JP6278002B2 - 排気浄化装置の故障診断装置 - Google Patents

排気浄化装置の故障診断装置 Download PDF

Info

Publication number
JP6278002B2
JP6278002B2 JP2015115781A JP2015115781A JP6278002B2 JP 6278002 B2 JP6278002 B2 JP 6278002B2 JP 2015115781 A JP2015115781 A JP 2015115781A JP 2015115781 A JP2015115781 A JP 2015115781A JP 6278002 B2 JP6278002 B2 JP 6278002B2
Authority
JP
Japan
Prior art keywords
scr
purification rate
filter
nox
scr filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115781A
Other languages
English (en)
Other versions
JP2017002768A (ja
Inventor
小木曽 誠人
誠人 小木曽
大河 萩本
大河 萩本
有史 松本
有史 松本
憲治 古井
憲治 古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015115781A priority Critical patent/JP6278002B2/ja
Priority to DE102016110402.7A priority patent/DE102016110402B4/de
Publication of JP2017002768A publication Critical patent/JP2017002768A/ja
Application granted granted Critical
Publication of JP6278002B2 publication Critical patent/JP6278002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1611Particle filter ash amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気を浄化する排気浄化装置の故障診断装置に関する。
内燃機関の排気通路に、排気中の粒子状物質(以下、「PM」と称する場合もある)を捕集するフィルタを設ける技術が知られている。このフィルタには、PMの他に、オイル由来のアッシュも捕集される。フィルタに堆積したPMは、該フィルタの温度を上昇させることで該PMを酸化させる処理である所謂フィルタ再生処理を実行することで、該フィルタから除去することができる。しかしながら、フィルタに堆積したアッシュは、金属成分を含んでいるため、フィルタ再生処理を実行しても該フィルタから除去されない。そのため、フィルタに堆積したアッシュは継続的に残存する。
特許文献1には、フィルタにおけるアッシュ堆積量の推定手法に関する技術が開示されている。また、特許文献2には、排気中の燃料や煤の付着による排気浄化触媒の目詰まりが発生した場合、該排気浄化触媒での還元反応に供される還元剤が不足するために、該排気浄化触媒での排気浄化率が低下することが記載されている。
特開2007−303334号公報 特開2005−248760号公報
内燃機関の排気通路に、排気中のNOxを還元するSCR触媒(選択還元型NOx触媒)がフィルタに担持された構成のSCRフィルタを設ける場合がある。また、SCRフィルタよりも下流側の排気通路に、排気中のNOxを還元する後段SCR触媒をさらに設ける場合がある。本発明は、このようなSCRフィルタと後段SCR触媒とを有する排気浄化装置が故障しているか否かを、SCRフィルタと後段SCR触媒との間の排気通路に設けられたNOxセンサの検出値を用いて診断する際の、診断精度を向上させることを目的とする。
第一の発明では、SCRフィルタと後段SCR触媒との間の排気通路に設けられたNOxセンサの検出値を用いてSCRフィルタにおけるNOx浄化率が算出される。そして、SCRフィルタにおけるNOx浄化率が所定の判定浄化率以下のときは、SCRフィルタおよび後段SCR触媒を有する排気浄化装置が故障していると判定される。このときに、SCRフィルタにおけるアッシュ堆積量に応じて判定浄化率の値が変更される。
より詳しくは、第一の発明に係る排気浄化装置の故障診断装置は、排気中の粒子状物質を捕集するフィルタに、排気中のNOxを還元するSCR触媒が担持された構成のSCRフィルタであって、内燃機関の排気通路に設けられたSCRフィルタと、排気中のNOxを還元する後段SCR触媒であって、前記SCRフィルタよりも下流側の排気通路に設けられた後段SCR触媒と、を有する排気浄化装置が故障しているか否かを診断する排気浄化装置の故障診断装置において、前記SCRフィルタと前記後段SCR触媒との間の排気通路に設けられたNOxセンサと、前記NOxセンサの検出値を用いて前記SCRフィルタにおけるNOx浄化率を算出するNOx浄化率算出部と、前記NOx浄化率算出部によ
って算出された前記SCRフィルタにおけるNOx浄化率が所定の判定浄化率以下のときは、前記排気浄化装置が故障していると判定する判定部と、前記SCRフィルタにおけるアッシュ堆積量を推定するアッシュ堆積量推定部と、を備え、前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて前記判定浄化率がより小さい値である。
SCRフィルタと後段SCR触媒とを有する排気浄化装置では、SCRフィルタおよび後段SCR触媒の両方によって所望のNOx浄化率を確保する必要がある。ここで、通常、SCRフィルタに担持されたSCR触媒の劣化が進行すれば、後段SCR触媒の劣化も進行する(なお、ここでの「劣化」とは、経時的な劣化や熱劣化のようにSCR触媒のNOx浄化機能自体が低下する劣化のことである。)。そのため、SCRフィルタに担持されたSCR触媒の劣化度合い(すなわち、NOx浄化機能の低下度合い)と、後段SCR触媒の劣化度合いとの間には相関がある。したがって、SCRフィルタにおけるNOx浄化率がある程度まで低下した状態では、その低下の程度に応じた分だけ、後段SCR触媒におけるNOx浄化率も低下している可能性が高い。
そこで、本発明では、SCRフィルタと後段SCR触媒との間の排気通路に設けられたNOxセンサの検出値を用いてSCRフィルタにおけるNOx浄化率が算出される。そして、SCRフィルタにおけるNOx浄化率が所定の判定浄化率以下のときは、SCRフィルタと後段SCR触媒とを有する排気浄化装置が故障していると判定される。ここで、判定浄化率は、SCRフィルタにおけるNOx浄化率が該判定浄化率以下にまで低下した場合、排気浄化装置が故障していると判定すべき程度まで、後段SCR触媒におけるNOx浄化率も低下していると想定される値である。
一方で、SCRフィルタには、排気中のPMのみならず、排気中のアッシュも捕集される。そのため、SCRフィルタには、PMに加えてアッシュも堆積する。このSCRフィルタに一旦堆積したアッシュは除去されない。そして、SCRフィルタにアッシュが堆積すると、該SCRフィルタに担持されたSCR触媒へのアンモニアの吸着が該アッシュによって阻害される。その結果、SCRフィルタに担持されたSCR触媒のNOx浄化機能自体は低下していなくても、該SCRフィルタにおけるNOx浄化率が低下する。つまり、SCRフィルタに担持されたSCR触媒の劣化度合いが同一であっても、該SCRフィルタにおけるアッシュ堆積量が増加するほど、該SCRフィルタにおけるNOx浄化率は低くなる。ただし、SCRフィルタにおけるアッシュ堆積量が増加しても、後段SCR触媒の劣化度合いが進行するわけではない。そのため、SCRフィルタにおけるアッシュ堆積量が増加することに起因して該SCRフィルタにおけるNOx浄化率が低下しても、その低下の程度に応じた分だけ、後段SCR触媒におけるNOx浄化率も低下するわけではない。
ここで、仮に、SCRフィルタにおけるアッシュ堆積量にかかわらず判定浄化率を一定の値とする。この場合、SCRフィルタにおけるアッシュ堆積量の増加に起因して該SCRフィルタにおけるNOx浄化率が判定浄化率以下となったとしても、後段SCR触媒におけるNOx浄化率はある程度高い値に維持された状態となっている可能性が高い。そのため、SCRフィルタにおけるNOx浄化率が判定浄化率以下であっても、排気浄化装置全体としてはある程度のNOx浄化率(許容範囲内の浄化率)を確保できている場合がある。したがって、このときに排気浄化装置が故障していると判定すると、排気浄化装置の故障診断としては誤診断したことになる。
そこで、本発明においては、SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて判定浄化率がより小さい値にされる。これによれば、SCRフィルタにおけるアッシュ堆積量の増加に起因して該SCRフィルタにおけるN
Ox浄化率が低下した場合、その低下度合いに応じて判定浄化率の値が小さくなる。そのため、排気浄化装置全体としてはある程度のNOx浄化率(許容範囲内の浄化率)が確保されているにもかかわらず該排気浄化装置が故障していると判定されることが抑制される。したがって、排気浄化装置の故障診断の診断精度を向上させることができる。
第二の発明でも、第一の発明と同様、SCRフィルタと後段SCR触媒との間の排気通路に設けられたNOxセンサの検出値を用いてSCRフィルタにおけるNOx浄化率が算出される。そして、算出されたSCRフィルタにおけるNOx浄化率が該SCRフィルタにおけるアッシュ堆積量に応じて修正される。このように修正された後の値が所定の判定浄化率以下のときは、SCRフィルタおよび後段SCR触媒を有する排気浄化装置が故障していると判定される。
より詳しくは、第二の発明に係る排気浄化装置の故障診断装置は、排気中の粒子状物質を捕集するフィルタに、排気中のNOxを還元するSCR触媒が担持された構成のSCRフィルタであって、内燃機関の排気通路に設けられたSCRフィルタと、排気中のNOxを還元する後段SCR触媒であって、前記SCRフィルタよりも下流側の排気通路に設けられた後段SCR触媒と、を有する排気浄化装置が故障しているか否かを診断する排気浄化装置の故障診断装置において、 前記SCRフィルタと前記後段SCR触媒との間の排気通路に設けられたNOxセンサと、前記NOxセンサの検出値を用いて前記SCRフィルタにおけるNOx浄化率を算出するNOx浄化率算出部と、前記SCRフィルタにおけるアッシュ堆積量を推定するアッシュ堆積量推定部と、前記NOx浄化率算出部によって算出された前記SCRフィルタにおけるNOx浄化率を、前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量に基づいて修正することで修正浄化率を算出する修正浄化率算出部と、前記修正浄化率算出部によって算出された前記修正浄化率が所定の判定浄化率以下のときは、前記排気浄化装置が故障していると判定する判定部と、を備え、前記修正浄化率算出部が、前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、前記SCRフィルタにおけるNOx浄化率をより大きい値に修正することで前記修正浄化率を算出する。
本発明では、SCRフィルタにおけるNOx浄化率を該SCR触媒におけるアッシュ堆積量に基づいて修正することで修正浄化率が算出される。そして、修正浄化率と判定浄化率とを比較することで、排気浄化装置が故障しているか否かが判定される。このとき、SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、SCRフィルタにおけるNOx浄化率から修正浄化率への修正幅(増加幅)が大きくされる。これによれば、SCRフィルタにおけるNOx浄化率の値が同一であっても、該SCRフィルタにおけるアッシュ堆積量の増加に起因して該NOx浄化率が低下していた場合は、その低下度合いに応じて修正浄化率の値が大きくなる。そのため、本発明によっても、第一の発明と同様、排気浄化装置全体としてはある程度のNOx浄化率(許容範囲内の浄化率)が確保されているにもかかわらず該排気浄化装置が故障していると判定されることが抑制される。したがって、排気浄化装置の故障診断の診断精度を向上させることができる。
本発明によれば、SCRフィルタと後段SCR触媒とを有する排気浄化装置の故障を、SCRフィルタと後段SCR触媒との間の排気通路に設けられたNOxセンサの検出値を用いて診断する際の、診断精度を向上させることができる。
実施例1に係る内燃機関とその吸排気系の概略構成を示す図である。 SCRフィルタにおけるアンモニア(NH)の吸着状態のイメージを示す図である。 SCRフィルタにおけるアッシュ堆積量Aashと、該SCRフィルタにおけるNOx浄化率Rfとの相関を示す図である。 排気浄化装置におけるNOx浄化率を棒グラフで示した図である。図4(a)は、排気浄化装置のNOx浄化機能が正常であり且つSCRフィルタにアッシュが堆積していないときのNOx浄化率を示している。図4(b)は、排気浄化装置のNOx浄化機能が故障しているときのNOx浄化率を示している。図4(c)は、排気浄化装置のNOx浄化機能が正常であり且つSCRフィルタにアッシュが堆積しているときのNOx浄化率を示している。 実施例1に係る排気浄化装置の故障診断フローを示すフローチャートである。 SCRフィルタにおけるアッシュ堆積量Aashと、判定浄化率Rfthの算出に用いられる係数k1との相関を示す図である。 実施例2に係る排気浄化装置の故障診断フローを示すフローチャートである。 SCRフィルタにおけるアッシュ堆積量Aashと、修正浄化率Rfmの算出に用いられる係数k2との相関を示す図である。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
<実施例1>
[概略構成]
図1は、本実施例に係る内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、軽油を燃料とする圧縮着火式の内燃機関(ディーゼルエンジン)である。ただし、本発明は、ガソリン等を燃料とする火花点火式の内燃機関にも適用することができる。
内燃機関1は、気筒2内へ燃料を噴射する燃料噴射弁3を備えている。内燃機関1は、吸気通路4と接続されている。吸気通路4には、エアフローメータ40およびスロットル弁41が設けられている。エアフローメータ40は、吸気通路4内を流れる吸気(空気)の量(質量)に応じた電気信号を出力する。スロットル弁41は、吸気通路4におけるエアフローメータ40よりも下流側に配置されている。スロットル弁41は、吸気通路4内の通路断面積を変更することで、内燃機関1の吸入空気量を調整する。
内燃機関1は排気通路5と接続されている。排気通路5には、酸化触媒50、SCRフィルタ51、および後段SCR触媒52が設けられている。SCRフィルタ51は、多孔質の基材により形成されたウォールフロー型のフィルタに、SCR触媒が担持されて構成されている。このように構成されたSCRフィルタ51は、排気中のPMを捕集するPM捕集機能と、アンモニアを還元剤として排気中のNOxを還元するNOx浄化機能とを有する。酸化触媒50は、SCRフィルタ51よりも上流側の排気通路5に設けられている。後段SCR触媒52は、SCRフィルタ51よりも下流側の排気通路5に設けられている。後段SCR触媒52は、SCRフィルタ51に担持されたSCR触媒と同様、アンモニアを還元剤として排気中のNOxを還元するNOx浄化機能を有する触媒である。
酸化触媒50よりも上流側の排気通路5には燃料添加弁53が設けられている。燃料添加弁53は、排気通路5内を流れる排気中に燃料を添加する。また、酸化触媒50よりも
下流側且つSCRフィルタ51よりも上流側の排気通路5には尿素水添加弁54が設けられている。尿素水添加弁54は、排気通路5内を流れる排気中に尿素水を添加する。尿素水添加弁54から排気中に尿素水が添加されると、該尿素水がSCRフィルタ51に供給される。SCRフィルタ51においては、供給された尿素が加水分解されることで生成されたアンモニアがSCR触媒に吸着する。そして、このSCR触媒に吸着したアンモニアを還元剤として排気中のNOxが還元される。また、尿素水添加弁54から排気中に添加された尿素水の一部はSCRフィルタ51をすり抜けて後段SCR触媒52に供給される。そして、後段SCR触媒52においても、供給された尿素が加水分解されることで生成されたアンモニアが吸着し、該吸着したアンモニアを還元剤として排気中のNOxが還元される。
なお、尿素水添加弁54に加えて、SCRフィルタ51と後段SCR触媒52との間に、尿素水添加弁をもう一つ設けてもよい。また、尿素水添加弁に代えて、アンモニアガスを排気中に添加するアンモニア添加弁を設けてもよい。また、尿素水添加弁に代えて、NSR触媒(吸蔵還元型NOx触媒)等のアンモニア生成触媒を設けてもよい。アンモニア生成触媒はHC(燃料)が供給されることでアンモニアを生成する機能を有する触媒である。
酸化触媒50よりも下流側且つ尿素水添加弁54よりも上流側の排気通路5には温度センサ55が設けられている。SCRフィルタ51より下流側且つ後段SCR触媒52より上流側の排気通路5(つまり、SCRフィルタ51と後段SCR触媒52との間の排気通路5)にはNOxセンサ56が設けられている。温度センサ55は、排気の温度に応じた電気信号を出力するセンサである。NOxセンサ56は、排気のNOx濃度に応じた電気信号を出力するセンサである。
内燃機関1には電子制御ユニット(ECU)10が併設されている。ECU10は、内燃機関1の運転状態等を制御するユニットである。ECU10には、エアフローメータ40、温度センサ55、およびNOxセンサ56が電気的に接続されている。さらに、ECU10には、アクセルポジションセンサ7およびクランクポジションセンサ8等の各種センサが電気的に接続されている。アクセルポジションセンサ7は、図示しないアクセルペダルの操作量(アクセル開度)に相関した電気信号を出力するセンサである。クランクポジションセンサ8は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電気信号を出力するセンサである。そして、これらのセンサの出力信号がECU10に入力される。
また、ECU10には、燃料噴射弁3、スロットル弁41、燃料添加弁53、および尿素水添加弁54等の各種機器が電気的に接続されている。そして、これらの機器がECU10によって制御される。例えば、ECU10は、SCRフィルタ51におけるアンモニア吸着量(すなわち、SCRフィルタ51に担持されたSCR触媒におけるアンモニア吸着量)や後段SCR触媒52におけるアンモニア吸着量を目標吸着量に維持すべく、尿素水添加弁54による尿素水添加を制御する。
また、ECU10は、SCRフィルタ51におけるPM堆積量の推定値が所定のPM堆積量に達した場合、燃料添加弁53から燃料を添加することでフィルタ再生処理を実行する。フィルタ再生処理では、燃料添加弁53から添加された燃料が酸化触媒50において酸化されることで生じる酸化熱によって、SCRフィルタ51が昇温される。このとき、ECU10は、温度センサ55の出力値に基づいてSCRフィルタ51の温度を推定する。そして、ECU10は、推定されたSCRフィルタ51の温度を目標温度とすべく、燃料添加弁53からの燃料添加量を制御する。その結果、SCRフィルタ51に堆積していたPMが酸化され、該SCRフィルタ51から除去される。
また、SCRフィルタ51には、排気中のPMに加えて、排気中のアッシュが捕集される。アッシュはオイル由来の物質である。SCRフィルタ51に捕集されたアッシュは該SCRフィルタ51に堆積する。このアッシュは、金属成分を含んでいるため、フィルタ再生処理を実行してもSCRフィルタ51から除去されない。そのため、SCRフィルタ51に堆積したアッシュは継続的に残存する。本実施例では、ECU10によって、SCRフィルタ51におけるアッシュ堆積量が推定される。具体的には、先ず、内燃機関1の機関負荷の履歴に基づき該内燃機関1でのオイル消費量が算出される。内燃機関1からのアッシュ流出量は、このオイル消費量と相関がある。そこで、このオイル消費量に基づいて、SCRフィルタ51におけるアッシュ堆積量が推定される。推定されたアッシュ堆積量はECU10に記憶される。
なお、SCRフィルタ51におけるアッシュ堆積量を上記の手法とは別の手法によって推定することもできる。例えば、内燃機関1を搭載した車両の走行距離に基づいてSCRフィルタ51におけるアッシュ堆積量を推定してもよい。また、SCRフィルタ51の上流側と下流側との排気圧力差を検出する差圧センサが設けられている場合は、この排気圧力差に基づいてSCRフィルタ51におけるアッシュ堆積量を推定してもよい。上述したように、SCRフィルタ51に堆積したアッシュは、フィルタ再生処理が実行されても該SCRフィルタ51から除去されない。そのため、フィルタ再生処理の実行終了直後の時期においては、SCRフィルタ51には、ほぼアッシュのみが堆積している状態となる。そのため、この時に差圧センサによって検出される排気差圧は、SCRフィルタ51におけるアッシュ堆積量との相関が高い。そこで、フィルタ再生処理の実行終了直後に差圧センサによって検出される排気圧力差に基づいて、SCRフィルタ51におけるアッシュ堆積量を推定することができる。
[故障診断]
上述したように、本実施例においては、SCRフィルタ51および後段SCR触媒52がNOx浄化機能を有している。そのため、SCRフィルタ51および後段SCR触媒52の両方によって所望のNOx浄化率(SCRフィルタ51に流入するNOx量に対する、SCRフィルタ51および後段SCR触媒52において還元されるNOx量の割合)を確保している。そこで、本実施例では、SCRフィルタ51および後段SCR触媒52を一つの排気浄化装置60とみなして、該排気浄化装置60が故障しているか否か(つまり、排気浄化装置60のNOx浄化機能が故障しているか否か)を診断する故障診断が行われる。なお、SCRフィルタ51においては、そのPM捕集機能が故障することも考えられる。そして、排気浄化装置60のNOx浄化機能の故障と、該排気浄化装置60のPM捕集機能の故障(すなわち、SCRフィルタ51のPM捕集機能の故障)とを区別して検出する場合においては、本実施例に係る故障診断は、排気浄化装置60のNOx浄化機能の故障を検出するための故障診断として実行される。
ここで、本実施例では、SCRフィルタ51と後段SCR触媒52とは排気通路5において直列に配置されている。そのため、通常は、SCRフィルタ51に担持されたSCR触媒の劣化が進行すれば、後段SCR触媒52の劣化も進行する。つまり、SCRフィルタ51に担持されたSCR触媒の劣化度合いと、後段SCR触媒52の劣化度合いとの間には相関がある。したがって、SCRフィルタ51におけるNOx浄化率(SCRフィルタ51に流入するNOx量に対する、該SCRフィルタ51において還元されるNOx量の割合)がある程度まで低下した状態では、その低下の程度に応じた分だけ、後段SCR触媒52におけるNOx浄化率(後段SCR触媒52に流入するNOx量に対する、該後段SCR触媒52において還元されるNOx量の割合)も低下しているとみなすことができる。
そこで、本実施例では、SCRフィルタ51におけるNOx浄化率に基づいて排気浄化装置60が故障しているか否かの判定が行われる。より詳しくは、SCRフィルタ51と後段SCR触媒52との間の排気通路5に設けられたNOxセンサ56の検出値を用いてSCRフィルタ51におけるNOx浄化率が算出される。なお、SCRフィルタ51に流入する排気(以下、「流入排気」と称する場合もある)のNOx濃度は内燃機関1の運転状態に基づいて推定することができる。そして、SCRフィルタ51から流出する排気(以下、「流出排気」と称する場合もある)のNOx濃度がNOxセンサ56によって検出される。この流入排気のNOx濃度の推定値と流出排気のNOx濃度の検出値とに基づいてSCRフィルタ51におけるNOx浄化率が算出される。そして、SCRフィルタ51におけるNOx浄化率が所定の判定浄化率以下のときは排気浄化装置60が故障していると判定される。ここで、判定浄化率は、SCRフィルタ51におけるNOx浄化率が該判定浄化率以下にまで低下した場合、排気浄化装置60全体におけるNOx浄化率が許容範囲の下限値を下回っていると想定される値である。この判定浄化率は、SCRフィルタ51に担持されたSCR触媒の劣化度合いと、後段SCR触媒52の劣化度合いとの間の相関を考慮して定められる値である。つまり、判定浄化率は、SCRフィルタ51におけるNOx浄化率が該判定浄化率以下にまで低下した場合、排気浄化装置60が故障していると判定すべき程度まで、後段SCR触媒52におけるNOx浄化率も低下していると想定される値である。
一方で、SCRフィルタ51には、上述したように、PMのみならず、アッシュも堆積する。そして、SCRフィルタ51に堆積したアッシュは継続的に残存する。ここで、図2は、SCRフィルタ51におけるアンモニア(NH)の吸着状態のイメージを示す図である。図2(a)は、SCRフィルタにアッシュが堆積していないときのアンモニアの吸着状態を示しており、図2(b)は、SCRフィルタにアッシュが堆積しているときのアンモニアの吸着状態を示している。なお、図2(a),(b)において、矢印は排気の流れを表している。
図2(a),(b)に示すように、SCRフィルタ51においては、フィルタ担体の隔壁上にSCR触媒が担持されている。そして、このSCR触媒に、SCRフィルタ51に供給された尿素が加水分解することで生成されたアンモニアが吸着する。ここで、図2(b)に示すように、SCRフィルタ51にアッシュが堆積すると、SCR触媒上にアッシュが継続的に堆積することになる。したがって、SCRフィルタ51にアッシュが堆積すると、該SCRフィルタ51に担持されたSCR触媒へのアンモニアの吸着が該アッシュによって阻害されることになる。つまり、SCRフィルタ51においてNOxが還元される際の還元剤となるアンモニアの量が減少することになる。その結果、SCRフィルタ51に担持されたSCR触媒のNOx浄化機能自体は低下していなくても、該SCRフィルタ51におけるNOx浄化率が低下する。このときのSCRフィルタ51におけるNOx浄化率の低下度合いは、SCRフィルタ51におけるアッシュ堆積量が多いほど大きくなる。
図3は、SCRフィルタ51におけるアッシュ堆積量Aashと、該SCRフィルタ51におけるNOx浄化率Rfとの相関を示す図である。図3において、横軸はSCRフィルタ51におけるアッシュ堆積量Aashを表しており、縦軸は該SCRフィルタ51におけるNOx浄化率Rfを表している。また、この図3は、SCRフィルタ51に担持されたSCR触媒の劣化度合いが一定である場合の両者の相関を示している。この図3に示すように、SCRフィルタ51に担持されたSCR触媒の劣化度合いが同一であっても、該SCRフィルタ51におけるアッシュ堆積量が増加するほど、該SCRフィルタ51におけるNOx浄化率は低くなる。
ただし、後段SCR触媒52にはアッシュは堆積し難い。そのため、後段SCR触媒5
2のNOx浄化率はアッシュの影響をほとんど受けない。また、SCRフィルタ51におけるアッシュ堆積量が増加しても、後段SCR触媒52の劣化度合いが進行するわけではない。そのため、SCRフィルタ51におけるアッシュ堆積量が増加することに起因して該SCRフィルタ51におけるNOx浄化率が低下しても、その低下の程度に応じた分だけ、後段SCR触媒52におけるNOx浄化率も低下するわけではない。この点が、SCRフィルタ51に担持されたSCR触媒が劣化することに起因して該SCRフィルタ51におけるNOx浄化率が低下した場合と異なっている。
図4は、排気浄化装置60におけるNOx浄化率を棒グラフで示した図である。図4(a),(c)は、排気浄化装置60のNOx浄化機能が正常なときのNOx浄化率を示している。ただし、図4(a)は、SCRフィルタ51にアッシュが堆積していないときのNOx浄化率を示している。一方、図4(c)は、SCRフィルタ51にアッシュが堆積しているときのNOx浄化率を示している。また、図4(b)は、排気浄化装置60のNOx浄化機能が故障しているときのNOx浄化率を示している。なお、図4(a),(b),(c)において、格子部RfはSCRフィルタ51におけるNOx浄化率を示しており、斜線部Rpは後段SCR触媒52におけるNOx浄化率を示している。また、図4において、Rfthを判定浄化率とし、Rathを排気浄化装置60全体におけるNOx浄化率の許容範囲の下限値とする。
排気浄化装置60が正常であれば、SCRフィルタ51に担持されたSCR触媒および後段SCR触媒52のいずれも劣化度合いは小さい。この場合、図4(a)に示すように、SCRフィルタ51におけるNOx浄化率Rfが判定浄化率Rfthより大きく、且つ、排気浄化装置60全体におけるNOx浄化率も許容範囲の下限値Rathより大きくなっている。一方、SCRフィルタ51に担持されたSCR触媒および後段SCR触媒52が劣化し排気浄化装置60が故障すると、図4(b)に示すように、SCRフィルタ51におけるNOx浄化率Rfが判定浄化率Rfthより小さくなる。また、SCRフィルタ51におけるNOx浄化率Rfの低下の程度に応じた分だけ、後段SCR触媒52におけるNOx浄化率Rpも正常時に比べて低下している。そのため、排気浄化装置60全体におけるNOx浄化率が許容範囲の下限値Rathよりも小さくなっている。また、SCRフィルタ51にアッシュが堆積すると、図4(c)に示すように、SCRフィルタ51に担持されたSCR触媒の劣化度合いが小さくても、該SCRフィルタ51におけるNOx浄化率Rfが、排気浄化装置60が故障したときと同程度(図4(b)に示すSCRフィルタ51におけるNOx浄化率と同程度)まで低下する場合がある。ただし、この場合でも、後段SCR触媒52におけるNOx浄化機能は正常であるため、該後段SCR触媒52のNOx浄化率Rpは、図4(a)に示す後段SCR触媒52のNOx浄化率Rpと同程度に維持されている。この場合、排気浄化装置60全体におけるNOx浄化率は許容範囲の下限値Rathより大きくなっている。
つまり、仮に、SCRフィルタ51におけるアッシュ堆積量にかかわらず判定浄化率を、図4においてRfthで示すような値で一定とすると、SCRフィルタ51におけるアッシュ堆積量の増加に起因して該SCRフィルタ51におけるNOx浄化率Rfが判定浄化率Rfth以下となったとしても、後段SCR触媒52におけるNOx浄化率Rpはある程度高い値に維持された状態となっている可能性が高い。そのため、図4(c)のように、SCRフィルタ51におけるNOx浄化率が判定浄化率Rfth以下であっても、排気浄化装置60としては許容範囲内のNOx浄化率を確保できている場合がある。したがって、このときに排気浄化装置60が故障していると判定すると、排気浄化装置60の故障診断としては誤診断したことになる。
そこで、本実施例では、ECU10によって推定されるSCRフィルタ51におけるアッシュ堆積量に基づいて判定浄化率を変更する。具体的には、SCRフィルタ51におけ
るアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて判定浄化率がより小さい値に設定される。これによれば、SCRフィルタ51におけるアッシュ堆積量の増加に起因して該SCRフィルタ51におけるNOx浄化率が低下した場合、その低下度合いに応じて判定浄化率の値が小さくなる。つまり、SCRフィルタ51におけるアッシュ堆積量が、排気浄化装置60が故障しているか否かの判定に対して与える影響を小さくすることができる。そのため、排気浄化装置60全体としては許容範囲内のNOx浄化率が確保されているにもかかわらず該排気浄化装置60が故障していると判定されることを抑制することができる。
[故障診断フロー]
図5は、本実施例に係る排気浄化装置の故障診断フローを示すフローチャートである。本フローにしたがって、ECU10によって、排気浄化装置60の故障診断が、内燃機関1の運転中に実行される。
本フローでは、先ずS101において、排気浄化装置の故障診断の実行条件が成立したか否かが判別される。排気浄化装置の故障診断の実行条件は予め定められている。この実行条件としては、内燃機関1の運転状態が定常状態であること、NOxセンサ56が正常であること、排気通路5を流れる排気の流量が所定範囲内であること、及び、SCRフィルタ51の温度が所定範囲内であること等を例示することができる。NOxセンサ56が正常であるか否かの診断は、本フローとは異なるフローにしたがってECU10によって行われており、その診断結果がECU10に記憶されている。また、SCRフィルタ51におけるNOx浄化率は、該SCRフィルタ51におけるアンモニア吸着量に応じて変化する。そして、SCRフィルタ51におけるアンモニア吸着量は、排気通路5を流れる排気の流量およびSCRフィルタ51の温度の影響を受ける。そのため、SCRフィルタ51におけるNOx浄化率に基づいて排気浄化装置の故障診断を行う際には、排気通路5を流れる排気の流量およびSCRフィルタ51の温度がいずれも所定範囲内であることが好ましい。
S101において否定判定された場合、本フローの実行が一旦終了される。一方、S101において肯定判定された場合、次にS102の処理が実行される。S102においては、SCRフィルタ51におけるNOx浄化率Rfが算出される。ここでは、上述したように、内燃機関1の運転状態に基づいて推定される流入排気のNOx濃度およびNOxセンサ56によって検出される流出排気のNOx濃度に基づいて、SCRフィルタ51におけるNOx浄化率Rfが算出される。
次に、S103において、上述した手法により算出されECU10に記憶されている、SCRフィルタ51におけるアッシュ堆積量Aashが読み込まれる。次に、S104において、S103で読み込まれたSCRフィルタ51におけるアッシュ堆積量Aashに基づいて、後述する判定浄化率Rfthの算出に用いられる係数k1が算出される。図6は、SCRフィルタ51におけるアッシュ堆積量Aashと係数k1との相関を示す図である。この図6に示すように、アッシュ堆積量Aashが零のときは、係数k1は1である。そして、アッシュ堆積量Aashの値が大きくなるほど係数k1の値が小さくなる。ECU10には、この図6に示すようなSCRフィルタ51におけるアッシュ堆積量Aashと係数k1との相関がマップとして記憶されている。S104では、このマップを用いて係数k1が算出される。
次に、S105において判定浄化率Rfthが設定される。ここで設定される判定浄化率Rfthは下記式(1)によって算出される。
Rfth= Rfth0 × k1 ・・・式(1)
Rfth0:基準判定浄化率
k1:S104で算出される係数
ここで、基準判定浄化率Rfth0は、SCRフィルタ51にアッシュが堆積していないと仮定した場合の判定浄化率である。この基準判定浄化率Rfth0は、実験等に基づいて予め定められている。上記式(1)によって算出される判定浄化率Rfthは、SCRフィルタ51におけるアッシュ堆積量Aashが多いほどより小さくなる。
なお、上述したように、排気浄化装置の故障診断の実行条件には、排気通路5を流れる排気の流量が所定範囲内であること、及び、SCRフィルタ51の温度が所定範囲内であることが含まれているが、診断精度をより向上させるために、判定浄化率Rfthを、さらに排気通路5を流れる排気の流量およびSCRフィルタ51の温度に基づいて補正してもよい。また、判定浄化率Rfthを、SCRフィルタ51におけるアッシュ堆積量Aashの増加に応じて段階的に変更してもよい。
次に、S106において、S102で算出されたSCRフィルタ51におけるNOx浄化率Rfが、S105で設定された判定浄化率Rfthより大きいか否かが判別される。S106において肯定判定された場合、次にS107において、排気浄化装置60は正常であると判定される。一方、S106において否定判定された場合、すなわち、SCRフィルタ51におけるNOx浄化率Rfが判定浄化率Rfth以下の場合、次にS108において、排気浄化装置60が故障していると判定される。S107において排気浄化装置60は正常であると判定された後、または、S108において排気浄化装置60が故障していると判定された後、本フローの実行が終了される。
本実施例によれば、排気浄化装置60全体としては許容範囲内のNOx浄化率が確保されているにもかかわらず該排気浄化装置60が故障していると判定されることを抑制することができる。したがって、排気浄化装置60の故障診断の診断精度を向上させることができる。
<実施例2>
本実施例に係る内燃機関とその吸排気系の概略構成は実施例1と同様である。以下、本実施例に係る排気浄化装置の故障診断において実施例1とは異なる点について説明する。
実施例1に係る排気浄化装置の故障診断では、SCRフィルタ51におけるNOx浄化率と比較するための閾値である判定浄化率を該SCRフィルタ51におけるアッシュ堆積量に基づいて変更した。本実施例に係る排気浄化装置の故障診断では、これに代えて、SCRフィルタ51におけるアッシュ堆積量に基づいて該SCRフィルタ51におけるNOx浄化率を修正することで修正浄化率を算出する。そして、修正浄化率を判定浄化率と比較することで、排気浄化装置60が故障しているか否かを判別する。
具体的は、SCRフィルタ51におけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、SCRフィルタ51におけるNOx浄化率をより大きい値に修正することで修正浄化率を算出する。つまり、SCRフィルタ51におけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、SCRフィルタ51におけるNOx浄化率から修正浄化率への修正幅(増加幅)が大きくされる。これによれば、SCRフィルタ51におけるNOx浄化率の値が同一であっても、SCRフィルタ51におけるアッシュ堆積量の増加に起因して該NOx浄化率が低下していた場合は、その低下度合いに応じて修正浄化率の値が大きくなる。
このような修正浄化率を用いて故障診断を行うことで、実施例1のようにSCRフィルタ51におけるアッシュ堆積量に基づいて判定浄化率を変更する場合と同様、SCRフィルタ51におけるアッシュ堆積量が、排気浄化装置60が故障しているか否かの判定に対
して与える影響を小さくすることができる。そのため、排気浄化装置60全体としては許容範囲内のNOx浄化率が確保されているにもかかわらず該排気浄化装置60が故障していると判定されることを抑制することができる。したがって、排気浄化装置60の故障診断の診断精度を向上させることができる。
[故障診断フロー]
図7は、本実施例に係る排気浄化装置の故障診断フローを示すフローチャートである。本フローにしたがって、ECU10によって、排気浄化装置60の故障診断が、内燃機関1の運転中に実行される。なお、本フローにおいて、図5に示すフローの各ステップにおける処理と同様の処理が行われるステップについては、同様の参照番号を付して、その説明を省略する。
本フローでは、S103の処理が実行された後、S204の処理が実行される。S204においては、S103で読み込まれたSCRフィルタ51におけるアッシュ堆積量Aashに基づいて、後述する修正浄化率Rfmの算出に用いられる係数k2が算出される。図8は、SCRフィルタ51におけるアッシュ堆積量Aashと係数k2との相関を示す図である。この図8に示すように、アッシュ堆積量Aashが零のときは、係数k2は1である。そして、アッシュ堆積量Aashの値が大きくなるほど係数k2の値が大きくなる。ECU10には、この図8に示すようなSCRフィルタ51におけるアッシュ堆積量Aashと係数k2との相関がマップとして記憶されている。S204では、このマップを用いて係数k2が算出される。
次に、S205において修正浄化率Rfmが算出される。ここで、修正浄化率Rfmは下記式(2)によって算出される。
Rfm= Rf × k2 ・・・式(2)
Rf:S102で算出されるSCRフィルタ51におけるNOx浄化率
k2:S104で算出される係数
上記式(2)によって算出される修正浄化率Rfmは、SCRフィルタ51におけるNOx浄化率Rfが同一の場合、SCRフィルタ51におけるアッシュ堆積量Aashが多いほどより大きくなる。なお、SCRフィルタ51におけるアッシュ堆積量Aashの増加に応じて、SCRフィルタ51におけるNOx浄化率Rfを段階的に増加させることで修正浄化率Rfmを算出してもよい。
次に、S206において、S205で算出された修正浄化率Rfmが判定浄化率Rfthより大きいか否かが判別される。ここでの判定浄化率Rfthは、実験等に基づいて予め定められた一定値であり、SCRフィルタ51にアッシュが堆積していないと仮定した場合の判定浄化率(実施例1に係る基準判定浄化率Rfth0)である。S206において肯定判定された場合、次にS107において、排気浄化装置60は正常であると判定される。一方、S206において否定判定された場合、次にS108において、排気浄化装置60が故障していると判定される。
なお、上記実施例1および上記実施例2のそれぞれに係る排気浄化装置の故障診断の手法を組み合わせることもできる。つまり、排気浄化装置60の故障診断を行う際に、ECU10は、SCRフィルタ51におけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、判定浄化率をより小さい値に設定するとともに、SCRフィルタ51におけるNOx浄化率をより大きい値に修正することで修正浄化率を算出してもよい。そして、ECU10が、これらの判定浄化率と修正浄化率とを比較することで、排気浄化装置60が故障しているか否かを判別してもよい。
1・・・内燃機関
4・・・吸気通路
5・・・排気通路
50・・酸化触媒
51・・SCRフィルタ
52・・後段SCR触媒
53・・燃料添加弁
54・・尿素水添加弁
55・・温度センサ
56・・NOxセンサ
60・・排気浄化装置
10・・ECU

Claims (2)

  1. 排気中の粒子状物質を捕集するフィルタに、排気中のNOxを還元するSCR触媒が担持された構成のSCRフィルタであって、内燃機関の排気通路に設けられたSCRフィルタと、排気中のNOxを還元する後段SCR触媒であって、前記SCRフィルタよりも下流側の排気通路に設けられた後段SCR触媒と、を有する排気浄化装置が故障しているか否かを診断する排気浄化装置の故障診断装置において、
    前記SCRフィルタと前記後段SCR触媒との間の排気通路に設けられたNOxセンサと、
    前記NOxセンサの検出値を用いて前記SCRフィルタにおけるNOx浄化率を算出するNOx浄化率算出部と、
    前記NOx浄化率算出部によって算出された前記SCRフィルタにおけるNOx浄化率が所定の判定浄化率以下のときは、前記排気浄化装置が故障していると判定する判定部と、
    前記SCRフィルタにおけるアッシュ堆積量を推定するアッシュ堆積量推定部と、を備え、
    前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて前記判定浄化率がより小さい値である排気浄化装置の故障診断装置。
  2. 排気中の粒子状物質を捕集するフィルタに、排気中のNOxを還元するSCR触媒が担持された構成のSCRフィルタであって、内燃機関の排気通路に設けられたSCRフィルタと、排気中のNOxを還元する後段SCR触媒であって、前記SCRフィルタよりも下流側の排気通路に設けられた後段SCR触媒と、を有する排気浄化装置が故障しているか否かを診断する排気浄化装置の故障診断装置において、
    前記SCRフィルタと前記後段SCR触媒との間の排気通路に設けられたNOxセンサと、
    前記NOxセンサの検出値を用いて前記SCRフィルタにおけるNOx浄化率を算出するNOx浄化率算出部と、
    前記SCRフィルタにおけるアッシュ堆積量を推定するアッシュ堆積量推定部と、
    前記NOx浄化率算出部によって算出された前記SCRフィルタにおけるNOx浄化率を、前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量に基づいて修正することで修正浄化率を算出する修正浄化率算出部と、
    前記修正浄化率算出部によって算出された前記修正浄化率が所定の判定浄化率以下のときは、前記排気浄化装置が故障していると判定する判定部と、を備え、
    前記修正浄化率算出部が、前記アッシュ堆積量推定部によって推定された前記SCRフィルタにおけるアッシュ堆積量が多いときは、該アッシュ堆積量が少ないときに比べて、前記SCRフィルタにおけるNOx浄化率をより大きい値に修正することで前記修正浄化率を算出する排気浄化装置の故障診断装置。
JP2015115781A 2015-06-08 2015-06-08 排気浄化装置の故障診断装置 Active JP6278002B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015115781A JP6278002B2 (ja) 2015-06-08 2015-06-08 排気浄化装置の故障診断装置
DE102016110402.7A DE102016110402B4 (de) 2015-06-08 2016-06-06 Fehlerdiagnosevorrichtung für ein Abgasreinigungsgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115781A JP6278002B2 (ja) 2015-06-08 2015-06-08 排気浄化装置の故障診断装置

Publications (2)

Publication Number Publication Date
JP2017002768A JP2017002768A (ja) 2017-01-05
JP6278002B2 true JP6278002B2 (ja) 2018-02-14

Family

ID=57352491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115781A Active JP6278002B2 (ja) 2015-06-08 2015-06-08 排気浄化装置の故障診断装置

Country Status (2)

Country Link
JP (1) JP6278002B2 (ja)
DE (1) DE102016110402B4 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248760A (ja) 2004-03-02 2005-09-15 Toyota Motor Corp 還元剤添加装置
JP4692376B2 (ja) 2006-05-10 2011-06-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2032812B1 (en) 2006-06-13 2015-07-22 Volvo Lastvagnar AB Diesel catalyst system
JP5030020B2 (ja) * 2007-10-19 2012-09-19 株式会社デンソー 内燃機関の排気浄化装置
DE102011087082B4 (de) 2011-11-25 2022-12-22 Robert Bosch Gmbh Verfahren zum Betreiben eines SCRF-Katalysatorsystems
KR101316856B1 (ko) 2011-11-25 2013-10-08 현대자동차주식회사 차량의 요소수 분사량 제어장치 및 방법
JP5672295B2 (ja) * 2012-12-03 2015-02-18 トヨタ自動車株式会社 排気浄化装置の劣化判定システム
JP2014206079A (ja) * 2013-04-11 2014-10-30 本田技研工業株式会社 内燃機関の排気浄化装置およびその製造方法

Also Published As

Publication number Publication date
JP2017002768A (ja) 2017-01-05
DE102016110402A1 (de) 2016-12-08
DE102016110402B4 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
JP6288054B2 (ja) 排気浄化システムの故障診断装置
JP4924758B2 (ja) フィルタ再生システムの異常診断システム及び異常診断方法
JP5907286B2 (ja) 排気浄化装置の故障診断装置
JP6103075B2 (ja) 内燃機関の排気浄化システム
JP6323354B2 (ja) 内燃機関の排気浄化装置
US7404291B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US9759117B2 (en) Diagnostic system for internal combustion engine
JP2007315275A (ja) 排気浄化フィルタ故障診断装置及び方法
JP2012036860A (ja) 触媒劣化診断装置
JP2009191694A (ja) 内燃機関の排気浄化装置
JP2008002309A (ja) 内燃機関の排気浄化装置
WO2012140739A1 (ja) 選択還元型NOx触媒の劣化検出装置
JP4811333B2 (ja) 内燃機関の排気浄化システム
JP6436075B2 (ja) 排気浄化システムの故障診断装置
JP2019152167A (ja) 内燃機関の排気浄化装置
JP5692398B2 (ja) 内燃機関の排気浄化装置
JP2010249076A (ja) 内燃機関の排気浄化装置
JP6278002B2 (ja) 排気浄化装置の故障診断装置
JP2017115810A (ja) 排気浄化システムの異常診断装置
JP6544392B2 (ja) 排気浄化装置の異常診断システム
JP6287896B2 (ja) 触媒の劣化診断装置
JP2019152165A (ja) 内燃機関の排気浄化装置
JP4716188B2 (ja) 内燃機関の触媒異常診断装置
JP6911638B2 (ja) 内燃機関の排気浄化装置
JP2016084781A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R151 Written notification of patent or utility model registration

Ref document number: 6278002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151