JP6287887B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP6287887B2
JP6287887B2 JP2015029436A JP2015029436A JP6287887B2 JP 6287887 B2 JP6287887 B2 JP 6287887B2 JP 2015029436 A JP2015029436 A JP 2015029436A JP 2015029436 A JP2015029436 A JP 2015029436A JP 6287887 B2 JP6287887 B2 JP 6287887B2
Authority
JP
Japan
Prior art keywords
mode
engine
clutch
power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015029436A
Other languages
English (en)
Other versions
JP2016150679A (ja
JP2016150679A5 (ja
Inventor
達也 今村
達也 今村
田端 淳
淳 田端
金田 俊樹
俊樹 金田
英彦 番匠谷
英彦 番匠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015029436A priority Critical patent/JP6287887B2/ja
Priority to PCT/IB2016/000142 priority patent/WO2016132205A1/en
Priority to US15/549,637 priority patent/US10315507B2/en
Priority to CN201680010013.4A priority patent/CN107206886B/zh
Publication of JP2016150679A publication Critical patent/JP2016150679A/ja
Publication of JP2016150679A5 publication Critical patent/JP2016150679A5/ja
Application granted granted Critical
Publication of JP6287887B2 publication Critical patent/JP6287887B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2038Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with three engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

この発明は、ハイブリッド車両に関し、特に、第1および第2回転電機と変速部とを含むハイブリッド車両に関する。
ハイブリッド車両には、エンジンと2つの回転電機と動力分割機構に加えて、エンジンと動力分割機構との間に変速機構をさらに備える構成を有するものが知られている。
国際公開第2013/114594号
上記文献に開示された車両は、シリーズパラレルハイブリッド方式を採用している。シリーズパラレルハイブリッド方式の車両では、エンジンの動力が第1モータジェネレータ(第1MG)へ伝達され発電に用いられる一方、エンジンの動力の一部は動力分割機構を通じて駆動輪へも伝達され、この一部の動力が第2モータジェネレータ(第2MG)とともに駆動輪を回転させる。
上記文献に開示された車両は、エンジンを停止させて第1MGおよび第2MGを両方力行状態として車両を走行させることも可能である。この場合には、2つのモータジェネレータのトルクがともに駆動輪を回転させるトルクとなる。しかし、上記文献に示された車両の構成では、このような駆動方法は、エンジンの回転速度がゼロであるときしか可能ではない。エンジンを回転させると上述のシリーズパラレルハイブリッド方式で車両を作動させるので、第1MGは発電に用いられる。第1MGは回生状態であり、第1MGの力行時のトルクを直接駆動輪の回転に用いることはできなかった。
エンジンの回転速度がゼロでない場合にも第1MGのトルクを直接駆動輪の回転に用いることができれば、車両の駆動トルクを増加させることができて好ましい。
この発明は、上記の課題を解決するためになされたものであって、その目的は、2つのモータジェネレータのトルクを車輪の駆動に用いる機会が増加したハイブリッド車両を提供することである。
この発明は、要約すると、ハイブリッド車両であって、内燃機関と、第1回転電機と、第2回転電機と、動力伝達部と、差動部と、クラッチと、制御装置とを備える。
第2回転電機は、駆動輪に動力を出力可能に設けられる。動力伝達部は、内燃機関からの動力が入力される入力要素と、入力要素に入力された動力を出力する出力要素とを有する。動力伝達部は、入力要素と出力要素との間で動力を伝達する非ニュートラル状態と、入力要素と出力要素との間で動力を伝達しないニュートラル状態とを切り替え可能に構成される。
差動部は、第1回転電機に接続される第1回転要素と、第2回転電機および駆動輪に接続される第2回転要素と、動力伝達部の出力要素に接続される第3回転要素とを有する。差動部は、第1〜第3回転要素のうちのいずれか2つの回転速度が定まると残りの1つの回転速度が定まるように構成される。
ハイブリッド車両は、第1の経路と第2の経路との少なくともいずれかの経路によって前記内燃機関の動力伝達が可能に構成される。第1の経路は、内燃機関から動力伝達部および差動部を経由して第1回転電機に動力を伝達する経路である。第2の経路は、第1の経路とは別の経路で内燃機関から第1回転電機に動力を伝達する経路である。クラッチは、第2の経路に設けられ、内燃機関から第1回転電機への動力を伝達する係合状態と、内燃機関から第1回転電機への動力の伝達を遮断する解放状態とを切り替え可能である。
制御装置は、内燃機関と第1回転電機と動力伝達部とクラッチとを制御する。制御装置は、動力伝達部を非ニュートラル状態に設定し、かつクラッチを係合状態に設定した上で、第1回転電機からの駆動力と第2回転電機からの駆動力とを用いて車両を走行させる。
車両を上記のような構成とするとともに、動力伝達部、クラッチ、第1回転電機および第2回転電機を上記のように制御することによって、車両は内燃機関の回転速度がゼロでない状態でも第1回転電機および第2回転電機をともに力行運転させて車両を推進させることが可能となる。したがって、2つの回転電機のトルクを車両の駆動トルクとして使用する機会を増やすことができ、走行時に大きな駆動力が必要になった場合に車両の制御の自由度が増す。
好ましくは、制御装置は、車速に応じて、車両の走行モードを第1モードと第2モードとの間で切り替えを行なう。第1モードは、内燃機関の回転速度をゼロに固定し、かつクラッチを解放状態に設定した上で、第1回転電機からの駆動力と第2回転電機からの駆動力とを用いて車両を走行させる走行モードである。第2モードは、動力伝達部を非ニュートラル状態に設定し、かつクラッチを係合状態に設定した上で、第1回転電機からの駆動力と第2回転電機からの駆動力とを用いて車両を走行させる走行モードである。
上記のように走行モードとして第2モードを有するので、エンジンを運転している状態からEV走行状態に移行する過渡時のように、エンジンの回転速度がゼロでない場合にも、第1回転電機からの駆動力と第2回転電機からの駆動力とを用いた駆動力の大きい走行が可能となる。
より好ましくは、制御装置は、車速が判定しきい値よりも低い場合には、走行モードを第1モードに設定し、車速が判定しきい値よりも高い場合には、走行モードを第2モードに設定する。
上記のように走行モードを選択すれば、車速が高くなり第1回転電機の回転速度の制限により第1モードでは走行できない場合でも、第2モードを使用することによって、第1回転電機からの駆動力と第2回転電機からの駆動力とを用いた駆動力の大きい走行が可能となる。
より好ましくは、ハイブリッド車両は、走行モードとして第3モードをさらに有する。制御装置は、第3モードにおいて、動力伝達部を非ニュートラル状態に設定し、かつクラッチを解放状態に設定した上で、内燃機関を運転させた状態で第1回転電機に発電を行なわせ、第2回転電機に車両を走行させる駆動力を発生させる。制御装置は、走行モードを第3モードから第1モードに遷移させる場合には、第2モードを経由させる。
このように第3モードから第1モードに走行モードを遷移させる場合に、第2モードを経由させることによって、出力トルクの抜けを感じさせないようにすることができる。
より好ましくは、制御装置は、第2モードで車両を走行させる場合に内燃機関に燃料を供給しないときは、内燃機関の回転時の抵抗を下げるように吸気弁または排気弁のうち少なくとも一方の開閉タイミングを変化させる。
第2モードで車両を走行させ、かつ内燃機関に燃料を供給しない場合、内燃機関は第1回転電機および第2回転電機によって強制的に回転させられる。この場合は内燃機関は回転抵抗が小さい方がエネルギ損失が少ない。内燃機関の回転抵抗を下げるには、シリンダ内の空気の圧縮率や膨張率が小さい方が好ましい。そこで、制御装置は、吸気弁または排気弁の開閉タイミングを変化させることによって、内燃機関の回転抵抗を下げて、エネルギ損失を小さくする。
好ましくは、制御装置は、動力伝達部を非ニュートラル状態に設定し、かつクラッチを係合状態に設定した上で、第1回転電機からの駆動力と第2回転電機からの駆動力とに加えて内燃機関からの駆動力を用いて車両を走行させる。
上記のように制御することによって、内燃機関を停止させ、第1回転電機および第2回転電機を力行運転させるEV走行モードと比べて、車両の最大駆動力をさらに増加させることが可能となる。
好ましくは、ハイブリッド車両は、他の走行モードをさらに有する。制御装置は、他の走行モードにおいて、動力伝達部を非ニュートラル状態に設定し、かつクラッチを係合状態に設定した上で、第1回転電機および第2回転電機にトルクを発生させない状態で内燃機関からの駆動力を用いて車両を走行させる。
上記のように制御することによって、内燃機関が効率よく運転可能な動作領域では、電力に変換することなく直接内燃機関のパワーを駆動輪に伝えることができるので、燃費を向上させることができる。
好ましくは、ハイブリッド車両は、他の走行モードをさらに有する。制御装置は、他の走行モードにおいて、動力伝達部をニュートラル状態に設定し、かつクラッチを係合状態に設定した上で、内燃機関の動力を用いて第1回転電機に発電を行なわせ、第2回転電機に車両を走行させる駆動力を発生させる。
上記のようなシリーズハイブリッド走行では、内燃機関の始動時のショックがニュートラル状態の動力伝達部によって遮断され駆動輪に伝達されなくなる。したがってユーザが体感する内燃機関の始動時のショックを小さく抑えることができる。
好ましくは、動力伝達部は、入力要素の回転速度と出力要素の回転速度との比を変更可能に構成される。
本発明によれば、2つの回転電機をともに力行運転させて、大きな駆動力を発生させるEV走行を行なうことができる車両の状態を増やすことができる。
この発明の実施の形態における駆動装置を備えるハイブリッド車両の全体構成を示す図である。 図1における車両の各構成要素の動力伝達経路を簡略に示したブロック図である。 図1における車両の制御装置100の構成を示したブロック図である。 ハイブリッド車両1に搭載される油圧回路500の構成を模式的に示す図である。 各走行モードと、各走行モードにおける変速部40のクラッチC1およびブレーキB1の制御状態とを示す図である。 EV単モータ走行モード(図5のE1)の動作を説明するための共線図である。 EV両モータ走行モード(図5のE3)の動作を説明するための共線図である。 HV走行(シリーズパラレル)モード(図5のH1,H2)の動作を説明するための共線図である。 HV走行(シリーズ)モード(図5のH4)の動作を説明するための共線図である。 EV両モータ走行モード(図5のE4,E5)の動作を説明するための共線図である。 HV走行(パラレル)モード(図5のH7,H9)の動作を説明するための共線図である。 エンジン走行(図5のZ1)の動作を説明するための共線図である。 エンジン走行(図5のZ2)の動作を説明するための共線図である。 各走行モードにおける車速と最大駆動力との関係を示した図である。 EV両モータ走行モードでのクラッチおよびブレーキの制御を説明するためのフローチャートである。 走行モードを判定するマップの一例を示す図である。 HV走行(シリーズパラレル)モードからEV両モータ走行モードへの遷移の一例を示した動作波形図である。
以下、この発明の実施の形態について、図面を参照して説明する。なお、以下の実施の形態では同一または相当する部分については同一の参照符号を付し、その説明については繰返さない。
[ハイブリッド車両の全体構成]
図1は、この発明の実施の形態における駆動装置を備えるハイブリッド車両の全体構成を示す図である。
図1を参照して、ハイブリッド車両1は、エンジン10と、駆動装置2と、駆動輪90と、制御装置100とを含む。駆動装置2は、第1モータジェネレータ(以下、「第1MG」という)20と、第2モータジェネレータ(以下、「第2MG」という)30と、変速部40と、差動部50と、クラッチCSと、入力軸21と、出力軸(カウンタ軸)70と、デファレンシャルギヤ80と、油圧回路500とを含む。
ハイブリッド車両1は、エンジン10、第1MG20および第2MG30の少なくともいずれかの動力を用いて走行する、FF(フロントエンジン・フロントドライブ)方式のハイブリッド車両である。ハイブリッド車両1は、図示しない車載バッテリを外部電源により充電可能なプラグインハイブリッド車両であってもよい。
エンジン10は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関である。
第1MG20および第2MG30は、たとえば、永久磁石が埋設されたロータを有する永久磁石型同期電動機である。駆動装置2は、第1MG20が、エンジン10のクランク軸(出力軸)と同軸の第1軸12上に設けられ、第2MG30が、第1軸12とは異なる第2軸14上に設けられる、複軸式の駆動装置である。第1軸12および第2軸14は、互いに平行である。
第1軸12上には、変速部40、差動部50およびクラッチCSがさらに設けられている。変速部40、差動部50、第1MG20およびクラッチCSは、挙げた順にエンジン10に近い側から並んでいる。
第1MG20は、エンジン10からの動力が入力可能に設けられている。より具体的には、エンジン10のクランク軸には、駆動装置2の入力軸21が接続されている。入力軸21は、第1軸12に沿って、エンジン10から遠ざかる方向に延びている。入力軸21は、エンジン10から延びた先端でクラッチCSに接続されている。第1MG20の回転軸22は、第1軸12に沿って筒状に延びる。入力軸21は、クラッチCSに接続される手前で回転軸22の内部を通過している。入力軸21は、クラッチCSを介して、第1MG20の回転軸22に接続されている。
クラッチCSは、エンジン10から第1MG20への動力伝達経路上に設けられている。クラッチCSは、入力軸21と第1MG20の回転軸22とを連結可能な油圧式の摩擦係合要素である。クラッチCSが係合状態とされると、入力軸21および回転軸22が連結され、エンジン10から第1MG20への動力の伝達が許容される。クラッチCSが解放状態とされると、入力軸21および回転軸22の連結が解除され、エンジン10からクラッチCSを介して伝達される第1MG20への動力の伝達が遮断される。
変速部40は、エンジン10からの動力を変速して差動部50に出力する。変速部40は、サンギヤS1、ピニオンギヤP1、リングギヤR1およびキャリアCA1を含むシングルピニオン式の遊星歯車機構と、クラッチC1およびブレーキB1とを有する。
サンギヤS1は、その回転中心が第1軸12となるように設けられている。リングギヤR1は、サンギヤS1と同軸上であって、かつ、サンギヤS1の径方向外側に設けられている。ピニオンギヤP1は、サンギヤS1およびリングギヤR1の間に配置され、サンギヤS1およびリングギヤR1に噛み合っている。ピニオンギヤP1は、キャリアCA1によって回転可能に支持されている。キャリアCA1は、入力軸21に接続され、入力軸21と一体に回転する。ピニオンギヤP1は、第1軸12を中心に回転(公転)可能で、かつ、ピニオンギヤP1の中心軸周りに回転(自転)可能に設けられている。
サンギヤS1の回転速度、キャリアCA1の回転速度(すなわち、エンジン10の回転速度)およびリングギヤR1の回転速度は、後述の図6〜図13に示すように、共線図上で直線で結ばれる関係(すなわち、いずれか2つの回転速度が決まれば残りの回転速度も決まる関係)となる。
本実施の形態においては、キャリアCA1が、エンジン10からの動力が入力される入力要素として設けられ、リングギヤR1が、キャリアCA1に入力された動力を出力する出力要素として設けられている。サンギヤS1、ピニオンギヤP1、リングギヤR1およびキャリアCA1を含む遊星歯車機構により、キャリアCA1に入力された動力は変速されてリングギヤR1から出力される。
クラッチC1は、サンギヤS1とキャリアCA1とを連結可能な油圧式の摩擦係合要素である。クラッチC1が係合状態とされると、サンギヤS1およびキャリアCA1が連結され一体回転する。クラッチC1が解放状態とされると、サンギヤS1およびキャリアCA1の一体回転が解除される。
ブレーキB1は、サンギヤS1の回転を規制(ロック)可能な油圧式の摩擦係合要素である。ブレーキB1が係合状態とされると、サンギヤS1が駆動装置のケース体に固定されて、サンギヤS1の回転が規制される。ブレーキB1が解放(非係合)状態とされると、サンギヤS1が駆動装置のケース体から切り離され、サンギヤS1の回転が許容される。
遊星歯車機構とブレーキB1との間には、隔壁W1が設けられている。この位置に隔壁W1を設けると、ブレーキB1およびクラッチC1の作動油を供給する油路を隔壁W1に設けることができるので好ましい。また、隔壁W1、ブレーキB1、クラッチC1、エンジン10の順にこれらを配置するとともに、クラッチC1の内側回転要素をキャリアCA1とし外側回転要素をサンギヤS1とすることによって、隔壁W1に設ける穴を小さくすることができる。
変速部40の変速比(入力要素であるキャリアCA1の回転速度と、出力要素であるリングギヤR1の回転速度との比、具体的には、キャリアCA1の回転速度/リングギヤR1の回転速度)は、クラッチC1およびブレーキB1の係合および解放の組み合わせに応じて切り替えられる。クラッチC1が係合され、かつブレーキB1が解放されると、変速比が1.0(直結状態)となるローギヤ段Loが形成される。クラッチC1が解放され、かつブレーキB1が係合されると、変速比が1.0よりも小さい値(たとえば0.7、いわゆるオーバードライブ状態)となるハイギヤ段Hiが形成される。なお、クラッチC1が係合され、かつブレーキB1が係合されると、サンギヤS1およびキャリアCA1の回転が規制されるため、リングギヤR1の回転も規制される。
変速部40は、動力を伝達する非ニュートラル状態と、動力を伝達しないニュートラル状態とを切り替え可能に構成されている。本実施の形態では、上記の直結状態およびオーバードライブ状態が、非ニュートラル状態に対応する。一方、クラッチC1およびブレーキB1がともに解放されると、キャリアCA1が第1軸12を中心に空転することが可能な状態となる。これにより、エンジン10からキャリアCA1に伝達された動力が、キャリアCA1からリングギヤR1に伝達されないニュートラル状態が得られる。
差動部50は、サンギヤS2、ピニオンギヤP2、リングギヤR2およびキャリアCA2を含むシングルピニオン式の遊星歯車機構と、カウンタドライブギヤ51とを有する。
サンギヤS2は、その回転中心が第1軸12となるように設けられている。リングギヤR2は、サンギヤS2と同軸上であって、かつ、サンギヤS2の径方向外側に設けられている。ピニオンギヤP2は、サンギヤS2およびリングギヤR2の間に配置され、サンギヤS2およびリングギヤR2に噛み合っている。ピニオンギヤP2は、キャリアCA2によって回転可能に支持されている。キャリアCA2は、変速部40のリングギヤR1に接続され、リングギヤR1と一体に回転する。ピニオンギヤP2は、第1軸12を中心に回転(公転)可能で、かつ、ピニオンギヤP2の中心軸周りに回転(自転)可能に設けられている。
サンギヤS2には、第1MG20の回転軸22が接続されている。第1MG20の回転軸22は、サンギヤS2と一体に回転する。リングギヤR2には、カウンタドライブギヤ51が接続されている。カウンタドライブギヤ51は、リングギヤR2と一体に回転する、差動部50の出力ギヤである。
サンギヤS2の回転速度(すなわち、第1MG20の回転速度)、キャリアCA2の回転速度およびリングギヤR2の回転速度は、後述の図6〜図13に示すように、共線図上で直線で結ばれる関係(すなわち、いずれか2つの回転速度が決まれば残りの回転速度も決まる関係)となる。したがって、キャリアCA2の回転速度が所定値である場合に、第1MG20の回転速度を調整することによって、リングギヤR2の回転速度を無段階に切り替えることができる。
出力軸(カウンタ軸)70は、第1軸12および第2軸14に平行に延びている。出力軸(カウンタ軸)70は、第1MG20の回転軸22および第2MG30の回転軸31と平行に配置されている。出力軸(カウンタ軸)70には、ドリブンギヤ71およびドライブギヤ72が設けられている。ドリブンギヤ71は、差動部50のカウンタドライブギヤ51と噛み合っている。すなわち、エンジン10および第1MG20の動力は、差動部50のカウンタドライブギヤ51を介して出力軸(カウンタ軸)70に伝達される。
なお、変速部40および差動部50は、エンジン10から出力軸(カウンタ軸)70までの動力伝達経路上において直列に接続されている。このため、エンジン10からの動力は、変速部40および差動部50において変速された後に、出力軸(カウンタ軸)70に伝達される。
ドリブンギヤ71は、第2MG30の回転軸31に接続されたリダクションギヤ32と噛み合っている。すなわち、第2MG30の動力は、リダクションギヤ32を介して出力軸(カウンタ軸)70に伝達される。
ドライブギヤ72は、デファレンシャルギヤ80のデフリングギヤ81と噛み合っている。デファレンシャルギヤ80は、左右の駆動軸82を介してそれぞれ左右の駆動輪90と接続されている。すなわち、出力軸(カウンタ軸)70の回転は、デファレンシャルギヤ80を介して左右の駆動軸82に伝達される。
クラッチCSを設けた上記のような構成とすることによって、ハイブリッド車両1は、シリーズパラレルモードで動作させることができ、かつシリーズモードで動作させることもできる。この点について、各々のモードでエンジンからの動力がどのように行なわれるかについて、図2の模式図を用いて説明する。
図2は、図1における車両の各構成要素の動力伝達経路を簡略に示したブロック図である。図2を参照して、ハイブリッド車両1は、エンジン10と、第1MG20と、第2MG30と、変速部40と、差動部50と、バッテリ60と、クラッチCSとを備える。
第2MG30は、駆動輪90に動力を出力可能に設けられる。変速部40は、エンジン10からの動力が入力される入力要素と、入力要素に入力された動力を出力する出力要素とを有する。変速部40は、その入力要素と出力要素との間で動力を伝達する非ニュートラル状態と、入力要素と出力要素との間で動力を伝達しないニュートラル状態とを切り替え可能に構成される。
バッテリ60は、第1MG20および第2MG30に力行時に電力を供給するとともに、第1MG20および第2MG30で回生時に発電された電力を蓄える。
差動部50は、第1MG20に接続される第1回転要素と、第2MG30および駆動輪90に接続される第2回転要素と、変速部40の出力要素に接続される第3回転要素とを有する。差動部50、たとえば遊星歯車機構などのように、第1〜第3回転要素のうちのいずれか2つの回転速度が定まると残りの1つの回転速度が定まるように構成される。
ハイブリッド車両1は、動力を伝達する2つの経路K1,K2の少なくともいずれかによってエンジン10から第1MG20に動力を伝達可能に構成される。経路K1は、エンジン10から変速部40および差動部50を経由して第1MG20に動力を伝達する経路である。経路K2は、経路K1とは別の経路でエンジン10から第1MG20に動力を伝達する経路である。クラッチCSは、経路K2に設けられ、エンジン10から第1MG20への動力を伝達する係合状態と、エンジン10から第1MG20への動力の伝達を遮断する解放状態とを切り替え可能である。
エンジンを運転させたHV走行モードにおいて、クラッチC1またはブレーキB1のいずれか一方を係合状態とし、他方を解放状態として、変速部40を非ニュートラル状態に制御すると、経路K1によって動力がエンジン10から第1MG20に伝達される。このとき同時に、CSクラッチを解放状態として、経路K2を遮断すると、車両がシリーズパラレルモードで動作可能となる。
一方、エンジンを運転させたHV走行モードにおいて、CSクラッチによってエンジン10と第1MG20を直結して経路K2によって動力伝達を行ない、クラッチC1とブレーキB1を共に解放状態として変速部40をニュートラル状態に制御して経路K1を遮断すると、車両がシリーズモードで動作可能となる。このとき、差動部50は、変速部40に接続された回転要素が自由に回転可能(フリー)となるので、他の2つの回転要素も互いに影響を及ぼさずに回転可能となる。したがって、エンジン10の回転で第1MG20を回転させて発電を行なう動作と、発電した電力またはバッテリ60に充電された電力を用いて第2MG30を駆動させて駆動輪を回転させる動作を独立して行なうことができる。
さらに、エンジンを運転させた状態で、CSクラッチによってエンジン10と第1MG20を直結するとともに、変速部40を非ニュートラル状態に制御すると、エンジン10の回転が固定段のギヤ比で駆動輪に伝達される。このときは、経路K1,K2のようなルートではなく、エンジン10から差動部50を経由して駆動輪90に動力が伝達される。
なお、変速部40は、必ずしも変速比を変更可能なものでなくても良く、経路K1のエンジン10と差動部50の動力伝達を遮断可能な構成であれば、単なるクラッチのようなものでもよい。
図3は、図1における車両の制御装置100の構成を示したブロック図である。図3を参照して、制御装置100は、HVECU(Electric Control Unit)150と、MGECU160と、エンジンECU170とを含む。HVECU150、MGECU160、エンジンECU170の各々は、コンピュータを含んで構成される電子制御ユニットである。なお、ECUの数は、3つに限定されるものではなく、全体として1つのECUに統合しても良いし、2つ、または4つ以上の数に分割されていても良い。
MGECU160は、第1MG20および第2MG30を制御する。MGECU160は、例えば、第1MG20に対して供給する電流値を調節し、第1MG20の出力トルクを制御すること、および第2MG30に対して供給する電流値を調節し、第2MG30の出力トルクを制御する。
エンジンECU170は、エンジン10を制御する。エンジンECU170は、例えば、エンジン10の電子スロットル弁の開度の制御、点火信号を出力することによるエンジンの点火制御、エンジン10に対する燃料の噴射制御、等を行なう。エンジンECU170は、電子スロットル弁の開度制御、噴射制御、点火制御等によりエンジン10の出力トルクを制御する。
HVECU150は、車両全体を統合制御する。HVECU150には、車速センサ、アクセル開度センサ、MG1回転数センサ、MG2回転数センサ、出力軸回転数センサ、バッテリセンサ等が接続されている。これらのセンサにより、HVECU150は、車速、アクセル開度、第1MG20の回転数、第2MG30の回転数、動力伝達装置の出力軸の回転数、バッテリ状態SOC等を取得する。
HVECU150は、取得した情報に基づいて、車両に対する要求駆動力や要求パワー、要求トルク等を算出する。HVECU150は、算出した要求値に基づいて、第1MG20の出力トルク(以下、「MG1トルク」とも記載する。)、第2MG30の出力トルク(以下、「MG2トルク」とも記載する。)およびエンジン10の出力トルク(以下、「エンジントルク」とも記載する。)を決定する。HVECU150は、MG1トルクの指令値およびMG2トルクの指令値をMGECU160に対して出力する。また、HVECU150は、エンジントルクの指令値をエンジンECU170に対して出力する。
HVECU150は、後述する走行モード等に基づいて、クラッチC1,CSおよびブレーキB1を制御する。HVECU150は、クラッチC1,CSに対する供給油圧の指令値(PbC1、PbCS)およびブレーキB1に対する供給油圧の指令値(PbB1)をそれぞれ図1の油圧回路500に出力する。また、HVECU150は、制御信号NMおよび制御信号S/Cを図1の油圧回路500に出力する。
図1の油圧回路500は、各指令値PbC1,PbB1に応じてクラッチC1およびブレーキB1に対する供給油圧を制御するとともに、制御信号NMによって電動オイルポンプを制御し、制御信号S/Cによって、クラッチC1、ブレーキB1およびクラッチCSの同時係合の許可/禁止を制御する。
[油圧制御回路の構成]
図4は、ハイブリッド車両1に搭載される油圧回路500の構成を模式的に示す図である。油圧回路500は、機械式オイルポンプ(以下「MOP」ともいう)501と、電動式オイルポンプ(以下「EOP」ともいう)502と、調圧弁510,520と、リニアソレノイド弁SL1,SL2,SL3と、同時供給防止弁530,540,550と、電磁切替弁560と、逆止弁570と、油路LM,LE,L1,L2,L3,L4とを含む。
MOP501は、差動部50のキャリアCA2が回転することによって駆動されて油圧を発生する。したがって、エンジン10の駆動などによってキャリアCA2が回転されるとMOP501も駆動され、キャリアCA2が停止されるとMOP501も停止される。MOP501は、発生した油圧を油路LMに出力する。
油路LM内の油圧は、調圧弁510によって所定圧に調圧(減圧)される。以下、調圧弁510によって調圧された油路LM内の油圧を「ライン圧PL」ともいう。ライン圧PLは、各リニアソレノイド弁SL1,SL2,SL3に供給される。
リニアソレノイド弁SL1は、ライン圧PLを制御装置100からの油圧指令値PbC1に応じて調圧することによって、クラッチC1を係合するための油圧(以下「C1圧」という)を生成する。C1圧は、油路L1を介してクラッチC1に供給される。
リニアソレノイド弁SL2は、ライン圧PLを制御装置100からの油圧指令値PbB1に応じて調圧することによって、ブレーキB1を係合するための油圧(以下「B1圧」という)を生成する。B1圧は、油路L2を介してブレーキB1に供給される。
リニアソレノイド弁SL3は、ライン圧PLを制御装置100からの油圧指令値PbCSに応じて調圧することによって、クラッチCSを係合するための油圧(以下「CS圧」という)を生成する。CS圧は、油路L3を介してクラッチCSに供給される。
同時供給防止弁530は、油路L1上に設けられ、ブレーキB1およびクラッチCSの少なくとも一方と、クラッチC1とが同時に係合されることを防止するように構成される。具体的には、同時供給防止弁530には油路L2,L3が接続される。同時供給防止弁530は、油路L2,L3からのB1圧、CS圧を信号圧として作動する。
同時供給防止弁530は、B1圧およびCS圧の双方の信号圧が入力されていない場合(すなわちブレーキB1およびクラッチCSの双方ともが解放されている場合)には、C1圧をクラッチC1に供給するノーマル状態となる。なお、図4には、同時供給防止弁530がノーマル状態である場合が例示されている。
一方、同時供給防止弁530は、B1圧およびCS圧の少なくとも一方の信号圧が入力されている場合(すなわちブレーキB1およびクラッチCSの少なくとも一方が係合されている場合)には、たとえクラッチC1が係合している場合であっても、C1圧のクラッチC1への供給をカットするとともにクラッチC1内の油圧を外部へ排出するドレン状態に切り替えられる。これによりクラッチC1が解放されるため、ブレーキB1およびクラッチCSの少なくとも一方と、クラッチC1とが同時に係合されることが防止される。
同様に、同時供給防止弁540は、C1圧およびCS圧を信号圧として作動することによって、クラッチC1およびクラッチCSの少なくとも一方と、ブレーキB1とが同時に係合されることを防止する。具体的には、同時供給防止弁530は、C1圧およびCS圧の双方の信号圧が入力されていない場合には、B1圧をブレーキB1に供給するノーマル状態となる。一方、同時供給防止弁540は、C1圧およびCS圧の少なくとも一方の信号圧が入力されている場合には、B1圧のブレーキB1への供給をカットするとともにブレーキB1内の油圧を外部へ排出するドレン状態に切り替えられる。なお、図4には、同時供給防止弁540にC1圧が信号圧として入力されて同時供給防止弁540がドレン状態になっている場合が例示されている。
同様に、同時供給防止弁550は、C1圧およびB1圧を信号圧として作動することによって、クラッチC1およびブレーキB1の少なくとも一方と、クラッチCSとが同時に係合されることを防止する。具体的には、同時供給防止弁550は、C1圧およびB1圧の双方の信号圧が入力されていない場合には、CS圧をクラッチCSに供給するノーマル状態となる。一方、同時供給防止弁550は、C1圧およびB1圧の少なくとも一方の信号圧が入力されている場合には、CS圧のクラッチCSへの供給をカットするとともにクラッチCS内の油圧を外部へ排出するドレン状態に切り替えられる。なお、図4には、同時供給防止弁550にC1圧が入力されて同時供給防止弁550がドレン状態になっている場合が例示されている。
EOP502は、内部に設けられるモータ(以下「内部モータ」ともいう)502Aによって駆動されて油圧を発生する。内部モータ502Aは、制御装置100からの制御信号NMによって制御される。したがって、EOP502は、キャリアCA2が回転しているか否かに関わらず作動可能である。EOP502は、発生した油圧を油路LEに出力する。
油路LE内の油圧は、調圧弁520によって所定圧に調圧(減圧)される。油路LEは、逆止弁570を介して油路LMに接続される。油路LE内の油圧が油路LM内の油圧よりも所定圧以上高い場合、逆止弁570が開き、逆止弁570を介して油路LE内の油圧が油路LMに供給される。これにより、MOP501の停止中においてもEOP502を駆動させることによって油路LMに油圧を供給することができる。
電磁切替弁560は、制御装置100からの制御信号S/Cに応じて、油路LEと油路L4とを連通するオン状態と、油路LEと油路L4とを遮断するとともに油路L4内の油圧を外部へ排出するオフ状態とのいずれかに切り替えられる。なお、図4には、電磁切替弁560がオフ状態である場合が例示されている。
油路L4は、同時供給防止弁530,540に接続されている。電磁切替弁560がオン状態である場合、油路LE内の油圧が油路L4を介して同時供給防止弁530,540に信号圧としてそれぞれ入力される。同時供給防止弁530は、油路L4からの信号圧が入力された場合、油路L2からの信号圧(B1圧)が入力されているか否かに関わらず、強制的にノーマル状態に固定される。同様に、同時供給防止弁540は、油路L4からの信号圧が入力された場合、油路L1からの信号圧(C1圧)が入力されているか否かに関わらず、強制的にノーマル状態に固定される。したがって、EOP502を駆動しかつ電磁切替弁560をオン状態に切り替えることによって、同時供給防止弁530,540は同時にノーマル状態に固定される。これにより、クラッチC1とブレーキB1とを同時に係合することが許容され、両モータ走行モード(後述)が可能となる。
以下に、ハイブリッド車両1の制御モードの詳細について、作動係合表と共線図とを用いて説明する。
図5は、各走行モードと、各走行モードにおける変速部40のクラッチC1およびブレーキB1の制御状態とを示す図である。
制御装置100は、「モータ走行モード(以下「EV走行モード」という)」、「ハイブリッド走行モード(以下「HV走行モード」という)」あるいは「エンジン走行モード」でハイブリッド車両1を走行させる。EV走行モードとは、エンジン10を停止し、第1MG20あるいは第2MG30の少なくとも一方の動力でハイブリッド車両1を走行させる制御モードである。HV走行モードとは、エンジン10および第2MG30の動力でハイブリッド車両1を走行させる制御モードである。エンジン走行モードとは、第1MG20および第2MG30を使用せずにエンジン10の駆動力で車両を走行させる制御モードである。EV走行モード、HV走行モードおよびエンジン走行モードのそれぞれにおいて、制御モードはさらに細分化されている。
図5において、「C1」、「B1」、「CS」、「MG1」、「MG2」はそれぞれクラッチC1、ブレーキB1、クラッチCS、第1MG20、第2MG30を示す。C1、B1、CSの各欄の丸(○)印は「係合」を示し、×印は「解放」を示し、三角(△)印はエンジンブレーキ時にクラッチC1およびブレーキB1のどちらか一方を係合することを示す。また、MG1の欄およびMG2の欄の「G」は主にジェネレータとして動作させることを示し、「M」は主にモータとして動作させることを示す。
EV走行モード中においては、制御装置100は、第2MG30単独の動力でハイブリッド車両1を走行させる「単モータ走行モード」と、第1MG20および第2MG30の両方の動力でハイブリッド車両1を走行させる「両モータ走行モード」とを、ユーザの要求トルクなどに応じて選択的に切り替える。
駆動装置2の負荷が低負荷の場合には単モータ走行モードが使用され、負荷が高負荷になると両モータ走行モードに移行される。
図5のE1欄に示すように、EV単モータ走行モードでハイブリッド車両1を駆動(前進あるいは後進)させる場合、制御装置100は、クラッチC1を解放しかつブレーキB1を解放することで、変速部40をニュートラル状態(動力を伝達しない状態)とする。このとき、制御装置100は、第1MG20を主にサンギヤS2をゼロに固定させる固定手段として動作させ、第2MG30を主にモータとして動作させる(後述の図6参照)。第1MG20を固定手段として動作させるために、第1MG20の回転速度がゼロになるように回転速度をフィードバックして第1MG20の電流を制御しても良く、トルクがゼロでも回転速度をゼロに維持できる場合には、電流を加えずコギングトルクを利用しても良い。なお、変速部40をニュートラル状態とすると回生制動時にエンジン10が連れ回されないのでその分のロスが少なく、大きな回生電力を回収することができる。
図5のE2欄に示すように、EV単モータ走行モードでハイブリッド車両1を制動する場合でかつエンジンブレーキが必要な場合、制御装置100は、クラッチC1およびブレーキB1のどちらか一方を係合する。たとえば、回生ブレーキのみでは制動力が不足する場合にエンジンブレーキが回生ブレーキに併用される。また、たとえば、バッテリ60のSOCが満充電状態に近い場合には、回生電力を充電できないので、エンジンブレーキ状態とすることが考えられる。
クラッチC1およびブレーキB1のどちらか一方を係合することにより、駆動輪90の回転がエンジン10に伝達されエンジン10が回転される、いわゆるエンジンブレーキ状態となる。このとき、制御装置100は、第1MG20を主にモータとして動作させ、第2MG30を主にジェネレータとして動作させる。
一方、図5のE3欄に示すように、EV両モータ走行モードでハイブリッド車両1を駆動(前進あるいは後進)させる場合、制御装置100は、クラッチC1を係合しかつブレーキB1を係合して変速部40のリングギヤR1の回転を規制(ロック)する。これにより、変速部40のリングギヤR1に連結された差動部50のキャリアCA2の回転も規制(ロック)されるため、差動部50のキャリアCA2が停止状態に維持される(エンジン回転速度Ne=0となる)。そして、制御装置100は、第1MG20および第2MG30を主にモータとして動作させる(後述の図7参照)。
なお、EV走行モード(単モータ走行モードおよび両モータ走行モード)では、エンジン10が停止しているため、MOP501も停止している。したがって、EV走行モードでは、EOP502の油圧を用いてクラッチC1あるいはブレーキB1が係合される。
さらに、EV走行モードのE4,E5欄について説明する。これらのモードもE3欄と同じく両モータ走行モードであるが、エンジン回転速度Neがゼロでない点でも動作させることができる点が異なる(図5中で「Neフリー」と記載)。これらのモードの詳細については、図10の共線図を用いて後述する。
HV走行モードは、シリーズパラレルモード、シリーズモード、パラレルモードの3種類に分けることができる。シリーズパラレルモードおよびシリーズモードでは、制御装置100は、第1MG20をジェネレータとして動作させ、第2MG30をモータとして動作させる。また、パラレルモードでは、制御装置100は、第2MG30のみモータとして動作させるか(単モータ)、または第1MG20、第2MG30をともにモータとして動作させる(両モータ)。
HV走行モード中において、制御装置100は、シリーズパラレルモード、シリーズモード、パラレルモードのいずれかに制御モードを設定する。
シリーズパラレルモードでは、エンジン10の動力は、一部は駆動輪90を駆動するために使用され、残りは、第1MG20で発電を行なう動力として使用される。第2MG30は、第1MG20で発電された電力を用いて駆動輪90を駆動する。シリーズパラレルモードにおいては、制御装置100は、車速に応じて変速部40の変速比を切り替える。
中低速域でハイブリッド車両1を前進させる場合には、制御装置100は、図5のH2欄に示すように、クラッチC1を係合しかつブレーキB1を解放することで、ローギヤ段Loを形成する(後述の図8の実線参照)。一方、高速域でハイブリッド車両1を前進させる場合、制御装置100は、図5のH1欄に示すように、クラッチC1を解放しかつブレーキB1を係合することで、ハイギヤ段Hiを形成する(後述の図8の破線参照)。ハイギヤ段形成時、ローギヤ段形成時とも、変速部40と差動部50とは全体として無段変速機として動作する。
ハイブリッド車両1を後進させる場合には、制御装置100は、図5のH3欄に示すように、クラッチC1を係合しかつブレーキB1を解放する。そして、制御装置100は、バッテリのSOCに余裕がある場合には、第2MG30を単独で逆回転させる一方、バッテリのSOCに余裕がない場合にはエンジン10を運転させて第1MG20で発電を行なうとともに第2MG30を逆回転させる。
シリーズモードでは、エンジン10の動力は、すべて第1MG20で発電を行なう動力として使用される。第2MG30は、第1MG20で発電された電力を用いて駆動輪90を駆動する。シリーズモードにおいては、ハイブリッド車両1を前進させる場合あるいはハイブリッド車両1を後進させる場合には、制御装置100は、図5のH4欄およびH5欄に示すように、クラッチC1およびブレーキB1をともに解放し、かつクラッチCSを係合させる(後述の図9参照)。
HV走行モードでは、エンジン10が作動しているため、MOP501も作動している。したがって、HV走行モードでは、主にMOP501の油圧を用いてクラッチC1,CSあるいはブレーキB1が係合される。
さらに、HV走行モードのH6〜H9欄には、パラレルモードの制御状態が示される。これらのモードもHV走行モードであるが、第1MG20がジェネレータとして動作することはない。HV(パラレル)走行モードかつ両モータ走行モードでは、第1MG20はモータとして力行動作し、駆動輪を回転させるトルクを出力する点がシリーズパラレルモードやシリーズモードとは大きく異なる。パラレルモードでは、クラッチC1、ブレーキB1のいずれか一方が係合他方が解放され、クラッチCSは係合される。これらのモードの詳細については、図13の共線図を用いて後述する。
さらに、車両1は、第1MG20および第2MG30を使用しないで走行するエンジン走行モードでも走行が可能である。車両の走行状態がエンジンの効率の良い回転速度およびトルクと一致したときには、発電などにエンジンの動力を使用せずにそのまま駆動輪を回転させるのに使用するほうが効率が良い。図5のZ1,Z2欄には、エンジン走行モードの制御状態が示される。エンジン走行モードでは、HVパラレルモードと同様、クラッチC1、ブレーキB1のいずれか一方が係合され、他方が解放され、クラッチCSは係合される。これらのモードの詳細については、図12、図13の共線図を用いて後述する。
以下に、共線図を用いて、図5に示した動作モードのうち代表的なモードについて、各回転要素の状態を説明する。
図6は、EV単モータ走行モード(図5のE1)の動作を説明するための共線図である。図7は、EV両モータ走行モード(図5のE3)の動作を説明するための共線図である。図8は、HV走行(シリーズパラレル)モード(図5のH1,H2)の動作を説明するための共線図である。図9は、HV走行(シリーズ)モード(図5のH4)の動作を説明するための共線図である。
図6〜図9に示す「S1」、「CA1」、「R1」はそれぞれ変速部40のサンギヤS1、キャリアCA1、リングギヤR1を示し、「S2」、「CA2」、「R2」はそれぞれ差動部50のサンギヤS2、キャリアCA2、リングギヤR2を示す。
図6を用いて、EV単モータ走行モード(図5:E1)中の制御状態について説明する。EV単モータ走行モードでは、制御装置100は、変速部40のクラッチC1、ブレーキB1およびクラッチCSを解放するとともに、エンジン10を停止し、第2MG30を主にモータとして動作させる。そのため、EV単モータ走行モードでは、第2MG30のトルク(以下「MG2トルクTm2」という)を用いてハイブリッド車両1は走行する。
この際、制御装置100は、サンギヤS2の回転速度が0となるように第1MG20のトルク(以下「第1MGトルクTm1」という)をフィードバック制御する。そのため、サンギヤS2は回転しない。しかしながら、変速部40のクラッチC1およびブレーキB1は解放されているため、差動部50のキャリアCA2の回転は規制されない。したがって、差動部50のリングギヤR2、キャリアCA2および変速部40のリングギヤR1は、第2MG30の回転に連動して、第2MG30の回転方向と同じ方向に回転(空転)させられる。
一方、変速部40のキャリアCA1は、エンジン10が停止されていることによって、停止状態に維持される。変速部40のサンギヤS1は、リングギヤR1の回転に連動して、リングギヤR1の回転方向とは反対の方向に回転(空転)させられる。
なお、EV単モータ走行モード中に減速を行なうために、第2MG30を用いた回生制動に加えてエンジンブレーキを作動させることも可能である。この場合(図5:E2)には、クラッチC1またはブレーキB1のいずれか一方を係合させることにより、キャリアCA2が駆動輪90側から駆動されたときにエンジン10も回転させられるので、エンジンブレーキが作動する。
次に、図7を参照して、EV両モータ走行モード(図5:E3)中における制御状態について説明する。EV両モータ走行モードでは、制御装置100は、クラッチC1およびブレーキB1を係合し、かつクラッチCSを解放するとともに、エンジン10を停止する。したがって、変速部40のサンギヤS1、キャリアCA1、リングギヤR1の回転が回転速度がゼロになるように規制される。
変速部40のリングギヤR1の回転が規制されることで、差動部50のキャリアCA2の回転も規制(ロック)される。この状態で、制御装置100は、第1MG20および第2MG30を主にモータとして動作させる。具体的には、MG2トルクTm2を正トルクとして第2MG30を正回転させるとともに、MG1トルクTm1を負トルクとして第1MG20を負回転させる。
クラッチC1を係合してキャリアCA2の回転を規制することで、MG1トルクTm1は、キャリアCA2を支点としてリングギヤR2に伝達される。リングギヤR2に伝達されるMG1トルクTm1(以下「MG1伝達トルクTm1c」という)は、正方向に作用し、カウンタ軸70に伝達される。そのため、EV両モータ走行モードでは、MG1伝達トルクTm1cとMG2トルクTm2とを用いて、ハイブリッド車両1は走行する。制御装置100は、MG1伝達トルクTm1cとMG2トルクTm2との合計によってユーザ要求トルクを満たすように、MG1トルクTm1とMG2トルクTm2との分担比率を調整する。
図8を参照して、HV走行(シリーズパラレル)モード(図5:H1,H2)中の制御状態について説明する。なお、図8には、ローギヤ段Loで前進走行している場合(図5のH2:図8のS1、CA1およびR1の共線図に示される実線の共線参照)と、ハイギヤ段Hiで前進走行している場合(図5のH1:図8のS1、CA1およびR1の共線図に示される破線の共線参照)とが例示されている。なお、説明の便宜上、ローギヤ段Loで前進走行している場合もハイギヤ段Hiで前進走行している場合もリングギヤR1の回転速度は同一である場合を想定する。
HV走行(シリーズパラレル)モードであって、かつ、ローギヤ段Lo形成時には、制御装置100は、クラッチC1を係合するとともに、ブレーキB1およびクラッチCSを解放する。そのため、回転要素(サンギヤS1,キャリアCA1,リングギヤR1)は一体となって回転する。これにより、変速部40のリングギヤR1も、キャリアCA1と同じ回転速度で回転し、エンジン10の回転は、同じ回転速度でリングギヤR1から差動部50のキャリアCA2に伝達される。すなわち、変速部40のキャリアCA1に入力されたエンジン10のトルク(以下「エンジントルクTe」という)は、変速部40のリングギヤR1から差動部50のキャリアCA2に伝達される。なお、ローギヤ段Lo形成時リングギヤR1から出力されるトルク(以下「変速部出力トルクTr1」という)は、エンジントルクTeと同じ大きさである(Te=Tr1)。
差動部50のキャリアCA2に伝達されたエンジン10の回転は、サンギヤS2の回転速度(第1MG20の回転速度)によって無段階に変速されて差動部50のリングギヤR2に伝達される。この際、制御装置100は、基本的には、第1MG20をジェネレータとして動作させて、MG1トルクTm1を負方向に作用させる。これにより、キャリアCA2に入力されたエンジントルクTeをリングギヤR2に伝達するための反力をMG1トルクTm1が受け持つことになる。
リングギヤR2に伝達されたエンジントルクTe(以下「エンジン伝達トルクTec」という)は、カウンタドライブギヤ51からカウンタ軸70に伝達され、ハイブリッド車両1の駆動力として作用する。
また、HV走行(シリーズパラレル)モードでは、制御装置100は、第2MG30を主にモータとして動作させる。MG2トルクTm2は、リダクションギヤ32からカウンタ軸70に伝達され、ハイブリッド車両1の駆動力として作用する。つまり、HV走行(シリーズパラレル)モードでは、エンジン伝達トルクTecとMG2トルクTm2とを用いて、ハイブリッド車両1は走行する。
一方、HV走行(シリーズパラレル)モードであって、かつ、ハイギヤ段Hi形成時には、制御装置100は、ブレーキB1を係合するとともに、クラッチC1およびクラッチCSを解放する。ブレーキB1が係合されるため、サンギヤS1の回転が規制される。これにより、変速部40のキャリアCA1に入力されたエンジン10の回転は、増速されて変速部40のリングギヤR1から差動部50のキャリアCA2に伝達される。したがって、ハイギヤ段Hi形成時には、変速部出力トルクTr1はエンジントルクTeよりも小さくなる(Te>Tr1)。
図9を参照してHV走行(シリーズ)モード(図5:H4)中における制御状態について説明する。HV走行(シリーズ)モードでは、制御装置100は、クラッチC1およびブレーキB1を解放するとともに、クラッチCSを係合する。したがって、クラッチCSが係合されることによって、差動部50のサンギヤS2が、変速部40のキャリアCA1と同じ回転速度で回転し、エンジン10の回転は、同じ回転速度でクラッチCSから第1MG20に伝達される。これにより、エンジン10を動力源とする第1MG20による発電が実施可能となる。
一方、クラッチC1およびブレーキB1がいずれも解放されるため、変速部40のサンギヤS1とリングギヤR1と、差動部50のキャリアCA2の回転は規制されない。すなわち、変速部40は、ニュートラル状態となり、差動部50のキャリアCA2の回転が規制されないため、第1MG20の動力およびエンジン10の動力は、カウンタ軸70に伝達されない状態となる。そのため、カウンタ軸70には、第2MG30のMG2トルクTm2が伝達される。したがって、HV走行(シリーズ)モードでは、エンジン10を動力源として第1MG20による発電を実施しつつ、その発電した電力の一部または全部を用いてMG2トルクTm2でハイブリッド車両1は走行することとなる。
シリーズモードが実現可能となったことにより、低車速時等にシリーズパラレルモードでは注意が必要であったエンジントルク変動に起因するギヤ機構の歯打ち音の発生を気にせずに、エンジンの動作点を選択できる。これによって、車両の静粛性および燃費の向上の両立を図ることが可能な車両状態が増加する。
また、HV走行(シリーズ)モードでは、制御装置100は、変速部40をニュートラル状態に設定し、かつクラッチCSを係合状態に設定した上で、エンジン10の動力を用いて第1MG20に発電を行なわせ、第2MG30に車両を走行させる駆動力を発生させる。上記のようなHV走行(シリーズ)モードでは、エンジン10の始動時のショックがニュートラル状態の変速部40によって遮断され駆動輪90に伝達されなくなる。したがってユーザが体感するエンジン10の始動時のショックを小さく抑えることができる。
図10は、EV両モータ走行モード(図5のE4,E5)の動作を説明するための共線図である。図10を参照して、EV走行かつ両モータ走行モード中における制御状態について説明する。なお、図10には、ローギヤ段Loで前進走行している場合(実線の共線参照)と、ハイギヤ段Hiで走行している場合(破線の共線参照)とが例示されている。なお、説明の便宜上、ローギヤ段Loで前進走行している場合もハイギヤ段Hiで前進走行している場合もリングギヤR1の回転速度は同一である場合を想定する。
EV走行(両モータ)モードであって、かつ、ローギヤ段Lo形成時(図5のE5欄)には、制御装置100は、クラッチC1およびクラッチCSを係合するとともに、ブレーキB1を解放する。そのため、変速部40の回転要素(サンギヤS1,キャリアCA1,リングギヤR1)は一体となって回転する。さらに、クラッチCSが係合することによって、変速部40のキャリアCA1と差動部50のサンギヤS2とは一体となって回転する。これにより、変速部40および差動部50のすべての回転要素が同じ回転速度で一体となって回転する。そのため、第2MG30とともに、第1MG20においてMG1トルクTm1を正回転方向に発生させることによって、両モータを用いたハイブリッド車両1の走行が可能となる。ここで、エンジン10は、EV走行時には自立駆動していないので、第1MG20および第2MG30のトルクによって回転される被駆動状態である。したがって、エンジンの回転時の抵抗が少なくなるように、バルブの開閉タイミングを操作することが好ましい。
リングギヤR2に伝達されたMG1トルクTm1cは、カウンタドライブギヤ51からカウンタ軸70に伝達され、ハイブリッド車両1の駆動力として作用する。同時に、MG2トルクTm2は、リダクションギヤ32からカウンタ軸70に伝達され、ハイブリッド車両1の駆動力として作用する。つまり、EV走行かつ両モータ走行モードで、かつ、ローギヤ段Lo形成時は、リングギヤR2に伝達されたMG1トルクTm1とMG2トルクTm2とを用いて、ハイブリッド車両1は走行する。
一方、EV走行かつ両モータ走行モードであって、かつ、ハイギヤ段Hi形成時(図5:E4欄)には、制御装置100は、ブレーキB1およびクラッチCSを係合するとともに、クラッチC1を解放する。ブレーキB1が係合されるため、サンギヤS1の回転が規制される。
また、クラッチCSが係合されるため、変速部40のキャリアCA1と差動部50のサンギヤS2とは一体となって回転する。そのため、サンギヤS2の回転速度は、エンジン10と同じ回転速度になる。
図11は、HV走行(パラレル)モード(図5のH7,H9)の動作を説明するための共線図である。図11を参照して、HV走行(パラレル:有段)かつ両モータ走行モード中における制御状態について説明する。なお、図11には、ローギヤ段Loで前進走行している場合(実線の共線参照)と、ハイギヤ段Hiで走行している場合(破線の共線参照)とが例示されている。
図10と図11を比較するとわかるように、HV走行(パラレル:有段)かつ両モータ走行モードでは、エンジン10が自立駆動するので、図11のキャリアCA1にエンジントルクTeが与えられる。このため、リングギヤR2にもエンジントルクTecが加算される。他の点については、図11に示した共線図は、図10と同じであるので、説明は繰返さない。
HV走行(パラレル:有段)かつ両モータ走行モードは、エンジントルクTe、MG1トルクTm1、MG2トルクTm2をすべて、駆動輪の前進方向の回転トルクに使用することができるので、駆動輪に大きなトルクが要求される場合に特に有効である。
なお、HV走行(パラレル:有段)かつ単モータ走行モード(図5のH6,H8)の制御状態は、図11においてTm1=0とした場合に相当する。また、HV走行(パラレル:有段)走行モードは、Tm1=0、Tm2=0としてエンジントルクのみで走行(エンジン走行)することも可能である。
図12は、エンジン走行(図5のZ1)の動作を説明するための共線図である。図13は、エンジン走行(図5のZ2)の動作を説明するための共線図である。図12の共線図は、図11の実線で示された共線図において、Tm1=0、Tm2=0としたものに相当する。また、図13の共線図は、図11の破線で示された共線図において、Tm1=0、Tm2=0としたものに相当する。
図12、図13に示されるように、ハイブリッド車両1は、エンジン走行モード(図5のZ1,Z2)をさらに有する。制御装置100は、エンジン走行モード(図5のZ1,Z2)において、変速部40を非ニュートラル状態に設定し、かつクラッチCSを係合状態に設定した上で、第1MG20および第2MG30にトルクを発生させない状態でエンジン10を用いて車両を走行させる。
このように、変速部40をハイギヤまたはローギヤの固定段とし、かつクラッチCSを係合させることによって、エンジン10のトルクを直接的に駆動軸に伝達することができる。エンジン10のエネルギ効率が良い条件では、エンジン走行を使用することが燃費が良い。
上記のように制御することによって、エンジン10が効率よく運転可能な状態では、電力に変換することなく直接エンジン10のパワーを駆動輪90に伝えることができるので、燃費を向上させることができる。
[各走行モードでの駆動力の違い]
以上説明してきたように、本実施の形態のハイブリッド車両1は、単モータEV走行、両モータEV走行、両モータHV走行、エンジン走行といった多くの走行モードで走行することが可能である。そこで、どのような状況でどの走行モードを使用するかということを検討する必要がある。
図14は、各走行モードにおける車速と最大駆動力との関係を示した図である。図14においてラインL1はエンジン走行、ラインL2は単モータEV走行、ラインL3は両モータEV走行、ラインL4は両モータHV走行(パラレル)の最大駆動力を示している。
ラインL1は、図12に示したようにエンジンを出力軸に直結させて(ギヤはLo)エンジン走行を行なった場合にエンジンを最高出力にさせたときの駆動力を示している。ラインL2は、図6に示したように第2MG30のみのトルクによって発生させた駆動力を示している。
ラインL3は、図7に示したように第1MG20および第2MG30の両方のトルクによって発生させた駆動力を示している。ただし、車速がV1を超えると最大駆動力は一気に減少する。この理由は、車速がV1になると第1MG20の回転速度が図7において負方向に下がった結果、限界値に達するため、動作状態を変更するからである。具体的には、車速がV1より大きい場合には図10に示したようにクラッチCSを係合させると共に、クラッチC1、ブレーキB1のいずれか一方を係合させ他方を解放させる。これにより、第1MG20は、正のトルクを発生させるように状態が変更され、回転速度の大きさは図7の状態よりは小さくなる。この状態では、第1MG20のトルクが遊星歯車機構によって増大されないため、かつエンジン10を空転させるための損失があるため、駆動力は車速V1を境に階段状に一段低下している。
ラインL3に示した両モータ走行モードよりも大きな駆動力が必要である場合には、ラインL4に示すように、第1MG20、第MG30のトルクに加えてエンジン10のトルクも使用する。
この場合、制御装置100は、変速部40を非ニュートラル状態に設定し、かつクラッチCSを係合状態に設定した上で、第1MG20からの駆動力と第2MG30からの駆動力とに加えてエンジン10からの駆動力を用いて車両を走行させる(図5のH7、H9)。
上記のように制御することによって、エンジン10を停止させ、第1MG20および第2MG30を力行運転させるEV走行モード(図14のラインL3)と比べて、車両の最大駆動力をさらに増加させる(図14のラインL4)ことが可能となる。
車速V1で切換える場合、車速がV1未満では、図11の実線に示すLoギヤが使用され、車速がV1より大きいと図11の破線に示すHiギヤが使用される結果、階段状に駆動力が下がっている。
[EV両モータ走行に遷移する場合おけるクラッチとブレーキの制御]
以上の説明では、各走行モードにおけるクラッチC1,CSおよびブレーキB1の制御状態を中心に説明してきたが、以下に走行モードの遷移が発生した場合におけるモード切替時の制御について説明する。
図15は、制御装置100が実行するEV両モータ走行モードでのクラッチおよびブレーキの制御を説明するためのフローチャートである。図15を参照して、このフローチャートの処理が開始されると、まずステップS10において両モータ走行にモード切替が発生したか否かが判断される。
たとえば、走行モードの切替の判断は、車速と車両負荷によって領域が決められたマップによって判断される。図16は、このような走行モードを判定するマップの一例を示す図である。図16を参照して、正負の低負荷域では、単モータ走行のEV走行モードが使用される。基本的にエンジン10の始動を想定しなくても良いのでエンジン10の始動に伴う反力補償トルクが必要なく比較的広い領域を単モータ走行のEV走行モードに割り当てることができる。
高負荷域では、単モータ走行では、トルクが不足するため、両モータ走行モードが選択される。すなわち、車速が所定値よりも低い場合であって負荷の大きさが小さい領域では、単モータ走行のEV走行モードが選択され、負荷の大きさが所定値よりも大きいと両モータ走行のEVモードが選択される。
両モータ走行モードであって、車速が所定値V1を超える場合には、第1MG20やピニオンギヤの回転速度の上限があるため、エンジン回転速度Neがゼロの両モータ走行(図7)から、Neがゼロでない両モータ走行(図10)に車両の状態が変化する。
車速がV2を超えると、バッテリの電力で走行するときのエネルギ効率が悪化する傾向にあるため、シリーズパラレル(Lo)、シリーズパラレル(Hi)、シリーズのいずれかのHV走行モードが選択される。
ステップS10において両モータ走行にモード切替が発生していない場合にはステップS60に処理が進められ制御はメインルーチンに戻される。一方、ステップS10において両モータ走行にモード切替が発生している場合にはステップS20に処理が進められる。
ステップS20では、EV両モータ走行モードへの遷移がシリーズパラレルモードから発生したか否かが判断される。たとえば、図6に示したようなEV単モータ走行モードからEV両モータ走行モードへ状態遷移する場合には、エンジン回転速度はゼロであるので、そのまま図7に示した状態に移行させるのは比較的簡単である。しかし、図8に示したようなシリーズパラレルモードであれば、エンジン回転速度はゼロではない。したがって、図8の状態から図7の状態に移行させるには、慣性力で回転しているエンジンの回転速度をゼロに下げる必要がある。したがって、ステップS20で遷移前のモードがシリーズパラレルモードである場合には(S20でYES)、ステップS50に処理が進められ、クラッチCSが係合され、図10に示した状態に一度設定しNeがゼロでない状態でのEV両モータ走行モードとする。
ステップS20で遷移前のモードがシリーズパラレルモードでない場合でも(S20でYES)、ステップS30においてエンジン回転速度Neを所定回転速度以上にする必要がある場合には同様な理由でステップS50に処理が進められ、クラッチCSが係合され、図10に示した状態に一度設定しNeがゼロでない状態でのEV両モータ走行モードとする。たとえば、潤滑のためMOP501を駆動させる必要がある場合や共振によって車両の振動が増大する回転速度帯を避ける必要がある場合などには、エンジン回転速度Neを所定回転速度以上にする必要があると判断される。
ステップS30において、エンジン回転速度Neをアップさせる必要が無い場合には(S30でNO)、ステップS40に処理が進められ、クラッチC1およびブレーキB1を係合させて、EV両モータ走行モードに走行モードを切り替える。
ステップS40またはステップS50でクラッチC1,CSおよびブレーキB1の状態が決定されると、ステップS60に処理が進められ制御はメインルーチンに戻される。
以上図14〜図16に示すように、制御装置100は、車速が判定しきい値V1よりも低い場合には、走行モードを「第1モード」(図5のE3:両モータEV走行モード(Ne=0))に設定し、車速が判定しきい値よりも高い場合には、走行モードを「第2モード」(図5のE5:両モータEV走行モード(Neフリー))に設定する。
上記のように走行モードを選択すれば、車速が高くなり第1MG20の回転速度の制限により「第1モード」では走行できない場合でも、「第2モード」を使用することによって、第1MG20および第2MG30を同時に用いた駆動力の大きい走行が可能となる。
より好ましくは、ハイブリッド車両1は、走行モードとして「第3モード」(図5のH7,H9:HV(パラレル)両モータ走行モード)をさらに有する。制御装置100は、「第3モード」において、変速部40を非ニュートラル状態に設定し、かつクラッチCSを解放状態に設定した上で、エンジン10を運転させた状態で第1MG20に発電を行なわせ、第2MG30に車両を走行させる駆動力を発生させる。制御装置100は、走行モードを「第3モード」から「第1モード」に遷移させる場合には、「第2モード」を経由させる。
このように「第3モード」から「第1モード」に走行モードを遷移させる場合に、「第2モード」を経由させることによって、出力トルクの抜けを感じさせないようにすることができる。
続いて、走行モード遷移時の一例を動作波形図によって説明する。図17は、HV走行(シリーズパラレル)モードからEV両モータ走行モードへの遷移の一例を示した動作波形図である。
図17を参照して、時刻t0の初期状態では、ハイブリッド車両はHV走行(シリーズパラレル)モードで走行している。この時には、クラッチC1は係合状態、ブレーキB1は解放状態に制御されており、変速部40はLoギヤ段を形成している。クラッチCSは解放状態に制御されている。
時刻t0〜t1においては、第2MG30は、正のトルクと回転速度が出ており力行運転をしている。また、第1MG20は、正の回転速度で負のトルクとなっており、回生運転によって発電を行なっている。エンジン10は、正のトルクかつ正の回転速度で運転中である。
時刻t1では、車速がしきい値V2より低下したことに応じて、両モータ走行への切換判断が発生している。この時点では、第1MG20の回転速度は、図8の実線の共線図に示されるように、エンジン10の回転速度よりも低い。回転速度に差がある状態でクラッチCSの係合を開始させると係合時のショックが大きいので、時刻t1〜t2において、エンジン10の回転速度と第1MG20の回転速度とを同期させる処理が行なわれる。
時刻t2において、エンジン10の回転速度と第1MG20の回転速度とが略等しくなると、CS圧がゼロから上昇を開始する。時刻t2〜t3では、CS圧が増加し、エンジントルクは減少し、第1MG20のトルク(MG1トルク)は負から正に変化する。
時刻t3では、クラッチCSが係合を完了し、エンジン10と第1MG20と第2MG30の回転速度は等しくなる(図10の実線で示した状態)。そして時刻t3以降は、両モータ走行が行われる。この時には、エンジン10は、第1MG20および第2MG30によって回転されている状態であり、回転抵抗として負のトルクが表示されている。時刻t3以降において、制御装置100は、「第2モード」(図5のE5:両モータEV走行モード(Neフリー))で車両を走行させる場合にエンジン10に燃料を供給しないときは、エンジン10の回転時の抵抗を下げるように吸気弁または排気弁の開閉タイミングを変化させる。
「第2モード」で車両を走行させ、かつエンジン10に燃料を供給しない場合、エンジン10は第1MG20および第2MG30によって強制的に回転させられる。この場合はエンジン10は回転抵抗が小さい方がエネルギ損失が少ない。エンジン10の回転抵抗を下げるには、シリンダ内の空気の圧縮率や膨張率が小さい方が好ましい。そこで、制御装置100は、吸気弁または排気弁の開閉タイミングを変化させることによって、エンジン10の回転抵抗を下げて、エネルギ損失を小さくする。
最後に、本実施の形態のハイブリッド車両1について、再び図1等を参照しながら総括する。図1を参照して、ハイブリッド車両1は、エンジン10と、第1MG20と、第2MG30と、変速部40と、差動部50と、クラッチCSと、制御装置100とを備える。制御装置100は、エンジン10と第1MG20と変速部40とクラッチCSとを制御する。制御装置100は、変速部40を非ニュートラル状態に設定し、かつクラッチCSを係合状態に設定した上で、第1MG20からの駆動力と第2MG30からの駆動力とを同時に用いて車両を走行させる(図10)。
このような走行モードを設けることによって、車両はエンジン10の回転速度がゼロでない状態(図5のE4,E5においてNeフリーと記載)でも第1MG20および第2MG30をともに力行運転させて車両を推進させることが可能となる。したがって、2つの回転電機を使用することができる機会を増やすことができ、EV走行時に大きな駆動力が必要になった場合に車両の制御の自由度が増す。
好ましくは、制御装置100は、車速に応じて、車両の走行モードを「第1モード」(図5のE3)と「第2モード」(図5のE4、E5)との間で切り替えを行なう。「第1モード」は、エンジン10の回転速度をゼロに固定し、かつクラッチCSを解放状態に設定した上で、第1MG20からの駆動力と第2MG30からの駆動力とを同時に用いて車両を走行させる走行モードである。「第2モード」は、変速部40を非ニュートラル状態に設定し、かつクラッチCSを係合状態に設定した上で、第1MG20からの駆動力と第2MG30からの駆動力とを同時に用いて車両を走行させる走行モードである。
上記のように走行モードとして「第2モード」を有するので、エンジンを運転している状態からEV走行に移行するときのように、エンジンの回転速度がゼロでない場合にも、第1MG20および第2MG30を同時に用いた駆動力の大きい走行が可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 ハイブリッド車両、2 駆動装置、10 エンジン、21 入力軸、22,31 回転軸、32 リダクションギヤ、40 変速部、50 差動部、51 カウンタドライブギヤ、60 バッテリ、70 カウンタ軸、71 ドリブンギヤ、72 ドライブギヤ、80 デファレンシャルギヤ、81 デフリングギヤ、82 駆動軸、90 駆動輪、100 制御装置、150 HVECU、160 MGECU、170 エンジンECU、500 油圧回路、502A 内部モータ、510,520 調圧弁、530,540,550 同時供給防止弁、560 電磁切替弁、570 逆止弁、B1 ブレーキ、C1,CS クラッチ、CA1,CA2 キャリア、P1,P2 ピニオンギヤ、R1,R2 リングギヤ、S1,S2 サンギヤ、SL1〜SL3 リニアソレノイド弁。

Claims (6)

  1. ハイブリッド車両であって、
    内燃機関と、
    第1回転電機と、
    駆動輪に動力を出力可能に設けられる第2回転電機と、
    前記内燃機関からの動力が入力される入力要素と、前記入力要素に入力された動力を出力する出力要素とを有し、前記入力要素と前記出力要素との間で動力を伝達する非ニュートラル状態と、前記入力要素と前記出力要素との間で動力を伝達しないニュートラル状態とを切り替え可能に構成された動力伝達部と、
    前記第1回転電機に接続される第1回転要素と、前記第2回転電機および駆動輪に接続される第2回転要素と、前記出力要素に接続される第3回転要素とを有し、前記第1〜第3回転要素のうちのいずれか2つの回転速度が定まると残りの1つの回転速度が定まるように構成される差動部とを備え、
    前記ハイブリッド車両は、前記内燃機関から前記動力伝達部および前記差動部を経由して前記第1回転電機に動力を伝達する第1の経路と、前記第1の経路とは別の経路で前記内燃機関から前記差動部を経由しないで前記第1回転電機に動力を伝達する第2の経路との少なくともいずれかの経路によって前記内燃機関の動力伝達が可能に構成され、
    前記ハイブリッド車両は、前記第2の経路に設けられ、前記内燃機関から前記第1回転電機への動力を伝達する係合状態と、前記内燃機関から前記第1回転電機への動力の伝達を遮断する解放状態とを切り替え可能なクラッチと、
    前記内燃機関と前記第1回転電機と前記動力伝達部と前記クラッチとを制御する制御装置とをさらに備え、
    前記制御装置は、車速に応じて、車両の走行モードを第1モードと第2モードとの間で切り替えを行ない、車両を走行させ、
    前記第1モードは、前記内燃機関の回転速度をゼロに固定し、かつ前記クラッチを解放状態に設定した上で、前記第1回転電機からの駆動力と前記第2回転電機からの駆動力とを用いて車両を走行させる走行モードであり、
    前記第2モードは、前記動力伝達部を前記非ニュートラル状態に設定し、かつ前記クラッチを係合状態に設定した上で、前記第1回転電機からの駆動力と前記第2回転電機からの駆動力とを用いて車両を走行させる走行モードである、ハイブリッド車両。
  2. 前記制御装置は、前記車速が判定しきい値よりも低い場合には、走行モードを前記第1モードに設定し、前記車速が前記判定しきい値よりも高い場合には、走行モードを前記第2モードに設定する、請求項に記載のハイブリッド車両。
  3. 前記制御装置は、前記第2モードで車両を走行させる場合に前記内燃機関に燃料を供給しないときは、前記内燃機関の回転時の抵抗を下げるように吸気弁または排気弁のうち少なくとも一方の開閉タイミングを変化させる、請求項に記載のハイブリッド車両。
  4. ハイブリッド車両は、他の走行モードをさらに有し、
    前記制御装置は、前記他の走行モードにおいて、前記動力伝達部を前記非ニュートラル状態に設定し、かつ前記クラッチを係合状態に設定した上で、前記第1回転電機および前記第2回転電機にトルクを発生させない状態で前記内燃機関からの駆動力を用いて車両を走行させる、請求項1に記載のハイブリッド車両。
  5. ハイブリッド車両は、他の走行モードをさらに有し、
    前記制御装置は、前記他の走行モードにおいて、前記動力伝達部を前記ニュートラル状態に設定し、かつ前記クラッチを係合状態に設定した上で、前記内燃機関の動力を用いて前記第1回転電機に発電を行なわせ、前記第2回転電機に車両を走行させる駆動力を発生させる、請求項1に記載のハイブリッド車両。
  6. 前記動力伝達部は、前記入力要素の回転速度と前記出力要素の回転速度との比を変更可能に構成される、請求項1に記載のハイブリッド車両。
JP2015029436A 2015-02-18 2015-02-18 ハイブリッド車両 Active JP6287887B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015029436A JP6287887B2 (ja) 2015-02-18 2015-02-18 ハイブリッド車両
PCT/IB2016/000142 WO2016132205A1 (en) 2015-02-18 2016-02-16 Hybrid vehicle
US15/549,637 US10315507B2 (en) 2015-02-18 2016-02-16 Hybrid vehicle
CN201680010013.4A CN107206886B (zh) 2015-02-18 2016-02-16 混合动力车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029436A JP6287887B2 (ja) 2015-02-18 2015-02-18 ハイブリッド車両

Publications (3)

Publication Number Publication Date
JP2016150679A JP2016150679A (ja) 2016-08-22
JP2016150679A5 JP2016150679A5 (ja) 2017-02-23
JP6287887B2 true JP6287887B2 (ja) 2018-03-07

Family

ID=55538288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029436A Active JP6287887B2 (ja) 2015-02-18 2015-02-18 ハイブリッド車両

Country Status (4)

Country Link
US (1) US10315507B2 (ja)
JP (1) JP6287887B2 (ja)
CN (1) CN107206886B (ja)
WO (1) WO2016132205A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161403B2 (en) * 2012-02-03 2021-11-02 Ge Hybrid Technologies, Llc Apparatus and method for delivering power in a hybrid vehicle
JP6183409B2 (ja) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 ハイブリッド車両
JP6183410B2 (ja) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 ハイブリッド車両
JP6387947B2 (ja) * 2015-12-07 2018-09-12 トヨタ自動車株式会社 ハイブリッド自動車
JP6939598B2 (ja) * 2018-01-25 2021-09-22 トヨタ自動車株式会社 ハイブリッド自動車
JP2019166939A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 ハイブリッド車両の駆動装置
JP2020090116A (ja) * 2018-12-03 2020-06-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7300292B2 (ja) * 2019-03-25 2023-06-29 株式会社Subaru ハイブリッド車両
US10814860B1 (en) * 2019-04-26 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Limiting engine on condition while coasting
JP7287351B2 (ja) * 2020-06-01 2023-06-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7439796B2 (ja) * 2021-06-16 2024-02-28 トヨタ自動車株式会社 車両用駆動装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155364A (en) * 1996-02-21 2000-12-05 Toyota Jidosha Kabushiki Kaisha Hybrid drive system wherein planetary gear mechanism is disposed radially inwardly of stator coil of motor/generator
JPH11208304A (ja) * 1998-01-23 1999-08-03 Kyowa Gokin Kk 四輪駆動車
US7220203B2 (en) * 2004-09-01 2007-05-22 General Motors Corporation Electrically variable transmission with selective fixed ratio operation
DE112005002717B4 (de) * 2004-10-27 2019-07-18 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Fahrzeugantriebssystem
JP2006240608A (ja) * 2005-02-04 2006-09-14 Toyota Motor Corp 車両用駆動装置の制御装置
JP4301212B2 (ja) 2005-06-03 2009-07-22 日産自動車株式会社 車両の制御装置
US7416501B2 (en) * 2005-12-22 2008-08-26 General Motors Corporation Single range electrically variable transmission with lockup clutch and method of operation
JP4229156B2 (ja) * 2006-09-06 2009-02-25 トヨタ自動車株式会社 動力出力装置およびハイブリッド自動車
JP4140647B2 (ja) * 2006-10-24 2008-08-27 トヨタ自動車株式会社 動力出力装置およびハイブリッド自動車
CN101204920A (zh) * 2006-12-19 2008-06-25 比亚迪股份有限公司 混合动力车驱动***
JP2009143417A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2012071699A (ja) * 2010-09-29 2012-04-12 Toyota Motor Corp ハイブリッド車両の駆動制御装置
JP5352745B2 (ja) * 2010-11-04 2013-11-27 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US8467926B2 (en) * 2011-11-03 2013-06-18 Ford Global Technologies, Llc Method and system for valve operation control
DE102011089711A1 (de) * 2011-12-23 2013-06-27 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs
EP2810806B1 (en) * 2012-02-01 2018-09-19 Toyota Jidosha Kabushiki Kaisha Drive apparatus for hybrid vehicle
JP5892180B2 (ja) 2012-02-01 2016-03-23 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
US9457795B2 (en) * 2012-03-26 2016-10-04 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP6145968B2 (ja) * 2012-05-24 2017-06-14 マツダ株式会社 ハイブリッドシステム
CN105228843A (zh) * 2013-05-13 2016-01-06 丰田自动车株式会社 混合动力车辆用驱动装置
JP2015024793A (ja) * 2013-07-29 2015-02-05 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP6287885B2 (ja) 2015-02-18 2018-03-07 トヨタ自動車株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
CN107206886A (zh) 2017-09-26
WO2016132205A8 (en) 2017-07-27
JP2016150679A (ja) 2016-08-22
US20180222308A1 (en) 2018-08-09
CN107206886B (zh) 2019-09-06
US10315507B2 (en) 2019-06-11
WO2016132205A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6287887B2 (ja) ハイブリッド車両
JP6287886B2 (ja) ハイブリッド車両
JP6183409B2 (ja) ハイブリッド車両
JP6319132B2 (ja) ハイブリッド車両
JP6256374B2 (ja) ハイブリッド車両
JP6213494B2 (ja) ハイブリッド車両
JP6287885B2 (ja) ハイブリッド車両
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
JP2016150675A (ja) ハイブリッド車両
WO2013140544A1 (ja) ハイブリッド車両の駆動制御装置
JP6319133B2 (ja) ハイブリッド車両
JP6519631B2 (ja) ハイブリッド車両
JP6314819B2 (ja) 車両
JP2013203385A (ja) ハイブリッド車両の駆動制御装置
JP6344273B2 (ja) 車両
JP2013203384A (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151