JP6266954B2 - Water treatment equipment using liquid level plasma discharge - Google Patents

Water treatment equipment using liquid level plasma discharge Download PDF

Info

Publication number
JP6266954B2
JP6266954B2 JP2013237607A JP2013237607A JP6266954B2 JP 6266954 B2 JP6266954 B2 JP 6266954B2 JP 2013237607 A JP2013237607 A JP 2013237607A JP 2013237607 A JP2013237607 A JP 2013237607A JP 6266954 B2 JP6266954 B2 JP 6266954B2
Authority
JP
Japan
Prior art keywords
water
treated water
discharge
gas
phase space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013237607A
Other languages
Japanese (ja)
Other versions
JP2015097975A (en
Inventor
秋路 原
秋路 原
Original Assignee
株式会社セイデン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セイデン filed Critical 株式会社セイデン
Priority to JP2013237607A priority Critical patent/JP6266954B2/en
Publication of JP2015097975A publication Critical patent/JP2015097975A/en
Application granted granted Critical
Publication of JP6266954B2 publication Critical patent/JP6266954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

この発明は、各種産業排水や湖沼の水処理や飲用水、工業用水の確保に際し、水質を浄化するために使用する液面プラズマ放電を利用した水処理装置に関する。   The present invention relates to a water treatment apparatus using liquid level plasma discharge used for purifying water quality in water treatment for various industrial wastewater and lakes, drinking water, and industrial water.

一般に上記のような産業排水や湖沼、河川の水質浄化のための水処理には濾過や化学処理が広く使用されている。
これに対し、水中又は液面に対して空間を介してプラズマ放電を行うことにより、O3,OHラジカルを発生させ、これらによって水質を浄化する技術が公知である(特許文献1,同2)。
In general, filtration and chemical treatment are widely used for water treatment for purifying the water quality of industrial wastewater, lakes, and rivers as described above.
On the other hand, a technique for purifying water quality by generating O 3 and OH radicals by performing plasma discharge through water or a liquid surface via a space is known (Patent Documents 1 and 2). .

特開2006−021086号公報(図5)JP 2006-021086 A (FIG. 5) 特開2000−288547号公報(図1)JP 2000-288547 A (FIG. 1)

上記特許文献1,2の処理技術は、処理水内にオゾンやOHラジカル(hidoroxy:radical)を発生させて処理水を反応させ、殺菌,有機物や化学物質の分解等を行うので、化学薬品等を添加するものに比して処理が簡単で、余分な有害廃棄物を発生させないという利点がある。   The treatment techniques of Patent Documents 1 and 2 generate ozone and OH radicals (hidoroxy: radical) in the treated water and react the treated water to sterilize and decompose organic substances and chemical substances. As compared with those to which succinic acid is added, there are advantages that the processing is simple and that no extra hazardous waste is generated.

しかし、特許文献1のものは処理槽内の処理水中に陰陽両電極が浸されているためO3の発生効率が低く且つ水質の汚染度が高い場合は高出力の電源が必要である。一方特許文献2の技術は、気相空間を介して液面に対して放電するため、求められる電源出力への影響が少ないが、気相空間が外部に対して開放されているために、発生したオゾンやOHラジカルが外気の影響を受け又は外部に放散される欠点がある。 However, in Patent Document 1, since both Yin and Yang electrodes are immersed in the treated water in the treatment tank, a high output power source is required when the generation efficiency of O 3 is low and the water quality is high. On the other hand, the technique of Patent Document 2 discharges to the liquid level through the gas phase space, and thus has little influence on the required power output, but occurs because the gas phase space is open to the outside. The ozone and OH radicals are affected by the outside air or are diffused to the outside.

また反応槽がいずれも縦軸方向に設置されるために流動する液面に対して、より広い空間を確保して処理水に対する効率的な放電効果を得るという課題に対しては機能が不十分である。   In addition, since all the reaction tanks are installed in the vertical axis direction, the function is insufficient for the problem of ensuring a wider space and obtaining an efficient discharge effect on the treated water with respect to the flowing liquid surface. It is.

上記課題を解決するために本発明の装置は、第1に、内部に処理水2を収容し、処理水中と処理水の液面2a上の気相空間6とに該液面2aを挟んで設置した陰電極7と、陽電極8との間にプラズマ放電をさせることにより、上記処理水2を浄化処理する反応槽1を備えた水処理装置において、上記気相空間6を外部に対して密閉された空間とし、反応槽1に処理水2を供給する導入部3側に処理水2にオゾン又は酸素の少なくとも何れかを含んだガスを供給して反応槽1内に上記ガスを含む気相空間6を形成させる気液混合器14を設け、上記気相空間6内に気相空間側の電極8を囲うスカート部12を設け、スカート部12の内面に対し沿面放電をさせる機構としたことを特徴としている。 In order to solve the above problems, the apparatus of the present invention firstly contains treated water 2 inside, and sandwiches the liquid level 2a between the treated water and the gas phase space 6 on the liquid level 2a of the treated water. In the water treatment apparatus provided with the reaction tank 1 for purifying the treated water 2 by causing plasma discharge between the installed negative electrode 7 and the positive electrode 8, the gas phase space 6 is directed to the outside. A gas containing at least one of ozone and oxygen is supplied to the treated water 2 on the side of the introduction unit 3 that supplies the treated water 2 to the reaction tank 1 and the reaction tank 1 contains the gas. A gas-liquid mixer 14 for forming the phase space 6 is provided , a skirt portion 12 is provided in the gas phase space 6 to surround the electrode 8 on the gas phase space side, and a creeping discharge is applied to the inner surface of the skirt portion 12. It is characterized by that.

第2に、反応1が処理水2を導入する導入部3と処理水2を排出する排出部4以外は密閉された容器であることを特徴としている。 Secondly, the reaction tank 1 is characterized in that it is a sealed container except for the introduction part 3 for introducing the treated water 2 and the discharge part 4 for discharging the treated water 2.

第3に、反応槽1が処理水2の導入部側と排出部側を結ぶ横方向の軸心を有する筒状体からなり、該筒状体の上部の気相空間6に一方の電極を1個又は複数個設けたことを特徴としている。   Third, the reaction tank 1 is composed of a cylindrical body having a lateral axis connecting the introduction part side and the discharge part side of the treated water 2, and one electrode is provided in the gas phase space 6 at the upper part of the cylindrical body. One or a plurality are provided.

第4に、陽電極8と液面2aとの間に所定高さの空間を形成し、両電極7,8間の放電がストリーマ放電であることを特徴としている。   Fourth, a space having a predetermined height is formed between the positive electrode 8 and the liquid surface 2a, and the discharge between the electrodes 7 and 8 is a streamer discharge.

第5に、処理水2の導入部3となる供給管内にバブリングを行いながらガス供給を行う気液混合器14を設け、該気液混合器14が供給管内の処理水2にベンチュリー効果を生じさせるベンチュリー部にガス供給部を開口してなることを特徴としている。   Fifth, a gas-liquid mixer 14 for supplying gas while bubbling is provided in the supply pipe serving as the introduction part 3 for the treated water 2, and the gas-liquid mixer 14 produces a venturi effect on the treated water 2 in the supply pipe. It is characterized in that a gas supply part is opened in the venturi part to be made.

に、処理水2を排水する排出部4の下流側に濾過材を収容してなる濾過装置を接続したことを特徴としている。 Sixth , the present invention is characterized in that a filtration device containing a filtering material is connected to the downstream side of the discharge portion 4 for draining the treated water 2.

本発明は上記のように構成される結果以下のような効果を奏する。
1.処理対象水(処理水)に酸素又はオゾンを含んだ気体を供給して気相空間を形成し、液面と電極間でプラズマ放電をさせるので、ガスとして供給されるオゾン又は高湿度空間内でのプラズマ放電によって生じるオゾンにより殺菌,脱色,脱臭等の浄化処理を行う他、連続的に発生するOHラジカルにより処理水内の有機物や化学物質の分解による無害化や菌類、藻類等も死滅させることができる。
The present invention configured as described above has the following effects.
1. A gas containing oxygen or ozone is supplied to the water to be treated (treated water) to form a gas phase space, and plasma discharge is caused between the liquid surface and the electrode. In addition to sterilization, decolorization, deodorization, and other purification processes using ozone generated by plasma discharge, detoxification by the decomposition of organic substances and chemicals in the treated water and fungi and algae are killed by continuously generated OH radicals. Can do.

2.反応槽及び気相空間が外部に対して密閉されているので、気相空間は常に高湿度で又はさらに高濃度の酸素を含む雰囲気が形成され、流動する処理水の反応処理に必要なO3を効率良く大量に生成することができる。
また反応槽は軸線を横方向に設置した筒状体からなるので、横長に気相空間の形成ができるため、ここに複数の電極を設置し、又は横長の気相空間に沿って電極を放電することにより、反応槽内を下流に向って流動する処理水に対してより効率の高いプラズマ放電ができる利点がある。
2. Since the reaction vessel and the gas phase space are sealed with respect to the outside, the gas phase space is always formed with an atmosphere containing high humidity or a higher concentration of oxygen, and O 3 necessary for the reaction treatment of the flowing treated water. Can be efficiently generated in large quantities.
In addition, since the reaction tank consists of a cylindrical body with the axis line installed in the horizontal direction, a gas phase space can be formed horizontally long, so a plurality of electrodes are installed here, or the electrodes are discharged along the horizontal gas phase space. By doing so, there is an advantage that a more efficient plasma discharge can be performed on the treated water flowing in the reaction tank in the downstream direction.

3.O3及びOHラジカルによる反応処理なので、余剰廃棄物が少なく経費の節減になるほか、処理のための薬剤を使用する必要性が少ないため二次汚染の防止ができる。また処理装置は強力な反応が期待でき、構造も簡単で小型化が可能なのでコスト負担も少なくて済むほか、既存の各種水処理装置に低コストで付加できる利点がある。 3. Since it is a reaction treatment with O 3 and OH radicals, there is less surplus waste and cost savings, and there is little need to use chemicals for treatment, so secondary contamination can be prevented. In addition, the treatment apparatus can be expected to have a strong reaction, has a simple structure and can be miniaturized, so that the cost burden can be reduced, and it can be added to various existing water treatment apparatuses at low cost.

4.気相空間内の放電電極をスカート部で囲むことにより、スカート部の内面で沿面放電を行わせるので、O3の発生量を増大させ、処理水の反応力を高めることができる。 4). By enclosing the discharge electrode in the gas phase space with the skirt portion, creeping discharge is performed on the inner surface of the skirt portion, so that the amount of O 3 generated can be increased and the reactive power of the treated water can be increased.

5.反応槽の下流側に濾過装置を接続することによって、反応槽での反応生成物を捕集できるので、処理水の浄化を高め、処理済の浄化水供給による処理対象となる環境浄化への再利用効果も期待できる。 5. By connecting a filtration device to the downstream side of the reaction tank, the reaction products in the reaction tank can be collected, so that purification of treated water is improved and reprocessing to the environmental purification to be treated by the supply of treated purified water is performed. Use effect can also be expected.

6.処理水内に酸素又はオゾンをバブリングし、さらに放電電極と気相空間を介した液面との間でプラズマ放電させることにより、放電用の電源出力を節減できる。 6). By bubbling oxygen or ozone into the treated water and further performing plasma discharge between the discharge electrode and the liquid surface via the gas phase space, the power output for discharge can be reduced.

本発明の装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the apparatus of this invention. 本発明の装置を従来の水処理装置に付設した実施例を示す説明図である。It is explanatory drawing which shows the Example which attached the apparatus of this invention to the conventional water treatment apparatus. 本発明装置を湖沼又は貯水池等に直接設置した場合の説明図である。It is explanatory drawing at the time of installing this invention apparatus directly in a lake or a reservoir. (A)〜(D)は処理前のクリーニング排水の原水と処理後30分,60分経過した処理水及び60分経過後の処理水をゼオライトを用いた濾過装置で濾過したものをそれぞれ示す。(A)-(D) show what filtered the raw water of the cleaning waste water before a process, the treated water 30 minutes after processing, 60 minutes passed, and the treated water 60 minutes passed with the filter apparatus using zeolite, respectively. (A)〜(D)は、処理前の他のクリーニング排水の原水と処理後30分,60分経過した処理水及び60分経過後の処理水をゼオライトを用いた濾過装置で濾過したものをそれぞれ示す。(A) to (D) are obtained by filtering raw water of other cleaning wastewater before treatment, treated water after 30 minutes, 60 minutes after treatment, and treated water after 60 minutes with a filtration device using zeolite. Each is shown.

図1に示す本発明の装置は、横長の絶縁体である円筒形の透明アクリル管(60mm×300mm)からなる反応槽1を水平方向に設置し、その上流端に処理水2の導入部(供給管)3が、下流端には排出部(管)4が軸心に沿って取付けられ、全体が密閉構造になっている。   In the apparatus of the present invention shown in FIG. 1, a reaction tank 1 composed of a cylindrical transparent acrylic tube (60 mm × 300 mm), which is a horizontally long insulator, is installed in a horizontal direction, and an introduction part ( A discharge pipe (tube) 4 is attached to the downstream end of the supply pipe) 3 along the axial center, and the whole has a sealed structure.

導入部3からは未処理水が供給され(この例では8 l/min)、排出部4からは処理済水が排出され、処理水2は、反応槽1内の上部に気相空間6が例えば20mm前後の高さで形成されるように水位が調整される。   Untreated water is supplied from the introduction unit 3 (8 l / min in this example), treated water is discharged from the discharge unit 4, and the treated water 2 has a gas phase space 6 in the upper part of the reaction tank 1. For example, the water level is adjusted so as to be formed at a height of about 20 mm.

反応槽1内の処理水中の底部側には、ステンレス(SUS)鋼板等からなる電極(陰電極)7が水平方向に設置され、気相空間6内の断面中央には1個又は複数個(この例では2個)外部上方より垂直下向き方向に電極(陽電極)8が設置されている。陽電極8はプラグ9を介して取付けられ、パルス電源(出力20Hz、DC150V、入力電圧AC100V)10に、並列接続された2基の高電圧発生コイル11を介して陽電極側に接続され、例えばそれぞれ20kvで入力される。高電圧発生コイル11の陰電極側はそれぞれ前記陰電極7側に接続されている。   An electrode (cathode electrode) 7 made of stainless steel (SUS) steel plate or the like is horizontally installed on the bottom side of the treated water in the reaction tank 1, and one or a plurality ( In this example, two electrodes are provided (positive electrode) 8 in the vertical downward direction from the upper outside. The positive electrode 8 is attached via a plug 9 and connected to a pulse power source (output 20 Hz, DC 150 V, input voltage AC 100 V) 10 via two high voltage generating coils 11 connected in parallel to the positive electrode side. Each is input at 20 kv. The negative electrode side of the high voltage generating coil 11 is connected to the negative electrode 7 side.

陽電極8はこの例では0.8mm程度のステンレス鋼又はアルミからなる棒状電極が使用され、液面2aとの間隔は20mm前後に設定されている。そして該陽電極8の外周には透明なアクリル管(絶縁体)よりなるスカート部12が同心的に且つ下向きに開放して設置され、陽電極からの放電は液面2aに対して行われるほか、スカート部12の内面に対し沿面放電として行われる。   In this example, the positive electrode 8 is a rod-shaped electrode made of stainless steel or aluminum having a thickness of about 0.8 mm, and the distance from the liquid surface 2a is set to about 20 mm. A skirt portion 12 made of a transparent acrylic tube (insulator) is concentrically and opened downward on the outer periphery of the positive electrode 8, and discharge from the positive electrode is performed on the liquid surface 2a. The creeping discharge is performed on the inner surface of the skirt portion 12.

導入部3内にはガス供給管13が交差して開口するように接続され、その開口部はベンチュリー管を用いた気液混合器14が設けられ、ガス供給管13はオゾナイザ等のオゾン発生器,酸素富化装置,酸素発生装置等のガス発生装置16に接続されて、気液混合器14にオゾン,酸素を供給する。ガス供給管の外部端はフィルター等を介して外気に開放され、外部から空気を吸引して供給するものであってもよい。   A gas supply pipe 13 is connected in the introduction section 3 so as to open in an intersecting manner, and the opening is provided with a gas-liquid mixer 14 using a venturi pipe. The gas supply pipe 13 is an ozone generator such as an ozonizer. , Connected to a gas generator 16 such as an oxygen enricher or an oxygen generator to supply ozone and oxygen to the gas-liquid mixer 14. The external end of the gas supply pipe may be opened to the outside air through a filter or the like, and may be supplied by sucking air from the outside.

上記のような機構により、反応槽1には流入処理水とともにオゾン又は酸素を含むガスがバブリングを伴って混合され、流入した処理水中及び気相空間6内では陽電極8から陰電極7に向って液面放電又は水中放電が行われる。   With the mechanism as described above, ozone or oxygen-containing gas is mixed in the reaction tank 1 together with the inflowing treated water with bubbling. Liquid level discharge or underwater discharge is performed.

その結果、水中にオゾン供給がない場合でもO3,H22(過酸化水素),OHが発生し、バブリングやオゾン自体による浄化(殺菌,脱臭,脱色等)のほかに、この発明で主として期待している水中のO3によって生じるOHラジカルによる強力な酸化作用,殺菌作用,藻等の植物を死滅させる作用等による処理水の浄化が行われ、気液混合器14よりO3が供給される場合は、上記のOHの発生がさらに促進されることになる。 As a result, O 3 , H 2 O 2 (hydrogen peroxide) and OH are generated even when there is no ozone supply in the water. In addition to bubbling and purification by ozone itself (sterilization, deodorization, decolorization, etc.), The treatment water is purified mainly by the strong oxidation action, sterilization action, and action of killing plants such as algae caused by OH radicals generated by O 3 in water, which is expected, and O 3 is supplied from the gas-liquid mixer 14. If so, the generation of the OH will be further promoted.

上記のような反応処理後も処理水中には、反応による生成物が残存するため、この生成物がイオン交換によって除去すべきものである場合は、ゼオライト等のイオン交換作用を持つ濾過材を用いた濾過装置でイオン交換及び濾過作用による浄化を行う。また単に固液分離のみで足りる生成物の場合は、活性炭や木炭による濾過装置で浄化できる。   Since the product resulting from the reaction remains in the treated water even after the reaction treatment as described above, when this product is to be removed by ion exchange, a filter medium having an ion exchange action such as zeolite was used. Purification is performed by ion exchange and filtration using a filtration device. In addition, in the case of a product that requires only solid-liquid separation, it can be purified by a filtration device using activated carbon or charcoal.

また、本装置による反応処理を妨げる固体等を含む処理水に対しては、本装置の上流側にこれらを捕集する濾過装置を設置すれば足りる。
尚、上記の例では、水平方向の反応槽1の軸心に対して直交方向に陽電極8を設けたが、横方向の気相空間6に対し、軸心方向に沿って陽電極8を水平に配置することも可能であり、この場合は反応槽1内の処理水の流れに沿って略全長にわたって放電電極を配置できる利点があり、この場合沿面放電を促すスカート部(いずれも図示しない)は、水平方向の電極の前後両側に下端を開放端として断面を上下方向に配置することが望ましい。
For treated water containing solids or the like that hinder the reaction treatment by this apparatus, it is sufficient to install a filtration device for collecting these on the upstream side of this apparatus.
In the above example, the positive electrode 8 is provided in a direction orthogonal to the axial center of the reaction tank 1 in the horizontal direction, but the positive electrode 8 is provided along the axial direction with respect to the gas phase space 6 in the horizontal direction. It is also possible to arrange it horizontally, in this case there is an advantage that the discharge electrode can be arranged over the entire length along the flow of the treated water in the reaction vessel 1, and in this case, a skirt portion that promotes creeping discharge (both not shown) ) Is preferably arranged in the vertical direction with the lower end as the open end on both front and rear sides of the horizontal electrode.

また上記実施例の説明中に記した寸法や出力値等の数値は、発明者が実験装置として製作したものの例であり、実際の実施に当たっては、求められる処理能力や処理対象物等によって変更されるものであって、これらの数値に限定されるものではない。   In addition, the numerical values such as dimensions and output values described in the description of the above examples are examples of what the inventor made as an experimental device, and in actual implementation, they are changed depending on the required processing capacity, processing object, etc. However, it is not limited to these numerical values.

図4,図5は上記の装置を用いて業務用洗濯の使用済洗濯水を処理した場合の浄化程度を示す写真である。図4は色素を含む洗濯水の浄化結果、図5は色素を含まない洗濯水の浄化結果であり、いずれも(A)が処理前の水,(B)が30分循環処理した水,(C)が60分循環処理した水,(D)が60分処理後の水をゼオライト濾材を用いた濾過装置で濾過処理したものを示す。
上記によればいずれも(A)から(C)に至る過程で明らかに透明度が高まり、本装置が優れた浄化能力を発揮していることを示している。
4 and 5 are photographs showing the degree of purification when used laundry water for commercial laundry is processed using the above-described apparatus. FIG. 4 shows the purification result of the washing water containing the pigment, and FIG. 5 shows the purification result of the washing water not containing the pigment, both of which (A) is the water before treatment, (B) is the water that has been circulated for 30 minutes, C) shows the water treated by circulation for 60 minutes, and (D) shows the water treated after 60 minutes by filtration using a filter device using a zeolite filter medium.
According to the above, in all of the processes from (A) to (C), the transparency is clearly increased, indicating that this apparatus exhibits an excellent purification ability.

図2は従来の水の浄化処理装置に本発明の処理装置を付設した場合の例を示している。
この例では湖沼31の水質浄化を行うもので、主として水の汚濁やアオコ等の藻類を除去することを目的としている。湖沼の水32はポンプP1により循環処理槽33に収容され、ここからポンプP2によって3方弁34を介して砂等の粗い固体を捕集する濾過機36,曝気槽37,吸着濾過機である木炭槽38,ゼオライト槽39に順次送られて処理される。
FIG. 2 shows an example in which the treatment apparatus of the present invention is attached to a conventional water purification treatment apparatus.
In this example, the water quality of the lake 31 is purified, and the purpose is mainly to remove water algae such as water pollution and blue water. Lake water 32 is accommodated in a circulation treatment tank 33 by a pump P 1 , from which a filter 36, an aeration tank 37, and an adsorption filter are used to collect coarse solids such as sand through a three-way valve 34 by a pump P 2 . Are sequentially sent to the charcoal tank 38 and the zeolite tank 39 for processing.

また循環処理槽33に入りきらない水は隣接した一時貯水槽41に貯水され、この水は必要に応じストレーナー42,ゼオライト使用の濾過機43等で粗処理されて、ポンプP3により湖沼31に散水ノズル44により散水放出され又は濾過機逆洗用等として他に送水される。一時貯水槽41の水は通常はこの他上記濾過機36に送られて順次処理される。 Further, the water that does not enter the circulation treatment tank 33 is stored in the adjacent temporary water storage tank 41, and this water is roughly treated by a strainer 42, a zeolite filter 43, etc., if necessary, and is supplied to the lake 31 by the pump P 3. Water spray is discharged by the water spray nozzle 44 or water is sent to others for backwashing of the filter. In addition to this, the water in the temporary water storage tank 41 is usually sent to the filter 36 and sequentially processed.

木炭槽38,ゼオライト槽39の底部にはエアブロー46によりバブリングが行われるほか、曝気槽37,木炭槽38,ゼオライト槽39内の水は、浄化の度合によりドレン管47を介して放出又は他の用途に利用することができる。   In addition to bubbling by the air blow 46 at the bottom of the charcoal tank 38 and the zeolite tank 39, the water in the aeration tank 37, the charcoal tank 38 and the zeolite tank 39 is discharged through the drain pipe 47 depending on the degree of purification. It can be used for applications.

曝気槽37の気泡は消泡タンク48により水に戻され、エアはブロアー49によって外気に放出され、水分はドレン管51によって排出される。またゼオライト槽39の水位は、水位調整部52により一定に調整され、調整の余剰水は循環処理槽33に戻される。   Bubbles in the aeration tank 37 are returned to water by the defoaming tank 48, air is released to the outside air by the blower 49, and water is discharged by the drain pipe 51. Further, the water level of the zeolite tank 39 is adjusted to be constant by the water level adjusting unit 52, and the excess water adjusted is returned to the circulation processing tank 33.

上記ゼオライト槽39によって処理された処理水はポンプP4により本発明装置20の導入部3に送られるが、ポンプP4の下流側には処理水中に残存する固体を予め捕集するカートリッジ式フィルターを備えた濾過機52が設けられており、プラズマ放電処理に適した前処理が行われる。本発明装置20による処理水の浄化(反応)処理は既に述べた工程を経て処理される。 Although treatment water treated by the zeolite tank 39 is sent to the inlet portion 3 of the present invention device 20 by the pump P 4, cartridge-type filter on the downstream side of the pump P 4 for previously collecting the solids remaining in the treated water Is provided, and pretreatment suitable for plasma discharge treatment is performed. The purification (reaction) treatment of the treated water by the apparatus 20 of the present invention is performed through the steps already described.

本発明者等は上記実施例の装置を用いて本年6月〜7月の1ヶ月間、愛知県西尾市内の自動車ディーラーの工場排液の再利用用貯水池での水の浄化実験を行った。
その結果従来の水処理装置の処理水に対して、目視によるも明らかに透明度の高い、高い浄化効果が得られたことを確認した。
The present inventors conducted a water purification experiment in a reservoir for reuse of factory waste water from a car dealership in Nishio City, Aichi Prefecture, for one month from June to July this year using the apparatus of the above embodiment. It was.
As a result, it was confirmed that a high purification effect, which was clearly high in transparency, was obtained with respect to the treated water of the conventional water treatment apparatus.

図3は湖における別の水質浄化の実施例を示し、この例では湖61の水62に対し、本発明の装置を直接設置したもので、湖水面(W・L)台船63(浮島でも可)に本発明の装置20を設置し、ポンプP4により湖水を汲み上げて直接反応槽1内に導入して処理するものである。
またこの例では反応槽1の下流側にゼオライト(活性炭でも良い)を濾材とした濾過機64を付設して固体の捕集を行っている。
FIG. 3 shows another embodiment of water purification in the lake. In this example, the apparatus of the present invention is directly installed on the water 62 of the lake 61. The apparatus 20 of the present invention is installed, and the lake water is pumped up by the pump P 4 and directly introduced into the reaction tank 1 for treatment.
In this example, a filter 64 using zeolite (which may be activated carbon) as a filter medium is attached downstream of the reaction tank 1 to collect solids.

上記装置で処理した浄化水は、図示するように散水ノズル44で湖水に散水しながら(酸素供給をしながら)戻すことにより、湖水の一層の浄化が実現でき、この場合は特にアオコ等の藻類の除去に有効である。
また上記散水処理と併行し又はこれに代ってドレン管66により浄化水を湖水内又は湖底に注水することにより、湖水の浄化を実現することができ、この方法では溶存酸素の豊富な浄化水を湖底に供給することにより湖底の浄化が行われる効果がある。
The purified water treated by the above apparatus can be further purified by returning the water to the lake water (while supplying oxygen) with the water nozzle 44 as shown in the figure. It is effective for removal.
Further, the purification of the lake water can be realized by injecting the purified water into the lake water or the bottom of the lake by the drain pipe 66 in parallel with the watering treatment, or in this method, the purified water rich in dissolved oxygen. By supplying to the bottom of the lake, there is an effect of purifying the bottom of the lake.

1 反応槽
2 処理水
2a 液面
3 導入部
4 排出部
6 気相空間
7 陰電極
8 陽電極
14 気液混合器
64 濾過機(装置)
4 ポンプ
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Treated water 2a Liquid level 3 Introduction part 4 Discharge part 6 Gas phase space 7 Negative electrode 8 Positive electrode 14 Gas-liquid mixer 64 Filter (apparatus)
P 4 pump

Claims (6)

内部に処理水(2)を収容し、処理水中と処理水の液面(2a)上の気相空間(6)とに該液面(2a)を挟んで設置した陰電極(7)と、陽電極(8)との間にプラズマ放電をさせることにより、上記処理水(2)を浄化処理する反応槽(1)を備えた水処理装置において、上記気相空間(6)を外部に対して密閉された空間とし、反応槽(1)に処理水(2)を供給する導入部(3)側に処理水(2)にオゾン又は酸素の少なくとも何れかを含んだガスを供給して反応槽(1)内に上記ガスを含む気相空間(6)を形成させる気液混合器(14)を設け、上記気相空間(6)内に気相空間側の電極(8)を囲うスカート部(12)を設け、スカート部(12)の内面に対し沿面放電をさせる機構とした液面プラズマ放電を利用した水処理装置。 A negative electrode (7) that contains treated water (2) therein, and is disposed between the treated water and the gas phase space (6) above the treated water level (2a) with the liquid level (2a) sandwiched therebetween; In the water treatment apparatus provided with the reaction tank (1) for purifying the treated water (2) by causing plasma discharge between the positive electrode (8) and the gas phase space (6) to the outside. The reaction space (1) is supplied with a gas containing at least one of ozone and oxygen to the introduction water (2) side to supply the treated water (2) to the reaction tank (1). A skirt for providing a gas-liquid mixer (14) for forming a gas phase space (6) containing the gas in the tank (1 ) and enclosing the electrode (8) on the gas phase space side in the gas phase space (6) part (12) is provided, water treatment using the liquid surface plasma discharge was mechanism for creeping discharge to the inner surface of the skirt portion (12) Location. 反応(1)が処理水(2)を導入する導入部(3)と処理水(2)を排出する排出部(4)以外は密閉された容器である請求項1に記載に液面プラズマ放電を利用した水処理装置。 2. The liquid level plasma according to claim 1, wherein the reaction vessel (1) is a sealed vessel except for the introduction part (3) for introducing the treated water (2) and the discharge part (4) for discharging the treated water (2). Water treatment equipment using electric discharge. 反応槽(1)が処理水(2)の導入部側と排出部側を結ぶ横方向の軸心を有する筒状体からなり、該筒状体の上部の気相空間(6)に一方の電極を1個又は複数個設けた請求項1又は2の何れかに記載の液面プラズマ放電を利用した水処理装置。   The reaction tank (1) is formed of a cylindrical body having a lateral axis connecting the introduction part side and the discharge part side of the treated water (2), and one gas phase space (6) in the upper part of the cylindrical body is placed in the gas phase space (6). The water treatment apparatus using liquid level plasma discharge according to claim 1, wherein one or a plurality of electrodes are provided. 陽電極(8)と液面(2a)との間に所定高さの空間を形成し、両電極(7),(8)間の放電がストリーマ放電である請求項1乃至3の何れかに記載の液面プラズマ放電を利用した水処理装置。   A space having a predetermined height is formed between the positive electrode (8) and the liquid surface (2a), and the discharge between the electrodes (7) and (8) is a streamer discharge. The water treatment apparatus using liquid level plasma discharge of description. 処理水(2)の導入部(3)となる供給管内にバブリングを行いながらガス供給を行う気液混合器(14)を設け、該気液混合器(14)が供給管内の処理水(2)にベンチュリー効果を生じさせるベンチュリー部にガス供給部を開口してなる請求項1乃至4の何れかに記載の液面プラズマ放電を利用した水処理装置。   A gas-liquid mixer (14) for supplying gas while bubbling is provided in a supply pipe serving as an introduction part (3) for the treated water (2), and the gas-liquid mixer (14) is disposed in the treated water (2 The water treatment apparatus using liquid level plasma discharge according to any one of claims 1 to 4, wherein a gas supply part is opened in a venturi part that produces a venturi effect. 処理水(2)を排水する排出部(4)の下流側に濾過材を収容してなる濾過装置を接続した請求項1乃至の何れかに記載の液面プラズマ放電を利用した水処理装置。 The water treatment device using liquid level plasma discharge according to any one of claims 1 to 5 , wherein a filtration device containing a filtering material is connected to a downstream side of the discharge portion (4) for draining the treated water (2). .
JP2013237607A 2013-11-18 2013-11-18 Water treatment equipment using liquid level plasma discharge Active JP6266954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013237607A JP6266954B2 (en) 2013-11-18 2013-11-18 Water treatment equipment using liquid level plasma discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013237607A JP6266954B2 (en) 2013-11-18 2013-11-18 Water treatment equipment using liquid level plasma discharge

Publications (2)

Publication Number Publication Date
JP2015097975A JP2015097975A (en) 2015-05-28
JP6266954B2 true JP6266954B2 (en) 2018-01-24

Family

ID=53374989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013237607A Active JP6266954B2 (en) 2013-11-18 2013-11-18 Water treatment equipment using liquid level plasma discharge

Country Status (1)

Country Link
JP (1) JP6266954B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584203B1 (en) * 2015-07-03 2016-01-13 주식회사 스페이스 Water purification device
JP2017056414A (en) * 2015-09-17 2017-03-23 国立大学法人 熊本大学 Plasma discharge liquid treatment apparatus and method thereof
JP6662252B2 (en) * 2016-09-07 2020-03-11 三菱電機株式会社 Fluid purification device and fluid purification method
CN110431112A (en) * 2017-03-17 2019-11-08 大金工业株式会社 Water treatment facilities and humidifier
JP2019089004A (en) * 2017-11-10 2019-06-13 株式会社東芝 Hydrogen peroxide solution production apparatus
JP2019089003A (en) * 2017-11-10 2019-06-13 株式会社東芝 Water treatment system
JP6817595B2 (en) 2017-12-08 2021-01-20 パナソニックIpマネジメント株式会社 Liquid processing equipment
JP7086653B2 (en) * 2018-03-14 2022-06-20 株式会社東芝 Water treatment equipment
WO2020136982A1 (en) * 2018-12-28 2020-07-02 日本碍子株式会社 Sterilizing water, sterilizing water production method and sterilized object production method
CN112225369A (en) * 2020-11-18 2021-01-15 安徽汇泽通环境技术有限公司 Plasma is powdered catalyst organic waste water treatment device in coordination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187743A (en) * 2005-01-07 2006-07-20 Toshiba Corp Radical treatment apparatus
JP4152925B2 (en) * 2004-07-06 2008-09-17 株式会社ビ−・シ−・オ− Water purification device
JP4784624B2 (en) * 2007-12-20 2011-10-05 三菱電機株式会社 Sterilizer and air conditioner, hand dryer and humidifier using the device
JP2011011126A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Apparatus for producing functional liquid
JP5866694B2 (en) * 2011-10-21 2016-02-17 国立大学法人東北大学 Radical generator and purification method using the same

Also Published As

Publication number Publication date
JP2015097975A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6266954B2 (en) Water treatment equipment using liquid level plasma discharge
KR101904507B1 (en) Method of membrane-coupled electrochemical advanced oxidation and its application device for water purification and water purification system using of the same
KR100848117B1 (en) Advanced water treatment equipment
JP2006263505A (en) Water treatment method and apparatus therefor
WO2015064382A1 (en) Liquid treatment apparatus and produced water treatment method
ES2745979T3 (en) System and method for treating fluids by sonoelectrochemistry
RU2430889C1 (en) Method for electric-pulse treatment of contaminated industrial waste water and apparatus for electric-pulse treatment of contaminated industrial waste water
KR101062388B1 (en) Water system of toilet
KR101951691B1 (en) A wastewater treatment apparatus
RU156246U1 (en) DEVICE FOR ELECTROCHEMICAL TREATMENT OF LIQUID MEDIA
WO2013172241A1 (en) Water treatment device and method
CN205275374U (en) Smelly oxidation treatment of catalysis printing and dyeing sewage equipment
JP6494346B2 (en) Separation membrane cleaning method and system for membrane separation apparatus
KR200407311Y1 (en) Dirty Water Purification Apparatus By Using Circulation Method
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
WO2021255541A1 (en) Plant for purifying wastewater
KR100943987B1 (en) Integrated wastewater reusing system
WO2016174562A2 (en) Dissolved ozone floatation effluent treatment system
JP5200224B2 (en) Water treatment equipment
RU160447U1 (en) UNDERGROUND WATER CLEANING DEVICE
CN216337129U (en) Industrial waste water purifies uses multiple treatment device
KR102312754B1 (en) Water treatment equipment of integrated type using ceramic membrane and ozone oxidation reaction
RU140860U1 (en) LIQUID CLEANING AND DISINFECTION SYSTEM
JP6708864B2 (en) VOC contaminated water purification method
RU2322395C1 (en) Device for processing drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6266954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250