JP6289422B2 - Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method - Google Patents

Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method Download PDF

Info

Publication number
JP6289422B2
JP6289422B2 JP2015163128A JP2015163128A JP6289422B2 JP 6289422 B2 JP6289422 B2 JP 6289422B2 JP 2015163128 A JP2015163128 A JP 2015163128A JP 2015163128 A JP2015163128 A JP 2015163128A JP 6289422 B2 JP6289422 B2 JP 6289422B2
Authority
JP
Japan
Prior art keywords
wastewater treatment
displacement
mine
treatment mine
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015163128A
Other languages
Japanese (ja)
Other versions
JP2017040586A (en
Inventor
康晴 山邉
康晴 山邉
考義 笹川
考義 笹川
Original Assignee
株式会社興和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社興和 filed Critical 株式会社興和
Priority to JP2015163128A priority Critical patent/JP6289422B2/en
Publication of JP2017040586A publication Critical patent/JP2017040586A/en
Application granted granted Critical
Publication of JP6289422B2 publication Critical patent/JP6289422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

本発明は、排水処理坑の変位計測装置並びに土塊移動監視方法及び排水処理坑監視方法に関するものである。   The present invention relates to a displacement measuring apparatus for a wastewater treatment mine, a method for monitoring movement of a clot, and a method for monitoring a wastewater treatment mine.

地すべりが生じ易い地域には、この地すべりの原因となる地下水を集めて排出することを目的とした排水処理坑が設けられている。   In areas where landslides are likely to occur, a wastewater treatment mine is provided for the purpose of collecting and discharging groundwater that causes landslides.

具体的には、この排水処理坑は、長さ方向に流水溝部を備えた底壁面部と、この底壁面部の左右に立設される左右壁面部と、この左右壁面部に連設され前記底壁面部と対向する天壁面部とを備えたトンネル構造(通称:排水トンネル)であり、対象となる地域に数kmにおよんで設けられる本線部と、この本線部から分岐した枝線部とで構成されるのが一般的である。また、この枝線部の先端部には集水部(ボーリング室)が設けられ、この集水部の周面から放射方向に複数の集水パイプが突設され、この集水パイプを予め調査して判明した地下水の溜まり易い部位に配設することで、この各集水パイプを介して集水部内に地下水が集められ、この集水部で集められた地下水は枝線部から本線部へ流れ、この排水処理杭の終端に設けられた排水路へ導出される。この排水路は例えば河川まで延設されており、排水処理坑で集められた地下水は最終的に河川に排出される。尚、この排水処理坑としては立坑からなる集水抗などもある。   Specifically, the wastewater treatment mine is provided with a bottom wall surface portion provided with a running water groove portion in the length direction, left and right wall surface portions standing on the left and right sides of the bottom wall surface portion, and continuous with the left and right wall surface portions. A tunnel structure (commonly known as a drainage tunnel) having a bottom wall portion and a ceiling wall portion opposite to the main wall portion, which extends over several kilometers in the target area, and a branch line portion branched from the main line portion, It is generally composed of In addition, a water collecting part (boring chamber) is provided at the tip of this branch line part, and a plurality of water collecting pipes project in a radial direction from the peripheral surface of this water collecting part. The groundwater is collected in the water collection section through each water collection pipe, and the groundwater collected in this water collection section is transferred from the branch line section to the main line section. It flows to the drainage channel provided at the end of this drainage treatment pile. This drainage channel extends to, for example, a river, and groundwater collected in the drainage treatment mine is finally discharged into the river. In addition, as the wastewater treatment mine, there is a water collecting resistance made of a vertical shaft.

ところで、前述した排水処理坑は、この排水処理坑が設けられる土塊の移動(地すべり)により強い応力を受けてひずみ変位が生じる場合があるが、この排水処理坑におけるひずみ変位の確認は、もっぱらその地域や構造物(排水処理坑)を熟知した技術者の目視により行われているのが現状である。従って、破損箇所を発見した場合、その破損箇所を補修し、また、補修では対応できない破損状況であった場合には、当該排水処理坑は廃坑として埋め、別の排水処理坑を構築しなければならず、多大なコストがかかる。   By the way, the above-mentioned wastewater treatment mine may receive strain due to strong stress due to movement (landslide) of the earth block where the wastewater treatment mine is provided. At present, the inspection is performed by an engineer who is familiar with the area and structure (drainage mine). Therefore, if a damaged part is found, the damaged part must be repaired, and if the damaged state cannot be dealt with by repair, the wastewater treatment mine must be buried as an abandoned mine and another wastewater treatment mine must be constructed. However, it costs a lot of money.

従って、排水処理坑にひずみ変位が生じて破損する前に予め排水処理坑のひずみ変位を把握して補強等の対処をすることが望ましく、よって、排水処理坑の長寿命化を可能にする維持管理が必要とされている。   Therefore, it is desirable to grasp the strain displacement of the wastewater treatment mine in advance and take measures such as reinforcement before it is damaged due to strain displacement in the wastewater treatment mine. Management is needed.

本発明は、前述した問題を解消する、従来にない作用効果を発揮する実用的な排水処理坑の変位計測装置並びに土塊移動監視方法及び排水処理坑監視方法を提供する。   The present invention provides a practical wastewater treatment mine displacement measuring apparatus, a clot movement monitoring method, and a wastewater treatment mine monitoring method that solves the above-described problems and that exhibits an unprecedented effect.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

地中に設けられる排水処理坑21の変位計測装置であって、前記排水処理坑21の内壁面における第一基準部位P1から直径方向に対向する第二基準部位P2にレーザーを照射して前記第一基準部位P1と前記第二基準部位P2との間の距離を計測する第一距離計測部2と、この第一距離計測部2から照射されるレーザーと交差する方向にレーザーを照射するように配され、前記排水処理坑21の内壁面における第三基準部位P3から直径方向に対向する第四基準部位P4にレーザーを照射して前記第三基準部位P3と前記第四基準部位P4との間の距離を計測する第二距離計測部3と、前記第一距離計測部2及び前記第二距離計測部3において計測したデータを記録するデータ記録部7とを有することを特徴とする排水処理坑の変位計測装置に係るものである。   A displacement measuring device for a wastewater treatment pit 21 provided in the ground, wherein the first reference portion P1 on the inner wall surface of the wastewater treatment pit 21 is irradiated with laser to a second reference portion P2 that is diametrically opposed to the first reference portion P2. The first distance measuring unit 2 that measures the distance between the one reference part P1 and the second reference part P2, and the laser is irradiated in a direction that intersects the laser emitted from the first distance measuring unit 2 The laser beam is radiated from the third reference portion P3 on the inner wall surface of the waste water treatment pit 21 to the fourth reference portion P4 facing in the diametrical direction, and the laser beam is irradiated between the third reference portion P3 and the fourth reference portion P4. A wastewater treatment pit comprising: a second distance measuring unit 3 for measuring the distance of the first distance measuring unit; and a data recording unit 7 for recording data measured by the first distance measuring unit 2 and the second distance measuring unit 3. Related to the displacement measuring device Than is.

また、請求項1記載の排水処理坑の変位計測装置において、前記排水処理坑21は、長さ方向に流水溝部21aを備えた底壁面部21Aと、この底壁面部21Aの左右に立設される左壁面部21B及び右壁面部21Cと、この左壁面部21B及び右壁面部21Cに連設され前記底壁面部21Aと対向する天壁面部21Dとを備えたトンネル構造であることを特徴とする排水処理坑の変位計測装置に係るものである。   Further, in the displacement measuring apparatus for a wastewater treatment mine according to claim 1, the wastewater treatment mine 21 is erected on a bottom wall surface portion 21A having a running water groove portion 21a in the length direction and on the left and right sides of the bottom wall surface portion 21A. The left wall surface portion 21B and the right wall surface portion 21C, and the top wall surface portion 21D that is connected to the left wall surface portion 21B and the right wall surface portion 21C and faces the bottom wall surface portion 21A. This relates to a displacement measuring device for a wastewater treatment mine.

また、請求項2記載の排水処理坑の変位計測装置において、前記第一基準部位P1を前記左壁面部21B及び前記右壁面部21Cの一方の所定部位とするとともに、前記第二基準部位P2を前記左壁面部21B及び前記右壁面部21Cの他方の所定部位として前記第一距離計測部2から水平方向にレーザーが照射されるように構成され、一方、前記第三基準部位P3を前記底壁面部21Aの所定部位とするとともに、前記第四基準部位P4を前記天壁面部21Dの所定部位として前記第二距離計測部3から鉛直方向にレーザーが照射されるように構成されていることを特徴とする排水処理坑の変位計測装置に係るものである。   Further, in the displacement measuring apparatus for a wastewater treatment mine according to claim 2, the first reference portion P1 is set as one predetermined portion of the left wall surface portion 21B and the right wall surface portion 21C, and the second reference portion P2 is set as the second reference portion P2. The other predetermined portion of the left wall surface portion 21B and the right wall surface portion 21C is configured to be irradiated with laser in the horizontal direction from the first distance measuring portion 2, while the third reference portion P3 is set to the bottom wall surface. It is configured so that the laser beam is irradiated from the second distance measuring unit 3 in the vertical direction with the fourth reference site P4 as the predetermined site of the top wall surface portion 21D, as a predetermined site of the portion 21A. This relates to a displacement measuring device for a wastewater treatment mine.

また、請求項2,3いずれか1項に記載の排水処理坑の変位計測装置において、前記底壁面部21Aの縦断方向及び横断方向の傾斜を計測する傾斜計測部5を備えることを特徴とする排水処理坑の変位計測装置に係るものである。 Moreover, the displacement measuring apparatus of the wastewater treatment mine according to any one of claims 2 and 3 , further comprising an inclination measuring part 5 for measuring the inclination in the longitudinal direction and the transverse direction of the bottom wall surface part 21A. The present invention relates to a displacement measuring device for a wastewater treatment mine.

また、請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記データ記録部7で記録されたデータをもとに前記排水処理坑21の変位量を算出する変位量算出部を備えたことを特徴とする排水処理坑の変位計測装置に係るものである。 Further, in the wastewater treatment mine displacement measuring apparatus according to any one of claims 1 to 4, a displacement amount for calculating a displacement amount of the wastewater treatment mine 21 based on data recorded by the data recording unit 7 The present invention relates to a displacement measuring apparatus for a wastewater treatment mine characterized by comprising a calculation unit.

また、請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記第一距離計測部2から照射されるレーザーと前記第二距離計測部3から照射されるレーザーとは、互いに略直交する方向に照射されることを特徴とする排水処理坑の変位計測装置に係るものである。 Moreover, in the displacement measuring apparatus of the wastewater treatment mine according to any one of claims 1 to 5, the laser irradiated from the first distance measuring unit 2 and the laser irradiated from the second distance measuring unit 3 Further, the present invention relates to a displacement measuring apparatus for a wastewater treatment mine that is irradiated in directions substantially orthogonal to each other.

また、請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記第一距離計測部2及び前記第二距離計測部3は、照射したレーザーの反射波をもとに距離を計測する構成であり、前記第二基準部位P2及び前記第四基準部位P4には反射部材6が設けられていることを特徴とする排水処理坑の変位計測装置に係るものである。 Moreover, the displacement measuring apparatus of the wastewater treatment mine according to any one of claims 1 to 6 , wherein the first distance measuring unit 2 and the second distance measuring unit 3 are based on a reflected wave of the irradiated laser. This is a configuration for measuring a distance, and relates to a displacement measuring apparatus for a wastewater treatment pit, wherein a reflection member 6 is provided in the second reference part P2 and the fourth reference part P4.

また、地中に設けられる排水処理坑21のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータをもとに前記排水処理坑21の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により前記排水処理坑21が設けられている土塊の過去の移動量を確知する土塊移動量確知手段とで構成されていることを特徴とする土塊移動監視方法に係るものである。   Further, a displacement measuring means for measuring the strain displacement of the wastewater treatment pit 21 provided in the ground, and a displacement amount calculating unit for calculating the displacement amount of the wastewater treatment mine 21 based on the data measured by the displacement measuring means, The mass movement monitoring unit is characterized by comprising a mass movement amount confirmation means for recognizing the past movement amount of the earth mass provided with the drainage treatment pit 21 by the displacement amount calculated by the displacement amount calculation unit. It concerns the method.

また、請求項8記載の土塊移動監視方法において、前記変位量算出部で算出した前記排水処理坑21の変位量をもとに該排水処理坑21の今後の変位量を予測して該排水処理坑21が設けられている土塊の今後の移動量を予測する土塊移動量予測手段を有することを特徴とする土塊移動監視方法に係るものである。   9. The method for monitoring movement of a clot according to claim 8, wherein a future displacement amount of the wastewater treatment well 21 is predicted based on a displacement amount of the wastewater treatment well 21 calculated by the displacement amount calculation unit. The present invention relates to a soil mass movement monitoring method characterized by having a soil mass movement amount prediction means for predicting the future movement amount of the soil mass provided with the pit 21.

また、請求項9記載の土塊移動監視方法において、地中には複数の前記排水処理坑21が設けられており、前記土塊移動量予測手段は、前記複数の排水処理坑21が設けられている所定区域の土塊の今後の移動量を予測する土塊移動量予測手段であることを特徴とする土塊移動監視方法に係るものである。   Further, in the earth mass movement monitoring method according to claim 9, a plurality of the wastewater treatment pits 21 are provided in the ground, and the earth mass movement amount prediction means is provided with the plurality of wastewater treatment pits 21. The present invention relates to a soil mass movement monitoring method, which is a soil mass movement amount prediction means for predicting a future amount of movement of a soil mass in a predetermined area.

また、請求項8〜10のいずれか1項に記載の変位計測手段は、請求項1〜3のいずれか1項に記載の変位計測装置であることを特徴とする土塊移動監視方法に係るものである。   Further, the displacement measuring means according to any one of claims 8 to 10 is the displacement measuring device according to any one of claims 1 to 3, and relates to a method for monitoring movement of a clot. It is.

また、地中に設けられる排水処理坑21のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータをもとに前記排水処理坑21の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により前記排水処理坑21の補修若しくは廃坑の時期を確知する抗状態確知手段とで構成されていることを特徴とする排水処理坑監視方法に係るものである。   Further, a displacement measuring means for measuring the strain displacement of the wastewater treatment pit 21 provided in the ground, and a displacement amount calculating unit for calculating the displacement amount of the wastewater treatment mine 21 based on the data measured by the displacement measuring means, The wastewater treatment mine monitoring method is characterized by comprising anti-state confirmation means for recognizing the timing of the wastewater treatment mine 21 repair or abandoned mine from the displacement amount calculated by the displacement amount calculation unit. is there.

また、請求項12記載の変位計測手段は、請求項1〜3のいずれか1項に記載の変位計測装置であることを特徴とする排水処理坑監視方法に係るものである。   A displacement measuring means according to a twelfth aspect is the displacement measuring apparatus according to any one of the first to third aspects, according to the wastewater treatment mine monitoring method.

本発明は上述のように構成したから、排水処理坑の状態(ひずみ変位)を簡易且つ確実に把握することができ、しかも、既存の構造物(排水処理坑)を利用して土塊の移動(地すべりの活動が活発か否か)を監視することができるなど、従来にない作用効果を発揮する実用的な排水処理坑の変位計測装置並びに土塊移動監視方法及び排水処理坑監視方法となる。   Since the present invention is configured as described above, the state (strain displacement) of the wastewater treatment mine can be easily and reliably grasped, and the movement of the clot using the existing structure (drainage treatment mine) ( Whether the landslide activity is active or not) is a practical wastewater treatment mine displacement measuring apparatus, soil mass movement monitoring method, and wastewater treatment mine monitoring method that exhibits unprecedented effects.

本実施例の使用状態説明図である。It is use condition explanatory drawing of a present Example. 本実施例の使用状態説明図である。It is use condition explanatory drawing of a present Example. 本実施例の要部の説明図である。It is explanatory drawing of the principal part of a present Example. 排水処理坑21の説明図である。2 is an explanatory diagram of a wastewater treatment mine 21. FIG. 実験1の計測結果を示す表である。10 is a table showing measurement results of Experiment 1. 実験1の計測結果を示すグラフである。6 is a graph showing measurement results of Experiment 1. 実験2の計測結果を示すグラフである。10 is a graph showing measurement results of Experiment 2. 実験2の計測結果で得られた土塊の変動軌跡図である。It is a fluctuation locus figure of the earth clot obtained by the measurement result of experiment 2.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

第一距離計測部2により、排水処理坑21の内壁面における第一基準部位P1から直径方向に対向する第二基準部位P2にレーザーを照射して第一基準部位P1と第二基準部位P2との間の距離を計測するとともに、第二距離計測部3により、第一距離計測部2から照射されるレーザーと交差する方向にして、排水処理坑21の内壁面における第三基準部位P3から直径方向に対向する第四基準部位P4にレーザーを照射して第三基準部位P3と第四基準部位P4との間の距離を計測する。   The first distance measurement unit 2 irradiates a laser to the second reference part P2 that is diametrically opposed from the first reference part P1 on the inner wall surface of the wastewater treatment pit 21 to obtain the first reference part P1 and the second reference part P2. The distance from the third reference portion P3 on the inner wall surface of the drainage treatment pit 21 in the direction intersecting with the laser irradiated from the first distance measuring unit 2 by the second distance measuring unit 3 The fourth reference part P4 facing in the direction is irradiated with a laser to measure the distance between the third reference part P3 and the fourth reference part P4.

この第一距離計測部2及び第二距離計測部3において計測したデータはデータ記録部7で記録される。このデータ記録部7のデータを例えばコンピュータで処理して排水処理坑21の変位量が算出される。   Data measured by the first distance measuring unit 2 and the second distance measuring unit 3 is recorded by the data recording unit 7. The amount of displacement of the drainage pit 21 is calculated by processing the data in the data recording unit 7 with, for example, a computer.

この算出された変位量から排水処理坑21の状態(ひずみ変位)を確実に把握することができ、この排水処理坑21の補修時期、廃坑時期を確知することができる。   The state (strain displacement) of the wastewater treatment mine 21 can be reliably grasped from the calculated displacement amount, and the repair timing and the abandoned mine time of the wastewater treatment mine 21 can be ascertained.

また、排水処理坑21の変位量により該排水処理坑21が設けられている土塊のこれまでの移動量が確知でき、更に、排水処理坑21の変位量をもとに該排水処理坑21の今後の変位量を予測して該平水処理坑21が設けられている土塊の今後の移動量を予測することができることになる。   In addition, the amount of movement of the soil block where the wastewater treatment pit 21 is provided can be ascertained based on the displacement amount of the wastewater treatment well 21, and further, the displacement of the wastewater treatment well 21 is determined based on the displacement amount of the wastewater treatment well 21. The amount of future movement of the soil block where the flat water treatment pit 21 is provided can be predicted by predicting the amount of displacement in the future.

従って、土塊の移動(例えば地すべり)による排水処理坑21の状態(ひずみ変位)を変位として定量化することで、熟練者でなくても排水処理坑21の状態を簡易且つ確実に確認することができ、仮に異常が確認された場合には直ちに対応することができるとともに、土塊の移動(地すべりの活動が活発か否か)を監視できることになる。   Therefore, by quantifying the state (strain displacement) of the wastewater treatment pit 21 due to the movement of the mass (for example, landslide) as a displacement, it is possible to easily and reliably confirm the state of the wastewater treatment mine 21 without being an expert. If an abnormality is confirmed, it is possible to respond immediately and to monitor the movement of the mass (whether the landslide activity is active).

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、地中に設けられる排水処理坑21の変位計測装置であって、排水処理坑21の内壁面における第一基準部位P1から直径方向に対向する第二基準部位P2にレーザーを照射して第一基準部位P1と第二基準部位P2との間の距離を計測する第一距離計測部2と、この第一距離計測部2から照射されるレーザーと交差する方向にレーザーを照射するように配され、排水処理坑21の内壁面における第三基準部位P3から直径方向に対向する第四基準部位P4にレーザーを照射して第三基準部位P3と第四基準部位P4との間の距離を計測する第二距離計測部3と、第一距離計測部2及び第二距離計測部3において計測したデータ(変位データ)を記録するデータ記録部7とを有するものである。   This embodiment is a displacement measuring apparatus for a wastewater treatment pit 21 provided in the ground, and irradiates a laser on a second reference part P2 that is diametrically opposed from the first reference part P1 on the inner wall surface of the wastewater treatment mine 21. Then, the first distance measurement unit 2 that measures the distance between the first reference site P1 and the second reference site P2, and the laser is irradiated in a direction that intersects the laser emitted from the first distance measurement unit 2 The laser beam is irradiated to the fourth reference part P4 diametrically opposed from the third reference part P3 on the inner wall surface of the wastewater treatment pit 21 to radiate the laser between the third reference part P3 and the fourth reference part P4. It has the 2nd distance measurement part 3 which measures distance, and the data recording part 7 which records the data (displacement data) measured in the 1st distance measurement part 2 and the 2nd distance measurement part 3.

本実施例では、計測対象となる排水処理坑21として、図1,2,4に図示したように排水処理坑21は、長さ方向に流水溝部1aを備えた底壁面部21Aと、この底壁面部21Aの左右に立設される左壁面部21B及び右壁面部21Cと、この左壁面部21B及び右壁面部21Cに連設され底壁面部21Aと対向する天壁面部21Dとを備えた排水トンネル(横抗)を採用しており、本実施例に係る排水処理坑21は、本線部21’と、この本線部21’から分岐した枝線部21”とで構成されている。また、この枝線部21”の先端部には集水部22(ボーリング室)が設けられ、この集水部22の周面から放射方向に複数の集水パイプ23が突設され、この集水パイプ23を予め調査して判明した地下水の溜まり易い部位に配設することで、この各集水パイプ23を介して集水部22内に地下水が集められ、この集水部22で集められた地下水は枝線部21”から本線部21’へ流れ、この排水処理杭21の終端に設けられた排水路24へ導出される。この排水路24は例えば河川まで延設されており、排水処理坑21で集められた地下水は最終的に河川に排出されることになる。尚、排水処理坑21は立坑でも良いなど、本実施例の特性を発揮する構造物であれば適宜採用し得るものである。   In the present embodiment, as shown in FIGS. 1, 2, and 4, the waste water treatment pit 21 as a measurement target waste water treatment well 21 includes a bottom wall surface portion 21A having a flowing water groove portion 1a in its length direction, The left wall surface portion 21B and the right wall surface portion 21C standing on the left and right sides of the wall surface portion 21A, and the top wall surface portion 21D that is connected to the left wall surface portion 21B and the right wall surface portion 21C and faces the bottom wall surface portion 21A. A drainage tunnel (transverse) is adopted, and the drainage treatment mine 21 according to the present embodiment is composed of a main line portion 21 ′ and a branch line portion 21 ″ branched from the main line portion 21 ′. A water collecting part 22 (boring chamber) is provided at the tip of the branch line part 21 ″, and a plurality of water collecting pipes 23 project from the circumferential surface of the water collecting part 22 in the radial direction. By arranging the pipes 23 in the areas where the groundwater is easily collected, which has been clarified in advance, the groundwater is brought into the water collection section 22 through the water collection pipes 23. The groundwater collected in the water collecting part 22 flows from the branch line part 21 ″ to the main line part 21 ′, and is led out to the drainage channel 24 provided at the end of the drainage treatment pile 21. Is extended to a river, for example, and groundwater collected in the wastewater treatment mine 21 will eventually be discharged to the river, and the wastewater treatment mine 21 may be a vertical shaft. Any structure can be used as appropriate as long as the structure exhibits.

以下、本実施例に係る構成各部について詳細な説明をする。   Hereinafter, each component according to the present embodiment will be described in detail.

第一距離計測部2及び第二距離計測部3は、照射したレーザーの反射波をもとに距離を計測する構成(距離計から照射され対象物に反射して返ってくる波長と、内部基準の波長の差から距離を算出する位相差方式)であり、本実施例では、Dimetix社製のレーザー距離計(DLS−C15)を採用している。   The first distance measuring unit 2 and the second distance measuring unit 3 are configured to measure the distance based on the reflected wave of the irradiated laser (the wavelength irradiated from the distance meter and reflected back to the object, and the internal reference) In this embodiment, a laser distance meter (DLS-C15) manufactured by Dimetix is used.

本実施例では、図1,2に図示したように排水処理坑21の左壁面部1Bの所定部位としての第一基準部位P1に第一距離計測部2を設け、この第一距離計測部2から排水処理坑21の右壁面部1C所定部位としての第二基準部位P2にレーザーが水平方向に照射されるように構成され、一方、排水処理坑21の底壁面部1Aの所定部位(中央部位)としての第三基準部位P3に第二距離計測部3を設け、この第二距離計測部3から排水処理坑21の天壁面部1Dの所定部位としての第四基準部位P4にレーザーが鉛直方向に照射されるように構成されている。   In the present embodiment, as shown in FIGS. 1 and 2, a first distance measuring unit 2 is provided at a first reference site P1 as a predetermined site of the left wall surface portion 1B of the drainage treatment mine 21, and the first distance measuring unit 2 Is configured such that the laser beam is irradiated in the horizontal direction to the second reference portion P2 as a predetermined portion of the right wall portion 1C of the wastewater treatment pit 21, while the predetermined portion (central portion) of the bottom wall portion 1A of the drainage treatment pit 21 is configured. The second distance measuring unit 3 is provided at the third reference site P3 as the second reference site P3, and the laser beam is vertically directed from the second distance measuring unit 3 to the fourth reference site P4 as the predetermined site of the top wall 1D of the drainage treatment mine 21. It is comprised so that it may be irradiated.

従って、第一距離計測部2から照射されるレーザーと第二距離計測部3から照射されるレーザーとは、互いに略直交する方向に照射され、第一距離計測部2にて排水処理坑21の横幅(内空幅)を計測し、第二距離計測部3にて排水処理坑21の高さ(内空高さ)を計測する。尚、第一距離計測部2から照射されるレーザーと第二距離計測部3から照射されるレーザーとは、互いに斜交する方向に照射されても良く、この場合、ひずみ換算する場合に矩形ひずみ解析を行なえば、構造物の変形度合い(ひずみ変位)を定性的に評価できる。   Therefore, the laser irradiated from the first distance measuring unit 2 and the laser irradiated from the second distance measuring unit 3 are irradiated in directions substantially orthogonal to each other, and the first distance measuring unit 2 The horizontal width (inside air width) is measured, and the second distance measuring unit 3 measures the height of the wastewater treatment pit 21 (inside air height). In addition, the laser irradiated from the first distance measuring unit 2 and the laser irradiated from the second distance measuring unit 3 may be irradiated in directions oblique to each other. If analysis is performed, the degree of deformation (strain displacement) of the structure can be qualitatively evaluated.

また、第一距離計測部2及び第二距離計測部3は、図3に図示したように後述するデータ記録部7(データロガー)に接続され、この第一距離計測部2及び第二距離計測部3で計測されたデータはデータ記録部7で随時記録される。尚、データ記録部7には後述する傾斜計測部5が接続され、この傾斜計測部5から得られるデータを記録する。   The first distance measuring unit 2 and the second distance measuring unit 3 are connected to a data recording unit 7 (data logger), which will be described later, as shown in FIG. 3, and the first distance measuring unit 2 and the second distance measuring unit. Data measured by the unit 3 is recorded at any time by the data recording unit 7. The data recording unit 7 is connected to an inclination measuring unit 5 described later, and records data obtained from the inclination measuring unit 5.

また、本実施例は、データ記録部7で記録されたデータをもとに排水処理坑21の変位量を算出する変位量算出部を備えている。   Further, the present embodiment includes a displacement amount calculation unit that calculates the displacement amount of the drainage treatment mine 21 based on the data recorded by the data recording unit 7.

この変位量算出部は、図3に図示したようにデータ記録部7で記録されたデータを処理(集積・加工)する管理コンピュータ(図示省略)で構成され、第一距離計測部2,第二距離計測部3及び傾斜計測部5はデータ記録部7に接続されている。   As shown in FIG. 3, the displacement amount calculation unit is composed of a management computer (not shown) that processes (accumulates and processes) the data recorded by the data recording unit 7, and includes a first distance measuring unit 2 and a second distance measuring unit 2. The distance measuring unit 3 and the inclination measuring unit 5 are connected to the data recording unit 7.

尚、管理コンピュータは、ノート型パソコンやタブレット型パソコンなどの計測現場へ持ち込んだパソコンでも良いし、データ記録部7に無線信号送信部を設け、このデータ記録部7で記録されたデータを無線信号送信部からインターネット回線を介して受信する遠隔地のパソコン(データセンター)でも良い。   The management computer may be a personal computer brought to the measurement site such as a notebook computer or a tablet personal computer, or a wireless signal transmission unit is provided in the data recording unit 7, and the data recorded by the data recording unit 7 is transmitted as a wireless signal. It may be a remote personal computer (data center) that receives data from the transmitter via the Internet line.

符号8は収納ボックス,9はPT温度変換器,10はバッテリー(DC24V)である。   Reference numeral 8 is a storage box, 9 is a PT temperature converter, and 10 is a battery (24 VDC).

傾斜計測部5は、傾斜に比例した液面の傾きを左右の電極の静電容量変化とし検出し、電気信号に変換するセンサーであり、X軸とY軸の2軸の傾斜値を計測し得るジオテクサービス(株)社製の傾斜計(GIC−30W)を採用している。   The tilt measuring unit 5 is a sensor that detects the tilt of the liquid surface in proportion to the tilt as the capacitance change of the left and right electrodes and converts it into an electrical signal, and measures the tilt values of the two axes of the X axis and the Y axis. Obtained Geotech Service Co., Ltd. inclinometer (GIC-30W) is adopted.

本実施例では、図1,2に図示したようにこの傾斜計測部5を、排水処理坑21の底壁面部1Aに配置し、底壁面部1Aの縦断方向(Y方向)及び横断方向(X方向)の傾斜を計測する。尚、本実施例では、傾斜計測部5に温度計を装着している。   In this embodiment, as shown in FIGS. 1 and 2, the inclination measuring unit 5 is disposed on the bottom wall surface portion 1A of the drainage treatment mine 21, and the longitudinal direction (Y direction) and the transverse direction (X direction) of the bottom wall surface portion 1A. Direction). In this embodiment, a thermometer is attached to the inclination measuring unit 5.

以上の構成から成る本実施例に係る排水処理坑の変位計測装置の有効性を確認すべく、実験1,2を行った。尚、実験1,2を行った排水処理坑21は、図4に図示したようにL字状に屈曲した構造であり、この排水処理坑21の屈曲した地点ST−2にて実験1,2を行った。   Experiments 1 and 2 were performed in order to confirm the effectiveness of the displacement measuring apparatus for the wastewater treatment mine according to the present example configured as described above. The drainage pit 21 in which Experiments 1 and 2 were performed has a structure bent in an L shape as illustrated in FIG. 4, and Experiments 1 and 2 are performed at the bent point ST-2 of the drainage pit 21. Went.

[実験1]
先ず、8月21日に排水処理坑21に第一距離計測部2,第二距離計測部3及びデータ記録部7等を設置し、9月29日まで現場実証実験を実施した。
[Experiment 1]
First, the first distance measuring unit 2, the second distance measuring unit 3, the data recording unit 7 and the like were installed in the wastewater treatment pit 21 on August 21, and a field demonstration experiment was conducted until September 29.

実験結果を図5に示す。   The experimental results are shown in FIG.

計測開始から8日後の8月29日頃から水平方向と鉛直方向ともに、変位データが取得できない状態が発生した。この原因は被レーザー照射部である覆工コンクリート表面の状態(粗さ・乾湿など)や、排水処理坑21内の湿度の影響(レーザー照射部や被レーザー照射部への水滴付着)などが影響し、レーザーの受発信に不具合が生じたためと考えた。   From August 29, eight days after the start of measurement, a state where displacement data cannot be obtained in both the horizontal and vertical directions has occurred. This is due to the condition of the surface of the lining concrete (roughness, dryness, etc.) that is the laser irradiated part, and the influence of humidity in the wastewater treatment pit 21 (water droplets attached to the laser irradiated part and the laser irradiated part). However, it was thought that there was a problem with laser transmission and reception.

そこで、この不具合の生じたケース(以下、ケース1)の問題を改善すべく、段階的に次の改善策(ケース2,ケース3)を試みた。   Therefore, the following improvement measures (Case 2 and Case 3) were tried step by step in order to improve the problem in the case where this defect occurred (hereinafter, Case 1).

ケース2:レーザーの反射光量を得るため、被レーザー照射部に反射部材6(オレンジ色の反射シート)を設置した。   Case 2: In order to obtain the amount of reflected laser light, the reflecting member 6 (orange reflecting sheet) was installed on the laser irradiated portion.

ケース3:レーザー照射部への水滴付着の軽減策としてレーザー照射部にガラスカバーを設置した。尚、ガラスカバーは、FL2透明(光透過率が比較的良いフロー板ガラス・透明・厚さ2mm)とする。   Case 3: A glass cover was installed in the laser irradiation part as a measure for reducing water droplet adhesion to the laser irradiation part. The glass cover should be FL2 transparent (flow plate glass with relatively good light transmittance, transparent, thickness 2 mm).

各ケース1,2,3におけるデータ取得率とデータのばらつき幅(計測精度)を図6に示す。   FIG. 6 shows the data acquisition rate and data variation width (measurement accuracy) in each case 1, 2, and 3.

ケース1について(実験期間:8月21日〜9月9日)。   About Case 1 (experimental period: August 21 to September 9).

(1) データのばらつき幅は水平方向約1.5mm、鉛直方向約2mmで水平方向より
鉛直方向が大きい。
(1) The variation width of the data is about 1.5 mm in the horizontal direction and about 2 mm in the vertical direction, and the vertical direction is larger than the horizontal direction.

(2) 変位データが取得できない状態が発生し、水平方向・鉛直方向ともに約93%と
なった。
(2) Displacement data could not be acquired, and the horizontal and vertical directions were about 93%.

(3) 尚、前述した不具合の生じた期間(データを取得できない期間)は水平方向と鉛
直方向とで異なる。
(3) It should be noted that the period in which the above-mentioned defects occur (period in which data cannot be acquired) differs between the horizontal direction and the lead straight direction.

ケース2について(実験期間:9月9日〜9月19日)。   About Case 2 (experiment period: September 9 to September 19).

(1) データのばらつき幅は、水平方向・鉛直方向ともに約1mmで、ケース1と比較
して、水平方向では約2/3、鉛直方向では約1/2となり、精度向上(±0.5
mm)が確認された。
(1) The variation width of the data is about 1 mm in both the horizontal and vertical directions, which is about 2/3 in the horizontal direction and about 1/2 in the vertical direction compared to Case 1, improving accuracy (± 0.5
mm) was confirmed.

(2) データ取得率は水平方向で100%、鉛直方向で99%となり、ケース1と比較
して、ほぼ連続データを確保できることが判明した。
(2) The data acquisition rate was 100% in the horizontal direction and 99% in the vertical direction. Compared to Case 1, it was found that almost continuous data could be secured.

ケース3について(実験期間:9月19日〜9月29日)。   About Case 3 (experimental period: September 19 to September 29).

(1) データのばらつき幅は水平方向約3mm、鉛直方向約5mmとなり、ケース2よ
り誤差が大きくなった。これは、レーザー照射部での水滴付着は軽減できたが、ガ
ラス自体の曇りや屈折率の影響が誤差を大きくした要因と考えられる。
(1) The variation width of the data was about 3 mm in the horizontal direction and about 5 mm in the vertical direction, and the error was larger than in Case 2. This is thought to be due to the effects of fogging of the glass itself and the refractive index, which increased the error, although water droplet adhesion at the laser irradiation part could be reduced.

(2) データ取得率は水平方向で97%、鉛直方向で100%であり、ケース2と同程
度である。
(2) The data acquisition rate is 97% in the horizontal direction and 100% in the vertical direction.

以上の実験1から、第一距離計測部2及び第二距離計測部3から照射されるレーザーを受信する被レーザー照射部にして第二基準部位P2及び第四基準部位P4に反射部材6(反射シート)を設けることで、±0.5mmの精度管理で排水処理坑21のひずみ変位を時系列計測することが可能であり、また、計測地点でのひずみ変位量換算やメンテナンス指標にできる可能性が高いことが確認された。   From the experiment 1 described above, the reflecting member 6 (reflection) is applied to the second reference portion P2 and the fourth reference portion P4 as the laser irradiated portion that receives the laser emitted from the first distance measuring portion 2 and the second distance measuring portion 3. It is possible to measure the strain displacement of the drainage pit 21 in time series with an accuracy control of ± 0.5 mm, and to convert the strain displacement at the measurement point and to be a maintenance index Was confirmed to be high.

[実験2]
上記実験1と同期間に排水処理坑21のST−2に傾斜計測部5を設け、9月29日まで現場実証実験を実施した。
[Experiment 2]
In the same period as Experiment 1 above, the slope measurement unit 5 was provided at ST-2 of the wastewater treatment mine 21 and a field demonstration experiment was conducted until September 29.

実験結果を図7(時系列表示)及び図8(変動軌跡)に示す。   The experimental results are shown in FIG. 7 (time series display) and FIG. 8 (fluctuation locus).

(1) 今回の観測期間では、排水処理坑21内の気温は13〜16℃の範囲にあり、日照
等の影響が野外に比べて極めて少ないため、計測値がノイズによって乱れることが
無く、極めて安定した傾度が得られた。
(1) During this observation period, the temperature inside the wastewater treatment mine 21 is in the range of 13-16 ° C, and the influence of sunlight etc. is extremely small compared to the outdoors, so the measured values are not disturbed by noise and are extremely A stable gradient was obtained.

(2) X軸とY軸の2方向を合成し、且つ長さ換算(mm)、即ち、スカラーとして変
動軌跡図に示すと、観測期間を通じて概ね西側に約0.08mm/40日傾動した
ことが分かる。
(2) When the two directions of X axis and Y axis are combined and converted into length (mm), that is, shown as a scalar in the movement trajectory diagram, it tilted approximately 0.08 mm / 40 days to the west generally throughout the observation period. I understand that.

(3) 上記(1),(2)を踏まえ、今後、傾斜計測部5が設けられる位置の標高を測量すれ
ば、地すべり土塊の移動ベクトルとして活用できると考えられる。
(3) Based on the above (1) and (2), if the altitude at the position where the slope measuring unit 5 is installed will be measured in the future, it can be used as a movement vector for the landslide mass.

以上の実験2から、傾斜計測部5を用いての2方向計測によっても、観測地点の標高データを与えることで地すべり移動量をベクトル表示することが可能であり、この点、傾斜計測部5を使用した変位計測でも危機管理や施設の維持管理活用できることが確認でき、よって、この傾斜計測部5を前述した第一距離計測部2及び第二距離計測部3と組み合わせて使用することで排水処理坑21の状態(ひずみ変位)を高精度に確認することが可能になる。   From the above experiment 2, it is possible to display the amount of landslide movement as a vector by giving altitude data of the observation point even by the two-direction measurement using the inclination measuring unit 5. It can be confirmed that the used displacement measurement can also be used for crisis management and facility maintenance management. Therefore, by using this inclination measuring unit 5 in combination with the first distance measuring unit 2 and the second distance measuring unit 3 described above, waste water treatment It becomes possible to confirm the state (strain displacement) of the pit 21 with high accuracy.

尚、今後も図4中の二つの地点ST−1及びST−3にて本実施例に係る排水処理抗の変位計測装置を使用して変位計測を行う。   In the future, displacement measurement will be performed at two points ST-1 and ST-3 in FIG. 4 using the displacement measuring apparatus for wastewater treatment according to this embodiment.

本実施例は上述のように構成したから、第一距離計測部2により、排水処理坑21の内壁面における第一基準部位P1から直径方向に対向する第二基準部位P2にレーザーを照射して第一基準部位P1と第二基準部位P2との間の距離を計測するとともに、第二距離計測部3により、第一距離計測部2から照射されるレーザーと交差する方向にして、排水処理坑21の内壁面における第三基準部位P3から直径方向に対向する第四基準部位P4にレーザーを照射して第三基準部位P3と第四基準部位P4との間の距離を計測する。   Since the present embodiment is configured as described above, the first distance measuring unit 2 irradiates a laser on the second reference part P2 that is diametrically opposed from the first reference part P1 on the inner wall surface of the drainage treatment mine 21. The distance between the first reference part P1 and the second reference part P2 is measured, and the second distance measurement unit 3 is configured to cross the laser irradiated from the first distance measurement unit 2 so as to cross the drainage treatment mine. The laser beam is applied to the fourth reference portion P4 facing in the diametrical direction from the third reference portion P3 on the inner wall surface of 21 to measure the distance between the third reference portion P3 and the fourth reference portion P4.

この第一距離計測部2及び第二距離計測部3において計測したデータはデータ記録部7で記録される。このデータ記録部7のデータを例えばコンピュータで処理して排水処理坑21の変位量が算出される。   Data measured by the first distance measuring unit 2 and the second distance measuring unit 3 is recorded by the data recording unit 7. The amount of displacement of the drainage pit 21 is calculated by processing the data in the data recording unit 7 with, for example, a computer.

この算出された変位量から排水処理坑21の状態(ひずみ変位)を確実に把握することができ、この排水処理坑21の補修時期、廃坑時期を確知することができる。   The state (strain displacement) of the wastewater treatment mine 21 can be reliably grasped from the calculated displacement amount, and the repair timing and the abandoned mine time of the wastewater treatment mine 21 can be ascertained.

また、排水処理坑21の変位量により該排水処理坑21が設けられている土塊のこれまでの移動量が確知でき、更に、排水処理坑21の変位量をもとに該排水処理坑21の今後の変位量を予測して該平水処理坑21が設けられている土塊の今後の移動量を予測することができることになる。   In addition, the amount of movement of the soil block where the wastewater treatment pit 21 is provided can be ascertained based on the displacement amount of the wastewater treatment well 21, and further, the displacement of the wastewater treatment well 21 is determined based on the displacement amount of the wastewater treatment well 21. The amount of future movement of the soil block where the flat water treatment pit 21 is provided can be predicted by predicting the amount of displacement in the future.

よって、本実施例によれば、土塊の移動(地すべり)による排水処理坑21の状態(ひずみ変位)を変位として定量化することで、熟練者でなくても排水処理坑21の状態を簡易且つ確実に確認することができ、仮に異常が確認された場合には直ちに対応することができる。   Therefore, according to the present embodiment, by quantifying the state (strain displacement) of the wastewater treatment mine 21 due to the movement of the mass (landslide) as a displacement, the state of the wastewater treatment mine 21 can be simplified and reduced even if it is not an expert. It can be confirmed reliably, and if an abnormality is confirmed, it can be dealt with immediately.

また、本実施例は、土塊の移動(地すべりの活動が活発か否か)を監視できることになる。   In addition, this embodiment can monitor the movement of the clot (whether or not the landslide activity is active).

即ち、本実施例を用いた監視方法の具体例として、地中に設けられる排水処理坑21のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータ(変位データ)をもとに前記排水処理坑21の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により排水処理坑21が設けられている土塊の過去の移動量を確知する土塊移動量確知手段とで構成された土塊移動監視方法が可能となる。尚、変位計測手段は前述した本実施例の変位計測装置である。   That is, as a specific example of the monitoring method using this embodiment, based on the displacement measuring means for measuring the strain displacement of the drainage treatment pit 21 provided in the ground, and the data (displacement data) measured by the displacement measuring means. A displacement amount calculating unit for calculating the displacement amount of the drainage treatment pit 21 and a mass movement amount for recognizing the past movement amount of the soil block where the drainage treatment pit 21 is provided by the displacement amount calculated by the displacement amount calculation unit A clod movement monitoring method constituted by a confirmation means is possible. The displacement measuring means is the displacement measuring apparatus of the present embodiment described above.

また、この変位量算出部で算出した排水処理坑21の変位量をもとに該排水処理坑21の今後の変位量を予測して該排水処理坑21が設けられている土塊の今後の移動量を予測する土塊移動量予測手段を有しても良い。   In addition, based on the displacement amount of the wastewater treatment mine 21 calculated by the displacement amount calculation unit, the future displacement amount of the wastewater treatment mine 21 is predicted, and the future movement of the soil block where the wastewater treatment pit 21 is provided You may have a clot movement amount prediction means to predict the amount.

また、複数の排水処理坑21が設けられている場合、土塊移動量予測手段は、複数の排水処理坑21が設けられている所定区域の土塊の今後の移動量を予測する土塊移動量予測手段を有しても良い。   In addition, when a plurality of wastewater treatment pits 21 are provided, the clot movement amount prediction means is a clot movement amount prediction means for predicting the future movement amount of a clot in a predetermined area where the plurality of wastewater treatment pits 21 is provided. You may have.

その他にも、地中に設けられる排水処理坑21のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータ(変位データ)をもとに排水処理坑21の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により排水処理坑21の補修若しくは廃坑の時期を確知する抗状態確知手段とで構成された排水処理坑監視方法が可能となる。尚、変位計測手段は本実施例に係る変位計測装置である。   In addition, the displacement measurement means for measuring the strain displacement of the wastewater treatment pit 21 installed in the ground and the displacement amount of the wastewater treatment mine 21 are calculated based on the data (displacement data) measured by the displacement measurement means. A wastewater treatment mine monitoring method comprising a displacement amount calculation unit and anti-state confirmation means for recognizing the timing of the repair or abandonment of the wastewater treatment mine 21 by the displacement amount calculated by the displacement amount calculation unit becomes possible. The displacement measuring means is the displacement measuring device according to the present embodiment.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

P1 第一基準位置
P2 第二基準位置
P3 第三基準位置
P4 第四基準位置
2 第一距離計測部
3 第二距離計測部
5 傾斜計測部
6 反射部材
7 データ記録部
21 排水処理坑
21A 底壁面部
21B 左壁面部
21C 右壁面部
21D 天壁面部
21a 流水溝部
P1 1st reference position P2 2nd reference position P3 3rd reference position P4 4th reference position 2 1st distance measurement part 3 2nd distance measurement part 5 Inclination measurement part 6 Reflective member 7 Data recording part
21 Wastewater treatment mine
21A Bottom wall
21B Left wall
21C Right wall
21D Top wall
21a running water groove

Claims (13)

地中に設けられる排水処理坑の変位計測装置であって、前記排水処理坑の内壁面における第一基準部位から直径方向に対向する第二基準部位にレーザーを照射して前記第一基準部位と前記第二基準部位との間の距離を計測する第一距離計測部と、この第一距離計測部から照射されるレーザーと交差する方向にレーザーを照射するように配され、前記排水処理坑の内壁面における第三基準部位から直径方向に対向する第四基準部位にレーザーを照射して前記第三基準部位と前記第四基準部位との間の距離を計測する第二距離計測部と、前記第一距離計測部及び前記第二距離計測部において計測したデータを記録するデータ記録部とを有することを特徴とする排水処理坑の変位計測装置。   A displacement measuring device for a wastewater treatment mine provided in the ground, wherein a laser beam is irradiated from a first reference part on the inner wall surface of the wastewater treatment mine to a second reference part facing in a diametrical direction, and the first reference part and A first distance measuring unit for measuring a distance between the second reference part and a laser beam irradiated in a direction intersecting with the laser irradiated from the first distance measuring unit; A second distance measuring unit that measures the distance between the third reference part and the fourth reference part by irradiating a laser on a fourth reference part that is diametrically opposed from the third reference part on the inner wall surface; A displacement measuring apparatus for a wastewater treatment mine, comprising: a first distance measuring unit; and a data recording unit that records data measured by the second distance measuring unit. 請求項1記載の排水処理坑の変位計測装置において、前記排水処理坑は、長さ方向に流水溝部を備えた底壁面部と、この底壁面部の左右に立設される左壁面部及び右壁面部と、この左壁面部及び右壁面部に連設され前記底壁面部と対向する天壁面部とを備えたトンネル構造であることを特徴とする排水処理坑の変位計測装置。   The displacement measurement apparatus for a wastewater treatment mine according to claim 1, wherein the wastewater treatment mine includes a bottom wall surface portion provided with a running water groove portion in a length direction, a left wall surface portion and a right wall surface standing right and left of the bottom wall surface portion. A displacement measuring device for a drainage treatment mine characterized by a tunnel structure including a wall surface portion and a ceiling wall surface portion that is connected to the left wall surface portion and the right wall surface portion and faces the bottom wall surface portion. 請求項2記載の排水処理坑の変位計測装置において、前記第一基準部位を前記左壁面部及び前記右壁面部の一方の所定部位とするとともに、前記第二基準部位を前記左壁面部及び前記右壁面部の他方の所定部位として前記第一距離計測部から水平方向にレーザーが照射されるように構成され、一方、前記第三基準部位を前記底壁面部の所定部位とするとともに、前記第四基準部位を前記天壁面部の所定部位として前記第二距離計測部から鉛直方向にレーザーが照射されるように構成されていることを特徴とする排水処理坑の変位計測装置。   The displacement measuring apparatus for a wastewater treatment mine according to claim 2, wherein the first reference portion is one predetermined portion of the left wall portion and the right wall portion, and the second reference portion is the left wall portion and the right wall portion. The other predetermined portion of the right wall surface portion is configured to be irradiated with laser in the horizontal direction from the first distance measuring portion, while the third reference portion is the predetermined portion of the bottom wall surface portion, and the first A displacement measuring device for a wastewater treatment mine, wherein the four reference parts are set as predetermined parts of the top wall part and the laser is irradiated in the vertical direction from the second distance measuring part. 請求項2,3いずれか1項に記載の排水処理坑の変位計測装置において、前記底壁面部の縦断方向及び横断方向の傾斜を計測する傾斜計測部を備えることを特徴とする排水処理坑の変位計測装置。 The displacement measuring apparatus for a wastewater treatment mine according to any one of claims 2 and 3 , further comprising an inclination measuring unit that measures inclinations in a longitudinal direction and a transverse direction of the bottom wall surface part. Displacement measuring device. 請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記データ記録部で記録されたデータをもとに前記排水処理坑の変位量を算出する変位量算出部を備えたことを特徴とする排水処理坑の変位計測装置。 The displacement measuring device of the wastewater treatment mine according to any one of claims 1 to 4 , further comprising a displacement amount calculation unit that calculates a displacement amount of the wastewater treatment mine based on data recorded by the data recording unit. A displacement measuring apparatus for a wastewater treatment mine characterized by the above. 請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記第一距離計測部から照射されるレーザーと前記第二距離計測部から照射されるレーザーとは、互いに略直交する方向に照射されることを特徴とする排水処理坑の変位計測装置。 The displacement measurement apparatus for a wastewater treatment mine according to any one of claims 1 to 5 , wherein the laser emitted from the first distance measurement unit and the laser emitted from the second distance measurement unit are substantially orthogonal to each other. A displacement measuring device for a wastewater treatment mine, characterized by being irradiated in a direction to perform. 請求項1〜いずれか1項に記載の排水処理坑の変位計測装置において、前記第一距離計測部及び前記第二距離計測部は、照射したレーザーの反射波をもとに距離を計測する構成であり、前記第二基準部位及び前記第四基準部位には反射部材が設けられていることを特徴とする排水処理坑の変位計測装置。 The displacement measuring apparatus for a wastewater treatment mine according to any one of claims 1 to 6 , wherein the first distance measuring unit and the second distance measuring unit measure a distance based on a reflected wave of an irradiated laser. A displacement measuring device for a wastewater treatment mine, wherein the second reference portion and the fourth reference portion are provided with reflecting members. 地中に設けられる排水処理坑のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータをもとに前記排水処理坑の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により前記排水処理坑が設けられている土塊の過去の移動量を確知する土塊移動量確知手段とで構成されていることを特徴とする土塊移動監視方法。   Displacement measuring means for measuring the strain displacement of the wastewater treatment mine provided in the ground, a displacement amount calculating unit for calculating the displacement amount of the wastewater treatment mine based on the data measured by the displacement measuring means, and the displacement amount A soil mass movement monitoring method comprising: a soil mass movement amount confirmation means for recognizing a past amount of movement of a soil mass provided with the drainage treatment mine according to a displacement amount calculated by a calculation unit. 請求項8記載の土塊移動監視方法において、前記変位量算出部で算出した前記排水処理坑の変位量をもとに該排水処理坑の今後の変位量を予測して該排水処理坑が設けられている土塊の今後の移動量を予測する土塊移動量予測手段を有することを特徴とする土塊移動監視方法。   9. The soil mass movement monitoring method according to claim 8, wherein the wastewater treatment mine is provided by predicting a future displacement amount of the wastewater treatment mine based on the displacement amount of the wastewater treatment mine calculated by the displacement amount calculation unit. A soil mass movement monitoring method comprising: a soil mass movement amount predicting means for predicting a future movement amount of the soil mass. 請求項9記載の土塊移動監視方法において、地中には複数の前記排水処理坑が設けられており、前記土塊移動量予測手段は、前記複数の排水処理坑が設けられている所定区域の土塊の今後の移動量を予測する土塊移動量予測手段であることを特徴とする土塊移動監視方法。   10. The method of monitoring movement of a clot according to claim 9, wherein a plurality of said wastewater treatment pits are provided in the ground, and said clot movement amount predicting means is a clot in a predetermined area where said plurality of drainage treatment mines are provided. A soil mass movement monitoring method, characterized in that it is a soil mass movement amount prediction means for predicting the future amount of movement of the soil mass. 請求項8〜10のいずれか1項に記載の変位計測手段は、請求項1〜3のいずれか1項に記載の変位計測装置であることを特徴とする土塊移動監視方法。   The displacement measurement means according to any one of claims 8 to 10 is the displacement measurement device according to any one of claims 1 to 3, wherein the mass movement monitoring method is characterized. 地中に設けられる排水処理坑のひずみ変位を計測する変位計測手段と、この変位計測手段により計測したデータをもとに前記排水処理坑の変位量を算出する変位量算出部と、この変位量算出部で算出した変位量により前記排水処理坑の補修若しくは廃坑の時期を確知する抗状態確知手段とで構成されていることを特徴とする排水処理坑監視方法。   Displacement measuring means for measuring the strain displacement of the wastewater treatment mine provided in the ground, a displacement amount calculating unit for calculating the displacement amount of the wastewater treatment mine based on the data measured by the displacement measuring means, and the displacement amount A wastewater treatment mine monitoring method characterized by comprising anti-state confirmation means for recognizing the timing of the wastewater treatment mine repair or abandoned mine based on the displacement calculated by the calculation unit. 請求項12記載の変位計測手段は、請求項1〜3のいずれか1項に記載の変位計測装置であることを特徴とする排水処理坑監視方法。   The displacement measuring means according to claim 12 is the displacement measuring device according to any one of claims 1 to 3, wherein the drainage treatment mine monitoring method is characterized.
JP2015163128A 2015-08-20 2015-08-20 Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method Active JP6289422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163128A JP6289422B2 (en) 2015-08-20 2015-08-20 Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163128A JP6289422B2 (en) 2015-08-20 2015-08-20 Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method

Publications (2)

Publication Number Publication Date
JP2017040586A JP2017040586A (en) 2017-02-23
JP6289422B2 true JP6289422B2 (en) 2018-03-07

Family

ID=58206210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163128A Active JP6289422B2 (en) 2015-08-20 2015-08-20 Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method

Country Status (1)

Country Link
JP (1) JP6289422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685305A (en) * 2019-10-22 2020-01-14 苏州常宏建筑设计研究院有限公司 Online safety monitoring system for foundation pit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074693B (en) * 2021-03-25 2022-11-25 浙江金穗工程勘察设计有限公司 Deep basal pit deformation monitoring alarm device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342649B2 (en) * 1999-09-03 2009-10-14 大成建設株式会社 Method for measuring cross-sectional shape in hollow tube
JP2004170210A (en) * 2002-11-19 2004-06-17 Kumamoto Technology & Industry Foundation Measuring method and instrument for ground stress
JP2008298432A (en) * 2007-05-29 2008-12-11 Enzan Kobo:Kk Display method of tunnel wall surface displacement, and program thereof
JP6103828B2 (en) * 2012-06-18 2017-03-29 株式会社安藤・間 Tunnel displacement measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685305A (en) * 2019-10-22 2020-01-14 苏州常宏建筑设计研究院有限公司 Online safety monitoring system for foundation pit
CN110685305B (en) * 2019-10-22 2021-04-06 苏州常宏建筑设计研究院有限公司 Online safety monitoring system for foundation pit

Also Published As

Publication number Publication date
JP2017040586A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
Lian et al. Health monitoring and safety evaluation of the offshore wind turbine structure: a review and discussion of future development
Modares et al. Overview of structural health monitoring for steel bridges
Moustafa et al. Corrosion monitoring of post‐tensioned concrete structures using fractal analysis of guided ultrasonic waves
Sharma et al. Review of structural health monitoring techniques in pipeline and wind turbine industries
CN111429575B (en) Three-dimensional visual monitoring method, system, equipment and storage medium
Gastineau et al. Bridge health monitoring and inspections–a survey of methods
Strauss et al. Sensing and monitoring in tunnels testing and monitoring methods for the assessment of tunnels
Lazarev et al. Method of assessment and prediction of temperature conditions of roadway surfacing as a factor of the road safety
JP6289422B2 (en) Wastewater treatment mine displacement measuring device, soil mass movement monitoring method, and wastewater treatment mine monitoring method
Wang et al. The monitoring approaches and non-destructive testing technologies for sewer pipelines
OBrien et al. Validation of bridge health monitoring system using temperature as a proxy for damage
CN106813589B (en) With External floating roof tank real-time deformation monitoring method
Yao et al. Comparison of five snow water equivalent estimation methods across categories
Le et al. Piezoelectric impedance-based structural health monitoring of wind turbine structures: Current status and future perspectives
JP2020003212A (en) Displacement measuring device for wastewater treatment pit, clod movement monitoring method and monitoring method of wastewater treatment pit
Erdogmus et al. A novel structural health monitoring method for reinforced concrete bridge decks using ultrasonic guided waves
Nuttens et al. Terrestrial laser scanning as a key element in the integrated monitoring of tidal influences on a twin‐tube concrete tunnel
CN114370897B (en) Device and method for monitoring blasting vibration of underground excavation tunnel
Zangenehmadar Asset management tools for sustainable water distribution networks
RU2262634C1 (en) Method of detecting pipeline sections disposed to corrosion cracking under stressing
Bernstone Automated performance monitoring of concrete dams
Magenes Fatigue assessment of high mast illumination poles using field measurements
RU122382U1 (en) WASTE WASTE SYSTEM
RU2801434C1 (en) Method for monitoring level of groundwater in forest area
Petroff et al. Monitoring of long term bridge performance (LTBP) program bridges

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250