leaving the air between two or more glass plates, and the peripheral edge of the glass plate has sliding properties, so it can cope with glass expansion and contraction due to temperature difference. Install possible silicone rubber airtight packing ring,
前記シリコンゴム気密パッキングリング部分に形成したエア通路内の片方の側にマイクロ板バネを取り付けたまま、複層ガラスを真空チャンバ内で真空減圧密閉し、With the micro leaf spring attached to one side of the air passage formed in the silicon rubber hermetic packing ring portion, the double-layer glass is sealed under vacuum in a vacuum chamber,
その後前記複層ガラスの周縁部にブチルゴムテープを巻き付けることを特徴とする大量生産型真空低圧複層ガラスの製造方法。Thereafter, a butyl rubber tape is wound around the peripheral edge of the multilayer glass, and the method for producing mass-produced vacuum low-pressure multilayer glass is characterized.
JP2017221077A 2017-11-16 2017-11-16 Mass production type vacuum low-pressure double-layer glass and method for producing the same Active JP6295005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221077A JP6295005B1 (en) 2017-11-16 2017-11-16 Mass production type vacuum low-pressure double-layer glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221077A JP6295005B1 (en) 2017-11-16 2017-11-16 Mass production type vacuum low-pressure double-layer glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP6295005B1 true JP6295005B1 (en) 2018-03-14
JP2019089679A JP2019089679A (en) 2019-06-13

Family

ID=61629028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221077A Active JP6295005B1 (en) 2017-11-16 2017-11-16 Mass production type vacuum low-pressure double-layer glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP6295005B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192271A (en) * 2021-04-21 2021-07-30 重庆工业职业技术学院 Intelligent logistics cabinet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156525A (en) * 1974-06-10 1975-12-17
US5028287A (en) * 1985-03-28 1991-07-02 Libbey-Owens-Ford Co. Method for applying an anti-lacerative plastic layer to glass
JPH1121150A (en) * 1997-06-30 1999-01-26 Central Glass Co Ltd Manufacture of low-pressure double layer glass panel
JPH11278877A (en) * 1998-03-31 1999-10-12 Central Glass Co Ltd Double layer glass having low-pressure space and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156525A (en) * 1974-06-10 1975-12-17
US5028287A (en) * 1985-03-28 1991-07-02 Libbey-Owens-Ford Co. Method for applying an anti-lacerative plastic layer to glass
JPH1121150A (en) * 1997-06-30 1999-01-26 Central Glass Co Ltd Manufacture of low-pressure double layer glass panel
JPH11278877A (en) * 1998-03-31 1999-10-12 Central Glass Co Ltd Double layer glass having low-pressure space and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192271A (en) * 2021-04-21 2021-07-30 重庆工业职业技术学院 Intelligent logistics cabinet
CN113192271B (en) * 2021-04-21 2022-08-30 重庆工业职业技术学院 Intelligent logistics cabinet

Also Published As

Publication number Publication date
JP2019089679A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
EP2099997B1 (en) Vacuum ig window unit with metal member in hermetic edge seal
US8595994B1 (en) Insulating glass unit with asymmetrical between-pane spaces
US9695628B2 (en) Vacuum insulated glass (VIG) window unit including pump-out tube protection ring and/or cap and methods for making same
JP2003321255A (en) Translucent glass panel
US20190177219A1 (en) Method and apparatus for vacuum insulated glazings
EP2893111B1 (en) Spacer system for installing vacuum insulated glass (vig) window unit in window frame designed to accommodate thicker ig window unit
JPH1087350A (en) Heat insulating multi-layered glass and vacuum multi-layered glass
EP1131528B1 (en) Method of and apparatus for evacuating a glass chamber
AU2012292347B2 (en) Glazing unit with peripheral seal and corresponding manufacturing process
WO2001075260A1 (en) Vacuum ig unit with seal for pump-out aperture
CN104781492A (en) Spacer system for installing vacuum insulated glass (VIG) window unit in window frame designed to accommodate thicker IG window unit
JP6295005B1 (en) Mass production type vacuum low-pressure double-layer glass and method for producing the same
KR101453307B1 (en) Vacuum glass panel module
CN102898007B (en) Tail-free sealing vacuum energy-saving and noise-reducing glass
US11913277B2 (en) Method for manufacturing glass panel unit
WO2017193230A1 (en) Vacuum glass and processing method therefor
EP1131529A1 (en) Method of forming evacuated glass panels
WO2016158241A1 (en) Double glazing and method for manufacturing double glazing
JP2000203892A (en) Glass panel
JP6893321B2 (en) Manufacturing method of glass panel unit and fittings equipped with it
KR101082020B1 (en) Method for manufacturing vacuum glazing
JP2000352274A (en) Double glazing having multiple low-pressure space and manufacture of the same
WO2016065665A1 (en) Energy-saving sheet and manufacturing method therefor
JP2022153097A (en) Decompressed multilayered glass panel
JP2019535623A (en) Vacuum insulating glass having polymer spacer matrix and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6295005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250