JP6291792B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6291792B2
JP6291792B2 JP2013225514A JP2013225514A JP6291792B2 JP 6291792 B2 JP6291792 B2 JP 6291792B2 JP 2013225514 A JP2013225514 A JP 2013225514A JP 2013225514 A JP2013225514 A JP 2013225514A JP 6291792 B2 JP6291792 B2 JP 6291792B2
Authority
JP
Japan
Prior art keywords
chip
high voltage
control
island
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013225514A
Other languages
Japanese (ja)
Other versions
JP2015088607A (en
Inventor
吉清 臼井
吉清 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013225514A priority Critical patent/JP6291792B2/en
Publication of JP2015088607A publication Critical patent/JP2015088607A/en
Application granted granted Critical
Publication of JP6291792B2 publication Critical patent/JP6291792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

この発明は、半導体集積回路チップを搭載した半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device on which a semiconductor integrated circuit chip is mounted and a method for manufacturing the same.

図7および図8は、従来の半導体装置500の構成図であり、図7(a)は外形の上面図、図7(b)は図7(a)のX−X線で切断した要部断面図、図7(c)は図7(a)のY−Y線で切断した要部断面図、図8(a)は図7(a)のエポキシ樹脂を外した内部を拡大したA部の要部平面図、図8(b)は図8(a)のX−X線で切断した要部断面図である。   7 and 8 are configuration diagrams of a conventional semiconductor device 500. FIG. 7A is a top view of the outer shape, and FIG. 7B is a main portion cut along line XX of FIG. 7A. Sectional view, FIG. 7C is a cross-sectional view of the main part cut along line YY in FIG. 7A, and FIG. 8A is an enlarged view of part A with the epoxy resin removed in FIG. 7A. FIG. 8B is a cross-sectional view of the main part taken along line XX of FIG. 8A.

この半導体装置500は、アイランド2(ダイパッド)と、リード端子1と、アイランド2に固着する高耐圧ICチップ5および低耐圧の制御ICチップ7を備える。高耐圧ICチップ5および制御ICチップ7とリード端子1を接続するボンディングワイヤ10と、全体を封止するエポキシ樹脂11とを備える。   The semiconductor device 500 includes an island 2 (die pad), a lead terminal 1, a high breakdown voltage IC chip 5 and a low breakdown voltage control IC chip 7 fixed to the island 2. A high-voltage IC chip 5 and a control IC chip 7 are provided with a bonding wire 10 for connecting the lead terminal 1 and an epoxy resin 11 for sealing the whole.

高耐圧ICチップ5の裏面と制御ICチップ7の裏面は導電性接着剤8を介してアイランド2に固着する。また、リード端子1の内グランド電位にあるGNDリード端子1aとアイランド2は接続されず、アイランド2は浮遊電位となる。   The back surface of the high voltage IC chip 5 and the back surface of the control IC chip 7 are fixed to the island 2 via the conductive adhesive 8. Further, the GND lead terminal 1a at the internal ground potential of the lead terminal 1 and the island 2 are not connected, and the island 2 becomes a floating potential.

高耐圧ICチップ5の表面の図示しない電極パッドおよび制御ICチップ7の表面の図示しない電極パッドはリード端子1とボンディングワイヤ10で接続する。
図17は、高耐圧ICチップ5および制御IC7に形成される回路図である。これら回路により主回路電流を流すMOSFET201,202が駆動される。
An electrode pad (not shown) on the surface of the high voltage IC chip 5 and an electrode pad (not shown) on the surface of the control IC chip 7 are connected to the lead terminal 1 by a bonding wire 10.
FIG. 17 is a circuit diagram formed in the high voltage IC chip 5 and the control IC 7. These circuits drive MOSFETs 201 and 202 through which main circuit current flows.

高耐圧ICチップ5は、レベルシフト回路501、ハイサイド駆動回路502を備えている。ハイサイド駆動回路502の電源はVBである。レベルシフト回路501はセット用のMOSFET(SET)とリセット用のMOSFET(RESET)およびダイオードDと抵抗Rで構成される。   The high breakdown voltage IC chip 5 includes a level shift circuit 501 and a high side drive circuit 502. The power source of the high side drive circuit 502 is VB. The level shift circuit 501 includes a set MOSFET (SET), a reset MOSFET (RESET), a diode D, and a resistor R.

制御IC7は、ローサイド駆動回路701と電源制御回路702を備えている。制御IC7に形成される回路の電源は、VCCである。この例では、電源制御回路702を備えたものについて示しているがこれに限ったものではない。外部からの信号に基づいてローサイド駆動回路701およびハイサイド駆動回路502への信号を出力する回路であればよい。   The control IC 7 includes a low side drive circuit 701 and a power supply control circuit 702. The power source of the circuit formed in the control IC 7 is VCC. In this example, the power supply control circuit 702 is shown, but the present invention is not limited to this. Any circuit that outputs signals to the low-side drive circuit 701 and the high-side drive circuit 502 based on an external signal may be used.

MOSFET201,202は直列接続され、MOSFET201のドレインに主回路電源Vdcが印加され、MOSFET202のソースはグランド電位のCOMに接続している。この2直列でインバータ回路の一つのアームを構成し、接続点Kは図示しないモータなどの負荷に接続する。この接続点Kと高耐圧ICチップ5のVS端子は接続する。VB端子(この端子の電圧はVB)のグランドに対する電圧はVS端子(この端子の電圧はVS)の電圧(中間電位)にブートストラップコンデンサCbの電圧E(15V程度)が加わった電圧である。   The MOSFETs 201 and 202 are connected in series, the main circuit power supply Vdc is applied to the drain of the MOSFET 201, and the source of the MOSFET 202 is connected to the ground potential COM. The two series form one arm of the inverter circuit, and the connection point K is connected to a load such as a motor (not shown). The connection point K and the VS terminal of the high voltage IC chip 5 are connected. The voltage with respect to the ground of the VB terminal (the voltage of this terminal is VB) is a voltage obtained by adding the voltage E (about 15 V) of the bootstrap capacitor Cb to the voltage (intermediate potential) of the VS terminal (the voltage of this terminal is VS).

MOSFET201,202のオン・オフにより、VSはグランド電位からVdcまで振られる。
図9は、高耐圧ICチップ5の要部断面図である。高耐圧ICチップ5は、p型基板15の表面層に配置される第1nウェル領域16、第2nウェル領域17、第1p領域18、第2p領域19を備える。第1nウェル領域16の表面層に配置されるpウェル領域20と、pウェル領域20の表面層に配置されるnドレイン領域21、nソース領域22、pコンタクト領域23と、ポリシリコンのゲート電極24を備える。第1nウェル領域16の表面層に配置されるpドレイン領域25、pソース領域26、nコンタクト領域27と、ポリシリコンのゲート電極28を備える。第1p領域18の表面層に配置されるnソース領域29、ゲート電極30、第2nウェル領域17の表面層に配置されるnドレイン領域31を備える。第1p領域18の表面層に配置されるpコンタクト領域32と、第2p領域19の表面層に配置されるpコンタクト領域33と、第1nウェル領域16と第2nウェル領域17に跨って配置されるnコンタクト領域34と、第1p領域18と第2p領域19に跨って配置されるpコンタクト領域35を備える。各ドレイン領域、各ソース領域、各ゲート電極に接続するドレイン電極D、ソース電極S、ゲート金属電極Gを備える。pコンタクタ領域およびnコンタクト領域に接続する金属電極36,37,38,39,40,41,42を備える。金属電極40,41はVS、VBに接続し、ソース電極Sを含む金属電極42はGNDに接続する。VSはインバータ回路の中間電位、VBはVSに昇圧電位(例えば、15V程度)が加わったハイサイド側の第1nウェル領域16の電位である。そのため、常時、pウェル領域20と第1nウェル領域16のpn接合は逆バイアスされている。p型基板15は、第1p領域18および第2p領域19を介してグランド電位(GND)になっている。p型基板15は導電性接着剤8を介して浮遊電位にあるアイランド2に固着されている。この半導体装置500は、レベルシフト、高耐圧終端領域(HVJT)、浮遊電位基準回路領域で構成される。
By turning on and off the MOSFETs 201 and 202, VS is swung from the ground potential to Vdc.
FIG. 9 is a cross-sectional view of the main part of the high voltage IC chip 5. The high breakdown voltage IC chip 5 includes a first n well region 16, a second n well region 17, a first p region 18, and a second p region 19 that are disposed on the surface layer of the p-type substrate 15. A p-well region 20 disposed in the surface layer of the first n-well region 16, an n-drain region 21, an n-source region 22, a p-contact region 23 disposed in the surface layer of the p-well region 20, and a polysilicon gate electrode 24. A p drain region 25, a p source region 26, an n contact region 27, and a polysilicon gate electrode 28 are provided on the surface layer of the first n well region 16. An n source region 29 disposed on the surface layer of the first p region 18, a gate electrode 30, and an n drain region 31 disposed on the surface layer of the second n well region 17 are provided. The p contact region 32 disposed in the surface layer of the first p region 18, the p contact region 33 disposed in the surface layer of the second p region 19, and the first n well region 16 and the second n well region 17. N contact region 34, and p contact region 35 disposed across first p region 18 and second p region 19. Each drain region, each source region, a drain electrode D connected to each gate electrode, a source electrode S, and a gate metal electrode G are provided. Metal electrodes 36, 37, 38, 39, 40, 41, and 42 connected to the p contactor region and the n contact region are provided. The metal electrodes 40 and 41 are connected to VS and VB, and the metal electrode 42 including the source electrode S is connected to GND. VS is an intermediate potential of the inverter circuit, and VB is a potential of the first n-well region 16 on the high side obtained by adding a boosted potential (for example, about 15 V) to VS. Therefore, the pn junction between the p well region 20 and the first n well region 16 is always reverse-biased. The p-type substrate 15 is at the ground potential (GND) through the first p region 18 and the second p region 19. The p-type substrate 15 is fixed to the island 2 at a floating potential via the conductive adhesive 8. The semiconductor device 500 includes a level shift, a high breakdown voltage termination region (HVJT), and a floating potential reference circuit region.

また、図中の符号でR1はp型基板15の横方向抵抗、R2はp型基板の縦方向抵抗、R3は第1p領域18または第1p領域18と第2p領域を合わせた縦方向抵抗である。
図10は、制御ICチップ7の要部断面図である。制御ICチップ7は、p型基板15aの表面層に配置されるnウェル領域43、pウェル領域44、pウェル領域45、n領域46を備える。nウェル領域43の表面層に配置されるpドレイン領域47、pソース領域48、ゲート電極49およびnコンタクト領域50とを備える。pウェル領域44の表面層に配置されるnドレイン領域51、nソース領域52、ゲート電極53およびpコンタクト領域54とを備える。pウェル領域45の表面層に配置されるpコンタクト領域55を備える。各ドレイン領域、ソース領域、ゲート電極に接続するドレイン電極D、ソース電極S、ゲート金属電極Gを備える。pコンタクタ領域、nコンタクト領域に接続する金属電極56,57,58,59,60を備える。p型基板15aは導電性接着剤8を介して浮遊電位にあるアイランド2に固着されている。金属電極57,58,60はVCC、金属電極56,59はGNDに接続する。VCCは制御ICチップ7の電源電圧である。
In the figure, R1 is a lateral resistance of the p-type substrate 15, R2 is a longitudinal resistance of the p-type substrate, and R3 is a longitudinal resistance of the first p region 18 or the combination of the first p region 18 and the second p region. is there.
FIG. 10 is a cross-sectional view of the main part of the control IC chip 7. The control IC chip 7 includes an n-well region 43, a p-well region 44, a p-well region 45, and an n-region 46 that are disposed on the surface layer of the p-type substrate 15a. A p drain region 47, a p source region 48, a gate electrode 49, and an n contact region 50 are provided in the surface layer of the n well region 43. An n drain region 51, an n source region 52, a gate electrode 53, and a p contact region 54 are provided in the surface layer of the p well region 44. A p contact region 55 is provided on the surface layer of the p well region 45. Each drain region, source region, drain electrode D connected to the gate electrode, source electrode S, and gate metal electrode G are provided. Metal electrodes 56, 57, 58, 59, 60 connected to the p contactor region and the n contact region are provided. The p-type substrate 15 a is fixed to the island 2 at a floating potential via the conductive adhesive 8. The metal electrodes 57, 58 and 60 are connected to VCC, and the metal electrodes 56 and 59 are connected to GND. VCC is a power supply voltage of the control IC chip 7.

また、図中の符号でR4はp型基板15の横方向抵抗、R5はp型基板の縦方向抵抗、R6はpウェル領域45の縦方向抵抗である。
図11および図12は、従来の半導体装置500の製造方法であり、工程順に示した要部製造工程断面図である。
In the figure, R4 is a lateral resistance of the p-type substrate 15, R5 is a longitudinal resistance of the p-type substrate, and R6 is a longitudinal resistance of the p-well region 45.
11 and 12 are cross-sectional views of the main part manufacturing process shown in the order of steps in the conventional method for manufacturing the semiconductor device 500.

図11(a)において、リード端子1とアイランド2を備えたリードフレーム4を準備する。リード端子1とアイランド2は後述する図6の外枠3で互いに接続している。
つぎに、図11(b)において、高耐圧ICチップ5と制御ICチップ7をアイランド2に導電性接着剤8を介して固着する。
In FIG. 11A, a lead frame 4 having lead terminals 1 and islands 2 is prepared. The lead terminal 1 and the island 2 are connected to each other by an outer frame 3 shown in FIG.
Next, in FIG. 11 (b), the high voltage IC chip 5 and the control IC chip 7 are fixed to the island 2 via the conductive adhesive 8.

つぎに、図11(c)において、リード端子1、高耐圧ICチップ5、制御ICチップ7をボンディングワイヤ10で接続する。
つぎに、図12(d)において、モールド樹脂である、例えば、エポキシ樹脂11で全体を封止する。
Next, in FIG. 11C, the lead terminal 1, the high voltage IC chip 5, and the control IC chip 7 are connected by bonding wires 10.
Next, in FIG. 12D, the whole is sealed with, for example, an epoxy resin 11 which is a mold resin.

つぎに、図12(e)において、アイランド2とリード端子1および各リード端子1同士を外枠3から切り離し、リード端子1を折り曲げてフォーミングして、半導体装置500が完成する。   Next, in FIG. 12E, the island 2, the lead terminal 1, and each lead terminal 1 are separated from the outer frame 3, and the lead terminal 1 is bent and formed to complete the semiconductor device 500.

図13は、従来の半導体装置500に形成される寄生トランジスタの等価回路であり、同図(a)は高耐圧ICチップ5内に形成される寄生トランジスタ12の等価回路、同図(b)は制御ICチップ7内に形成される寄生トランジスタ13の等価回路である。   FIG. 13 is an equivalent circuit of a parasitic transistor formed in a conventional semiconductor device 500. FIG. 13A is an equivalent circuit of the parasitic transistor 12 formed in the high voltage IC chip 5, and FIG. 3 is an equivalent circuit of a parasitic transistor 13 formed in the control IC chip 7.

高耐圧ICチップ5内に形成される寄生トランジスタ12は、図9に示すpウェル領域20、第1nウェル領域16、p型基板15aで形成されるPNPバイポーラトランジスタである。一方、制御ICチップ7内に形成される寄生トランジスタ13は,図10に示すpソース領域48、nウェル領域43、p型基板15で形成されるPNPバイポーラトランジスタである。   The parasitic transistor 12 formed in the high voltage IC chip 5 is a PNP bipolar transistor formed by the p well region 20, the first n well region 16, and the p type substrate 15a shown in FIG. On the other hand, the parasitic transistor 13 formed in the control IC chip 7 is a PNP bipolar transistor formed by the p source region 48, the n well region 43, and the p type substrate 15 shown in FIG.

高耐圧ICチップ5の動作において、第1nウェル領域16がpウェル領域20の電位より低くなると、寄生トランジスタ12がオンして、寄生トランジスタ12は短絡状態になる。そのとき、VSからp型基板15を通って表面のGNDに貫通電流61が流れる。この貫通電流61はp型基板15の横方向抵抗R1を経由し第1p領域、第2p領域の縦方向抵抗R3を通って流れる電流61aと、p型基板15の縦方向抵抗R2と導電性接着剤8を通ってアイランド2に流れ込む電流61bに分かれる。電流61bはアイランド2からp型基板15へ流れ込む電流61cと、アイランド2を通って制御ICチップ7側に流れる電流61dに分かれる。電流61aと電流61cは合流して第1p領域、第2p領域の縦方向抵抗R3を介して表面のGNDに流れる電流61eとなる。   In the operation of the high breakdown voltage IC chip 5, when the first n-well region 16 becomes lower than the potential of the p-well region 20, the parasitic transistor 12 is turned on and the parasitic transistor 12 is short-circuited. At that time, a through current 61 flows from VS through the p-type substrate 15 to the surface GND. This through current 61 is a current 61a flowing through the vertical resistance R3 of the first p region and the second p region via the lateral resistance R1 of the p-type substrate 15, and the vertical resistance R2 of the p-type substrate 15 and conductive bonding. The current 61 b flows into the island 2 through the agent 8. The current 61b is divided into a current 61c flowing from the island 2 into the p-type substrate 15 and a current 61d flowing through the island 2 to the control IC chip 7 side. The current 61a and the current 61c merge to become a current 61e that flows to the surface GND through the vertical resistance R3 in the first p region and the second p region.

アイランド2から制御ICチップ7に入り込んだ電流61dはp型基板15aの縦方向抵抗R5,横方向抵抗R4,pウェル領域45の縦方向抵抗R6を通って表面のGNDへ流れて行く。   The current 61d that enters the control IC chip 7 from the island 2 flows to the surface GND through the vertical resistance R5 of the p-type substrate 15a, the horizontal resistance R4, and the vertical resistance R6 of the p-well region 45.

貫通電流61は、R1〜R6によって抑制されて、寄生トランジスタ12は破壊することは少ない。
一方、高耐圧ICチップ5の動作において、10kHz〜500kHzの高周波でVBの電位は例えば15V〜415Vの間で変動する。つまり急峻なdV/dtを有する電圧で振られることになる。このVBの変動(dV/dt)が第1nウェル領域16の電位変動となり、p型基板15と第1nウェル領域16のpn接合の接合容量Cを通して変位電流62(C×dV/dt)が流れる。この変位電流62は大きい場合は1A以上あり、p型基板15の横方向抵抗R1を経由し縦方向抵抗R3を介してアイランド2へ流れ出す。
The through current 61 is suppressed by R1 to R6, and the parasitic transistor 12 is rarely destroyed.
On the other hand, in the operation of the high withstand voltage IC chip 5, the potential of VB fluctuates between 15 V and 415 V, for example, at a high frequency of 10 kHz to 500 kHz. That is, it is shaken with a voltage having a steep dV / dt. This variation in VB (dV / dt) becomes the potential variation in the first n-well region 16, and a displacement current 62 (C × dV / dt) flows through the junction capacitance C of the pn junction between the p-type substrate 15 and the first n-well region 16. . When the displacement current 62 is large, it is 1 A or more, and flows out to the island 2 via the lateral resistance R1 of the p-type substrate 15 and the longitudinal resistance R3.

アイランド2に流れ出した変位電流62は、p型基板15aの縦方向抵抗R5、横方向抵抗R4、pウェル領域45の縦方向抵抗R6を経由して、制御ICチップ7の表面側GNDへ流れて行く。   The displacement current 62 flowing out to the island 2 flows to the surface side GND of the control IC chip 7 via the vertical resistance R5, the horizontal resistance R4 of the p-type substrate 15a, and the vertical resistance R6 of the p-well region 45. go.

この変位電流62は振動電流であり、この変位電流62とR4,R5,R6により発生する電圧によって、制御ICチップ7のグランド電位にあるp型基板15aの電位が変動し、この電位変動により制御ICチップ7に形成された図示しない回路が誤動作を起こす。   The displacement current 62 is an oscillating current, and the potential of the p-type substrate 15a at the ground potential of the control IC chip 7 varies depending on the voltage generated by the displacement current 62 and R4, R5, and R6. A circuit (not shown) formed on the IC chip 7 malfunctions.

また、特許文献1には、複数のICチップが絶縁基板を介して、リードフレームのアイランドに固着した例が開示されている。   Patent Document 1 discloses an example in which a plurality of IC chips are fixed to an island of a lead frame via an insulating substrate.

特許60−189958号公報Japanese Patent No. 60-189958

前記した制御ICチップ7のグランド電位の変動を防止する方策について説明する。
図14は、アイランド2とGNDリード端子1aをボンディングワイヤ10aで接続した半導体装置600の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。
A method for preventing the fluctuation of the ground potential of the control IC chip 7 will be described.
FIG. 14 is a configuration diagram of a semiconductor device 600 in which the island 2 and the GND lead terminal 1a are connected by a bonding wire 10a. FIG. 14 (a) is a plan view of the main part, and FIG. 14 (b) is a diagram of FIG. It is principal part sectional drawing cut | disconnected by XX.

図15は、図14の高耐圧ICチップ5と制御ICチップ7に形成される寄生トランジスタ12,13の等価回路図である。図15には貫通電流61および変位電流62も示した。   FIG. 15 is an equivalent circuit diagram of the parasitic transistors 12 and 13 formed in the high voltage IC chip 5 and the control IC chip 7 of FIG. FIG. 15 also shows a through current 61 and a displacement current 62.

図16は、高耐圧ICチップ5からアイランド2に貫通電流61と変位電流62が流れる様子を説明した図である。
図14〜図16に示すように、アイランド2とGNDリード端子1aを接続して、アイランド2の電位をグランド電位にしっかりと固定する。これによって、制御ICチップ7のグランド電位の変動は抑制され、高耐圧ICチップ5で発生したノイズ(グランド電位の変動)はグランドへ吸収されて、制御ICチップ7に導入されるノイズは防止される。
FIG. 16 is a diagram for explaining how the through current 61 and the displacement current 62 flow from the high voltage IC chip 5 to the island 2.
As shown in FIGS. 14 to 16, the island 2 and the GND lead terminal 1a are connected to firmly fix the potential of the island 2 to the ground potential. As a result, fluctuations in the ground potential of the control IC chip 7 are suppressed, and noise (fluctuation in ground potential) generated in the high voltage IC chip 5 is absorbed into the ground, and noise introduced into the control IC chip 7 is prevented. The

その結果、制御ICチップ7の誤動作を防止することができる。
しかし、VB端子に高い電圧(400V程度)が印加され、高耐圧ICチップ5の寄生トランジスタ12がオンすると、貫通電流61はp型基板15の小さな縦方向抵抗R2を介してアイランド2へ流れ込む。この縦方向抵抗R2は横方向抵抗R1の1/10以下と小さく、さらにこの印加電圧は数百Vと高いために、図15および図16に示すように、寄生トランジスタ12に大きな貫通電流61が流れて、寄生トランジスタ12が形成される高耐圧ICチップ5を破壊させる場合がある。
As a result, malfunction of the control IC chip 7 can be prevented.
However, when a high voltage (about 400 V) is applied to the VB terminal and the parasitic transistor 12 of the high voltage IC chip 5 is turned on, the through current 61 flows into the island 2 via the small vertical resistance R2 of the p-type substrate 15. Since the vertical resistance R2 is as small as 1/10 or less of the horizontal resistance R1 and the applied voltage is as high as several hundred volts, a large through current 61 is generated in the parasitic transistor 12 as shown in FIGS. In some cases, the high breakdown voltage IC chip 5 on which the parasitic transistor 12 is formed is destroyed.

但し、制御ICチップ7の寄生トランジスタ13がオンした場合にも、制御ICチップ7からアイランド2に向かって図示しない貫通電流が流れるが、VCCから印加される電圧は30V程度と低いため、貫通電流は小さく寄生トランジスタ13が形成される制御ICチップ7を破壊させることはない。   However, even when the parasitic transistor 13 of the control IC chip 7 is turned on, a through current (not shown) flows from the control IC chip 7 toward the island 2, but the voltage applied from VCC is as low as about 30 V. The control IC chip 7 on which the parasitic transistor 13 is formed is not destroyed.

このように、変位電流62(ノイズ)による制御ICチップ7の誤動作を防止することと、貫通電流61による高耐圧ICチップ5の破壊を防止することを両立させることは困難である。   As described above, it is difficult to achieve both the prevention of malfunction of the control IC chip 7 due to the displacement current 62 (noise) and the destruction of the high voltage IC chip 5 due to the through current 61.

また、特許文献1では、絶縁基板上のICチップが搭載されているので、貫通電流は発生しない。しかし、絶縁基板のキャパシタにより一方のICチップで発生した電位変動が絶縁基板のキャパシタとアイランドを介して他方のICチップに伝達し、他方のICチップを誤動作させることが想定される。   Further, in Patent Document 1, since an IC chip on an insulating substrate is mounted, no through current is generated. However, it is assumed that the potential fluctuation generated in one IC chip by the capacitor on the insulating substrate is transmitted to the other IC chip via the capacitor and island on the insulating substrate, causing the other IC chip to malfunction.

この発明の目的は、前記の課題を解決して、ノイズの導入による制御ICの誤動作を防止し、貫通電流による高耐圧ICの破壊を防止する半導体装置およびその製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that solves the above-described problems, prevents malfunction of a control IC due to introduction of noise, and prevents destruction of a high-breakdown-voltage IC due to through current.

前記の目的を達成するために、
高い電圧で駆動する高耐圧ICチップと、前記高耐圧ICチップを駆動する前記電圧より低い電圧で駆動する制御ICチップと、前記高耐圧ICチップと前記制御ICチップが共に接着剤を介して固着し、前記高耐圧ICチップおよび前記制御ICチップに共通の基準電位に接続される金属板と、を備える半導体装置において、
前記高耐圧ICチップの裏側は絶縁性接着剤を介して前記金属板に固着され、前記制御ICチップの裏側は導電性接着剤を介して前記金属板に固着され、前記高耐圧ICチップおよび前記制御ICチップの両者の表側に基準電位が印加される各電極パッドを備える構成とする。
To achieve the above objective,
A high voltage IC chip that is driven at a high voltage, a control IC chip that is driven at a voltage lower than the voltage that drives the high voltage IC chip, and the high voltage IC chip and the control IC chip are fixed together via an adhesive. And a metal plate connected to a reference potential common to the high breakdown voltage IC chip and the control IC chip,
The back side of the high voltage IC chip is fixed to the metal plate via an insulating adhesive, and the back side of the control IC chip is fixed to the metal plate via a conductive adhesive. Each electrode pad to which a reference potential is applied is provided on both front sides of the control IC chip.

この発明によれば、ノイズの導入による制御ICの誤動作を防止し、貫通電流による高耐圧ICの破壊を防止する半導体装置およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a semiconductor device that prevents malfunction of the control IC due to the introduction of noise and prevents the breakdown of the high voltage IC due to through current, and a method for manufacturing the same.

この発明に係る第1実施例の半導体装置100の構成図であり、(a)は要部平面図、(b)は同図(a)のX−X線で切断した要部断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the semiconductor device 100 of 1st Example based on this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of the same figure (a). . 半導体装置100の動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the semiconductor device 100. 半導体装置100に形成される寄生トランジスタの等価回路であり、(a)は高耐圧ICチップ5内に形成される寄生トランジスタ12の等価回路、(b)は制御ICチップ7内に形成される寄生トランジスタ13の等価回路である。2 is an equivalent circuit of a parasitic transistor formed in the semiconductor device 100, (a) is an equivalent circuit of the parasitic transistor 12 formed in the high voltage IC chip 5, and (b) is a parasitic circuit formed in the control IC chip 7. 3 is an equivalent circuit of the transistor 13. この発明に係わる第2実施例の半導体装置の要部製造工程断面図である。It is principal part manufacturing process sectional drawing of the semiconductor device of 2nd Example concerning this invention. 図4に続く、この発明に係わる第2実施例の半導体装置の要部製造工程断面図である。FIG. 5 is a cross-sectional view showing the main part manufacturing process of the semiconductor device according to the second embodiment of the invention, following FIG. 4; リードフレームの要部平面図である。It is a principal part top view of a lead frame. 従来の半導体装置500の構成図であり、(a)は外形の上面図、(b)は図7(a)のX−X線で切断した要部断面図、(c)は図7(a)のY−Y線で切断した要部断面図である。7A and 7B are configuration diagrams of a conventional semiconductor device 500, in which FIG. 7A is a top view of an outer shape, FIG. 7B is a cross-sectional view of a main part cut along line XX in FIG. 7A, and FIG. It is principal part sectional drawing cut | disconnected by the YY line | wire of (). 図7のエポキシ樹脂11を外した構成図であり、(a)は図7(a)のエポキシ樹脂を外したA部の要部平面図、(b)は(a)のX−X線で切断した要部断面図である。It is the block diagram which removed the epoxy resin 11 of FIG. 7, (a) is a principal part top view of the A section which removed the epoxy resin of FIG. 7 (a), (b) is the XX line of (a). It is the principal part sectional drawing cut | disconnected. 高耐圧ICチップ5の要部断面図である。3 is a cross-sectional view of a main part of the high voltage IC chip 5. FIG. 制御ICチップ7の要部断面図である。3 is a cross-sectional view of a main part of a control IC chip 7. FIG. 従来の半導体装置500の要部製造工程断面図である。FIG. 10 is a cross-sectional view of a main part manufacturing process of a conventional semiconductor device 500. 図1に続く、従来の半導体装置500の要部製造工程断面図である。FIG. 2 is a main-part manufacturing process cross-sectional view of a conventional semiconductor device 500, following FIG. 1; 従来の半導体装置500に形成される寄生トランジスタの等価回路であり、(a)は高耐圧ICチップ5内に形成される寄生トランジスタ12の等価回路、(b)は制御ICチップ7内に形成される寄生トランジスタ13の等価回路である。2 is an equivalent circuit of a parasitic transistor formed in a conventional semiconductor device 500, (a) is an equivalent circuit of a parasitic transistor 12 formed in the high voltage IC chip 5, and (b) is formed in a control IC chip 7. This is an equivalent circuit of the parasitic transistor 13. アイランド2とGNDリード端子1aをボンディングワイヤ10aで接続した半導体装置600の構成図であり、(a)は要部平面図、(b)は同図(a)のX−X線で切断した要部断面図である。FIG. 2 is a configuration diagram of a semiconductor device 600 in which an island 2 and a GND lead terminal 1a are connected by a bonding wire 10a, where (a) is a plan view of a main part, and (b) is a cross-sectional view taken along line XX in FIG. FIG. 図14の高耐圧ICチップ5と制御ICチップ7に形成される寄生ダイオード12,13の等価回路図である。FIG. 15 is an equivalent circuit diagram of parasitic diodes 12 and 13 formed in the high voltage IC chip 5 and the control IC chip 7 of FIG. 14. 高耐圧ICチップ5からアイランド2に貫通電流61と変位電流62が流れる様子を説明した図である。It is a figure explaining a mode that penetration current 61 and displacement current 62 flow into island 2 from high voltage IC chip 5. 高耐圧ICチップ5に形成される回路図である。3 is a circuit diagram formed in the high voltage IC chip 5. FIG.

実施の形態を以下の実施例で説明する。従来と同一部位には同一の符号を付した。   Embodiments will be described in the following examples. The same parts as those in the prior art are denoted by the same reference numerals.

図1は、この発明に係る第1実施例の半導体装置100の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。図1(a)および図1(b)は図8(a)および図8(b)に相当した図であり、エポキシ樹脂11の内部を示した図である。外形は図7(a)と同じである。   FIG. 1 is a block diagram of a semiconductor device 100 according to a first embodiment of the present invention, where FIG. 1 (a) is a plan view of the main part, and FIG. 1 (b) is an XX line of FIG. 1 (a). It is the principal part sectional drawing cut | disconnected. FIGS. 1A and 1B are views corresponding to FIGS. 8A and 8B, and show the inside of the epoxy resin 11. The outer shape is the same as in FIG.

この半導体装置100は、外部導出端子であるリード端子1と、ダイパッド(金属板)であるアイランド2と、アイランド2に固着する高耐圧ICチップ5および低耐圧の制御ICチップ7を備える。高耐圧ICチップ5および制御ICチップ7とリード端子1を接続するボンディングワイヤ10と、全体を封止するモールド樹脂であるエポキシ樹脂11とを備える。   The semiconductor device 100 includes a lead terminal 1 that is an external lead-out terminal, an island 2 that is a die pad (metal plate), a high breakdown voltage IC chip 5 that is fixed to the island 2, and a low breakdown voltage control IC chip 7. A bonding wire 10 that connects the high-voltage IC chip 5 and the control IC chip 7 to the lead terminal 1 and an epoxy resin 11 that is a mold resin for sealing the whole are provided.

また、リード端子1のうち基準電位(グランド電位)にあるGNDリード端子1aとアイランドはボンデングワイヤ10aで接続され基準電位(グランド電位)に固定されている高耐圧ICチップ5の表面の図示しないグランドパッドおよび制御ICチップ7の表面の図示しないグランドパッドはリード端子1とボンディングワイヤ10で接続する。   In addition, the GND lead terminal 1a at the reference potential (ground potential) of the lead terminal 1 and the island are connected by a bonding wire 10a and the surface of the high breakdown voltage IC chip 5 fixed to the reference potential (ground potential) is not shown. A ground pad (not shown) on the surface of the control IC chip 7 is connected to the lead terminal 1 by a bonding wire 10.

以上の構成は、半導体装置600と同じである。半導体装置600と異なる点は、高耐圧ICチップ5の裏面は絶縁性接着剤6を介してアイランド2に固着し、制御ICチップ7の裏面は導電性接着剤8を介してアイランド2に固着する点である。   The above configuration is the same as that of the semiconductor device 600. The difference from the semiconductor device 600 is that the back surface of the high voltage IC chip 5 is fixed to the island 2 via the insulating adhesive 6, and the back surface of the control IC chip 7 is fixed to the island 2 via the conductive adhesive 8. Is a point.

図2は、半導体装置100の動作を説明する図である。また、図3は、半導体装置100に形成される寄生トランジスタの等価回路であり、同図(a)は高耐圧ICチップ5内に形成される寄生トランジスタ12の等価回路、同図(b)は制御ICチップ7内に形成される寄生トランジスタ13の等価回路である。点線14で囲った範囲が半導体基板である。図3には、図2で示した電流の流れも示した。   FIG. 2 is a diagram for explaining the operation of the semiconductor device 100. 3 is an equivalent circuit of a parasitic transistor formed in the semiconductor device 100. FIG. 3A is an equivalent circuit of the parasitic transistor 12 formed in the high voltage IC chip 5, and FIG. 3 is an equivalent circuit of a parasitic transistor 13 formed in the control IC chip 7. A range surrounded by a dotted line 14 is a semiconductor substrate. FIG. 3 also shows the current flow shown in FIG.

高耐圧ICチップ5内に形成される寄生トランジスタ12は図2で示すpウェル領域20、第1nウェル領域16、p型基板15で形成される寄生PNPTrである。一方、制御ICチップ7内に形成される寄生トランジスタ13はpソース領域48、nウェル領域、p型基板15aで形成される寄生PNPTrである。   The parasitic transistor 12 formed in the high breakdown voltage IC chip 5 is a parasitic PNPTr formed of the p-well region 20, the first n-well region 16, and the p-type substrate 15 shown in FIG. On the other hand, the parasitic transistor 13 formed in the control IC chip 7 is a parasitic PNPTr formed by the p source region 48, the n well region, and the p type substrate 15a.

高耐圧ICチップ5の動作において、例えば、サージ電圧が印加されて、第1nウェル領域16がpウェル領域20の電位より低くなると、寄生トランジスタ12がオンして、寄生トランジスタ12は短絡状態になる。そのとき、VSから第1nウェル領域16を通ってGNDに貫通電流61が流れる。この貫通電流61はp型基板15の大きな横方向抵抗R1と第1p領域18と第2p領域19の縦方向抵抗R3を介して表面の金属電極42,36を通ってGNDへ流れる。そのため、貫通電流61は抑制されて寄生トランジスタ12が破壊することはない。また、高耐圧ICチップ5は絶縁性接着剤6で電気的にアイランド2とは絶縁されているので、貫通電流61はアイランド2へは流れない。つまり貫通電流61によって高耐圧ICチップ5は破壊することがない。また、前記の横方向抵抗R1で生じた電圧はアイランド2へ絶縁性接着剤6のキャパシタンスCoを介して伝達されるが、アイランド2はグランド電位(GND)にしっかり固定されているため、制御ICチップ7のp型基板15aの電位を変動させることはない。そのため、制御ICチップ7の誤動作を防止できる。   In the operation of the high voltage IC chip 5, for example, when a surge voltage is applied and the first n-well region 16 becomes lower than the potential of the p-well region 20, the parasitic transistor 12 is turned on and the parasitic transistor 12 is short-circuited. . At that time, a through current 61 flows from VS to GND through the first n-well region 16. The through current 61 flows to the GND through the metal electrodes 42 and 36 on the surface via the large lateral resistance R1 of the p-type substrate 15 and the vertical resistance R3 of the first p region 18 and the second p region 19. Therefore, the through current 61 is suppressed and the parasitic transistor 12 is not destroyed. Further, since the high voltage IC chip 5 is electrically insulated from the island 2 by the insulating adhesive 6, the through current 61 does not flow to the island 2. That is, the high voltage IC chip 5 is not destroyed by the through current 61. The voltage generated by the lateral resistance R1 is transmitted to the island 2 through the capacitance Co of the insulating adhesive 6. Since the island 2 is firmly fixed to the ground potential (GND), the control IC The potential of the p-type substrate 15a of the chip 7 is not changed. Therefore, malfunction of the control IC chip 7 can be prevented.

図4および図5は、この発明に係わる第2実施例の半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。この製造工程断面図は、図6のX−X線で切断した箇所に相当する工程断面図である。尚、図6はリードフレーム4の平面図であり、リード端子1とアイランド2は外枠3で接続されている。   4 and 5 are cross-sectional views of the main part manufacturing process shown in the order of the steps in the method of manufacturing the semiconductor device according to the second embodiment of the present invention. This manufacturing process cross-sectional view is a process cross-sectional view corresponding to a location cut along line XX in FIG. FIG. 6 is a plan view of the lead frame 4, and the lead terminal 1 and the island 2 are connected by an outer frame 3.

図4(a)において、リード端子1とアイランド2を備えたリードフレーム4を準備する。リード端子1とアイランド2は図6の外枠3で互いに接続している。リードフレーム4の材質としては銅などである。   In FIG. 4A, a lead frame 4 including lead terminals 1 and islands 2 is prepared. The lead terminal 1 and the island 2 are connected to each other by an outer frame 3 in FIG. The material of the lead frame 4 is copper or the like.

つぎに、図4(b)において、高耐圧ICチップ5をアイランド2に絶縁性接着剤6を介して固着する。絶縁性接着剤6としては、例えば、エポキシ樹脂ペーストもしくはDAF(ダイアタッチフィイルム)シートなどがある。   Next, in FIG. 4B, the high voltage IC chip 5 is fixed to the island 2 with an insulating adhesive 6. Examples of the insulating adhesive 6 include an epoxy resin paste or a DAF (die attach film) sheet.

つぎに、図4(c)において、制御ICチップ7をアイランド2に導電性接着剤8を介して固着する。導電性接着剤8としては、例えば、エポキシ樹脂にAg粒子を混入したAgペーストもしくは半田ペーストなどである。尚、図4(b)の工程と図4(c)の工程を入れ替えても構わない。   Next, in FIG. 4C, the control IC chip 7 is fixed to the island 2 via the conductive adhesive 8. Examples of the conductive adhesive 8 include an Ag paste or a solder paste in which Ag particles are mixed in an epoxy resin. Note that the step of FIG. 4B and the step of FIG. 4C may be interchanged.

つぎに、図4(d)において、リードフレーム4のリード端子1の表面をプラズマクリーニング9で清浄化する。このプラズマクリーニング9は酸素プラズマもしくはアルゴンプラズマを用いて行なうとよい。このクリーニング工程を付加することで、ワイヤボンディングを確実に行なうことができる。   Next, in FIG. 4D, the surface of the lead terminal 1 of the lead frame 4 is cleaned with a plasma cleaning 9. The plasma cleaning 9 is preferably performed using oxygen plasma or argon plasma. By adding this cleaning step, wire bonding can be performed reliably.

つぎに、図5(e)において、リード端子1、高耐圧ICチップ5、制御ICチップ7をボンディングワイヤ10(金線、アルミニウム線、銅線)で接続する。
つぎに、図5(f)において、モールド樹脂である、例えば、エポキシ樹脂11で全体を封止する。
Next, in FIG.5 (e), the lead terminal 1, the high voltage | pressure-resistant IC chip 5, and the control IC chip 7 are connected with the bonding wire 10 (a gold wire, an aluminum wire, a copper wire).
Next, in FIG. 5F, the whole is sealed with, for example, an epoxy resin 11 which is a mold resin.

つぎに、図5(g)において、アイランド2とリード端子1および各リード端子1同士を外枠3から切り離し、リード端子1を折り曲げてフォーミングして、半導体装置100が完成する。   Next, in FIG. 5G, the island 2, the lead terminal 1, and each lead terminal 1 are separated from the outer frame 3, and the lead terminal 1 is bent and formed to complete the semiconductor device 100.

1 リード端子
1a GNDリード端子
2 アイランド
3 外枠
4 リードフレーム
5 高耐圧ICチップ
6 絶縁性接着剤
7 制御ICチップ
8 導電性接着剤
9 プラズマクリーニング
10,10a ボンディングワイヤ
11 エポキシ樹脂
12,13 寄生トランジスタ
14 点線
15,15a p型基板
16 第1nウェル領域
17 第2nウェル領域
18 第1p領域
19 第2p領域
20,44,45 pウェル領域
21 nドレイン領域
22 nソース領域
23 pコンタクト領域
24,28,30,49,53 ゲート電極
25,47 pドレイン領域
26,48 pソース領域
27,34,50 nコンタクト領域
29,52 nソース領域
31,51 nドレイン領域
32,33,35,54,55 pコンタクト領域
36〜42,56〜60 金属電極
43 nウェル領域
46 n領域
61 貫通電流
62 変位電流
100,500,600 半導体装置
R1、R4 横方向抵抗
R2、R3、R5,R6 縦方向抵抗
C 接合容量
Co キャパシタンス原稿
DESCRIPTION OF SYMBOLS 1 Lead terminal 1a GND lead terminal 2 Island 3 Outer frame 4 Lead frame 5 High voltage IC chip 6 Insulating adhesive 7 Control IC chip 8 Conductive adhesive 9 Plasma cleaning 10, 10a Bonding wire 11 Epoxy resin 12, 13 Parasitic transistor 14 dotted line 15, 15a p-type substrate 16 first n well region 17 second n well region 18 first p region 19 second p region 20, 44, 45 p well region 21 n drain region 22 n source region 23 p contact region 24, 28, 30, 49, 53 Gate electrode 25, 47 p drain region 26, 48 p source region 27, 34, 50 n contact region 29, 52 n source region 31, 51 n drain region 32, 33, 35, 54, 55 p contact Region 36-42, 56-6 Metal electrodes 43 n-well region 46 n region 61 through current 62 displacement current 100, 500, and 600 a semiconductor device R1, R4 lateral resistance R2, R3, R5, R6 longitudinal resistance C junction capacitance Co capacitance document

Claims (8)

高い電圧で駆動する高耐圧ICチップと、前記高耐圧ICチップを駆動する前記電圧より低い電圧で駆動する制御ICチップと、前記高耐圧ICチップと前記制御ICチップが共に接着剤を介して固着し、前記高耐圧ICチップおよび前記制御ICチップに共通の基準電位に接続される金属板と、を備える半導体装置において、
前記高耐圧ICチップの裏側は絶縁性接着剤を介して前記金属板に固着され、前記制御ICチップの裏側は導電性接着剤を介して前記金属板に固着され、前記高耐圧ICチップおよび前記制御ICチップの両者の表側に基準電位が印加される各電極パッドを備えることを特徴とする半導体装置。
A high voltage IC chip that is driven at a high voltage, a control IC chip that is driven at a voltage lower than the voltage that drives the high voltage IC chip, and the high voltage IC chip and the control IC chip are fixed together via an adhesive. And a metal plate connected to a reference potential common to the high breakdown voltage IC chip and the control IC chip,
The back side of the high voltage IC chip is fixed to the metal plate via an insulating adhesive, and the back side of the control IC chip is fixed to the metal plate via a conductive adhesive. A semiconductor device comprising each electrode pad to which a reference potential is applied on both front sides of a control IC chip.
高い電圧で駆動する高耐圧ICチップと、前記高耐圧ICチップを駆動する前記電圧より低い電圧で駆動する制御ICチップと、前記高耐圧ICチップと前記制御ICチップが共に接着剤を介して固着するリードフレームのアイランドと、外部導出端子である複数のリード端子と、前記リード端子の一部を露出し全体を被覆するモールド樹脂を備える半導体装置において、
前記高耐圧ICチップの裏側は絶縁性接着剤を介して前記アイランドに固着され、前記制御ICチップの裏側は導電性接着剤を介して前記アイランドに固着され、前記アイランドとグランド電位に接続される前記リード端子が電気的に接続され、前記高耐圧ICチップおよび前記制御ICチップの両者の表側の各グランド電極パッドと前記グランド電位となる前記リード端子が電気的に接続されることを特徴とする半導体装置。
A high voltage IC chip that is driven at a high voltage, a control IC chip that is driven at a voltage lower than the voltage that drives the high voltage IC chip, and the high voltage IC chip and the control IC chip are fixed together via an adhesive. In a semiconductor device comprising a lead frame island, a plurality of lead terminals that are external lead-out terminals, and a mold resin that exposes a portion of the lead terminals and covers the whole,
The back side of the high voltage IC chip is fixed to the island via an insulating adhesive, and the back side of the control IC chip is fixed to the island via a conductive adhesive and connected to the island and a ground potential. The lead terminals are electrically connected, and the ground electrode pads on the front side of both the high-breakdown-voltage IC chip and the control IC chip are electrically connected to the lead terminals that are at the ground potential. Semiconductor device.
前記導電性接着剤が、Agペーストもしくは半田ペーストであり、前記絶縁性接着剤が、エポキシ樹脂ペーストもしくはDAFシートであることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the conductive adhesive is an Ag paste or a solder paste, and the insulating adhesive is an epoxy resin paste or a DAF sheet. 前記請求項2または3に記載の半導体装置の製造方法において、
リードフレームのアイランドに絶縁性接着剤を介して高耐圧ICチップを固着する工程と、
リードフレームのアイランドに導電性接着剤を介して制御ICチップを固着する工程と、
リードフレームのリード端子の表面をプラズマクリーニングする工程と、
前記高耐圧ICチップおよび制御ICチップの表面のグランド電極パッドとグランド電位にあるリード端子およびアイランドとグランド端子をボンディングワイヤで接続する工程と、
前記リード端子の一部を露出し、全体を樹脂モールドする工程と、
前記リードフレームのアイランドと各リード端子を切り離し、前記リード端子を折り曲げてフォーミングする工程と、
を含むことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 2 or 3,
Fixing a high voltage IC chip to the island of the lead frame via an insulating adhesive;
Fixing the control IC chip to the island of the lead frame via a conductive adhesive;
Plasma cleaning the surface of the lead frame lead terminal;
Connecting a ground electrode pad on the surface of the high voltage IC chip and the control IC chip, a lead terminal at a ground potential, and an island and a ground terminal with a bonding wire;
Exposing a part of the lead terminal and resin-molding the whole;
Separating the lead frame island and each lead terminal, bending the lead terminal and forming;
A method for manufacturing a semiconductor device, comprising:
前記プラズマクリーニングが、酸素プラズマもしくはアルゴンプラズマを用いて行なうことを特徴とする請求項4に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 4, wherein the plasma cleaning is performed using oxygen plasma or argon plasma. 前記高耐圧ICチップは、
レベルシフト回路と、
前記レベルシフト回路の出力を入力する駆動回路と、を備えることを特徴とする請求項1または2に記載の半導体装置。
The high voltage IC chip is
A level shift circuit;
The semiconductor device according to claim 1, further comprising: a drive circuit that inputs an output of the level shift circuit.
前記高耐圧ICチップは、
p型半導体基板の表面層に該p型半導体基板とpn接合を形成するn型半導体領域と該n型半導体領域内に形成された駆動回路とを備え、
前記p型半導体基板は、前記共通の基準電位と電気的に接続され、前記n型半導体領域は、前記駆動回路の電源と電気的に接続されることを特徴とする請求項1に記載の半導体装置。
The high voltage IC chip is
an n-type semiconductor region for forming a pn junction with the p-type semiconductor substrate on a surface layer of the p-type semiconductor substrate, and a drive circuit formed in the n-type semiconductor region ;
2. The semiconductor according to claim 1, wherein the p-type semiconductor substrate is electrically connected to the common reference potential, and the n-type semiconductor region is electrically connected to a power source of the driving circuit. apparatus.
前記高耐圧ICチップは、
p型半導体基板の表面層に該p型半導体基板とpn接合を形成するn型半導体領域と該n型半導体領域内に形成された駆動回路とを備え、
前記p型半導体基板は、前記グランド電位と電気的に接続され、前記n型半導体領域は、前記駆動回路の電源と電気的に接続されることを特徴とする請求項2に記載の半導体装置。
The high voltage IC chip is
an n-type semiconductor region for forming a pn junction with the p-type semiconductor substrate on a surface layer of the p-type semiconductor substrate, and a drive circuit formed in the n-type semiconductor region ;
The semiconductor device according to claim 2, wherein the p-type semiconductor substrate is electrically connected to the ground potential, and the n-type semiconductor region is electrically connected to a power supply of the drive circuit.
JP2013225514A 2013-10-30 2013-10-30 Semiconductor device and manufacturing method thereof Active JP6291792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225514A JP6291792B2 (en) 2013-10-30 2013-10-30 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013225514A JP6291792B2 (en) 2013-10-30 2013-10-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015088607A JP2015088607A (en) 2015-05-07
JP6291792B2 true JP6291792B2 (en) 2018-03-14

Family

ID=53051091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225514A Active JP6291792B2 (en) 2013-10-30 2013-10-30 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6291792B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733425B2 (en) 2016-08-29 2020-07-29 富士電機株式会社 Semiconductor integrated circuit and semiconductor module
JP6729214B2 (en) * 2016-09-07 2020-07-22 富士電機株式会社 High voltage integrated circuit device and semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012322A (en) * 1987-05-18 1991-04-30 Allegro Microsystems, Inc. Semiconductor die and mounting assembly
KR100239750B1 (en) * 1997-06-16 2000-01-15 윤종용 Semiconductor package structure using epoxy molding compound pad and fabrication method thereof
JP2005093762A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009277949A (en) * 2008-05-16 2009-11-26 Panasonic Corp Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015088607A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5755533B2 (en) Semiconductor device
US9960153B2 (en) Semiconductor device and electronic apparatus of a cascode-coupled system
JP5706251B2 (en) Semiconductor device
JP4565879B2 (en) Semiconductor device
US6593622B2 (en) Power mosfet with integrated drivers in a common package
JP4489485B2 (en) Semiconductor device
KR101708162B1 (en) Semiconductor device
JP4973359B2 (en) Semiconductor device
US20100253306A1 (en) Dc/dc converter
JP2006049341A (en) Semiconductor device and manufacturing method thereof
TWI753996B (en) electronic device
US20190088577A1 (en) Semiconductor device
US20170279446A1 (en) Semiconductor device
JP5315378B2 (en) Semiconductor device for DC / DC converter
JP2018063993A (en) Semiconductor device and semiconductor module
JP6291792B2 (en) Semiconductor device and manufacturing method thereof
JP5905622B2 (en) Semiconductor device
JP5359264B2 (en) Semiconductor device
CN106663658B (en) Semiconductor integrated circuit having a plurality of transistors
JP5123966B2 (en) Semiconductor device
JP5648095B2 (en) Semiconductor device
JP2023041167A (en) Semiconductor device
JP2011228719A (en) Semiconductor device for dc/dc converter
JP2005051109A (en) Power semiconductor module
JP6729214B2 (en) High voltage integrated circuit device and semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R150 Certificate of patent or registration of utility model

Ref document number: 6291792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250