JP6287973B2 - Underwater structure and its construction method - Google Patents

Underwater structure and its construction method Download PDF

Info

Publication number
JP6287973B2
JP6287973B2 JP2015129397A JP2015129397A JP6287973B2 JP 6287973 B2 JP6287973 B2 JP 6287973B2 JP 2015129397 A JP2015129397 A JP 2015129397A JP 2015129397 A JP2015129397 A JP 2015129397A JP 6287973 B2 JP6287973 B2 JP 6287973B2
Authority
JP
Japan
Prior art keywords
particle size
slag
underwater structure
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129397A
Other languages
Japanese (ja)
Other versions
JP2017012958A (en
Inventor
宮田 康人
康人 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015129397A priority Critical patent/JP6287973B2/en
Publication of JP2017012958A publication Critical patent/JP2017012958A/en
Application granted granted Critical
Publication of JP6287973B2 publication Critical patent/JP6287973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、傾斜護岸に代表される水中構造物であって、製鋼スラグの物理的性状および化学的な作用を活用した水質浄化機能を有する水中構造物に関するものである。   The present invention relates to an underwater structure typified by an inclined revetment, which has a water purification function utilizing the physical properties and chemical action of steelmaking slag.

海水の浄化技術として、底泥に覆砂したり、底泥を浚渫したりする方法がある。覆砂材としては、海砂や山砂などのように化学反応を伴わずに底泥を覆う効果のみを有する材料や、石灰のように底泥のPの一部を化学反応により除去できる材料が用いられている。築磯効果を期待して、天然石で底泥を覆う場合もあるが、天然石への海藻の付着繁殖は行われるものの、底泥からの栄養塩類の溶出を防止する効果はほとんどなく、底泥の堆積が問題となる海域に適用してもその改善効果は十分なものでない。また、天然石や山砂は山を切り崩して採取する必要があり、近年の環境問題から、その確保が難しくなりつつある。   Seawater purification techniques include methods of covering the bottom mud and dripping the bottom mud. As sand-capping material, materials such as sea sand and mountain sand that only have the effect of covering the bottom mud without chemical reaction, and materials that can remove a part of the bottom mud P by chemical reaction, such as lime Is used. In some cases, natural rocks may cover the bottom mud in anticipation of a buildup effect.Although seaweed adheres to the natural stones and propagates, there is little effect to prevent the elution of nutrients from the bottom mud. Even if it is applied to the sea area where sedimentation is a problem, the improvement effect is not sufficient. In addition, natural stones and mountain sands need to be cut and collected, and due to environmental problems in recent years, it is becoming difficult to secure them.

特許文献1には、粒状の製鋼スラグを主要成分とした覆砂材が開示されている。具体的には、粒径が1mm程度の転炉スラグを用いると、その覆砂効果とCaOやFe成分によるHSやPO 3−の化学的除去効果により、底質・海水の浄化が図られることが報告されている。
また、特許文献2には、粒径10mm以上の製鋼スラグを85質量%以上含む底質・海水浄化材が開示されており、長期的な底質・海水浄化の効果を有し、かつ生物相の回復の早い製鋼スラグを用いた底質・海水浄化材およびそれを用いた浄化法を提供できる、としている。
Patent Document 1 discloses a sand-capping material containing granular steelmaking slag as a main component. Specifically, when converter slag having a particle size of about 1 mm is used, the sediment covering effect and the chemical removal effect of H 2 S and PO 4 3− by CaO and Fe 2 O 3 components cause bottom sediment and seawater. It has been reported that purification of
Patent Document 2 discloses a sediment / seawater purification material containing 85% by mass or more of steelmaking slag having a particle diameter of 10 mm or more, has a long-term sediment / seawater purification effect, and has a biota. It is possible to provide a bottom sediment / seawater purification material using steelmaking slag that recovers quickly and a purification method using the same.

特開平3−4988号公報JP-A-3-4988 特許第3460591号公報Japanese Patent No. 3460591

しかしながら、特許文献1の技術については、海水の浄化が必要な海域は汚染された浮泥の流入が多いために、同文献に具体的に記載されている粒径が1mm程度の転炉スラグを用いると、覆砂初期には底質・海水浄化の効果を有するが、次第に覆砂表面に浮泥が沈降堆積するような堆積負荷が強い海域においては覆砂表面が浮泥で覆われ、底質・海水浄化の効果が消失してしまう。
また、特許文献2の技術は、底質・海水浄化材としての効果は十分であり、水中に埋設する覆砂材、浚渫窪地の穴埋め材の代替などとして活用できるが、10〜30mmの砂利状の粒子が多いため、安定した傾斜護岸を構築できない。さらには、微粒分(10mm以下)の規定が無いため、微粒が少ない材料では水質改善効果が不十分となる問題があった。
However, with regard to the technology of Patent Document 1, since seawater that requires purification of seawater has a large inflow of contaminated floating mud, a converter slag having a particle diameter of about 1 mm specifically described in the same document is used. When used, it has an effect of purifying sediment and seawater in the early stage of sand-capping, but in areas where the sediment load is strong, such as when mud deposits gradually settle on the sand-clad surface, the sand-clad surface is covered with floated mud. The effect of quality and seawater purification will be lost.
Further, the technique of Patent Document 2 has sufficient effects as a bottom sediment / seawater purification material, and can be used as an alternative to sand-covering material buried in water, hole filling material in depressions, etc. Because of the large number of particles, a stable slope revetment cannot be constructed. Furthermore, since there is no regulation of the fine particle content (10 mm or less), there is a problem that the effect of improving the water quality is insufficient with a material having few fine particles.

したがって本発明の目的は、このような従来技術の課題を解決し、長期間にわたって安定した底質・海水浄化効果を維持することができ、しかも安定した傾斜護岸などを構築することができる水中構造物とその造成方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, maintain a stable sediment / seawater purification effect over a long period of time, and can also construct a stable slope revetment and the like. It is to provide a thing and its creation method.

本発明者は、上記課題を解決できる水中構造物について詳細な検討を行った結果、(i)水中構造物を構成する製鋼スラグを、大粒径と小粒径に二極化し、中間の粒径の割合を極端に少なくした粒度構成とする、(ii)干満帯に位置するように水中構造物を配置し、海域の干満を利用した海水の交換、気相の取り込みなどの作用効果が得られるようにする、という構成の組み合わせにより、長期間にわたって安定した底質・海水浄化効果を維持でき、しかも安定した傾斜護岸などを構築できることを見出した。   As a result of detailed examination of the underwater structure that can solve the above-mentioned problems, the present inventor has (i) polarized the steelmaking slag constituting the underwater structure into a large particle size and a small particle size, (Ii) An underwater structure is placed so that it is located in the tidal zone, and effects such as exchange of seawater using the tidal zone of the sea area and intake of the gas phase are obtained. It was found that a stable sediment and seawater purification effect can be maintained over a long period of time, and that a stable slope revetment can be built by combining the constructions of

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]少なくとも一部が干満帯に位置し、構造物全体の80質量%以上が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%の粒度を有する製鋼スラグ(a)で構成されることを特徴とする水中構造物。
[2]上記[1]の水中構造物において、製鋼スラグ(a)は、粒径30mm未満10mm超の割合が25質量%以下であることを特徴とする水中構造物。
[3]上記[1]または[2]の水中構造物において、製鋼スラグ(a)は、粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%の粒度を有することを特徴とする水中構造物。
[4]上記[1]〜[3]のいずれかの水中構造物おいて、傾斜護岸であることを特徴とする水中構造物。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] Particle size at least partially located in the tidal zone, 80% by mass or more of the entire structure, 60% to 95% by mass with a particle size of 30 mm or more, and 5 to 30% by mass with a particle size of 10 mm or less An underwater structure comprising a steelmaking slag (a) having
[2] The underwater structure according to the above [1], wherein the steelmaking slag (a) has a ratio of a particle size of less than 30 mm and more than 10 mm of 25% by mass or less.
[3] In the underwater structure of the above [1] or [2], the steelmaking slag (a) has a particle size of 30 mm or more in a proportion of 60 to 85 mass% and a particle size of 10 mm or less in a proportion of 15 to 30 mass%. An underwater structure characterized by having a particle size.
[4] An underwater structure according to any one of the above [1] to [3], wherein the underwater structure is an inclined revetment.

[5]上記[4]の水中構造物おいて、傾斜護岸が既存の垂直護岸に接して構築されたものであることを特徴とする水中構造物。
[6]上記[1]〜[5]のいずれかの水中構造物おいて、構造物外面の少なくとも一部が、製鋼スラグ(a)よりも粒度が大きい石材で被覆されることを特徴とする水中構造物。
[7]上記[1]〜[6]のいずれかの水中構造物おいて、製鋼スラグ(a)が3ヶ月以上大気エージングしたものであることを特徴とする水中構造物。
[8]上記[1]〜[7]のいずれかの水中構造物おいて、製鋼スラグ(a)として、予め異なる粒度に粒度調整した同種または異種の製鋼スラグを組み合わせて用いることを特徴とする水中構造物。
[9]上記[1]〜[8]のいずれかの水中構造物おいて、製鋼スラグ(a)の全部または粒径10mm以下のスラグが、溶銑予備処理スラグからなることを特徴とする水中構造物。
[5] The underwater structure according to [4], wherein the inclined revetment is constructed in contact with an existing vertical revetment.
[6] In the underwater structure according to any one of [1] to [5], at least a part of the outer surface of the structure is covered with a stone having a particle size larger than that of the steelmaking slag (a). Underwater structure.
[7] An underwater structure according to any one of the above [1] to [6], wherein the steelmaking slag (a) has been aged for 3 months or more.
[8] In the underwater structure according to any one of [1] to [7], the steelmaking slag (a) is a combination of the same or different types of steelmaking slag that has been previously adjusted to different particle sizes. Underwater structure.
[9] The underwater structure according to any one of the above [1] to [8], wherein the steelmaking slag (a) or the slag having a particle size of 10 mm or less is made of hot metal pretreatment slag. object.

[10]少なくとも一部が干満帯に位置し、且つ、構造物全体の80質量%以上が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%の粒度を有する製鋼スラグ(a)で構成されるように、海域に水中構造物を造成することを特徴とする水中構造物の造成方法。
[11]上記[10]の造成方法おいて、製鋼スラグ(a)は、粒径30mm未満10mm超の割合が25質量%以下であることを特徴とする水中構造物の造成方法。
[12]上記[10]または[11]の造成方法おいて、製鋼スラグ(a)は、粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%の粒度を有することを特徴とする水中構造物の造成方法。
[13]上記[10]〜[12]のいずれかの造成方法おいて、水中構造物が傾斜護岸であることを特徴とする水中構造物の造成方法。
[10] At least a portion is located in the tidal zone, and 80% by mass or more of the entire structure is 60 to 95% by mass with a particle size of 30 mm or more, and 5 to 30% by mass with a particle size of 10 mm or less. An underwater structure creation method characterized in that an underwater structure is created in a sea area so as to be composed of a steelmaking slag (a) having a particle size of 5 mm.
[11] The method for creating an underwater structure according to [10], wherein the steelmaking slag (a) has a ratio of a particle size of less than 30 mm and more than 10 mm of 25% by mass or less.
[12] In the above method [10] or [11], the steelmaking slag (a) has a ratio of the particle size of 30 mm or more in the range of 60 to 85% by mass and the ratio of the particle size of 10 mm or less in the range of 15 to 30% by mass. A method for producing an underwater structure characterized by having a particle size.
[13] A method for creating an underwater structure according to any one of the above [10] to [12], wherein the underwater structure is an inclined revetment.

[14]上記[13]の造成方法おいて、既存の垂直護岸に接して傾斜護岸を造成することを特徴とする水中構造物の造成方法。
[15]上記[10]〜[14]のいずれかの造成方法おいて、構造物外面の少なくとも一部を、製鋼スラグ(a)よりも粒度が大きい石材で被覆することを特徴とする水中構造物の造成方法。
[16]上記[10]〜[15]のいずれかの造成方法おいて、製鋼スラグ(a)が3ヶ月以上大気エージングしたものであることを特徴とする水中構造物の造成方法。
[17]上記[10]〜[16]のいずれかの造成方法おいて、製鋼スラグ(a)として、予め異なる粒度に粒度調整した同種または異種の製鋼スラグを組み合わせて用いることを特徴とする水中構造物の造成方法。
[18]上記[10]〜[17]のいずれかの造成方法おいて、製鋼スラグ(a)の全部または粒径10mm以下のスラグが、溶銑予備処理スラグからなることを特徴とする水中構造物の造成方法。
[14] A method for creating an underwater structure according to [13], wherein an inclined revetment is formed in contact with an existing vertical revetment.
[15] In the construction method according to any one of [10] to [14], at least a part of the outer surface of the structure is covered with a stone having a particle size larger than that of the steelmaking slag (a). How to create things.
[16] A method for creating an underwater structure according to any one of the above [10] to [15], wherein the steelmaking slag (a) has been aged for 3 months or more.
[17] An underwater characterized in that, in the forming method according to any one of [10] to [16], the steelmaking slag (a) is used in combination with steelmaking slag of the same type or different types previously adjusted to different particle sizes. How to create a structure.
[18] The underwater structure according to any one of the above [10] to [17], wherein the steelmaking slag (a) or the slag having a particle size of 10 mm or less is made of hot metal pretreatment slag. How to build.

本発明の水中構造物は、以下の(ア)、(イ)の効果が複合的に得られることにより、長期間にわたって安定した底質・海水浄化効果を維持することができ、しかも安定した傾斜護岸などを構築することができる。
(ア)水中構造物を構成する製鋼スラグを、大粒径と小粒径に二極化し、中間の粒径の割合を極端に少なくした粒度構成とすることにより、(i)大粒径スラグによって安定的な水中構造物を構築できるとともに、生物や泥分などによる目詰まりを防ぐことができる、(ii)小粒径スラグはその成分の溶出性が高いため、スラグからの溶出成分の化学的な作用により水質・底質を改善することできる、という効果が得られる。
The underwater structure of the present invention can maintain a stable sediment / seawater purification effect over a long period of time by providing the following effects (a) and (b) in a composite manner, and has a stable slope. You can build a revetment.
(A) By making the steelmaking slag constituting the underwater structure bipolar into a large particle size and a small particle size, and making the particle size composition with an extremely small proportion of intermediate particle size, (i) large particle size slag Can build a stable underwater structure and prevent clogging due to organisms and mud, etc. (ii) Since small particle size slag is highly soluble in its components, the chemistry of the components eluted from the slag The effect that water quality and bottom sediment can be improved by the effective action is obtained.

(イ)少なくとも一部が干満帯に位置するように水中構造物を配置することにより、以下のような効果が得られる。
(i)潮の干満に伴い「干潮から満潮時にスラグ間隙に水が満たされる」、「満潮から干潮時にかけて水がスラグ間隙から移動するときの水位変動により、強制的に海水がスラグ間隙を通過して排出される」ことが繰り返され、スラグ間隙内での海水とスラグとの接触と、スラグ間隙内の海水の入れ換えが交互に繰り返されることにより、水質浄化が効果的に進行する。
(ii)主に干潮時は、スラグ間隙には水面付近の溶存酸素が高い海水が存在し、この海水により、スラグ間隙やスラグ表面にトラップされた有機物を含む泥の酸化分解が進む。また、水中構造物の上部は気相と接触するが、このときスラグ空隙に気相が取り込まれるので、空気中の酸素によりスラグ空隙内に付着した泥の有機物分解が進行する。
(iii)満潮時およびその前後において、海水中の溶存硫化物がスラグ中の鉄と下記のように反応して硫化鉄が生成する。
HS+Fe2+→FeS
または、下記の反応により酸化する。
HS+Fe3+→S0+Fe2+
いったん硫化鉄が生成しても空気中の酸素や入れ替わった表層海水中酸素によって分解され、Sは単体硫黄や硫酸イオンの形態になり、鉄はイオンまたは水酸化物に戻る。このとき、鉄も酸化されて3価の鉄になる。
このように、干満によりスラグ間隙中の海水が流動し、滞留せずに入れ替わることと、スラグ表面やスラグ間隙などにトラップされた有機物などの還元物質を含む固体分や水中に含まれる還元物質の酸化分解が同時進行することにより、持続的な海水浄化効果が得られる。
(B) By arranging the underwater structure so that at least a part thereof is located in the tidal zone, the following effects can be obtained.
(I) “The slag gap is filled with water from low tide to high tide,” and “the sea level forcibly passes through the slag gap when the water moves from the slag gap from high tide to low tide. In other words, the contact between the seawater and the slag in the slag gap and the replacement of the seawater in the slag gap are alternately repeated, so that the water purification effectively proceeds.
(Ii) Mainly at low tide, there is seawater with high dissolved oxygen near the water surface in the slag gap, and this seawater promotes oxidative decomposition of mud containing organic matter trapped in the slag gap and slag surface. The upper part of the underwater structure is in contact with the gas phase. At this time, since the gas phase is taken into the slag gap, the decomposition of organic matter in the mud adhering in the slag gap proceeds by oxygen in the air.
(Iii) At high tide and before and after it, dissolved sulfide in seawater reacts with iron in slag as follows to produce iron sulfide.
HS + Fe 2+ → FeS
Or it oxidizes by the following reaction.
HS + Fe 3+ → S 0+ Fe 2+
Once iron sulfide is generated, it is decomposed by oxygen in the air and oxygen in the surface seawater that has been replaced, S becomes a form of elemental sulfur and sulfate ions, and iron returns to ions or hydroxides. At this time, iron is also oxidized to become trivalent iron.
In this way, the seawater in the slag gap flows due to tidal flow and replaces without stagnation, and the solids containing the reducing substances such as organic substances trapped on the slag surface and slag gaps and the reducing substances contained in the water A continuous seawater purification effect can be obtained by simultaneous oxidative degradation.

実施例で構築された水中構造物を模式的に示す説明図Explanatory drawing which shows typically the underwater structure constructed in the example

本発明の水中構造物は、少なくとも一部が干満帯に位置し、構造物全体の80質量%以上が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%の粒度を有する製鋼スラグ(a)で構成される。
本発明では、水中構造物を構成する製鋼スラグ(a)を、大粒径と小粒径に二極化し、中間の粒径の割合を極端に少なくした粒度構成とすることにより、(i)大粒径スラグによって安定的な水中構造物を構築できるとともに、生物や泥分などによる目詰まりを防ぐことができる、(ii)小粒径スラグはその成分の溶出性が高いため、スラグからの溶出成分の化学的な作用により水質を改善することできる、という効果が得られるようにしてある。
The underwater structure of the present invention is at least partially located in the tidal zone, 80% by mass or more of the entire structure is 60 to 95% by mass with a particle size of 30 mm or more, and 5 to 5% with a particle size of 10 mm or less. It is composed of steelmaking slag (a) having a particle size of 30% by mass.
In the present invention, the steelmaking slag (a) constituting the underwater structure is bipolarized into a large particle size and a small particle size, and the particle size constitution in which the ratio of the intermediate particle size is extremely reduced is (i) Stable underwater structures can be constructed with large particle size slag, and clogging due to organisms and mud can be prevented. (Ii) Since small particle size slag has high elution of its components, The effect that the water quality can be improved by the chemical action of the eluted components is obtained.

製鋼スラグは、鉄鋼製造プロセスの製鋼工程で発生するスラグであり、転炉脱炭スラグ、溶銑予備処理スラグ(例えば、脱燐スラグ、脱珪スラグ)、電気炉スラグ、二次精錬スラグ、造塊スラグなどが挙げられ、これらの1種以上を用いることができる。このなかでも、溶銑予備処理スラグが小粒径スラグとして特に好ましい。
製鋼スラグは、破砕・分級により所望の粒度に調整される。
Steelmaking slag is slag generated in the steelmaking process of the steelmaking process. Converter decarburization slag, hot metal pretreatment slag (eg dephosphorization slag, desiliconization slag), electric furnace slag, secondary refining slag, ingot A slag etc. are mentioned, These 1 or more types can be used. Among these, the hot metal pretreatment slag is particularly preferable as the small particle size slag.
Steelmaking slag is adjusted to a desired particle size by crushing and classification.

水中構造物を構成する製鋼スラグのうち、粒径30mm以上のスラグの割合が95質量%超や粒径10mm以下のスラグの割合が5質量%未満では、小粒径のスラグが不足するため、十分な水質・底質改善効果が得られない。一方、粒径30mm以上のスラグの割合が60質量%未満や粒径10mm以下のスラグの割合が30質量%超では、構造物としての安定性が十分に確保されない、目詰まりが起こりやすいなどの問題を生じる。目詰まりが起こると、有機物が多い水が構造物内でよどんだ状態となり、十分な水質浄化効果が得られなくなる。
以上の観点から、製鋼スラグ(a)のより好ましい粒度構成は、粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%である。
また、製鋼スラグ(a)は、粒径30mm未満10mm超の割合が25質量%以下であることが好ましい。中粒径のスラグの割合が25質量%を超えると構造物としての安定性が低下する。
また、製鋼スラグ(a)の粒径の上限(粒径30mm以上のスラグの最大粒径)は特にないが、通常、粒子間隙の大きさの適切さなどの面から500mm程度が実質的な上限となる。
Among the steelmaking slag constituting the underwater structure, the ratio of the slag having a particle size of 30 mm or more is more than 95% by mass or the ratio of the slag having a particle size of 10 mm or less is less than 5% by mass. Sufficient water quality / bottom quality improvement effect cannot be obtained. On the other hand, when the proportion of slag having a particle size of 30 mm or more is less than 60% by mass or the proportion of slag having a particle size of 10 mm or less is more than 30% by mass, stability as a structure is not sufficiently secured, and clogging is likely to occur. Cause problems. When clogging occurs, water containing a large amount of organic matter becomes stagnant in the structure, and a sufficient water purification effect cannot be obtained.
From the above viewpoint, the more preferable particle size constitution of the steelmaking slag (a) is 60 to 85% by mass of the particle size of 30 mm or more and 15 to 30% by mass of the particle size of 10 mm or less.
Further, the steelmaking slag (a) preferably has a ratio of the particle size of less than 30 mm and more than 10 mm of 25% by mass or less. When the ratio of the medium particle size slag exceeds 25% by mass, the stability as a structure is lowered.
In addition, there is no particular upper limit of the particle size of the steelmaking slag (a) (maximum particle size of slag having a particle size of 30 mm or more), but usually about 500 mm is a practical upper limit in view of appropriateness of the size of the particle gap. It becomes.

製鋼スラグ(a)は構造物全体の80質量%以上を占めるが、構造物全体の20質量%未満は他の材料(例えば、天然石、鉄鋼スラグの炭酸固化体、鉄鋼スラグ水和固化体などの1種以上)で構成してもよい。ただし、これらの材料を含めた構造物全体の構成材料が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%である粒度構成を有すること、より好ましくは粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%である粒度構成を有すること、さらに好ましくは粒径30mm未満10mm超の割合が25質量%以下である粒度構成を有することが望ましい。   Steelmaking slag (a) accounts for 80% by mass or more of the entire structure, but less than 20% by mass of the entire structure is composed of other materials (for example, natural stone, carbonated solidified steel slag, hydrated solidified steel slag, etc. 1 type or more). However, the constituent materials of the entire structure including these materials have a particle size configuration in which the ratio of the particle size of 30 mm or more is 60 to 95 mass% and the ratio of the particle size of 10 mm or less is 5 to 30 mass%, Preferably, it has a particle size constitution in which the ratio of the particle size of 30 mm or more is 60 to 85 mass%, the ratio of the particle size of 10 mm or less is 15 to 30 mass%, more preferably the ratio of less than 30 mm and more than 10 mm is 25 mass%. It is desirable to have a particle size configuration that is:

水中構造物の少なくとも一部が干満帯に位置するとは、干潮〜満潮(ただし、干潮は小潮を、満潮は大潮を、それぞれ除く。)間のいずれかの段階で海面が水中構造物の一部と接している状態である。
水中構造物を、少なくとも一部が干満帯に位置するように構築するのは、干満帯から外れ、構造物全体が常時没水した状態では、スラグ間隙水の交換が十分でなくなり、水質改善効果が十分に得られないからである。また、構造物全体が常時海水に浸漬しない状態では、水質改善効果が得られないのは自明である。
また、水中構造物が水面上にいる時間が長すぎることはあまり好ましくないので、対象海域の年間の平均潮位の状態で、水中構造物の一部(特に好ましくは、構造物高さの1/2よりも下側の部分)が水没している状態がより好ましい。
When at least part of the underwater structure is located in the tidal zone, the sea level is part of the underwater structure at any stage between low tide and high tide (however, low tide excludes low tide and high tide excludes high tide, respectively). Is in contact with.
The construction of an underwater structure so that at least a part of it is located in the tidal zone is out of the tidal zone, and when the entire structure is constantly submerged, the exchange of slag pore water becomes insufficient, and the water quality improvement effect This is because sufficient cannot be obtained. In addition, it is obvious that the water quality improvement effect cannot be obtained when the entire structure is not always immersed in seawater.
In addition, since it is not preferable that the underwater structure stays on the surface of the water for too long, a part of the underwater structure (particularly preferably, 1 / of the height of the structure) in the state of the average average tide level in the target sea area. More preferably, the portion below 2) is submerged.

本発明の水中構造物の代表的な具体例は傾斜護岸である。この傾斜護岸とは、コンクリート壁面などで造成した「垂直護岸」ではなく、傾斜角度(勾配)をもった護岸のことであり、緩傾斜護岸などもこれに該当する。
このような傾斜護岸を、既存の垂直護岸部に接して構築(造成)することにより、失われてしまった天然の海浜に代わり、水質浄化機能を取り戻すことが可能になる。
また、構造物外面の少なくとも一部を、製鋼スラグ(a)よりも粒度が大きい石材で被覆することにより、構造物の安定性を高めるとともに、荒天時の波浪などにより製鋼スラグ(a)が流出する恐れを軽減することができる。石材(被覆材)の粒度としては、粒径100mm以上(通常1000mm以下)の割合が70質量%以上が好ましい。
石材の材質は特に制限はなく、天然石のほかに、例えば、鉄鋼スラグの炭酸固化体や鉄鋼スラグ水和固化体などの人工石材(石材代替材)でもよく、これら天然石、人工石材の1種以上を用いることができる。
A typical example of the underwater structure of the present invention is a slope revetment. This inclined revetment is not a “vertical revetment” made of concrete walls, but a revetment with an inclination angle (gradient), such as a gentle slope revetment.
By constructing (building) such an inclined revetment in contact with the existing vertical revetment, it is possible to regain the water purification function in place of the lost natural beach.
In addition, the stability of the structure is improved by covering at least a part of the outer surface of the structure with a stone having a larger particle size than the steelmaking slag (a), and the steelmaking slag (a) flows out due to waves during stormy weather. The fear of doing can be reduced. As the particle size of the stone material (covering material), the ratio of the particle size of 100 mm or more (usually 1000 mm or less) is preferably 70% by mass or more.
The material of the stone is not particularly limited. In addition to natural stone, for example, artificial stone such as carbonized solidified steel slag or hydrated solidified steel slag (stone substitute material) may be used. One or more of these natural stones and artificial stone materials Can be used.

製鋼スラグ(a)は、3ヶ月以上大気エージングしたものが好ましい。3ヶ月未満の大気エージングでは施工時のアルカリ上昇が問題となる可能性がある。
製鋼スラグ(a)としては、予め異なる粒度に粒度調整した同種または異種の製鋼スラグを組み合わせて(混合して)用いることが好ましく、これにより大粒径スラグと小粒径スラグの配合を容易にすることができ、本発明で使用する製鋼スラグ(a)の特徴である、大粒径と小粒径に二極化し、中間の粒径の割合を極端に少なくした粒度構成を容易に実現することができる。
また、製鋼スラグのなかで、溶銑予備処理スラグ(脱珪スラグ、脱燐スラグなど)は転炉脱炭スラグに較べて遊離CaO含有量が少ないので、製鋼スラグ(a)の全部または粒径10mm以下のスラグを溶銑予備処理スラグとすることにより、海水のアルカリ上昇リスクを抑えることができる。
The steelmaking slag (a) is preferably one that has been aged for 3 months or more. In air aging for less than 3 months, alkali rise during construction may be a problem.
The steelmaking slag (a) is preferably used by combining (mixing) the same or different types of steelmaking slags that have been adjusted to different particle sizes in advance, thereby facilitating the blending of large and small particle slags. It is possible to easily achieve a particle size configuration that is characteristic of the steelmaking slag (a) used in the present invention, which is bipolarized into a large particle size and a small particle size, and the ratio of the intermediate particle size is extremely reduced. be able to.
In addition, among the steelmaking slag, the hot metal pretreatment slag (desiliconized slag, dephosphorized slag, etc.) has less free CaO content than the converter decarburized slag, so the entire steelmaking slag (a) or the particle size of 10 mm By using the following slag as hot metal pretreatment slag, the risk of rising seawater alkalis can be suppressed.

実海域の干満帯に、図1に示すような形態で傾斜護岸を模擬した水中構造物を設置した。水中構造物に仕切りを設けて複数に区画し、区画ごとに異なる条件とした。
水中構造物は、高さ1m、傾斜角30°の傾斜護岸状とした。背面側に採水用の潮溜まりを設けて採水し、水質を測定した。
水中構造物の構成を表1に示す。表1の敷設材料1、敷設材料2は使用した製鋼スラグであり、敷設材料1,2を用いる場合は混合して使用した。なお、溶銑予備処理スラグとしては脱リンスラグを用いた。
An underwater structure simulating an inclined revetment in the form shown in Fig. 1 was installed in the tidal zone of the actual sea area. The underwater structure was divided into a plurality of partitions, and the conditions were different for each partition.
The underwater structure was in the shape of an inclined revetment with a height of 1 m and an inclination angle of 30 °. Water was collected with a tide pool for collecting water on the back side, and the water quality was measured.
Table 1 shows the structure of the underwater structure. The laying material 1 and the laying material 2 in Table 1 are used steelmaking slags. When the laying materials 1 and 2 are used, they are mixed and used. In addition, dephosphorization slag was used as the hot metal pretreatment slag.

使用した製鋼スラグは、最大粒径が85mmであり、粒度調整は製鉄所のスラグ粒度調整設備にて、0−85mm材を10mm,30mm篩い目の篩いで篩い分けた。エージングは大気エージングで行った。
製鋼スラグの混合は、スラグヤードにてショベルなどの重機を用いて行い、運搬と敷設はクレーン付き台船を用いた。
被覆材としては、粒径が100〜300mmの天然石を用い、製鋼スラグを敷設して水中構造物の本体を構築した後、その表面に被覆材を1〜2層敷設した。
The steelmaking slag used had a maximum particle size of 85 mm, and the particle size was adjusted with a slag particle size adjusting facility at a steel mill using a 10-mm, 30-mm sieve. Aging was performed by atmospheric aging.
Steelmaking slag was mixed using a heavy machine such as an excavator in a slag yard, and a trolley with a crane was used for transportation and laying.
As a covering material, natural stone having a particle size of 100 to 300 mm was used, and a steelmaking slag was laid to construct a body of an underwater structure. Then, one or two layers of the covering material were laid on the surface.

試験開始3ヶ月後に、上記潮溜まりで採水し、水質を測定した。測定した水質はpH、溶存硫化物濃度、溶存酸素濃度、リン酸態リン濃度、アンモニア態窒素濃度である。
また、浮泥などによるスラグ間隙の目詰まりの有無を目視で確認し、浮泥などによって間隙が見えなくなった場合を「目詰まり有り」とした。なお、被覆材がある構造物では、被覆材の一部を除去した状態で確認を行った。
それらの結果を表2に示す。
表1および表2によれば、本発明条件を満足する水中構造物は、安定した傾斜護岸とすることができるとともに、安定した底質・海水浄化効果を維持できることが判る。
Three months after the start of the test, water was collected from the tide pool and the water quality was measured. The measured water quality is pH, dissolved sulfide concentration, dissolved oxygen concentration, phosphate phosphorus concentration, and ammonia nitrogen concentration.
In addition, the presence or absence of clogging in the slag gap due to floating mud etc. was confirmed visually, and the case where the gap could not be seen due to floating mud etc. was designated as “clogged”. In addition, in the structure with a coating material, it confirmed in the state which removed a part of coating material.
The results are shown in Table 2.
According to Tables 1 and 2, it can be seen that an underwater structure that satisfies the conditions of the present invention can be a stable slope revetment and can maintain a stable sediment / seawater purification effect.

Figure 0006287973
Figure 0006287973

Figure 0006287973
Figure 0006287973

Claims (18)

少なくとも一部が干満帯に位置し、構造物全体の80質量%以上が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%の粒度を有する製鋼スラグ(a)で構成されることを特徴とする水中構造物。   Steelmaking in which at least a part is located in a tidal zone, and 80% by mass or more of the entire structure has a particle size of 60 to 95% by mass with a particle size of 30 mm or more and 5 to 30% by mass with a particle size of 10 mm or less. An underwater structure comprising slag (a). 製鋼スラグ(a)は、粒径30mm未満10mm超の割合が25質量%以下であることを特徴とする請求項1に記載の水中構造物。   The underwater structure according to claim 1, wherein the steelmaking slag (a) has a ratio of a particle size of less than 30 mm and more than 10 mm to 25% by mass or less. 製鋼スラグ(a)は、粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%の粒度を有することを特徴とする請求項1または2に記載の水中構造物。   The steelmaking slag (a) has a particle size of 60 to 85% by mass of a particle size of 30 mm or more and 15 to 30% by mass of a particle size of 10 mm or less. Structure. 傾斜護岸であることを特徴とする請求項1〜3のいずれかに記載の水中構造物。   It is a slope revetment, The underwater structure in any one of Claims 1-3 characterized by the above-mentioned. 傾斜護岸が既存の垂直護岸に接して構築されたものであることを特徴とする請求項4に記載の水中構造物。   The underwater structure according to claim 4, wherein the inclined revetment is constructed in contact with an existing vertical revetment. 構造物外面の少なくとも一部が、製鋼スラグ(a)よりも粒度が大きい石材で被覆されることを特徴とする請求項1〜5のいずれかに記載の水中構造物。   The underwater structure according to any one of claims 1 to 5, wherein at least a part of the outer surface of the structure is covered with a stone having a particle size larger than that of the steelmaking slag (a). 製鋼スラグ(a)が3ヶ月以上大気エージングしたものであることを特徴とする請求項1〜6のいずれかに記載の水中構造物。   The underwater structure according to any one of claims 1 to 6, wherein the steelmaking slag (a) has been air-aged for 3 months or more. 製鋼スラグ(a)として、予め異なる粒度に粒度調整した同種または異種の製鋼スラグを組み合わせて用いることを特徴とする請求項1〜7のいずれかに記載の水中構造物。   The underwater structure according to any one of claims 1 to 7, wherein the steelmaking slag (a) is a combination of the same or different kinds of steelmaking slags that have been previously adjusted to have different particle sizes. 製鋼スラグ(a)の全部または粒径10mm以下のスラグが、溶銑予備処理スラグからなることを特徴とする請求項1〜8のいずれかに記載の水中構造物。   The underwater structure according to any one of claims 1 to 8, wherein the entire steelmaking slag (a) or slag having a particle size of 10 mm or less is made of hot metal pretreatment slag. 少なくとも一部が干満帯に位置し、且つ、構造物全体の80質量%以上が、粒径30mm以上の割合が60〜95質量%、粒径10mm以下の割合が5〜30質量%の粒度を有する製鋼スラグ(a)で構成されるように、海域に水中構造物を造成することを特徴とする水中構造物の造成方法。   At least a part is located in the tidal zone, and 80% by mass or more of the entire structure has a particle size of 60 to 95% by mass with a particle size of 30 mm or more and a particle size of 5 to 30% by mass with a particle size of 10 mm or less. An underwater structure creation method comprising creating an underwater structure in a sea area so as to be constituted by the steel-making slag (a). 製鋼スラグ(a)は、粒径30mm未満10mm超の割合が25質量%以下であることを特徴とする請求項10に記載の水中構造物の造成方法。   The method for producing an underwater structure according to claim 10, wherein the steelmaking slag (a) has a ratio of a particle size of less than 30 mm and more than 10 mm to 25% by mass or less. 製鋼スラグ(a)は、粒径30mm以上の割合が60〜85質量%、粒径10mm以下の割合が15〜30質量%の粒度を有することを特徴とする請求項10または11に記載の水中構造物の造成方法。   The underwater according to claim 10 or 11, wherein the steelmaking slag (a) has a particle size of 60 to 85 mass% with a particle size of 30 mm or more and 15 to 30 mass% with a particle size of 10 mm or less. How to create a structure. 水中構造物が傾斜護岸であることを特徴とする請求項10〜12のいずれかに記載の水中構造物の造成方法。   The underwater structure creation method according to any one of claims 10 to 12, wherein the underwater structure is an inclined revetment. 既存の垂直護岸に接して傾斜護岸を造成することを特徴とする請求項13に記載の水中構造物の造成方法。   The underwater structure creation method according to claim 13, wherein an inclined revetment is created in contact with an existing vertical revetment. 構造物外面の少なくとも一部を、製鋼スラグ(a)よりも粒度が大きい石材で被覆することを特徴とする請求項10〜14のいずれかに記載の水中構造物の造成方法。   The method for creating an underwater structure according to any one of claims 10 to 14, wherein at least a part of the outer surface of the structure is covered with a stone having a particle size larger than that of the steelmaking slag (a). 製鋼スラグ(a)が3ヶ月以上大気エージングしたものであることを特徴とする請求項10〜15のいずれかに記載の水中構造物の造成方法。   The method for producing an underwater structure according to any one of claims 10 to 15, wherein the steelmaking slag (a) has been air-aged for 3 months or more. 製鋼スラグ(a)として、予め異なる粒度に粒度調整した同種または異種の製鋼スラグを組み合わせて用いることを特徴とする請求項10〜16のいずれかに記載の水中構造物の造成方法。   The method for creating an underwater structure according to any one of claims 10 to 16, wherein the steelmaking slag (a) is used in combination with steelmaking slag of the same kind or different kinds adjusted in advance to have different particle sizes. 製鋼スラグ(a)の全部または粒径10mm以下のスラグが、溶銑予備処理スラグからなることを特徴とする請求項10〜17のいずれかに記載の水中構造物の造成方法。   18. The method for producing an underwater structure according to claim 10, wherein the entire steelmaking slag (a) or slag having a particle size of 10 mm or less comprises hot metal pretreatment slag.
JP2015129397A 2015-06-29 2015-06-29 Underwater structure and its construction method Active JP6287973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129397A JP6287973B2 (en) 2015-06-29 2015-06-29 Underwater structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129397A JP6287973B2 (en) 2015-06-29 2015-06-29 Underwater structure and its construction method

Publications (2)

Publication Number Publication Date
JP2017012958A JP2017012958A (en) 2017-01-19
JP6287973B2 true JP6287973B2 (en) 2018-03-07

Family

ID=57827597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129397A Active JP6287973B2 (en) 2015-06-29 2015-06-29 Underwater structure and its construction method

Country Status (1)

Country Link
JP (1) JP6287973B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082633B2 (en) * 1998-07-13 2008-04-30 鹿島建設株式会社 Hydrophilic revetment facility
JP3460591B2 (en) * 1998-09-04 2003-10-27 Jfeスチール株式会社 Sediment / seawater purification materials and purification methods
JP3617405B2 (en) * 2000-03-09 2005-02-02 Jfeスチール株式会社 Water bottom structure and bottom / water purification method
JP3582447B2 (en) * 2000-03-09 2004-10-27 Jfeスチール株式会社 Water bottom structure and bottom / water purification method
JP3963711B2 (en) * 2001-05-07 2007-08-22 Jfeミネラル株式会社 Method for producing steelmaking slag for harbor construction that does not become cloudy
JP2004116260A (en) * 2002-09-30 2004-04-15 Kokudo Sogo Kensetsu Kk Construction method for treating sludge
EP1630143B1 (en) * 2003-06-09 2019-11-20 Nippon Steel Corporation Method of treatment of steelmaking-slag for stabilization, stabilized steelmaking-slag, use therof as environment protection material and water environment protection method using said slag
JP4285284B2 (en) * 2004-03-12 2009-06-24 Jfeスチール株式会社 Submarine
JP4736449B2 (en) * 2005-02-01 2011-07-27 Jfeスチール株式会社 Construction method of shallow ground
JP5125063B2 (en) * 2005-11-08 2013-01-23 Jfeスチール株式会社 Construction method for installing granular and massive Ca-containing materials in water
JP4593496B2 (en) * 2006-03-07 2010-12-08 株式会社不動テトラ How to create an artificial tidal flat
JP5994383B2 (en) * 2011-08-15 2016-09-21 Jfeスチール株式会社 Sediment modification and odor reduction method
JP5928056B2 (en) * 2012-03-23 2016-06-01 Jfeスチール株式会社 Method for suppressing generation of methane-containing gas from bottom sediment of water

Also Published As

Publication number Publication date
JP2017012958A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP4719316B2 (en) How to backfill the Ogikubo land
JP4736449B2 (en) Construction method of shallow ground
JP5070667B2 (en) Underwater environment improvement method
KR101786757B1 (en) Method for suppressing generation of methane-containing gas from bottom sediment in water area
JP2000078938A (en) Material for purifying bottom material and sea water and purification
JP4736444B2 (en) Construction method of shallow ground
JP6287973B2 (en) Underwater structure and its construction method
JP2007063923A (en) Sand cover structure and sand cover method for water bottom
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP3617405B2 (en) Water bottom structure and bottom / water purification method
JP5994383B2 (en) Sediment modification and odor reduction method
JP4872275B2 (en) Covering sand at the bottom of the water
JP2006262796A (en) Structure of covering sand for bottom sediment and method for covering sand
JP5742477B2 (en) How to backfill the Ogikubo land
Wiltshire Innovations in marine ferromanganese oxide tailings disposal
JP2009203664A (en) Infill for caisson, and caisson, and water area structure
JP2002176877A (en) Block to be installed under water
JP4736448B2 (en) Construction method of shallow ground
JP3963711B2 (en) Method for producing steelmaking slag for harbor construction that does not become cloudy
JP2004000104A (en) Method for improving underwater or environmental water shore
JP3582447B2 (en) Water bottom structure and bottom / water purification method
JP4726675B2 (en) Seepage bank
JP2004223514A (en) Method for improving environment of water bottom
RU2779420C1 (en) Method for purification of wastewater from iron and copper ions
JP2003158946A (en) Method for improving underwater or waterside environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250