JP6273109B2 - Optical interference measurement device - Google Patents

Optical interference measurement device Download PDF

Info

Publication number
JP6273109B2
JP6273109B2 JP2013177086A JP2013177086A JP6273109B2 JP 6273109 B2 JP6273109 B2 JP 6273109B2 JP 2013177086 A JP2013177086 A JP 2013177086A JP 2013177086 A JP2013177086 A JP 2013177086A JP 6273109 B2 JP6273109 B2 JP 6273109B2
Authority
JP
Japan
Prior art keywords
light
optical path
measurement
interference
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013177086A
Other languages
Japanese (ja)
Other versions
JP2015045575A (en
Inventor
浅野 秀光
秀光 浅野
宮倉 常太
常太 宮倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2013177086A priority Critical patent/JP6273109B2/en
Publication of JP2015045575A publication Critical patent/JP2015045575A/en
Application granted granted Critical
Publication of JP6273109B2 publication Critical patent/JP6273109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、光の干渉によって生じる干渉縞の輝度情報を用いた測定を行う光干渉測定装置に関する。   The present invention relates to an optical interference measuring apparatus that performs measurement using luminance information of interference fringes generated by light interference.

従来、光の干渉によって生じる干渉縞の輝度情報を用いて例えば測定対象物の三次元形状を精密に測定する三次元形状測定装置などの光干渉測定装置が知られている。   2. Description of the Related Art Conventionally, an optical interference measurement device such as a three-dimensional shape measurement device that accurately measures the three-dimensional shape of a measurement object using luminance information of interference fringes generated by light interference is known.

このような光干渉測定装置においては、参照光路と測定光路の光路長が一致するピント位置では各波長の干渉縞のピークが重なり合い合成される干渉縞の輝度が大きくなる。したがって、光干渉測定装置では、参照光路または測定光路の光路長を変化させながら干渉光強度の二次元の分布を示す干渉画像をCCDカメラ等の撮像素子により撮影し、撮影視野内の各測定位置で干渉光の強度がピークとなるピント位置を検出することで、各測定位置における測定面の高さを測定し、測定対象物の三次元形状などを測定することができる(例えば、特許文献1参照。)。   In such an optical interference measuring apparatus, the luminance of the interference fringes that overlap and combine the peaks of the interference fringes of each wavelength are increased at the focus position where the optical path lengths of the reference optical path and the measurement optical path coincide. Therefore, in the optical interference measurement apparatus, an interference image showing a two-dimensional distribution of the interference light intensity is photographed by an imaging element such as a CCD camera while changing the optical path length of the reference optical path or the measurement optical path, and each measurement position in the field of view is taken. By detecting the focus position where the intensity of the interference light reaches a peak, the height of the measurement surface at each measurement position can be measured, and the three-dimensional shape of the measurement object can be measured (for example, Patent Document 1). reference.).

特開2011−191118号公報JP 2011-191118 A

上述のような光干渉測定装置で用いられる撮像素子の個々の画素は、所定の面積の受光面を有し、受光面への入射光量を面内で積分した値を受光量として出力する。このとき、測定対象物の測定面が撮像素子の受光面に対し傾斜していると、1つの画素の受光面内に干渉縞の輝度が異なる部分が混在することとなる。例えば、1つの画素内のある部分で干渉光強度がピーク(明部)となっているときに同じ画素内の他の部分で干渉光強度がゼロ(暗部)となる場合には、画素内の各位置での干渉光強度が相殺し合い、各測定位置の高さを正しく測定できない。   Each pixel of the image sensor used in the optical interference measuring apparatus as described above has a light receiving surface with a predetermined area, and outputs a value obtained by integrating the amount of incident light on the light receiving surface within the surface as the amount of received light. At this time, if the measurement surface of the measurement object is inclined with respect to the light receiving surface of the image sensor, portions having different luminances of interference fringes are mixed in the light receiving surface of one pixel. For example, when the interference light intensity is at a peak (bright part) in a certain part in one pixel and the interference light intensity is zero (dark part) in another part in the same pixel, The interference light intensity at each position cancels out, and the height at each measurement position cannot be measured correctly.

このような測定対象物の傾斜の影響は、1つの画素がカバーする面積が大きいほど(つまり、測定倍率が低いほど)顕著であり、横方向分解能が低い撮像素子を用いると測定対応傾斜角が著しく制約され、光干渉測定装置を低倍率・広視野化する際の障害となっている。   The influence of the inclination of the measurement object is more remarkable as the area covered by one pixel is larger (that is, the measurement magnification is lower). This is a significant limitation, which is an obstacle when the optical interference measuring apparatus is reduced in magnification and wide field of view.

そこで、本発明は上記の課題を解決することのできる光干渉測定装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an optical interference measuring apparatus that can solve the above-described problems.

上記課題を解決するために、本発明に係る光干渉測定装置は、光を出力する光源と、光源から出力された光を参照光路と測定光路とに分岐するとともに、参照光路を経た反射光と測定光路に配置された測定対象物を経た反射光とを合成した合成波を出力するビームスプリッタと、参照光路に配置され、ビームスプリッタで参照光路に分岐された光を、反射面に配された複数の微小ミラーによって反射する参照ミラーと、測定光路に配置され、測定対象物が載置されるステージと、参照光路および測定光路のいずれか一方の光路長を変化させる光路長可変手段と、二次元に配列された複数の受光素子により合成波における干渉光強度の二次元の分布を示す干渉画像を撮像する撮像手段とを備え、複数の微小ミラーは、複数の受光素子と対応して配列され、各微小ミラーによる反射光が、当該微小ミラーに対応する受光素子に入射する。このような構成により、光干渉測定装置によって測定可能な測定対象物の最大の傾きを示す測定対応傾斜角を大きくすることができる。   In order to solve the above problems, an optical interference measurement apparatus according to the present invention includes a light source that outputs light, a light output from the light source that is branched into a reference optical path and a measurement optical path, and reflected light that has passed through the reference optical path. A beam splitter that outputs a combined wave obtained by combining the reflected light that has passed through the measurement object arranged in the measurement optical path, and light that is arranged in the reference optical path and branched into the reference optical path by the beam splitter is arranged on the reflection surface. A reference mirror that is reflected by a plurality of micromirrors, a stage that is disposed in the measurement optical path and on which a measurement object is placed, an optical path length varying unit that changes the optical path length of either the reference optical path or the measurement optical path, An imaging unit that captures an interference image indicating a two-dimensional distribution of interference light intensity in the combined wave by a plurality of light receiving elements arranged in a dimension, and the plurality of micromirrors correspond to the plurality of light receiving elements. Are columns, the light reflected by each micro mirror is incident on the light receiving elements corresponding to the micromirrors. With such a configuration, it is possible to increase the measurement-compatible inclination angle that indicates the maximum inclination of the measurement object that can be measured by the optical interference measurement apparatus.

本発明では、微小ミラーによる反射光が入射する領域の面積を、当該受光素子の受光部の面積よりも狭くすると更によい。このような構成により、光干渉測定装置の測定対応傾斜角を受光素子の受光部の面積によらず、大きくすることができる。   In the present invention, it is further preferable that the area of the region where the light reflected by the micromirror is incident is narrower than the area of the light receiving portion of the light receiving element. With such a configuration, the measurement-compatible inclination angle of the optical interference measuring apparatus can be increased regardless of the area of the light receiving portion of the light receiving element.

本発明では、微小ミラーは、円形に形成されると更によい。このような構成により、光干渉測定装置の測定対応傾斜角を、傾きの方向に依存せずに大きくすることができる。   In the present invention, the micromirror is preferably formed in a circular shape. With such a configuration, the measurement-compatible tilt angle of the optical interference measurement apparatus can be increased without depending on the tilt direction.

本発明では、参照ミラーの反射面における微小ミラーが配されていない部分は、ビームスプリッタからの光を吸収すると更によい。微小ミラーに入射しなかった光がビームスプリッタに戻ることを防ぎ、不要な反射光によるノイズを低減することができる。   In the present invention, it is further preferable that the portion of the reflecting surface of the reference mirror where the micromirror is not disposed absorbs light from the beam splitter. It is possible to prevent light that has not entered the minute mirror from returning to the beam splitter, and to reduce noise caused by unnecessary reflected light.

光干渉測定装置の一実施形態である形状測定装置1の構成を示す図である。It is a figure which shows the structure of the shape measuring apparatus 1 which is one Embodiment of an optical interference measuring apparatus. 対物レンズ部30の構成をステージSおよびワークW示す要部拡大図である。FIG. 3 is an enlarged view of a main part showing a configuration of an objective lens unit 30 with a stage S and a workpiece W. 形状測定方法を示すフローチャートである。It is a flowchart which shows a shape measuring method. 参照ミラー33の参照面(反射面)の構造を示す図である。It is a figure which shows the structure of the reference surface (reflective surface) of the reference mirror 33. FIG. 合成波の成分毎に、撮像部40の1画素に入射する領域を示した模式図である。4 is a schematic diagram illustrating a region incident on one pixel of the imaging unit 40 for each component of a composite wave. FIG.

以下、本発明に係る光干渉測定装置の一実施形態として、形状測定装置1について、図面を参照しつつ説明する。なお、ここではマイケルソン型の干渉計を示すが、ミロー型等、他の等光路干渉計を用いることもできる。   Hereinafter, a shape measuring apparatus 1 will be described as an embodiment of an optical interference measuring apparatus according to the present invention with reference to the drawings. Although a Michelson type interferometer is shown here, other iso-optical path interferometers such as a Millo type can also be used.

形状測定装置1は、図1に示すように、光出射部10と、光学ヘッド部20、対物レンズ部30と、結像レンズ41と、撮像部40と、画像メモリ50と、演算処理部60と、入力部70と、出力部80と、表示部90と、測定対象物(以下、「ワーク」という)Wを載置するためのステージSと、を備える。   As shown in FIG. 1, the shape measuring apparatus 1 includes a light emitting unit 10, an optical head unit 20, an objective lens unit 30, an imaging lens 41, an imaging unit 40, an image memory 50, and an arithmetic processing unit 60. An input unit 70, an output unit 80, a display unit 90, and a stage S on which a measurement object (hereinafter referred to as "workpiece") W is placed.

光出射部10は、例えば広帯域に亘る多数の波長成分を有しコヒーレンシーの低い広帯域光を出力する光源を備え、例えば、ハロゲンやLED(Light Emitting Diode)などの白色光源が用いられる。可干渉性の少ない白色光を使用することで、干渉縞の発生する範囲を狭くすることができる。尚、光出射部10から出射される光は特定波長(単波長)のものでも良い。   The light emitting unit 10 includes a light source that outputs a wide band light having a large number of wavelength components over a wide band and low coherency, for example, and a white light source such as a halogen or an LED (Light Emitting Diode) is used. By using white light with less coherence, the range in which interference fringes are generated can be narrowed. The light emitted from the light emitting unit 10 may have a specific wavelength (single wavelength).

光学ヘッド部20は、ビームスプリッタ21と、コリメータレンズ22とを備えている。光出射部10から出射した光は、対物レンズ部30の光軸と直角の方向から、コリメータレンズ22を介してビームスプリッタ21に平行に照射され、ビームスプリッタ21からは光軸に沿った光が出射されて、対物レンズ部30に対して上方から平行ビームが照射される。   The optical head unit 20 includes a beam splitter 21 and a collimator lens 22. The light emitted from the light emitting unit 10 is irradiated in parallel to the beam splitter 21 via the collimator lens 22 from a direction perpendicular to the optical axis of the objective lens unit 30, and light along the optical axis is emitted from the beam splitter 21. It is emitted and a parallel beam is irradiated onto the objective lens unit 30 from above.

対物レンズ部30は、図2に示すように、対物レンズ31、プリズム32、参照ミラー33、等を備えて構成される。対物レンズ部30においては、上方から平行ビームが対物レンズ31に入射した場合、入射光は対物レンズ31で収束光となり、プリズム32の内部の反射面321に入射する。ここで、入射光は、参照ミラー33を有する参照光路(図中破線)を進む反射光(参照光)と、ワークWを配置した測定光路(図中実線)を進む透過光(測定光)とに分岐する。反射光は、収束して参照ミラー33で反射され、更にプリズム32の反射面321により反射される。一方、透過光は、収束してワークWで反射され、プリズム32の反射面321を透過する。参照ミラー33からの反射光と測定対象物Wからの反射光とはプリズム32の反射面321により合波されて合成波となる。参照ミラー33は、演算処理部60による制御の下、ピエゾ素子のような駆動手段34によって光軸方向に移動走査される。参照ミラー33の走査位置はエンコーダ35で測定され、演算処理部60に入力される。参照光路(光路1+光路2)と、測定光路(光路3+光路4)の光路長が等しいときに、合成波に干渉縞が発生する。なお、参照ミラー33の詳細な構造については後述する。   As shown in FIG. 2, the objective lens unit 30 includes an objective lens 31, a prism 32, a reference mirror 33, and the like. In the objective lens unit 30, when a parallel beam enters the objective lens 31 from above, the incident light becomes convergent light by the objective lens 31 and enters the reflecting surface 321 inside the prism 32. Here, incident light includes reflected light (reference light) that travels along a reference optical path (broken line in the figure) having the reference mirror 33, and transmitted light (measurement light) that travels along a measurement optical path (solid line in the figure) where the workpiece W is disposed. Branch to The reflected light is converged and reflected by the reference mirror 33, and further reflected by the reflecting surface 321 of the prism 32. On the other hand, the transmitted light converges and is reflected by the workpiece W, and passes through the reflecting surface 321 of the prism 32. The reflected light from the reference mirror 33 and the reflected light from the measurement object W are combined by the reflecting surface 321 of the prism 32 to become a combined wave. The reference mirror 33 is moved and scanned in the optical axis direction by a driving unit 34 such as a piezo element under the control of the arithmetic processing unit 60. The scanning position of the reference mirror 33 is measured by the encoder 35 and input to the arithmetic processing unit 60. When the optical path lengths of the reference optical path (optical path 1 + optical path 2) and the measurement optical path (optical path 3 + optical path 4) are equal, interference fringes are generated in the combined wave. The detailed structure of the reference mirror 33 will be described later.

ビームスプリッタ32の反射面321より合成された合成波は、対物レンズ31で平行ビームになり上方へ進み、結像レンズ41に入射する(図1中一点鎖線)。結像レンズ41は合成派を収束させ撮像部40上に干渉画像を結像させる。   The synthesized wave synthesized from the reflecting surface 321 of the beam splitter 32 becomes a parallel beam by the objective lens 31, travels upward, and enters the imaging lens 41 (a chain line in FIG. 1). The imaging lens 41 converges the composite group and forms an interference image on the imaging unit 40.

撮像部40は、2次元状に配列された複数個の画素を有する撮像素子からなるCCDカメラ等であり、合成波の干渉画像を撮像する。干渉画像は、参照ミラー33を移動走査しながら複数回撮像される。撮像部40が撮像した干渉画像の画像データは、画像メモリ50に記憶される。   The imaging unit 40 is a CCD camera or the like including an imaging element having a plurality of pixels arranged in a two-dimensional shape, and captures a synthetic wave interference image. The interference image is captured a plurality of times while moving and scanning the reference mirror 33. The image data of the interference image captured by the imaging unit 40 is stored in the image memory 50.

演算処理部60は、ワークWの測定面の各位置での干渉光の強度とエンコーダ35から入力される参照ミラー33の走査位置とに基づいて、ワークWの測定面の形状測定データを求める。入力部70は、計測に必要なデータを演算処理部60に入力する。出力部80は、演算処理部で求められた測定結果を出力する。表示部90は、入力操作に必要な情報および測定結果を表示する。   The arithmetic processing unit 60 obtains shape measurement data of the measurement surface of the workpiece W based on the intensity of the interference light at each position on the measurement surface of the workpiece W and the scanning position of the reference mirror 33 input from the encoder 35. The input unit 70 inputs data necessary for measurement to the arithmetic processing unit 60. The output unit 80 outputs the measurement result obtained by the arithmetic processing unit. The display unit 90 displays information necessary for input operation and measurement results.

図3は、形状測定方法を示すフローチャートである。   FIG. 3 is a flowchart showing the shape measuring method.

形状測定を開始すると、参照ミラー33を光軸方向に所定量移動し(S1)、測定面の干渉光強度の二次元の分布を示す干渉画像を画像メモリ50に記憶する(S2)。これを所定サンプリング数だけ繰り返し(S3)、所定枚の干渉画像が画像メモリ50に蓄積されると、演算処理部60が測定面の各測定位置における光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列のピーク位置を検出する(S4)。そして、検出した各測定位置のピーク位置を測定点における高さとして表示、出力する(S5)。   When shape measurement is started, the reference mirror 33 is moved by a predetermined amount in the optical axis direction (S1), and an interference image indicating a two-dimensional distribution of interference light intensity on the measurement surface is stored in the image memory 50 (S2). This is repeated for a predetermined number of samplings (S3), and when a predetermined number of interference images are accumulated in the image memory 50, the arithmetic processing unit 60 changes the interference light intensity according to the change in the optical path length difference at each measurement position on the measurement surface. Is detected (S4). Then, the detected peak position of each measurement position is displayed and output as the height at the measurement point (S5).

図4は、参照ミラー33の反射面(参照面)の構造を示す。参照ミラー33の反射面は、広帯域光を吸収する基板331に円形の微小ミラー332が縦横にドットパターン状に配列された構造を有する。微小ミラー332に入射する光は、反射されてビームスプリッタ32に戻る。一方、微小ミラー332のない基板331部分に入射する光は、基板331に吸収され、ビームスプリッタ32には戻らない。微小ミラー332の配列パターンは撮像部40が備える撮像素子の配列パターンに対応し、ある微小ミラー332による反射光は、ビームスプリッタ32でワークWからの反射光と合波され、結像ミラー41を介して撮像部40において当該微小ミラー332に対応する位置の画素に入射され結像する。   FIG. 4 shows the structure of the reflective surface (reference surface) of the reference mirror 33. The reflection surface of the reference mirror 33 has a structure in which circular micromirrors 332 are arranged in a dot pattern vertically and horizontally on a substrate 331 that absorbs broadband light. The light incident on the micromirror 332 is reflected and returns to the beam splitter 32. On the other hand, light incident on the portion of the substrate 331 without the micromirror 332 is absorbed by the substrate 331 and does not return to the beam splitter 32. The arrangement pattern of the micromirrors 332 corresponds to the arrangement pattern of the imaging elements included in the imaging unit 40, and the reflected light from the certain micromirror 332 is combined with the reflected light from the workpiece W by the beam splitter 32, Then, the light is incident on the pixel at a position corresponding to the minute mirror 332 in the imaging unit 40 and forms an image.

図5は、合成波の各成分が、撮像部40の1つの画素に入射する領域を示した模式図である。ワークWでの反射光は画素の受光部全域(図5(a)の領域A)に入射され、参照ミラー33での反射光は微小ミラー332に対応する領域(図5(b)の領域B)にのみ入射される。したがって、干渉は領域B内のみで発生し、領域Bの外側では発生しない。   FIG. 5 is a schematic diagram illustrating a region where each component of the combined wave is incident on one pixel of the imaging unit 40. The reflected light from the workpiece W is incident on the entire light receiving portion of the pixel (region A in FIG. 5A), and the reflected light from the reference mirror 33 is the region corresponding to the micromirror 332 (region B in FIG. 5B). ) Only. Accordingly, interference occurs only in the region B and does not occur outside the region B.

このように、図4に示したような参照ミラー33を用いることにより、1つの画素の受光面内において光干渉が発生する領域を画素の受光面積よりも狭めることができ、これによりワークWが傾斜していても光干渉が生じる範囲内での干渉のばらつきを低減することができる。また、1つの画素内で干渉が生じる領域の大きさは微小ミラー332の面積によって決まるので、横方向分解能が低い撮像素子を用いる場合でも測定対応傾斜角を大きくすることができる。   As described above, by using the reference mirror 33 as shown in FIG. 4, a region where light interference occurs in the light receiving surface of one pixel can be made narrower than the light receiving area of the pixel. Even if it is inclined, it is possible to reduce variations in interference within a range where optical interference occurs. In addition, since the size of the region in which interference occurs in one pixel is determined by the area of the micromirror 332, the measurement-corresponding tilt angle can be increased even when an image sensor with low lateral resolution is used.

なお、本発明は、上記の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、上記の実施形態ではマイケルソン型の干渉計を例に説明したが、図4に示したような微小ミラーを備える参照ミラーを、ミロー型等、他の等光路干渉計に適用することで、これらの方式の光干渉測定装置においても測定対応傾斜角を大きくすることができる。   In addition, this invention is not limited to said embodiment, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention. For example, in the above embodiment, a Michelson type interferometer has been described as an example. However, by applying a reference mirror including a micromirror as shown in FIG. 4 to another optical path interferometer such as a mirro type. In these types of optical interference measuring apparatuses, the tilt angle for measurement can be increased.

また、上記実施形態では、微小ミラー332が縦横のマトリックス状のドットパターンで配列された構造の参照ミラー33を例示したが、微小ミラーの配列は撮像素子の配列に対応するものとすればよく、例えば撮像素子がハニカム配列を採用する場合には、微小ミラーもこれに対応したハニカム配列とされ、1つの微小ミラーによる反射光が対応する1つの素子に入射するようにするとよい。   In the above embodiment, the reference mirror 33 having a structure in which the micromirrors 332 are arranged in a matrix pattern of vertical and horizontal matrixes is exemplified. However, the arrangement of the micromirrors may correspond to the arrangement of the imaging elements. For example, when the image pickup element adopts a honeycomb arrangement, the micromirrors are also made to have a honeycomb arrangement corresponding thereto, and reflected light from one micromirror may be incident on one corresponding element.

また、参照ミラー33の基板331は、入射する光を吸収するのではなく散乱することにより、微小ミラー332に入射しなかった光が合成波における光干渉に寄与しないようにしてもよい。   Further, the substrate 331 of the reference mirror 33 may scatter rather than absorb incident light so that light that has not entered the micromirror 332 does not contribute to optical interference in the combined wave.

本発明は、光干渉測定装置に適用して測定対応傾斜角を改善することができる。   The present invention can be applied to an optical interference measuring apparatus to improve the measurement-compatible tilt angle.

1・・・形状測定装置
10・・・光射出部
20・・・光学ヘッド部
30・・・対物レンズ部
40・・・撮像部
41・・・結像レンズ
50・・・画像メモリ
60・・・演算処理部
70・・・入力部
80・・・出力部
90・・・表示部
S・・・ステージ
W・・・測定対象物(ワーク)
DESCRIPTION OF SYMBOLS 1 ... Shape measuring apparatus 10 ... Light emission part 20 ... Optical head part 30 ... Objective lens part 40 ... Imaging part 41 ... Imaging lens 50 ... Image memory 60 ... Calculation processing unit 70 ... input unit 80 ... output unit 90 ... display unit S ... stage W ... measurement object (workpiece)

Claims (4)

光を出力する光源と、
前記光源から出力された光を参照光路と測定光路とに分岐するとともに、参照光路を経た反射光と測定光路に配置された測定対象物を経た反射光とを合成した合成波を出力するビームスプリッタと、
前記参照光路に配置され、ビームスプリッタで参照光路に分岐された光を、反射面に配された複数の微小ミラーによって反射する参照ミラーと、
前記測定光路に配置され、測定対象物が載置されるステージと、
前記参照光路および前記測定光路のいずれか一方の光路長を変化させる光路長可変手段と、
二次元に配列された複数の受光素子により前記合成波における干渉光強度の二次元の分布を示す干渉画像を撮像する撮像手段と、
を備える光干渉測定装置であって、
前記複数の微小ミラーは、前記複数の受光素子と対応して配列され、各微小ミラーによる反射光が、当該微小ミラーに対応する受光素子に入射し、
前記受光素子の受光部において、前記微小ミラーによる反射光が入射する領域の面積は、当該受光素子の受光部の面積よりも狭いことを特徴とする、光干渉測定装置。
A light source that outputs light;
A beam splitter that branches the light output from the light source into a reference optical path and a measurement optical path, and outputs a combined wave obtained by combining the reflected light that has passed through the reference optical path and the reflected light that has passed through the measurement object disposed in the measurement optical path. When,
A reference mirror that is arranged in the reference optical path and reflects the light branched into the reference optical path by a beam splitter by a plurality of micromirrors arranged on a reflection surface;
A stage disposed in the measurement optical path and on which a measurement object is placed; and
An optical path length variable means for changing an optical path length of any one of the reference optical path and the measurement optical path;
Imaging means for imaging an interference image showing a two-dimensional distribution of interference light intensity in the combined wave by a plurality of light receiving elements arranged in two dimensions;
An optical interference measurement apparatus comprising:
The plurality of micromirrors are arranged corresponding to the plurality of light receiving elements, and the reflected light from each micromirror is incident on the light receiving elements corresponding to the micromirrors ,
An optical interference measuring apparatus characterized in that, in the light receiving part of the light receiving element, the area of the region where the reflected light from the micromirror is incident is narrower than the area of the light receiving part of the light receiving element .
前記微小ミラーは、円形に形成されることを特徴とする、請求項に記載の光干渉測定装置。 The optical interference measuring apparatus according to claim 1 , wherein the micromirror is formed in a circular shape. 前記参照ミラーの反射面における前記微小ミラーが配されていない部分は、前記ビームスプリッタからの光を吸収することを特徴とする、請求項1または2に記載の光干渉測定装置。 3. The optical interference measuring apparatus according to claim 1, wherein a portion of the reflection surface of the reference mirror where the minute mirror is not disposed absorbs light from the beam splitter. 4. 前記参照ミラーの反射面における前記微小ミラーが配されていない部分は、前記ビームスプリッタからの光を散乱することを特徴とする、請求項1または2に記載の光干渉測定装置。 3. The optical interference measuring apparatus according to claim 1, wherein a portion of the reflecting surface of the reference mirror where the micromirror is not disposed scatters light from the beam splitter.
JP2013177086A 2013-08-28 2013-08-28 Optical interference measurement device Active JP6273109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177086A JP6273109B2 (en) 2013-08-28 2013-08-28 Optical interference measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177086A JP6273109B2 (en) 2013-08-28 2013-08-28 Optical interference measurement device

Publications (2)

Publication Number Publication Date
JP2015045575A JP2015045575A (en) 2015-03-12
JP6273109B2 true JP6273109B2 (en) 2018-01-31

Family

ID=52671186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177086A Active JP6273109B2 (en) 2013-08-28 2013-08-28 Optical interference measurement device

Country Status (1)

Country Link
JP (1) JP6273109B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121058B (en) 2016-02-25 2020-09-15 株式会社三丰 Measuring method
CN107121084B (en) 2016-02-25 2023-12-29 株式会社三丰 Measurement method measurement program
JP2018096869A (en) * 2016-12-14 2018-06-21 株式会社ミツトヨ Interference object lens
US10794688B2 (en) 2018-03-07 2020-10-06 Mitutoyo Corporation Optical interference measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116010A (en) * 2000-10-04 2002-04-19 Ricoh Co Ltd Three-dimensional shape measuring method and device
JP2003295110A (en) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp Image display device
US6980347B2 (en) * 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US20060232784A1 (en) * 2005-04-19 2006-10-19 Regis Grasser Interferometers of high resolutions
DE102008050446B4 (en) * 2008-10-08 2011-07-28 Carl Zeiss SMT GmbH, 73447 Method and devices for controlling micromirrors
JP2013104672A (en) * 2011-11-10 2013-05-30 Fujikura Ltd Shape measuring apparatus

Also Published As

Publication number Publication date
JP2015045575A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5607392B2 (en) Optical interference measurement device
KR102408322B1 (en) Auto-Focus system
TWI434022B (en) Chromatic confocal microscope system and signal process method of the same
JP6484072B2 (en) Object detection device
US8610902B2 (en) Apparatus and method for inspecting an object with increased depth of field
US8614415B2 (en) Defect inspection method of fine structure object and defect inspection apparatus
TWI484139B (en) Chromatic confocal scanning apparatus
JP2008513751A (en) Optical measuring device for measuring multiple surfaces of a measuring object
KR20100087103A (en) Imaging measurements system with periodic pattern illumination and tdi
EP2813809A1 (en) Device and method for measuring the dimensions of an objet and method for producing an item using said device
JP6010505B2 (en) Image acquisition device and focus method of image acquisition device
JP6273109B2 (en) Optical interference measurement device
JP7093915B2 (en) Surface shape measurement method
JP2015108582A (en) Three-dimensional measurement method and device
JP6293528B2 (en) Calibration method of reference mirror surface shape in interferometer
US7859683B2 (en) Fast three-dimensional shape measuring apparatus and method
JP2023176026A (en) Method for determining scan range
JP2019144202A (en) Image inspection device and image inspection method
FI127908B (en) Method and apparatus for measuring the height of a surface
KR101423829B1 (en) 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
JP2009216702A (en) Optical measuring instrument
JP2014035266A (en) Confocal microscope
JP2021124429A (en) Scanning measurement method and scanning measurement device
JP6820516B2 (en) Surface shape measurement method
KR100943405B1 (en) A 3D Shape Measuring System using Lateral Scan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6273109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250