JP6256541B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6256541B2
JP6256541B2 JP2016137685A JP2016137685A JP6256541B2 JP 6256541 B2 JP6256541 B2 JP 6256541B2 JP 2016137685 A JP2016137685 A JP 2016137685A JP 2016137685 A JP2016137685 A JP 2016137685A JP 6256541 B2 JP6256541 B2 JP 6256541B2
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
emitting device
light
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137685A
Other languages
Japanese (ja)
Other versions
JP2017041629A (en
Inventor
昌治 細川
昌治 細川
貞一 涌井
貞一 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to US15/234,249 priority Critical patent/US10026876B2/en
Publication of JP2017041629A publication Critical patent/JP2017041629A/en
Application granted granted Critical
Publication of JP6256541B2 publication Critical patent/JP6256541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本開示は、発光装置に関する。   The present disclosure relates to a light emitting device.

光源と、この光源からの光で励起されて光源の色相とは異なる色相の光を放出可能な波長変換部材とを組み合わせることで、光の混色の原理により多様な色相の光を放出可能な発光装置が開発されている。特に、発光ダイオード(Light Emitting Diode:以下「LED」と呼ぶ。)と蛍光体とを組み合わせて形成した発光装置は、照明装置、液晶表示装置のバックライト等へと盛んに応用されており、普及が進んでいる。例えば、白色系の混色光を発光する発光装置においては、青緑色、緑色、黄緑色等の短波長に発光する蛍光体と、橙色、赤色等の長波長に発光する蛍光体とを組み合わせることで、液晶表示装置の色再現範囲や照明装置の演色性の改善が可能である。   Combining a light source and a wavelength conversion member that can be excited by the light from this light source and emit light of a hue different from the hue of the light source, it is possible to emit light of various hues based on the principle of light color mixing Equipment has been developed. In particular, a light-emitting device formed by combining a light emitting diode (hereinafter referred to as “LED”) and a phosphor is actively applied to lighting devices, backlights of liquid crystal display devices, and the like. Is progressing. For example, in a light emitting device that emits white mixed color light, a phosphor that emits light at a short wavelength such as blue-green, green, and yellow-green and a phosphor that emits light at a long wavelength such as orange and red are combined. It is possible to improve the color reproduction range of the liquid crystal display device and the color rendering properties of the lighting device.

高エネルギー励起においても輝度低下の少ない蛍光体として、サイアロン蛍光体、酸窒化物蛍光体、窒化物蛍光体等の、結晶構造に窒素を含有する無機結晶を母体とする蛍光体が提案されている。これらのうち窒化物蛍光体の一例として、CaAlSiNを母体結晶としてEu2+で賦活された赤色蛍光体(以下、「CASN蛍光体」と呼ぶ。)及びCASN蛍光体のCaの一部をSrに置換した(Sr,Ca)AlSiN:Eu(以下、「SCASN蛍光体」と呼ぶ。)が知られている。CASN蛍光体及びSCASN蛍光体は、610〜680nmと幅広い範囲に発光ピーク波長を有している。これらの発光スペクトルの半値幅は75〜95nmである。 Phosphors having a base of an inorganic crystal containing nitrogen in the crystal structure, such as sialon phosphors, oxynitride phosphors, and nitride phosphors, have been proposed as phosphors that have little decrease in luminance even at high energy excitation. . Among these, as an example of a nitride phosphor, a red phosphor (hereinafter referred to as “CASN phosphor”) activated with Eu 2+ using CaAlSiN 3 as a base crystal and a part of Ca of the CASN phosphor in Sr. Substituted (Sr, Ca) AlSiN 3 : Eu (hereinafter referred to as “SCASN phosphor”) is known. The CASN phosphor and SCASN phosphor have emission peak wavelengths in a wide range of 610 to 680 nm. The full width at half maximum of these emission spectra is 75 to 95 nm.

近年、半値幅が70nm以下と狭い窒化物蛍光体としてSrLiAl:Eu(以下、「SLAN蛍光体」と呼ぶ。)が提案されている。この化合物の発光ピーク波長は650nm付近である(例えば、特許文献1、非特許文献1参照)。 In recent years, SrLiAl 3 N 4 : Eu (hereinafter referred to as “SLAN phosphor”) has been proposed as a nitride phosphor having a narrow half width of 70 nm or less. The emission peak wavelength of this compound is around 650 nm (see, for example, Patent Document 1 and Non-Patent Document 1).

国際公開第2013/175336号International Publication No. 2013/175336

Nature Materials, NMAT4012, 2014Nature Materials, NMAT4012, 2014

赤色発光の窒化物蛍光体を用いる発光装置において、さらなる演色性と発光効率の改善が求められている。
本開示に係る一実施態様の目的は、優れた演色性と高い発光効率とを有する発光装置を提供することにある。
In a light emitting device using a red light emitting nitride phosphor, further improvement in color rendering properties and light emission efficiency are required.
An object of an embodiment according to the present disclosure is to provide a light emitting device having excellent color rendering properties and high light emission efficiency.

前記課題を解決するための具体的手段は以下の通りであり、本開示は以下の態様を包含する。
400nm以上480nm以下の波長範囲に発光ピーク波長を有する発光素子と、アルカリ土類金属、アルカリ金属、アルミニウム及びユーロピウムを含む窒化物である第一蛍光体と、アルカリ土類金属、アルミニウム、ケイ素及びユーロピウムを含む窒化物である第二蛍光体と、500nm以上560nm以下の波長範囲に発光ピーク波長を有する第三蛍光体とを含む蛍光部材と、を備え、前記第一蛍光体及び第二蛍光体の総含有量に対する第一蛍光体の含有率が5質量%以上95質量%以下の発光装置である。
Specific means for solving the above problems are as follows, and the present disclosure includes the following aspects.
A light emitting device having an emission peak wavelength in a wavelength range of 400 nm or more and 480 nm or less, a first phosphor which is a nitride containing alkaline earth metal, alkali metal, aluminum and europium, alkaline earth metal, aluminum, silicon and europium A second phosphor that is a nitride containing a phosphor and a third phosphor having an emission peak wavelength in a wavelength range of 500 nm or more and 560 nm or less, and the first phosphor and the second phosphor In the light emitting device, the content of the first phosphor with respect to the total content is 5% by mass or more and 95% by mass or less.

本開示によれば、優れた演色性と高い発光効率とを有する発光装置を提供することができる。   According to the present disclosure, a light emitting device having excellent color rendering properties and high light emission efficiency can be provided.

本実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the light-emitting device which concerns on this embodiment. 本実施形態に係る蛍光体1、蛍光体2aから2dの波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the fluorescent substance 1 which concerns on this embodiment, and fluorescent substance 2a-2d. 本実施形態に係る蛍光体3aから3c及び4aから4cの波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of fluorescent substance 3a-3c and 4a-4c which concern on this embodiment. 実施例1から4、比較例1及び2に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Examples 1-4 and Comparative Examples 1 and 2. FIG. 比較例2から4に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Comparative Examples 2-4. 実施例5から10、比較例5及び6に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Examples 5-10 and the comparative examples 5 and 6. FIG. 実施例11及び比較例1に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Example 11 and Comparative Example 1. FIG. 実施例3、12及び13に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Example 3, 12, and 13. FIG. 実施例3、14及び15に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Example 3, 14, and 15. FIG. 実施例3、16及び17に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Example 3, 16, and 17. FIG. 実施例18、19及び比較例7に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Example 18, 19 and the comparative example 7. FIG. 実施例20、21及び比較例8に係る発光装置の波長に対する相対発光強度を示す発光スペクトルを例示する図である。It is a figure which illustrates the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device which concerns on Examples 20, 21 and Comparative Example 8. FIG.

以下、本開示に係る発光装置を、実施の形態に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を例示するものであって、本発明は以下のものに限定されない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
また蛍光体の平均粒径は、フィッシャー・サブ・シーブ・サイザーズ・ナンバー(Fisher Sub Sieve Sizer's No.)と呼ばれる数値であり、空気透過法を用いて測定される。
蛍光体の半値幅は、蛍光体の発光スペクトルにおいて、最大発光強度の50%の発光強度を示す発光スペクトルの波長幅を意味する。
Hereinafter, a light-emitting device according to the present disclosure will be described based on embodiments. However, the embodiment described below exemplifies the technical idea of the present invention, and the present invention is not limited to the following. The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like comply with JIS Z8110. Moreover, content of each component in a composition means the total amount of the said some substance which exists in a composition, unless there is particular notice, when the substance applicable to each component exists in a composition in multiple numbers.
The average particle size of the phosphor is a numerical value called a Fisher Sub Sieve Sizer's No., and is measured using an air permeation method.
The full width at half maximum of the phosphor means the wavelength width of the emission spectrum showing the emission intensity of 50% of the maximum emission intensity in the emission spectrum of the phosphor.

[発光装置]
本実施形態の発光装置は、400nm以上480nm以下の波長範囲に発光ピーク波長を有する発光素子と、アルカリ土類金属、アルカリ金属、アルミニウム及びユーロピウムを含む窒化物である第一蛍光体と、アルカリ土類金属、アルミニウム、ケイ素及びユーロピウムを含む窒化物である第二蛍光体と、500nm以上560nm以下の波長範囲に発光ピーク波長を有する第三蛍光体とを含む蛍光部材と、を備え、前記第一蛍光体及び第二蛍光体の総含有量に対する第一蛍光体の含有率が5質量%以上95質量%以下である。
[Light emitting device]
The light emitting device of the present embodiment includes a light emitting element having an emission peak wavelength in a wavelength range of 400 nm or more and 480 nm or less, a first phosphor that is a nitride containing an alkaline earth metal, an alkali metal, aluminum, and europium, and an alkaline earth. A second phosphor that is a nitride containing a similar metal, aluminum, silicon, and europium, and a third phosphor that has an emission peak wavelength in a wavelength range of 500 nm or more and 560 nm or less. The content rate of the 1st fluorescent substance with respect to the total content of a fluorescent substance and a 2nd fluorescent substance is 5 to 95 mass%.

本実施形態の発光装置は、特定の発光ピーク波長を有する発光素子と、少なくとも2種類の互いに異なる組成を有する赤色発光の窒化物蛍光体と、緑色発光の蛍光体とを組み合わせることにより、発光スペクトルにおける赤色領域の発光成分を制御することができる。詳しくは、第二蛍光体と比べて発光ピーク波長が長く半値幅が狭い第一蛍光体により、発光装置の発光スペクトルにおいて視感度の低い長波成分を低減させる一方、第一蛍光体と比べて発光ピーク波長が短く半値幅が広い第二蛍光体により、発光装置の発光スペクトルにおける赤色領域の発光成分を広く補うことできる。このような第一蛍光体および第二蛍光体を有することにより、本実施形態の発光装置は、優れた演色性と高い発光効率とを達成することが可能となる。   The light emitting device according to the present embodiment combines an emission spectrum by combining a light emitting element having a specific emission peak wavelength, at least two types of red emitting nitride phosphors having different compositions and a green emitting phosphor. It is possible to control the light emission component in the red region. Specifically, the first phosphor having a long emission peak wavelength and a narrow half-value width compared to the second phosphor reduces long wave components having low visibility in the emission spectrum of the light emitting device, while emitting light compared to the first phosphor. The second phosphor having a short peak wavelength and a wide half-value width can widely supplement the light emission component in the red region in the emission spectrum of the light emitting device. By having such a first phosphor and a second phosphor, the light emitting device of this embodiment can achieve excellent color rendering properties and high luminous efficiency.

本実施形態の発光装置を例えば照明用器具に適用することで、演色性の高い照明用器具を提供することができる。演色性は照射物の色の見え方の指標として、平均演色評価数(Ra)で表される。1986年にCIE(国際照明委員会)が、蛍光ランプ等が具備すべき演色性の指針を公表しており、その指針によれば、使用される場所に応じた好ましいRaは、一般作業を行う工場では60以上80未満、住宅、ホテル、レストラン、店舗、オフィス、学校、病院、精密作業を行う工場などでは80以上90未満、臨床検査を行う場所、美術館などでは90以上とされている。
また特殊演色評価数はR9〜R15の評価数として表わされ、中でもR9は彩度の高い赤色の見え方の指針とされる。食肉などを扱う環境では、R9の評価数に着目されることが多く、評価数が高いほど好ましい。
By applying the light emitting device of this embodiment to, for example, a lighting fixture, a lighting fixture with high color rendering properties can be provided. The color rendering property is represented by an average color rendering index (Ra) as an index of how the irradiated object appears. In 1986, the CIE (International Commission on Illumination) published guidelines for color rendering properties that fluorescent lamps, etc. should have, and according to these guidelines, the preferred Ra for the place where it is used performs general work. The factories are 60 or more and less than 80, houses, hotels, restaurants, stores, offices, schools, hospitals, factories performing precision work, etc. are 80 or more and less than 90, and places where clinical examinations are performed, museums and the like are 90 or more.
The special color rendering index is expressed as R9 to R15, and R9 is used as a guideline for the appearance of red with high saturation. In an environment where meat or the like is handled, attention is often paid to the evaluation number of R9, and the higher the evaluation number, the better.

本実施形態の発光装置の平均演色評価数Raは、例えば80以上であり、85以上が好ましく、90以上がより好ましく、95以上がさらに好ましい。なおRaの上限は100である。本実施形態の発光装置のR9は例えば、30以上であり、35以上が好ましく、50以上がより好ましく、75以上が特に好ましい。R9の上限は100である。   The average color rendering index Ra of the light emitting device of this embodiment is, for example, 80 or more, preferably 85 or more, more preferably 90 or more, and further preferably 95 or more. The upper limit of Ra is 100. R9 of the light emitting device of the present embodiment is, for example, 30 or more, preferably 35 or more, more preferably 50 or more, and particularly preferably 75 or more. The upper limit of R9 is 100.

発光装置が発する光は、発光素子の光と、第一蛍光体、第二蛍光体及び第三蛍光体が発する蛍光との混合色であり、例えば、CIE1931に規定される色度座標がx=0.330から0.500且つy=0.330から0.450の範囲に含まれる光とすることができる。
発光装置が発する光の相関色温度は、例えば2700K以上6500K以下とすることができる。
The light emitted from the light emitting device is a mixed color of the light from the light emitting element and the fluorescence emitted from the first phosphor, the second phosphor, and the third phosphor. For example, the chromaticity coordinates defined in CIE 1931 are x = The light can be included in the range of 0.330 to 0.500 and y = 0.330 to 0.450.
The correlated color temperature of light emitted from the light emitting device can be set to, for example, 2700K or more and 6500K or less.

発光装置の形式は特に制限されず、通常用いられる形式から適宜選択することができる。発光装置の形式としては、ピン貫通型、表面実装型等を挙げることができる。一般にピン貫通型とは、実装基板に設けられたスルーホールに発光装置のリード(ピン)を貫通させて発光装置を固定するものを指す。また表面実装型とは、実装基板の表面において発光装置のリードを固定するものを指す。   The form of the light emitting device is not particularly limited, and can be appropriately selected from commonly used forms. Examples of the light emitting device include a pin penetration type and a surface mounting type. In general, the pin through type refers to a type in which a light emitting device is fixed by penetrating leads (pins) of the light emitting device through through holes provided in a mounting substrate. The surface mount type refers to a type in which the lead of the light emitting device is fixed on the surface of the mounting substrate.

本発明の一実施形態に係る発光装置100を図面に基づいて説明する。図1は、発光装置100を示す概略断面図である。発光装置100は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば、380nm以上485nm以下の範囲)の光を発し、発光ピーク波長が430nm以上470nm以下の範囲内にある窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40と、を有する。成形体40は、第1のリード20及び第2のリード30と、樹脂部42とが一体的に成形されてなるものである。あるいは樹脂部42に代えてセラミックスを材料として既に知られた方法を利用して成形体40を形成することもできる。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は例えば、発光素子10からの光を波長変換する蛍光体70として第一蛍光体71、第二蛍光体72及び第三蛍光体73と樹脂とを含有してなる。
A light emitting device 100 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the light emitting device 100. The light emitting device 100 is an example of a surface mount type light emitting device.
The light emitting device 100 emits light on the short wavelength side of visible light (for example, a range of 380 nm to 485 nm), and the light emitting device 10 of a gallium nitride compound semiconductor having an emission peak wavelength in a range of 430 nm to 470 nm, And a molded body 40 on which the light emitting element 10 is placed. The molded body 40 is formed by integrally molding the first lead 20 and the second lead 30 and the resin portion 42. Or it replaces with the resin part 42 and the molded object 40 can also be formed using the method already known by using ceramics as a material. The molded body 40 has a recess having a bottom surface and side surfaces, and the light emitting element 10 is placed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through wires 60, respectively. The light emitting element 10 is covered with a fluorescent member 50. The fluorescent member 50 includes, for example, a first fluorescent body 71, a second fluorescent body 72, a third fluorescent body 73, and a resin as a fluorescent body 70 that converts the wavelength of light from the light emitting element 10.

蛍光部材50は、蛍光体70を含む波長変換部材としてだけではなく、発光素子10及び蛍光体70を外部環境から保護するための部材としても機能する。図1では、蛍光体70は蛍光部材50中で偏在している。このように発光素子10に接近して蛍光体70を配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置が構成できる。なお、蛍光体70を含む蛍光部材50と、発光素子10との配置は、それらを接近して配置させる形態に限定されることなく、蛍光体70への熱の影響を考慮して、蛍光部材50中で発光素子10と、蛍光体70との間隔を空けて配置することもできる。また、蛍光体70を蛍光部材50の全体にほぼ均一の割合で混合することによって、色ムラがより抑制された光を得るようにすることもできる。   The fluorescent member 50 functions not only as a wavelength conversion member including the phosphor 70 but also as a member for protecting the light emitting element 10 and the phosphor 70 from the external environment. In FIG. 1, the phosphor 70 is unevenly distributed in the fluorescent member 50. Thus, by arranging the phosphor 70 close to the light emitting element 10, the wavelength of light from the light emitting element 10 can be efficiently converted, and a light emitting device having excellent light emission efficiency can be configured. The arrangement of the fluorescent member 50 including the phosphor 70 and the light emitting element 10 is not limited to the form in which they are arranged close to each other, and the fluorescent member is considered in consideration of the influence of heat on the phosphor 70. 50, the light emitting element 10 and the phosphor 70 may be spaced apart. In addition, by mixing the phosphor 70 with the entire fluorescent member 50 at a substantially uniform ratio, it is possible to obtain light in which color unevenness is further suppressed.

図1では、蛍光体70である第一蛍光体71、第二蛍光体72及び第三蛍光体73が混合された状態で図示されているが、図2に示すようにそれぞれの蛍光体を配置してもよい。
図2は、本実施形態に係る発光装置の別の一例を示す概略断面図である。図2では、発光素子10に近い方から順に、第一蛍光体71、第二蛍光体72及び第三蛍光体73が配置されている。これにより、第三蛍光体73の発光が第一蛍光体71及び第二蛍光体72を励起させてしまうことを抑制することができる。また、第三蛍光体73を最も上に配置することにより、第三蛍光体73の発光を発光装置の外へ取り出し易くすることができる。
図2では第一蛍光体71、第二蛍光体72及び第三蛍光体73がそれぞれ配置されているが、第一蛍光体71及び第二蛍光体72が混合されて配置され、その上に第三蛍光体が配置されていてもよい。
In FIG. 1, the first phosphor 71, the second phosphor 72, and the third phosphor 73, which are the phosphors 70, are illustrated in a mixed state, but the respective phosphors are arranged as shown in FIG. 2. May be.
FIG. 2 is a schematic cross-sectional view showing another example of the light emitting device according to the present embodiment. In FIG. 2, a first phosphor 71, a second phosphor 72, and a third phosphor 73 are arranged in order from the side closer to the light emitting element 10. Thereby, it can suppress that light emission of the 3rd fluorescent substance 73 excites the 1st fluorescent substance 71 and the 2nd fluorescent substance 72. FIG. Further, by placing the third phosphor 73 on the top, it is possible to easily extract the light emitted from the third phosphor 73 out of the light emitting device.
In FIG. 2, the first phosphor 71, the second phosphor 72, and the third phosphor 73 are disposed, respectively, but the first phosphor 71 and the second phosphor 72 are mixed and disposed on the first phosphor 71, the second phosphor 72, and the third phosphor 73. Three phosphors may be arranged.

(発光素子)
発光素子の発光ピーク波長は、430nm以上470nm以下の範囲にあり、発光効率の観点から、445nm以上455nm以下の範囲にあることが好ましい。この範囲に発光ピーク波長を有する発光素子を励起光源として用いることにより、発光素子からの光と蛍光体からの蛍光との混色光を発する発光装置を構成することが可能となる。さらに、発光素子から外部に放射される光を有効に利用することができるため、発光装置から出射される光の損失を少なくすることができ、高効率な発光装置を得ることができる。
(Light emitting element)
The light emission peak wavelength of the light emitting element is in the range of 430 nm to 470 nm, and from the viewpoint of light emission efficiency, it is preferably in the range of 445 nm to 455 nm. By using a light emitting element having an emission peak wavelength in this range as an excitation light source, it is possible to configure a light emitting device that emits mixed light of light from the light emitting element and fluorescence from the phosphor. Furthermore, since light emitted from the light emitting element to the outside can be used effectively, loss of light emitted from the light emitting device can be reduced, and a highly efficient light emitting device can be obtained.

発光素子の発光スペクトルの半値幅は、例えば30nm以下とすることができる。
発光素子にはLEDなどの半導体発光素子を用いることが好ましい。光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
半導体発光素子としては、例えば、窒化物系半導体(InAlGa1−X−YN、ここでX及びYは、0≦X、0≦Y、X+Y≦1を満たす)を用いた青色、緑色等に発光する半導体発光素子を用いることができる。
The half width of the emission spectrum of the light emitting element can be set to 30 nm or less, for example.
It is preferable to use a semiconductor light emitting element such as an LED as the light emitting element. By using a semiconductor light emitting element as a light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and strong against mechanical shock.
As a semiconductor light emitting element, for example, a blue color using a nitride semiconductor (In X Al Y Ga 1- XYN, where X and Y satisfy 0 ≦ X, 0 ≦ Y, and X + Y ≦ 1). A semiconductor light emitting element that emits green light or the like can be used.

(蛍光部材)
蛍光部材は、発光素子から発せられる光を吸収し、赤色に発光する第一蛍光体の少なくとも1種と、赤色に発光する第二蛍光体の少なくとも1種と、緑色に発光する第三蛍光体の少なくとも1種とを含み、第一蛍光体及び第二蛍光体の総含有量に対する第一蛍光体の含有率が5質量%以上95質量%以下である。第一蛍光体及び第二蛍光体は互いに異なる組成を有している。第一蛍光体、第二蛍光体及び第三蛍光体(以下、併せて単に「蛍光体」ともいう。)の構成比率を適宜選択することで発光装置の発光効率、演色性等の特性を所望の範囲とすることができる。蛍光部材は、例えば、蛍光体と樹脂とを含むことができる。
(Fluorescent material)
The fluorescent member absorbs light emitted from the light emitting element, and at least one first phosphor that emits red light, at least one second phosphor that emits red light, and a third phosphor that emits green light And the content of the first phosphor with respect to the total content of the first phosphor and the second phosphor is 5 mass% or more and 95 mass% or less. The first phosphor and the second phosphor have different compositions. Desirable characteristics such as luminous efficiency and color rendering properties of the light emitting device by appropriately selecting the composition ratio of the first phosphor, the second phosphor and the third phosphor (hereinafter, also simply referred to as “phosphor”). Range. The fluorescent member can include, for example, a phosphor and a resin.

第一蛍光体
蛍光部材は、アルカリ土類金属、アルカリ金属、アルミニウム及びユーロピウムを含む窒化物を含む第一蛍光体の少なくとも1種を含む。第一蛍光体は、例えば、下記式(I)で表される組成を有する。
Al:Eu (I)
式中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Sr及びCaの少なくとも一方を含むことが好ましく、少なくともSrを含むことがより好ましい。MがCa及びSrの少なくとも一方を含む場合、Mに含まれるCa及びSrの総モル比率は、例えば85モル%以上であり、90モル%以上が好ましい。
1st fluorescent substance The fluorescent member contains at least 1 sort (s) of 1st fluorescent substance containing the nitride containing an alkaline-earth metal, an alkali metal, aluminum, and europium. The first phosphor has, for example, a composition represented by the following formula (I).
M a x M b y Al 3 N z : Eu (I)
In the formula, M a is at least one element selected from the group consisting of Ca, Sr and Ba, preferably including at least one of Sr and Ca, and more preferably including at least Sr. If M a contains at least one of Ca and Sr, the total molar ratio of Ca and Sr contained in the M a is, for example, 85 mol% or more, preferably at least 90 mol%.

は、Li、Na及びKからなる群から選択される少なくとも1種の元素であり、少なくともLiを含むことが好ましい。MがLiを含む場合、Mに含まれるLiのモル比率は、例えば80モル%以上であり、90モル%以上が好ましい。 Mb is at least one element selected from the group consisting of Li, Na, and K, and preferably contains at least Li. If M b contains Li, the molar ratio of Li contained in the M b is, for example, 80 mol% or more, preferably at least 90 mol%.

xは、0.5≦x≦1.5を満たし、好ましくは0.6≦x≦1.2を満たし、より好ましくは0.8≦x≦1.1を満たす。yは、0.5≦y≦1.2を満たし、好ましくは0.6≦y≦1.1を満たし、より好ましくは0.6≦y≦1.05を満たす。zは、3.5≦z≦4.5を満たし、好ましくは3.6≦z≦4.4を満たす。
Euの組成比は、アルミニウムの組成比3を基準にすると、発光効率の点で、例えば0.002以上0.020以下であり、0.005以上0.015以下が好ましい。
なお、第一蛍光体中に含まれる不純物として、原料や大気中からと考えられる酸素の含有量が2.5重量%以下であることが好ましく、後述するフラックスとしてフッ素を含む化合物をフラックスとして加えた場合、フッ素の含有量が1.0重量%以下であることが好ましい。
x satisfies 0.5 ≦ x ≦ 1.5, preferably satisfies 0.6 ≦ x ≦ 1.2, and more preferably satisfies 0.8 ≦ x ≦ 1.1. y satisfies 0.5 ≦ y ≦ 1.2, preferably satisfies 0.6 ≦ y ≦ 1.1, and more preferably satisfies 0.6 ≦ y ≦ 1.05. z satisfies 3.5 ≦ z ≦ 4.5, and preferably satisfies 3.6 ≦ z ≦ 4.4.
The composition ratio of Eu is, for example, 0.002 or more and 0.020 or less, and preferably 0.005 or more and 0.015 or less in terms of luminous efficiency, based on aluminum composition ratio 3.
As impurities contained in the first phosphor, the content of oxygen considered to be from the raw material or the atmosphere is preferably 2.5% by weight or less, and a fluorine-containing compound is added as a flux to be described later. In this case, the fluorine content is preferably 1.0% by weight or less.

第一蛍光体の発光スペクトルにおける半値幅は例えば、70nm以下であり、65nm以下が好ましく、60nm以下がより好ましく、55nm以下が更に好ましい。また半値幅は例えば40nm以上であり、45nm以上が好ましく、50nm以上がより好ましい。
第一蛍光体は、極大励起波長を例えば400nm以上570nm以下の波長範囲に有し、420nm以上460nm以下の波長範囲に有することが好ましい。第一蛍光体は、発光ピーク波長を例えば630nm以上670nm以下の波長範囲に有し、640nm以上660nm以下の波長範囲に有することが好ましい。
The half width in the emission spectrum of the first phosphor is, for example, 70 nm or less, preferably 65 nm or less, more preferably 60 nm or less, and further preferably 55 nm or less. The half width is, for example, 40 nm or more, preferably 45 nm or more, and more preferably 50 nm or more.
The first phosphor preferably has a maximum excitation wavelength in a wavelength range of 400 nm to 570 nm, for example, and a wavelength range of 420 nm to 460 nm. The first phosphor has an emission peak wavelength in a wavelength range of, for example, 630 nm to 670 nm, and preferably in a wavelength range of 640 nm to 660 nm.

第一蛍光体では、希土類であるユウロピウム(Eu)が発光中心となる。ただし第一蛍光体における発光中心は、ユーロピウムのみに限定されず、その一部を他の希土類金属やアルカリ土類金属に置き換えて、Euと共賦活させたものも使用できる。2価希土類イオンであるEu2+は適当な母体を選べば安定に存在し、発光する効果を奏する。 In the first phosphor, the rare earth europium (Eu) is the emission center. However, the emission center in the first phosphor is not limited to europium, and a part of which is partially activated by other rare earth metals or alkaline earth metals and co-activated with Eu can be used. Eu 2+, which is a divalent rare earth ion, exists stably if an appropriate matrix is selected, and has the effect of emitting light.

第一蛍光体の平均粒径は、発光効率の観点から、例えば2μm以上30μm以下であり、3μm以上25μm以下が好ましい。
平均粒径は大きいほうが、励起光の吸収率及び発光効率がより高くなる傾向がある。このように、光学特性に優れた第一蛍光体を後述する発光装置に含有させることにより、発光装置の発光効率がより向上する。
また第一蛍光体は、上記の平均粒径値を有する蛍光体粒子が、頻度高く含有されていることが好ましい。すなわち、粒度分布は狭い範囲に分布していることが好ましい。粒度分布のバラツキが小さい蛍光体を用いることにより、より色ムラが抑制され、より良好な色調を有する発光装置が得られる。
The average particle diameter of the first phosphor is, for example, 2 μm or more and 30 μm or less, and preferably 3 μm or more and 25 μm or less from the viewpoint of light emission efficiency.
The larger the average particle size, the higher the absorption rate and emission efficiency of excitation light tend to be higher. Thus, the luminous efficiency of a light-emitting device improves more by making the light-emitting device mentioned later contain the 1st fluorescent substance excellent in the optical characteristic.
Moreover, it is preferable that the first phosphor contains the phosphor particles having the above average particle diameter value with high frequency. That is, the particle size distribution is preferably distributed in a narrow range. By using a phosphor having a small variation in particle size distribution, color unevenness is further suppressed, and a light emitting device having a better color tone can be obtained.

蛍光部材中の第一蛍光体の含有量は、例えば樹脂100質量部に対して0.1質量部以上30質量部以下であり、0.5質量部以上25質量部以下が好ましい。   Content of the 1st fluorescent substance in a fluorescent member is 0.1 to 30 mass parts with respect to 100 mass parts of resin, for example, and 0.5 to 25 mass parts is preferable.

第二蛍光体
蛍光部材は、アルカリ土類金属、アルミニウム、ケイ素及びユーロピウムを含む窒化物である第二蛍光体の少なくとも1種を含む。第二蛍光体は、例えば、下記式(II)で表される組成を有する。
SrCaAlSi:Eu (II)
s、t、u、v及びwはそれぞれ、0.0≦s<1.0、0.0<t≦1.0、s+t≦1.0、0.9≦u≦1.1、0.9≦v≦1.1、2.5≦w≦3.5を満たす。
Euの組成比は、SrとCaの組成比の和(s+t=1.0)を基準にすると、発光効率の点で、例えば0.002以上0.04以下であり、0.004以上0.03以下が好ましい。
なお、第二蛍光体中に含まれる不純物として、原料や大気中からと考えられる酸素の含有量が1.5重量%以下であることが好ましく、後述するフラックスとしてフッ素を含む化合物をフラックスとして加えた場合、フッ素の含有量が0.5重量%以下であることが好ましい。
Second phosphor The phosphor member includes at least one second phosphor that is a nitride containing an alkaline earth metal, aluminum, silicon, and europium. The second phosphor has, for example, a composition represented by the following formula (II).
Sr s Ca t Al u Si v N w: Eu (II)
s, t, u, v and w are 0.0 ≦ s <1.0, 0.0 <t ≦ 1.0, s + t ≦ 1.0, 0.9 ≦ u ≦ 1.1, 0, respectively. It satisfies 9 ≦ v ≦ 1.1 and 2.5 ≦ w ≦ 3.5.
The composition ratio of Eu is, for example, 0.002 or more and 0.04 or less, and 0.004 or more and 0.004 or less in terms of luminous efficiency, based on the sum of the composition ratios of Sr and Ca (s + t = 1.0). 03 or less is preferable.
As impurities contained in the second phosphor, the content of oxygen considered to be from the raw material or the atmosphere is preferably 1.5% by weight or less, and a fluorine-containing compound is added as a flux to be described later. In this case, the fluorine content is preferably 0.5% by weight or less.

第二蛍光体の発光スペクトルにおける半値幅は例えば、70nm以上であり、75nm以上が好ましい。また半値幅は例えば100nm以下であり、95nm以下が好ましく、85nm以下がより好ましい。
第二蛍光体は、400nm以上480nm以下の波長範囲に発光ピーク波長を有する発光素子からの光による励起され易さを考慮して、その励起スペクトルが、少なくとも400nm以上480nm以下の波長範囲にある程度の強度を有することが好ましい。第二蛍光体は、発光ピーク波長を例えば600nm以上655nm以下の波長範囲に有し、605nm以上650nm以下の波長範囲に有することが好ましい。
The half width in the emission spectrum of the second phosphor is, for example, 70 nm or more, and preferably 75 nm or more. The half width is, for example, 100 nm or less, preferably 95 nm or less, and more preferably 85 nm or less.
In consideration of the ease with which the second phosphor is excited by light from a light emitting element having an emission peak wavelength in the wavelength range of 400 nm to 480 nm, the excitation spectrum has a certain degree of excitation spectrum in the wavelength range of at least 400 nm to 480 nm. It is preferable to have strength. The second phosphor has an emission peak wavelength in the wavelength range of 600 nm to 655 nm, for example, and preferably in the wavelength range of 605 nm to 650 nm.

第一蛍光体の半値幅は、第二蛍光体の半値幅よりも狭いことが好ましい。これにより赤色領域における発光スペクトルを所望の態様に容易に調整することができる。第二蛍光体に対する第一蛍光体の半値幅の比(第一蛍光体/第二蛍光体)は、例えば0.5以上0.9以下であり、0.6以上0.8以下が好ましい。また第二蛍光体と第一蛍光体の半値幅の差は、例えば15nm以上50nm以下であり、20nm以上45nm以下が好ましい。   The half width of the first phosphor is preferably narrower than the half width of the second phosphor. Thereby, the emission spectrum in the red region can be easily adjusted to a desired mode. The ratio of the half width of the first phosphor to the second phosphor (first phosphor / second phosphor) is, for example, 0.5 or more and 0.9 or less, and preferably 0.6 or more and 0.8 or less. Moreover, the difference of the half value width of a 2nd fluorescent substance and a 1st fluorescent substance is 15 nm or more and 50 nm or less, for example, and 20 nm or more and 45 nm or less are preferable.

第一蛍光体の発光ピーク波長は、第二蛍光体の発光ピーク波長以上であることが好ましく、第二蛍光体の発光ピーク波長よりも長い方がより好ましい。第一蛍光体の発光ピーク波長が第二蛍光体の発光ピーク波長以上であり、半値幅が第一蛍光体の方が第二蛍光体よりも短いことで、赤色領域における発光スペクトルを所望の態様に、より容易に調整することができる。第一蛍光体と第二蛍光体の発光ピーク波長に差がある場合、その差は0nmよりも大きければよく、例えば55nm以下であり、45nm以下が好ましい。   The emission peak wavelength of the first phosphor is preferably not less than the emission peak wavelength of the second phosphor, and more preferably longer than the emission peak wavelength of the second phosphor. The emission peak wavelength of the first phosphor is equal to or greater than the emission peak wavelength of the second phosphor, and the half-value width of the first phosphor is shorter than that of the second phosphor. In addition, it can be adjusted more easily. When there is a difference between the emission peak wavelengths of the first phosphor and the second phosphor, the difference should be larger than 0 nm, for example, 55 nm or less, preferably 45 nm or less.

第二蛍光体の平均粒径は、発光効率の観点から、例えば2μm以上30μm以下であり、3μm以上25μm以下が好ましい。   The average particle diameter of the second phosphor is, for example, 2 μm or more and 30 μm or less, and preferably 3 μm or more and 25 μm or less from the viewpoint of light emission efficiency.

蛍光部材中の第二蛍光体の含有量は、例えば樹脂100質量部に対して0.1質量部以上25質量部以下であり、0.5質量部以上20質量部以下が好ましい。   Content of the 2nd fluorescent substance in a fluorescent member is 0.1 to 25 mass parts with respect to 100 mass parts of resin, for example, and 0.5 to 20 mass parts is preferable.

蛍光部材中の第一蛍光体及び第二蛍光体の総含有量に対する第一蛍光体の含有率は、5質量%以上95質量%以下である。第一蛍光体の含有率を所定値以上とすることで演色性がより向上する傾向がある。一方、第一蛍光体の含有率を所定値以下とすることで発光効率がより向上する傾向がある。そのため、優れた演色性と高い発光効率とを達成する点で、蛍光部材中の第一蛍光体及び第二蛍光体の総含有量に対する第一蛍光体の含有率は、30質量%以上90質量%以下が好ましく、40質量%以上70質量%以下がより好ましい。   The content rate of the 1st fluorescent substance with respect to the total content of the 1st fluorescent substance and the 2nd fluorescent substance in a fluorescent member is 5 to 95 mass%. There exists a tendency for color rendering property to improve more by making content rate of a 1st fluorescent substance more than predetermined value. On the other hand, the light emission efficiency tends to be further improved by setting the content of the first phosphor to a predetermined value or less. Therefore, the content ratio of the first phosphor with respect to the total content of the first phosphor and the second phosphor in the phosphor member is 30% by mass to 90% by mass in terms of achieving excellent color rendering properties and high luminous efficiency. % Or less is preferable, and 40 mass% or more and 70 mass% or less are more preferable.

第三蛍光体
蛍光部材は、500nm以上560nm以下の波長範囲に発光ピーク波長を有する第三蛍光体の少なくとも1種を含む。第一蛍光体及び第二蛍光体に加えて第三蛍光体を含むことで所望の発色光を得ることができる。
Third phosphor The fluorescent member includes at least one third phosphor having an emission peak wavelength in a wavelength range of 500 nm or more and 560 nm or less. By including the third phosphor in addition to the first phosphor and the second phosphor, a desired colored light can be obtained.

第三蛍光体の発光スペクトルにおける半値幅は例えば、90nm以上であり、95nm以上が好ましい。また半値幅は例えば125nm以下であり、120nm以下が好ましい。第三蛍光体の半値幅が所定の範囲であることで、より優れた演色性を達成することができる。
第三蛍光体は、発光ピーク波長を500nm以上560nm以下の波長範囲に有するが、505nm以上555nm以下の波長範囲に有することが好ましい。第三蛍光体は、極大励起波長を例えば420nm以上480nm以下の波長範囲に有し、430nm以上470nm以下の波長範囲に有することが好ましい。
The half width in the emission spectrum of the third phosphor is, for example, 90 nm or more, and preferably 95 nm or more. Moreover, a half value width is 125 nm or less, for example, and 120 nm or less is preferable. When the half width of the third phosphor is within a predetermined range, more excellent color rendering can be achieved.
The third phosphor has an emission peak wavelength in a wavelength range of 500 nm to 560 nm, preferably in a wavelength range of 505 nm to 555 nm. The third phosphor preferably has a maximum excitation wavelength in a wavelength range of 420 nm to 480 nm, for example, in a wavelength range of 430 nm to 470 nm.

第三蛍光体として具体的には、下記式(IIIa)又は(IIIb)で表される組成を有する蛍光体を1種以上含むことが好ましい。
LnAl5−pGa12:Ce (IIIa)
式中、LnはY、Lu、Gd及びTbからなる群から選択される少なくとも1種の元素であり、0.0≦p≦3.0を満たす。
La3−qSi11:Ce (IIIb)
0.0≦q≦1.5を満たす。
Specifically, the third phosphor preferably contains at least one phosphor having a composition represented by the following formula (IIIa) or (IIIb).
Ln 3 Al 5-p Ga p O 12: Ce (IIIa)
In the formula, Ln is at least one element selected from the group consisting of Y, Lu, Gd, and Tb, and satisfies 0.0 ≦ p ≦ 3.0.
La 3-q Y q Si 6 N 11: Ce (IIIb)
Satisfies 0.0 ≦ q ≦ 1.5.

式(IIIa)又は(IIIb)で表される組成を有する蛍光体におけるCe賦活量は特に制限されず、目的に応じて選択できる。Ce賦活量は、例えば式(IIIa)ではLnの3に対して0.001以上0.3以下であり、式(IIIb)ではSiの6に対して0.01以上1.0以下である。   The Ce activation amount in the phosphor having the composition represented by the formula (IIIa) or (IIIb) is not particularly limited and can be selected according to the purpose. The Ce activation amount is, for example, 0.001 or more and 0.3 or less with respect to 3 of Ln in the formula (IIIa), and 0.01 or more and 1.0 or less with respect to 6 of Si in the formula (IIIb).

蛍光部材に含まれる第三蛍光体の平均粒径が所定値以上であると蛍光体の光吸収がより多くなり、発光効率がより向上する傾向がある。一方、平均粒径が所定値以下であると、発光装置を製造したとき、発光装置間の色度のばらつきをより抑制できる傾向がある。そのため、第三蛍光体の平均粒径は、例えば、2μm以上35μm以下であり、3μm以上30μm以下が好ましい。   If the average particle size of the third phosphor contained in the fluorescent member is greater than or equal to a predetermined value, the phosphor absorbs more light and the luminous efficiency tends to be further improved. On the other hand, when the average particle size is less than or equal to a predetermined value, when the light emitting device is manufactured, there is a tendency that variation in chromaticity between the light emitting devices can be further suppressed. Therefore, the average particle diameter of the third phosphor is, for example, 2 μm or more and 35 μm or less, and preferably 3 μm or more and 30 μm or less.

蛍光部材における第三蛍光体の含有量は、例えば、樹脂100質量部に対して10質量部以上200質量部以下であり、20質量部以上180質量部以下が好ましい。   Content of the 3rd fluorescent substance in a fluorescent member is 10 mass parts or more and 200 mass parts or less with respect to 100 mass parts of resin, for example, and 20 mass parts or more and 180 mass parts or less are preferable.

蛍光部材における第一蛍光体及び第二蛍光体の総含有量に対する第三蛍光体の含有量の質量比率は、目的の色温度への調整のし易さを考慮して、例えば50%以上2000%以下であり、100%以上1700%以下が好ましい。また蛍光部材に含まれる蛍光体が一蛍光体、第二蛍光体及び第三蛍光体からなる場合、第一蛍光体及び第二蛍光体の総含有量に対する第三蛍光体の含有量の質量比率は、目的の色温度への調整のし易さを考慮して、例えば300%以上1800%以下であり、400%以上1700%以下が好ましい。更に発光装置の色温度、蛍光体の比重等に応じて第三蛍光体の質量比率は様々に変化し得る。例えば、色温度が高い領域では第三蛍光体の比率が高くすることができ、逆に色温度が低い領域では第三蛍光体の比率は低くすることができる。   The mass ratio of the content of the third phosphor to the total content of the first phosphor and the second phosphor in the fluorescent member is, for example, 50% or more and 2000 in consideration of ease of adjustment to the target color temperature. % Or less, preferably 100% or more and 1700% or less. Further, when the phosphor contained in the fluorescent member is composed of one phosphor, the second phosphor and the third phosphor, the mass ratio of the content of the third phosphor to the total content of the first phosphor and the second phosphor Considering easiness of adjustment to the target color temperature, for example, it is 300% or more and 1800% or less, and preferably 400% or more and 1700% or less. Furthermore, the mass ratio of the third phosphor can be variously changed according to the color temperature of the light emitting device, the specific gravity of the phosphor, and the like. For example, the ratio of the third phosphor can be increased in a region where the color temperature is high, and conversely, the ratio of the third phosphor can be decreased in a region where the color temperature is low.

また例えば蛍光体の比重が大きい場合は、蛍光体の体積比率が減るために重量比が多くなる傾向になる。例えば色温度を4000K、蛍光体の比重を5.5g/cmを境目とした場合、色温度が4000Kより大きく、比重が5.5g/cm以上の場合、第三蛍光体比率は、例えば1000%以上1800%以下であり、1100%以上1700%以下が好ましい。また色温度が4000Kより大きく、比重が5.5g/cm未満の場合、第三蛍光体比率は、例えば1000%以上1700%以下であり、1100%以上1600%以下が好ましい。また色温度が4000K以下で比重が5.5g/cm以上の場合、第三蛍光体比率は、例えば500%以上1300%以下であり、600%以上1200%以下が好ましい。また色温度が4000K以下で比重が5.5g/cm未満の場合、第三蛍光体比率は、例えば300%以上1200%以下であり、400%以上1100%以下が好ましい。 Further, for example, when the specific gravity of the phosphor is large, the weight ratio tends to increase because the volume ratio of the phosphor decreases. For example, when the color temperature is 4000 K and the specific gravity of the phosphor is 5.5 g / cm 3 , when the color temperature is greater than 4000 K and the specific gravity is 5.5 g / cm 3 or more, the third phosphor ratio is, for example, It is 1000% or more and 1800% or less, and preferably 1100% or more and 1700% or less. When the color temperature is greater than 4000 K and the specific gravity is less than 5.5 g / cm 3 , the third phosphor ratio is, for example, 1000% to 1700%, and preferably 1100% to 1600%. When the color temperature is 4000 K or less and the specific gravity is 5.5 g / cm 3 or more, the third phosphor ratio is, for example, 500% or more and 1300% or less, and preferably 600% or more and 1200% or less. When the color temperature is 4000 K or less and the specific gravity is less than 5.5 g / cm 3 , the third phosphor ratio is, for example, 300% or more and 1200% or less, and preferably 400% or more and 1100% or less.

第四蛍光体
蛍光部材は、485nm以上540nm以下の波長範囲に発光ピーク波長を有する第四蛍光体の少なくとも1種を含んでいてもよい。このような第四蛍光体を更に含むことで、発光装置の発光スペクトルにおいて第三蛍光体だけでは不足し得る特定の発光成分を第四蛍光体による発光成分で補うことができ、より優れた演色性を有する発光装置とすることができる。
Fourth phosphor The fluorescent member may include at least one fourth phosphor having an emission peak wavelength in a wavelength range of 485 nm or more and 540 nm or less. By further including such a fourth phosphor, it is possible to supplement a specific light emitting component that can be insufficient with only the third phosphor in the emission spectrum of the light emitting device with the light emitting component by the fourth phosphor, and to achieve a better color rendering The light emitting device can be made to have the property.

第四蛍光体は、発光ピーク波長を480nm以上540nm以下の波長範囲に有するが、485nm以上530nm以下の波長範囲に有することが好ましい。
第四蛍光体の発光スペクトルにおける半値幅は、例えば、80nm以下であり、75nm以下が好ましい。また半値幅は例えば40nm以上であり、50nm以上が好ましい。第四蛍光体の半値幅が所定値以上であると、発光装置の発光スペクトルが、ある特定の発光成分に偏ることを抑制できる傾向がある。一方、第四蛍光体の半値幅が所定値以下であると、比較的半値幅が広い第三蛍光体の発光スペクトルとの重なりを抑制できる傾向がある。このように第三蛍光体の発光スペクトルを考慮して第四蛍光体の発光特性を調節することで、発光装置の演色性と発光効率とをより向上することができる。
第四蛍光体は、400nm以上480nm以下の波長範囲に発光ピーク波長を有する発光素子からの光による励起され易さを考慮して、その励起スペクトルが、少なくとも400nm以上480nm以下の波長範囲にある程度の強度を有することが好ましい。
The fourth phosphor has an emission peak wavelength in the wavelength range of 480 nm to 540 nm, preferably in the wavelength range of 485 nm to 530 nm.
The half width in the emission spectrum of the fourth phosphor is, for example, 80 nm or less, and preferably 75 nm or less. Moreover, a half value width is 40 nm or more, for example, and 50 nm or more is preferable. When the half width of the fourth phosphor is equal to or larger than a predetermined value, the emission spectrum of the light emitting device tends to be suppressed from being biased to a specific light emitting component. On the other hand, when the half width of the fourth phosphor is not more than a predetermined value, there is a tendency that the overlap with the emission spectrum of the third phosphor having a relatively wide half width can be suppressed. In this way, by adjusting the light emission characteristics of the fourth phosphor in consideration of the emission spectrum of the third phosphor, the color rendering properties and the light emission efficiency of the light emitting device can be further improved.
In consideration of the ease with which the fourth phosphor is excited by light from a light emitting element having an emission peak wavelength in the wavelength range of 400 nm to 480 nm, the excitation spectrum has a certain degree of excitation spectrum in the wavelength range of at least 400 nm to 480 nm. It is preferable to have strength.

第四蛍光体として具体的には、より優れた演色性を達成することができる点で、下記式(IVa)、(IVb)又は(IVc)で表される組成を有する蛍光体を1種以上含むことが好ましい。
MgSi16:Eu (IVa)
式中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Xは、Cl、F及びBrからなる群から選択される少なくとも1種の元素である。
Al1425:Eu (IVb)
式中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である。
SiO:Eu (IVc)
式中、MはCa、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素である。
Specifically, as the fourth phosphor, one or more phosphors having a composition represented by the following formula (IVa), (IVb) or (IVc) can be achieved in that more excellent color rendering can be achieved. It is preferable to include.
M c 8 MgSi 4 O 16 X 2: Eu (IVa)
Wherein, M c is, Ca, at least one element selected from the group consisting of Sr and Ba, X is at least one element selected from the group consisting of Cl, F and Br.
M d 4 Al 14 O 25 : Eu (IVb)
In the formula, M d is at least one element selected from the group consisting of Ca, Sr and Ba.
M e 2 SiO 4: Eu ( IVc)
Wherein, M e is at least one element selected from the group consisting of Ca, Sr, Ba and Mg.

式(IVa)、(IVb)又は(IVc)で表される組成を有する蛍光体におけるEu賦活量は、例えば式(IVa)ではMの8に対して0.05以上1.0以下であり、式(IVb)ではMの4に対して0.1以上1.0以下であり、式(IVc)ではMの2に対して0.01以上0.4以下である。 Formula (IVa), Eu-activated amount of phosphor having a composition represented by (IVb) or (IVc) is, for example, with respect to 8 of the M c the formula (IVa) be 0.05 to 1.0 , it is 4 0.1 to 1.0 with respect to formula (IVb) in M d, is 0.01 to 0.4 relative to 2 of the M e formula (IVc).

蛍光部材に含まれる第四蛍光体の平均粒径が所定値以上であると蛍光体への光吸収がより多くなり、発光効率がより向上する傾向がある。一方、平均粒径が所定値以下であると、発光装置を製造したとき、発光装置間の色度のばらつきをより抑制できる傾向がある。そのため、第四蛍光体の平均粒径は、例えば、2μm以上35μm以下であり、3μm以上30μm以下が好ましい。   If the average particle size of the fourth phosphor contained in the fluorescent member is greater than or equal to a predetermined value, the light absorption into the phosphor is increased, and the light emission efficiency tends to be further improved. On the other hand, when the average particle size is less than or equal to a predetermined value, when the light emitting device is manufactured, there is a tendency that variation in chromaticity between the light emitting devices can be further suppressed. Therefore, the average particle diameter of the fourth phosphor is, for example, 2 μm or more and 35 μm or less, and preferably 3 μm or more and 30 μm or less.

蛍光部材における第四蛍光体の含有量は、例えば、樹脂100質量部に対して0.1質量部以上100質量部以下であり、0.2質量部以上80質量部以下が好ましい。含有量が前記範囲であるとより優れた演色性を達成することができる。   Content of the 4th fluorescent substance in a fluorescent member is 0.1 to 100 mass parts with respect to 100 mass parts of resin, for example, and 0.2 to 80 mass parts is preferable. When the content is within the above range, more excellent color rendering can be achieved.

蛍光部材における第三蛍光体の総含有量に対する第四蛍光体の含有量の質量比率は、例えば1質量%以上200質量%以下であり、5質量%以上180質量%以下が好ましい。含有量が前記範囲であるとより優れた演色性を達成することができる。また例えば、第三蛍光体が式(IIIa)で表される組成を有し、第四蛍光体が式(IVa)で表される組成を有する場合、第三蛍光体の総含有量に対する第四蛍光体の含有量の質量比率は、例えば1質量%以上200質量%であり、5質量%以上180質量%以下が好ましい。また例えば、第三蛍光体が式(IIIa)で表される組成を有し、第四蛍光体が式(IVb)で表される組成を有する場合、第三蛍光体の総含有量に対する第四蛍光体の含有量の質量比率は、例えば5質量%以上160質量%であり、10質量%以上140質量%以下が好ましい。   The mass ratio of the content of the fourth phosphor to the total content of the third phosphor in the fluorescent member is, for example, 1% by mass to 200% by mass, and preferably 5% by mass to 180% by mass. When the content is within the above range, more excellent color rendering can be achieved. For example, when the third phosphor has a composition represented by the formula (IIIa) and the fourth phosphor has a composition represented by the formula (IVa), the fourth phosphor with respect to the total content of the third phosphor. The mass ratio of the phosphor content is, for example, 1% by mass to 200% by mass, and preferably 5% by mass to 180% by mass. For example, when the third phosphor has a composition represented by the formula (IIIa) and the fourth phosphor has a composition represented by the formula (IVb), the fourth phosphor with respect to the total content of the third phosphor. The mass ratio of the phosphor content is, for example, 5% by mass to 160% by mass, and preferably 10% by mass to 140% by mass.

その他の蛍光体
発光装置は、第一蛍光体、第二蛍光体、第三蛍光体及び第四蛍光体以外のその他の蛍光体を必要に応じて含んでいてもよい。その他の蛍光体としては、CaScSi12:Ce、CaSc:Ce、(Ba,Sr,Ca)Si:Eu、(Ca,Sr,Ba)Si12:Eu、Si6−zAl8−z:Eu(0<z≦4.2)、(Ca,Sr,Ba)Ga:Eu、(Ca,Sr,Ba)Si:Eu、(Ca,Sr,Ba)S:Eu、K(Si,Ti,Ge)F:Mn等を挙げることができる。発光装置がその他の蛍光体を含む場合、その含有量は、例えば蛍光体の総量中に10質量%以下であり、1質量%以下が好ましい。
Other phosphors The light-emitting device may include other phosphors other than the first phosphor, the second phosphor, the third phosphor, and the fourth phosphor as necessary. Other phosphors include Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, (Ba, Sr, Ca) Si 2 O 2 N 2 : Eu, (Ca, Sr, Ba) 3 Si 6 O 12 N 2: Eu, Si 6-z Al z O z N 8-z: Eu (0 <z ≦ 4.2), (Ca, Sr, Ba) Ga 2 S 4: Eu, (Ca, Sr , Ba) 2 Si 5 N 8 : Eu, (Ca, Sr, Ba) S: Eu, K 2 (Si, Ti, Ge) F 6 : Mn, and the like. When the light emitting device contains other phosphors, the content thereof is, for example, 10% by mass or less, and preferably 1% by mass or less in the total amount of the phosphors.

上記蛍光体の製造方法は、例えば、以下のようにして製造することができる。蛍光体の組成に含有される元素の単体や酸化物、炭酸塩、窒化物、塩化物、フッ化物、硫化物などを原料とし、これらの各原料を所定の組成比となるように秤量する。また、原料にさらにフラックスなどの添加材料を適宜加え、混合機を用いて湿式又は乾式で混合する。なお、フラックスを加える場合、フラックスは例えばフッ化バリウムのようなアルカリ土類金属のフッ化物が挙げられる。その含有量は、上述の第一蛍光体の場合、フッ素の量に換算して0.01重量%以上1.5重量%以下とすることが好ましい。上述の第二蛍光体の場合、フッ素の量に換算して1.5重量%以下とすることが好ましい。これにより、固相反応を促進させて均一な大きさの粒子を形成することが可能となる。   The manufacturing method of the said fluorescent substance can be manufactured as follows, for example. A single element or oxide, carbonate, nitride, chloride, fluoride, sulfide or the like contained in the phosphor composition is used as a raw material, and each of these raw materials is weighed so as to have a predetermined composition ratio. Further, an additive material such as a flux is appropriately added to the raw material, and mixed by a wet or dry method using a mixer. In addition, when adding a flux, the flux is an alkaline earth metal fluoride such as barium fluoride. In the case of the first phosphor described above, the content is preferably 0.01% by weight or more and 1.5% by weight or less in terms of the amount of fluorine. In the case of the above-mentioned second phosphor, it is preferably 1.5% by weight or less in terms of the amount of fluorine. Thereby, it becomes possible to promote solid-phase reaction and form particles of uniform size.

混合機は工業的に通常用いられているボールミルの他、振動ミル、ロールミル、ジェットミルなどの粉砕機を用いてもよい。粉砕機を用いて粉砕することで比表面積を大きくすることもできる。また、粉末の比表面積を一定範囲とするために、工業的に通常用いられている沈降槽、ハイドロサイクロン、遠心分離器などの湿式分離機、サイクロン、エアセパレータなどの乾式分級機を用いて分級することもできる。上記の混合した原料をSiC、石英、アルミナ、BN等の坩堝に詰め、アルゴン、窒素などの不活性雰囲気、水素を含む還元雰囲気、または大気中での酸化雰囲気にて焼成を行う。焼成は所定の温度及び時間で行う。焼成されたものを粉砕、分散、濾過等して目的の蛍光体粉末を得る。固液分離は濾過、吸引濾過、加圧濾過、遠心分離、デカンテーションなどの工業的に通常用いられる方法により行うことができる。乾燥は、真空乾燥機、熱風加熱乾燥機、コニカルドライヤー、ロータリーエバポレーターなどの工業的に通常用いられる装置により行うことができる。   The mixer may be a ball mill that is usually used in industry, or a crusher such as a vibration mill, a roll mill, or a jet mill. The specific surface area can be increased by pulverization using a pulverizer. In addition, in order to keep the specific surface area of the powder within a certain range, it is classified using a wet classifier such as a sedimentation tank, hydrocyclone, and centrifugal separator, and a dry classifier such as a cyclone and an air separator, which are usually used in industry. You can also The mixed raw materials are packed in a crucible made of SiC, quartz, alumina, BN, or the like, and fired in an inert atmosphere such as argon or nitrogen, a reducing atmosphere containing hydrogen, or an oxidizing atmosphere in the air. Firing is performed at a predetermined temperature and time. The fired product is pulverized, dispersed, filtered, etc. to obtain the desired phosphor powder. Solid-liquid separation can be performed by industrially used methods such as filtration, suction filtration, pressure filtration, centrifugation, and decantation. Drying can be performed by industrially used apparatuses such as a vacuum dryer, a hot-air heating dryer, a conical dryer, and a rotary evaporator.

その他の成分
蛍光部材は、蛍光体及び樹脂に加えてその他の成分を必要に応じて含んでいてもよい。その他の成分としては、シリカ、チタン酸バリウム、酸化チタン、酸化アルミニウム等のフィラー、光安定化剤、着色剤等を挙げることができる。蛍光部材がその他の成分、例えばフィラーを含む場合、その含有量は樹脂100質量部に対して、0.01質量部以上20質量部以下とすることができる。
Other components The fluorescent member may contain other components as needed in addition to the phosphor and the resin. Examples of other components include fillers such as silica, barium titanate, titanium oxide, and aluminum oxide, light stabilizers, and colorants. When a fluorescent member contains another component, for example, a filler, the content can be 0.01 mass part or more and 20 mass parts or less with respect to 100 mass parts of resin.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

発光装置の製造に先立ち、以下のように蛍光体を準備した。
第一蛍光体として、SrLiAl:Euで表される組成を有する蛍光体1を準備した。第二蛍光体として、(Sr,Ca)AlSiN:Euで表される組成を有する蛍光体2を準備した。第三蛍光体として、Y(Al,Ga)12:Ceで表される組成を有する蛍光体3a及びLuAl12:Ceで表される組成を有する蛍光体3bを準備した。第四蛍光体として、CaMgSi16l2:Euで表される組成を有する蛍光体4a、SrAl1425:Euで表される組成を有する蛍光体4b及び(Sr,Ba)SiO:Euで表される組成を有する蛍光体4cを準備した。
Prior to manufacturing the light emitting device, a phosphor was prepared as follows.
A phosphor 1 having a composition represented by SrLiAl 3 N 4 : Eu was prepared as the first phosphor. As the second phosphor, phosphor 2 having a composition represented by (Sr, Ca) AlSiN 3 : Eu was prepared. As the third phosphor, a phosphor 3a having a composition represented by Y 3 (Al, Ga) 5 O 12 : Ce and a phosphor 3b having a composition represented by Lu 3 Al 5 O 12 : Ce were prepared. . A fourth phosphor, Ca 8 MgSi 4 O 16 C l2: phosphor 4a having a composition represented by Eu, Sr 4 Al 14 O 25 : phosphor having a composition represented by Eu 4b and (Sr, Ba ) 2 SiO 4: it was prepared phosphor 4c having a composition represented by Eu.

準備した各蛍光体の発光ピーク波長、半値幅(最大発光強度の50%に相当する発光強度における波長幅を表す)を表1に示す。併せて、図3A及び3Bに460nmで励起した時の各蛍光体の最大発光強度を100%とした場合の波長に対する相対発光強度である発光スペクトルを示す。なお、蛍光体4bの半値幅については、460nmで励起した場合に短波側が励起光の影響を受けるために、400nmで励起した場合の半値幅を示す。
また第二蛍光体の半値幅に対する第一蛍光体(蛍光体1)の半値幅の比を、蛍光体2aから2dの第二蛍光体について、それぞれ示す。
Table 1 shows the emission peak wavelength and the half width (representing the wavelength width at the emission intensity corresponding to 50% of the maximum emission intensity) of each of the prepared phosphors. In addition, FIGS. 3A and 3B show emission spectra as relative emission intensities with respect to wavelengths when the maximum emission intensity of each phosphor when excited at 460 nm is 100%. In addition, about the half value width of the fluorescent substance 4b, since the short wave side is influenced by excitation light when excited at 460 nm, the half value width when excited at 400 nm is shown.
The ratio of the half width of the first phosphor (phosphor 1) to the half width of the second phosphor is shown for the second phosphors 2a to 2d, respectively.

(実施例1〜4、比較例1、2)
発光装置の作製
発光波長454nmの青色発光LED(発光素子)に、表2に示す第一蛍光体、第二蛍光体及び第三蛍光体を組み合わせて、以下のようにして発光装置を作製した。
発光装置が発する混色光の色度座標がx=0.450、y=0.400付近となるように配合した蛍光体をシリコーン樹脂に添加し、混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次にこの蛍光体含有樹脂組成物を発光素子の上に注入、充填し、さらに加熱することで樹脂組成物を硬化させた。このような工程により発光装置をそれぞれ作製した。
(Examples 1-4, Comparative Examples 1 and 2)
Production of Light Emitting Device A blue light emitting LED (light emitting element) having an emission wavelength of 454 nm was combined with the first phosphor, the second phosphor, and the third phosphor shown in Table 2 to produce a light emitting device as follows.
A phosphor blended so that the chromaticity coordinates of the mixed-color light emitted from the light-emitting device are in the vicinity of x = 0.450 and y = 0.400 is added to the silicone resin, mixed and dispersed, and then defoamed to obtain fluorescence. A body-containing resin composition was obtained. Next, the phosphor-containing resin composition was poured and filled on the light emitting element, and further heated to cure the resin composition. Each of the light emitting devices was manufactured through such a process.

図4に実施例1から4と比較例1、2の発光装置の発光スペクトルを示す。表2の「第一質量比率(%)」は第一蛍光体と第二蛍光体の総量に対する第一蛍光体の質量比率(%)を表す。色度座標x、yが発光装置の色度を表す。Raは平均演色評価数、R9は赤味の指標となる特殊演色評価数を表す。光束比は比較例1の光束を基準(100.0)とした場合の相対光束を示す。   FIG. 4 shows emission spectra of the light emitting devices of Examples 1 to 4 and Comparative Examples 1 and 2. “First mass ratio (%)” in Table 2 represents the mass ratio (%) of the first phosphor to the total amount of the first phosphor and the second phosphor. The chromaticity coordinates x and y represent the chromaticity of the light emitting device. Ra represents an average color rendering index, and R9 represents a special color rendering index serving as a reddish index. The luminous flux ratio indicates the relative luminous flux when the luminous flux of Comparative Example 1 is used as a reference (100.0).


比較例1は第二蛍光体を加えずに第一蛍光体と第三蛍光体のみを組合せた場合であり、一方、比較例2は第一蛍光体を加えずに第二蛍光体と第三蛍光体のみを組合せた場合である。実施例1〜4は第一蛍光体の質量比率が、それぞれ90%、70%、50%、30%となるように配合した。
光束比は、第二蛍光体の比率が高まるほど、すなわち、第一蛍光体の比率が低くなるほど明るくなっている。これは第二蛍光体の発光ピーク波長のほうが第一蛍光体の発光ピーク波長よりも短波に位置するために、光束に影響を与える視感度が高くなるためと考えられる。Ra及びR9については、波長の異なる蛍光体1と蛍光体2の組合せの場合、蛍光体1を用いた場合と蛍光体2を用いた場合の中間の値になるのが一般的である。しかしながら、実施例に示されるように一定の発光特性差を有する蛍光体を組み合わせることで、図4に示すように、各実施例で発光装置のスペクトルが変化していき、550nmから700nmの赤色成分の形状が、例えば、600nm付近の発光強度が、比較例2よりも実施例1、2及び3のほうが小さくなるため、Ra及びR9を高めることができたと考えられる。
Comparative Example 1 is the case where only the first phosphor and the third phosphor are combined without adding the second phosphor, while Comparative Example 2 is the second phosphor and the third phosphor without adding the first phosphor. This is a case where only phosphors are combined. Examples 1 to 4 were blended so that the mass ratios of the first phosphor were 90%, 70%, 50%, and 30%, respectively.
The luminous flux ratio increases as the ratio of the second phosphor increases, that is, as the ratio of the first phosphor decreases. This is presumably because the luminous peak wavelength of the second phosphor is positioned at a shorter wavelength than the emission peak wavelength of the first phosphor, so that the visibility that affects the luminous flux is increased. As for Ra and R9, in the case of the combination of the phosphor 1 and the phosphor 2 having different wavelengths, the values are generally intermediate between the case where the phosphor 1 is used and the case where the phosphor 2 is used. However, by combining phosphors having a certain light emission characteristic difference as shown in the examples, the spectrum of the light emitting device changes in each example as shown in FIG. 4, and the red component from 550 nm to 700 nm. For example, since the emission intensity in the vicinity of 600 nm is smaller in Examples 1, 2, and 3 than in Comparative Example 2, Ra and R9 can be increased.

(比較例3、4)
発光装置の作製
第一蛍光体の代わりに発光ピーク波長が蛍光体1と同じ蛍光体2bを用いて、表3に示す蛍光体の組合せに変更した以外は実施例1と同様の方法で、発光装置を作製した。表3には比較例2のデータも併せて示す。また、表中の質量比率(%)は蛍光体2aと蛍光体2bの総質量中の蛍光体2bの質量比(%)を示す。
(Comparative Examples 3 and 4)
Production of light-emitting device A phosphor 2b having the same emission peak wavelength as that of phosphor 1 was used in place of the first phosphor, and the light emission was performed in the same manner as in Example 1 except that the phosphor combinations shown in Table 3 were changed. A device was made. Table 3 also shows the data of Comparative Example 2. The mass ratio (%) in the table indicates the mass ratio (%) of the phosphor 2b in the total mass of the phosphor 2a and the phosphor 2b.

比較例2から4の発光装置の発光スペクトルを図5に示す。比較例3及び4は発光波長が異なる蛍光体2aと蛍光体2bの組合せである。蛍光体2bに対する蛍光体2aの半値幅の比は0.85であり、半値幅比が0.8よりも大きい。これらの組合せのRa、R9は単に蛍光体比率により変化しているだけと考えられ、組合せによる演色性の向上は見られていない。これは図5の発光スペクトルに示すように蛍光体の配合比の変更により、発光スペクトルにおける500nmから600nm付近の成分変化がほとんどないことからも分かる。また、単に600nmよりも長い長波側の成分が更に長波長側へ移動しているだけである。   The emission spectra of the light emitting devices of Comparative Examples 2 to 4 are shown in FIG. Comparative Examples 3 and 4 are combinations of phosphor 2a and phosphor 2b having different emission wavelengths. The ratio of the half width of the phosphor 2a to the phosphor 2b is 0.85, and the half width ratio is larger than 0.8. It is considered that Ra and R9 of these combinations merely change depending on the phosphor ratio, and no improvement in color rendering properties is observed by the combination. As can be seen from the emission spectrum of FIG. 5, there is almost no change in the component from 500 nm to 600 nm in the emission spectrum due to the change in the blending ratio of the phosphors. Further, the long wave side component longer than 600 nm is merely shifted to the long wavelength side.

(実施例5から10、比較例5、6)
発光装置の作製
表4に示す第一蛍光体、第二蛍光体及び第三蛍光体の組合せに変更した以外は実施例1と同様の方法で、発光装置を作製した。表4の「第一質量比率(%)」は第一蛍光体と第二蛍光体の総量に対する第一蛍光体の質量比率(%)を表す。
(Examples 5 to 10, Comparative Examples 5 and 6)
Production of Light-Emitting Device A light-emitting device was produced in the same manner as in Example 1, except that the combination of the first phosphor, the second phosphor, and the third phosphor shown in Table 4 was changed. “First mass ratio (%)” in Table 4 represents the mass ratio (%) of the first phosphor to the total amount of the first phosphor and the second phosphor.

比較例5は第一蛍光体を加えずに第二蛍光体と第三蛍光体のみを組合せた場合であり、一方、比較例6は第二蛍光体を加えずに第一蛍光体と第三蛍光体のみを組合せた場合である。実施例5から10では、第一蛍光体の質量比率がそれぞれ10%20%、30%、40%、50%、70%となるように配合した。
比較例5及び6は比較例1及び2よりもRa、R9が低い。一方、実施例9及び10は、比較例1及び2よりもRa及びR9が高い。光束比は、第二蛍光体の比率が高まるほど、すなわち第一蛍光体の比率が低くなるほど高くなっている。図6に示すように、各実施例5から10で発光装置の発光スペクトルが変化していき、550nmから700nmの赤色成分の発光スペクトル形状が特徴的である。すなわち、例えば、600nm付近の発光強度が、比較例5よりも実施例8のほうで小さくなるため、基準光に近づいてRa及びR9を高めることができたと考えられる。
Comparative Example 5 is a case where only the second phosphor and the third phosphor are combined without adding the first phosphor, while Comparative Example 6 is the first phosphor and the third phosphor without adding the second phosphor. This is a case where only phosphors are combined. In Examples 5 to 10, the first phosphors were blended so that the mass ratios were 10%, 20%, 30%, 40%, 50%, and 70%, respectively.
Comparative Examples 5 and 6 have lower Ra and R9 than Comparative Examples 1 and 2. On the other hand, Examples 9 and 10 have higher Ra and R9 than Comparative Examples 1 and 2. The luminous flux ratio increases as the ratio of the second phosphor increases, that is, as the ratio of the first phosphor decreases. As shown in FIG. 6, the emission spectrum of the light emitting device changes in each of Examples 5 to 10, and the emission spectrum shape of the red component from 550 nm to 700 nm is characteristic. That is, for example, since the emission intensity in the vicinity of 600 nm is smaller in Example 8 than in Comparative Example 5, it is considered that Ra and R9 can be increased by approaching the reference light.

(実施例11)
表5に示す第一蛍光体、第二蛍光体及び第三蛍光体の組合せに変更した以外は実施例1と同様の方法で、発光装置を作製した。表5には比較例1のデータを併せて示す。表5の「第一質量比率(%)」は第一蛍光体と第二蛍光体の総量に対する第一蛍光体の質量比率(%)を表す。
(Example 11)
A light emitting device was produced in the same manner as in Example 1 except that the combination of the first phosphor, the second phosphor, and the third phosphor shown in Table 5 was changed. Table 5 also shows the data of Comparative Example 1. “First mass ratio (%)” in Table 5 represents the mass ratio (%) of the first phosphor to the total amount of the first phosphor and the second phosphor.

実施例11及び比較例1の発光装置の発光スペクトルを図7に示す。第一蛍光体及び第二蛍光体を加えた実施例11は、第二蛍光体を加えていない比較例1よりもRaとR9が高い。第二蛍光体は、先に述べた実施例における蛍光体2aよりも発光ピーク波長が長い蛍光体2bであり、同様に演色性を高める効果がある。このように第二蛍光体の発光ピーク波長を変更しても、第一蛍光体と第二蛍光体を組み合わせることで500nm以上630nm以下の発光成分を調整することができ、これにより得られる発光スペクトルが基準光に近づくため演色性を高めることができたと考えられる。   The emission spectra of the light emitting devices of Example 11 and Comparative Example 1 are shown in FIG. In Example 11 in which the first phosphor and the second phosphor were added, Ra and R9 were higher than those in Comparative Example 1 in which the second phosphor was not added. The second phosphor is a phosphor 2b having an emission peak wavelength longer than that of the phosphor 2a in the above-described embodiment, and has the same effect of improving color rendering. Thus, even if the emission peak wavelength of the second phosphor is changed, the emission component of 500 nm to 630 nm can be adjusted by combining the first phosphor and the second phosphor, and the emission spectrum obtained thereby It is thought that the color rendering was able to be improved because of approaching the reference light.

(実施例12から17)
発光装置の作製
表6に示す第一蛍光体、第二蛍光体、第三蛍光体及び第四蛍光体の組合せに変更した以外は実施例1と同じ方法で、発光装置を作製した。第三蛍光体に対する第四蛍光体の質量比率(%)を「第四質量比率(%)」として表6に示す。表6の「第一質量比率(%)」は第一蛍光体と第二蛍光体の総量に対する第一蛍光体の質量比率(%)を表す。
(Examples 12 to 17)
Production of Light-Emitting Device A light-emitting device was produced in the same manner as in Example 1 except that the combination of the first phosphor, the second phosphor, the third phosphor, and the fourth phosphor shown in Table 6 was changed. Table 6 shows the mass ratio (%) of the fourth phosphor to the third phosphor as “fourth mass ratio (%)”. “First mass ratio (%)” in Table 6 represents the mass ratio (%) of the first phosphor to the total amount of the first phosphor and the second phosphor.


実施例12から17は、実施例3の蛍光体の組合せに第四蛍光体をそれぞれ加えたものである。第四蛍光体として、実施例14及び15は蛍光体4a、実施例12及び13は蛍光体4b、実施例16及び17は蛍光体4cを用いている。なお、第三蛍光体に対する第四蛍光体の質量比率について、実施例13が実施例12の約2倍量であり、実施例15が実施例14の約2.5倍量であり、実施例17が実施例16の約2倍量となっている。
実施例12から17は実施例3よりも光束比がわずかに低下しているが、Ra及びR9が高くなっており、高い演色性を有していることが分かる。これは例えば、蛍光体4a及び4bは蛍光体3aよりも短波側に発光ピーク波長を有することから、図8Aから図8Cに示す発光装置の発光スペクトルから分かるように、490nmから550nm付近の発光成分を増やし、それに伴い、550nmから660nmの発光成分が減少した影響で、基準光に近づいたためと考えられる。
In Examples 12 to 17, the fourth phosphor is added to the combination of the phosphors of Example 3. As the fourth phosphor, Examples 14 and 15 use phosphor 4a, Examples 12 and 13 use phosphor 4b, and Examples 16 and 17 use phosphor 4c. In addition, about the mass ratio of the 4th fluorescent substance with respect to a 3rd fluorescent substance, Example 13 is about twice the amount of Example 12, Example 15 is about 2.5 times the amount of Example 14, Example 17 is about twice as much as Example 16.
In Examples 12 to 17, the luminous flux ratio is slightly lower than that in Example 3, but Ra and R9 are high, and it can be seen that the color rendering properties are high. This is because, for example, the phosphors 4a and 4b have a light emission peak wavelength on the short-wave side of the phosphor 3a, and therefore, as can be seen from the light emission spectra of the light emitting devices shown in FIGS. This is considered to be due to the fact that the reference light is approached due to the influence of the decrease in the light emission component from 550 nm to 660 nm.

(実施例18から21、比較例7、8)
表7に示す第一蛍光体、第二蛍光体及び第三蛍光体の組合せに変更した以外は実施例1と同じ方法で、実施例18から21、比較例7、8の発光装置を調製した。表7の「第一質量比(%)」は第一蛍光体と第二蛍光体の総量に対する第一蛍光体の質量比率(%)を表す。
(Examples 18 to 21, Comparative Examples 7 and 8)
Except having changed into the combination of the 1st fluorescent substance shown in Table 7, the 2nd fluorescent substance, and the 3rd fluorescent substance, it was the same method as Example 1, and the light-emitting device of Examples 18-21 and Comparative Examples 7 and 8 was prepared. . “First mass ratio (%)” in Table 7 represents the mass ratio (%) of the first phosphor to the total amount of the first phosphor and the second phosphor.

実施例18から21、比較例7、8の発光装置の発光スペクトルを図9A及び9Bに示す。実施例18から21は第二蛍光体の発光ピーク波長が20nm程度異なる蛍光体2c、蛍光体2dを用いて、蛍光体1と蛍光体3bを組み合わせて発光装置を作製した。光束比の基準は、これらの実施例と同じ蛍光体3bを用いた比較例6を100%としている。実施例18、19で用いた蛍光体2cは610nmに発光ピーク波長を有する蛍光体であり、蛍光体2aよりも発光ピーク波長が約10nm短いものの、蛍光体1と組み合わせることにより、Ra、R9を高くする効果が見られている。実施例20、21で用いた蛍光体2dは発光ピーク波長が629nmであり、蛍光体2aよりも波長の長いものの、これらも同じようにRa、R9が高くなっている。図9A及び9Bの発光スペクトルを見ると、いずれの実施例も比較例よりも基準光に近いスペクトルを示すために演色性が高くなっていると考えられる。実施例18、19と実施例20、21を比較すると第二蛍光体に相当する570nmから630nm付近の成分比が異なっている。より発光ピーク波長が短い蛍光体2cを使用する組合せが580〜600nm付近の成分が多くなる傾向があり、第二蛍光体の発光ピーク波長が長いほうがRa、R9も光束も高く、より発光特性に優れる。   The emission spectra of the light emitting devices of Examples 18 to 21 and Comparative Examples 7 and 8 are shown in FIGS. 9A and 9B. In Examples 18 to 21, a phosphor 2c and a phosphor 2d having different emission peak wavelengths of the second phosphor by about 20 nm were used to produce a light emitting device by combining the phosphor 1 and the phosphor 3b. The standard of the luminous flux ratio is 100% in Comparative Example 6 using the same phosphor 3b as in these examples. The phosphor 2c used in Examples 18 and 19 is a phosphor having an emission peak wavelength at 610 nm. Although the emission peak wavelength is about 10 nm shorter than that of the phosphor 2a, Ra and R9 are combined by combining with the phosphor 1. The effect of increasing is seen. The phosphor 2d used in Examples 20 and 21 has an emission peak wavelength of 629 nm and a wavelength longer than that of the phosphor 2a, but Ra and R9 are similarly high. When the emission spectra of FIGS. 9A and 9B are viewed, it is considered that the color rendering properties are higher in any of the examples because the spectrum is closer to the reference light than in the comparative example. When Examples 18 and 19 are compared with Examples 20 and 21, the component ratios in the vicinity of 570 nm to 630 nm corresponding to the second phosphor are different. The combination using phosphor 2c having a shorter emission peak wavelength tends to have more components in the vicinity of 580 to 600 nm. The longer the emission peak wavelength of the second phosphor, the higher the light flux of Ra and R9, and the higher the emission characteristics. Excellent.

以上のように、本開示に係る発光装置によれば、半値幅の比が所定の範囲であり、発光ピーク波長が異なる赤色発光の第一蛍光体及び第二蛍光体と、黄色発光の第三蛍光体を組み合わせることによって、基準光に近い発光スペクトルを発現できる。そのため平均演色評価数等で評価される演色性を高めることができるだけでなく、発光効率の向上と両立することが可能となった。また発光装置は、上記蛍光体に緑色発光の第四蛍光体を組み合わせることにより、さらに演色性を高めることができた。   As described above, according to the light-emitting device according to the present disclosure, the first phosphor and the second phosphor that emit red light having a half-width ratio in a predetermined range and different emission peak wavelengths, and the third that emits yellow light. By combining the phosphors, an emission spectrum close to the reference light can be expressed. Therefore, it is possible not only to improve the color rendering properties evaluated by the average color rendering index, but also to improve the luminous efficiency. In addition, the light emitting device was able to further improve the color rendering by combining the above phosphor with a green-emitting fourth phosphor.

本開示の発光装置は、照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できるので、産業上の利用価値は極めて高い。   Since the light emitting device of the present disclosure can be suitably used for an illumination light source, an LED display, a backlight light source, a traffic light, an illumination switch, various sensors, various indicators, and the like, the industrial utility value is extremely high.

10:発光素子、50:蛍光部材、71:第一蛍光体、72:第二蛍光体、73:第三蛍光体、100:発光装置   10: Light emitting element, 50: Fluorescent member, 71: First phosphor, 72: Second phosphor, 73: Third phosphor, 100: Light emitting device

Claims (14)

400nm以上480nm以下の波長範囲に発光ピーク波長を有する発光素子と、
下記式(I)で表される組成を有し、630nm以上670nm以下の波長範囲に発光ピーク波長を有する第一蛍光体と、下記式(II)で表される組成を有し、600nm以上655nm以下の波長範囲に発光ピーク波長を有する第二蛍光体と、500nm以上560nm以下の波長範囲に発光ピーク波長を有する第三蛍光体とを含む蛍光部材と、
を備え、
前記第一蛍光体の含有率は、前記第一蛍光体及び前記第二蛍光体の総含有量に対して5質量%以上95質量%以下であり、
前記第一蛍光体の発光ピーク波長は、前記第二蛍光体の発光ピーク波長以上であり、
前記第一蛍光体の発光スペクトルの半値幅は、40nm以上70nm以下であって、前記第二蛍光体の発光スペクトルの半値幅に対する比が0.5以上0.8以下である発光装置。
Al:Eu (I)
(式(I)中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、Mは、Li、Na及びKからなる群から選択される少なくとも1種の元素であり、x、y及びzはそれぞれ、0.5≦x≦1.5、0.5≦y≦1.2及び3.5≦z≦4.5を満たす。)
SrCaAlSi:Eu (II)
(式(II)中、s、t、u、v及びwは、それぞれ、0.0≦s<1.0、0.0<t≦1.0、s+t≦1.0、0.9≦u≦1.1、0.9≦v≦1.1、2.5≦w≦3.5を満たす。)
A light emitting element having an emission peak wavelength in a wavelength range of 400 nm or more and 480 nm or less;
A first phosphor having a composition represented by the following formula (I) and having an emission peak wavelength in a wavelength range of 630 nm to 670 nm and a composition represented by the following formula (II), 600 nm to 655 nm A fluorescent member comprising: a second phosphor having an emission peak wavelength in the following wavelength range; and a third phosphor having an emission peak wavelength in a wavelength range of 500 nm to 560 nm;
With
The content of the first phosphor is 5% by mass to 95% by mass with respect to the total content of the first phosphor and the second phosphor,
The emission peak wavelength of the first phosphor is not less than the emission peak wavelength of the second phosphor,
The light emitting device , wherein a half width of an emission spectrum of the first phosphor is 40 nm or more and 70 nm or less, and a ratio to a half width of an emission spectrum of the second phosphor is 0.5 or more and 0.8 or less.
M a x M b y Al 3 N z : Eu (I)
(In formula (I), M a is at least one element selected from the group consisting of Ca, Sr, Ba and Mg, and M b is at least selected from the group consisting of Li, Na and K. (It is one kind of element, and x, y, and z satisfy 0.5 ≦ x ≦ 1.5, 0.5 ≦ y ≦ 1.2, and 3.5 ≦ z ≦ 4.5, respectively.)
Sr s Ca t Al u Si v N w: Eu (II)
(In the formula (II), s, t, u, v and w are 0.0 ≦ s <1.0, 0.0 <t ≦ 1.0, s + t ≦ 1.0, 0.9 ≦, respectively. u ≦ 1.1, 0.9 ≦ v ≦ 1.1, and 2.5 ≦ w ≦ 3.5 are satisfied.)
前記第一蛍光体の発光スペクトルの半値幅は、40nm以上60nm以下である請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein a half width of an emission spectrum of the first phosphor is 40 nm or more and 60 nm or less. 前記第二蛍光体の発光スペクトルの半値幅は、70nm以上100nm以下である請求項1又は2に記載の発光装置。   3. The light emitting device according to claim 1, wherein a half width of an emission spectrum of the second phosphor is 70 nm or more and 100 nm or less. 前記式(I)において、MがCa及びSrの少なくとも一方を含み、MがLiを含む請求項1から3のいずれか1項に記載の発光装置。 4. The light-emitting device according to claim 1, wherein in the formula (I), M a includes at least one of Ca and Sr, and M b includes Li. 前記式(I)において、xが0.7以上1.2以下である請求項1から4のいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, wherein in the formula (I), x is 0.7 or more and 1.2 or less. 前記蛍光部材は、樹脂を含み、前記第一蛍光体の含有量が、樹脂100質量部に対して0.1質量部以上30質量部以下である請求項1から5のいずれか1項に記載の発光装置。   The said fluorescent member contains resin, and content of said 1st fluorescent substance is 0.1 mass part or more and 30 mass parts or less with respect to 100 mass parts of resin. Light-emitting device. 前記第三蛍光体の含有率は、前記第一蛍光体及び前記第二蛍光体の総含有量に対して50質量%以上2000質量%以下である請求項1から6のいずれか1項に記載の発光装置。   The content rate of said 3rd fluorescent substance is 50 to 2000 mass% with respect to the total content of said 1st fluorescent substance and said 2nd fluorescent substance, The any one of Claim 1 to 6 Light-emitting device. 前記第一蛍光体の含有率は、前記第一蛍光体及び前記第二蛍光体の総含有量に対して40質量%以上70質量%以下である請求項1から7のいずれか1項に記載の発光装置。   The content rate of said 1st fluorescent substance is 40 to 70 mass% with respect to the total content of said 1st fluorescent substance and said 2nd fluorescent substance, The any one of Claim 1 to 7 Light-emitting device. 前記第三蛍光体の発光スペクトルの半値幅は、90nm以上125nm以下である請求項1から8のいずれか1項に記載の発光装置。   9. The light emitting device according to claim 1, wherein a half width of an emission spectrum of the third phosphor is 90 nm or more and 125 nm or less. 前記第三蛍光体が、下記式(IIIa)又は(IIIb)で表される組成を有する蛍光体を1種以上含む請求項1から9のいずれか1項に記載の発光装置。
LnAl5−pGa12:Ce (IIIa)
(式中、LnはY、Lu、Gd及びTbからなる群から選択される少なくとも1種の元素であり、0.0≦p≦3.0を満たす。)
La3−qSi11:Ce (IIIb)
(0.0≦q≦1.5を満たす。)
The light emitting device according to any one of claims 1 to 9, wherein the third phosphor includes one or more phosphors having a composition represented by the following formula (IIIa) or (IIIb).
Ln 3 Al 5-p Ga p O 12: Ce (IIIa)
(In the formula, Ln is at least one element selected from the group consisting of Y, Lu, Gd and Tb, and satisfies 0.0 ≦ p ≦ 3.0.)
La 3-q Y q Si 6 N 11: Ce (IIIb)
(0.0 ≦ q ≦ 1.5 is satisfied.)
前記蛍光部材は、480nm以上540nm以下の波長範囲に発光ピーク波長を有する第四蛍光体を含む請求項1から10のいずれか1項に記載の発光装置。   11. The light emitting device according to claim 1, wherein the fluorescent member includes a fourth phosphor having an emission peak wavelength in a wavelength range of 480 nm or more and 540 nm or less. 前記第四蛍光体の発光スペクトルの半値幅が、40nm以上80nm以下である請求項11に記載の発光装置。   The light emitting device according to claim 11, wherein a half width of an emission spectrum of the fourth phosphor is 40 nm or more and 80 nm or less. 前記第四蛍光体が、下記式(IVa)、(IVb)又は(IVc)で表される組成を有する蛍光体を1種以上含む請求項11又は12に記載の発光装置。
MgSi16:Eu (IVa)
(式中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Xは、Cl、F及びBrからなる群から選択される少なくとも1種の元素である。)
Al1425:Eu (IVb)
(式中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である。)
SiO:Eu (IVc)
(式中、MはCa、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素である。)
The light emitting device according to claim 11 or 12, wherein the fourth phosphor includes at least one phosphor having a composition represented by the following formula (IVa), (IVb), or (IVc).
M c 8 MgSi 4 O 16 X 2: Eu (IVa)
(Wherein, M c is, Ca, at least one element selected from the group consisting of Sr and Ba, X is at least one element selected from the group consisting of Cl, F and Br .)
M d 4 Al 14 O 25 : Eu (IVb)
(In the formula, M d is at least one element selected from the group consisting of Ca, Sr and Ba.)
M e 2 SiO 4: Eu ( IVc)
(Wherein, M e is at least one element selected from the group consisting of Ca, Sr, Ba and Mg.)
前記蛍光部材では、前記発光素子に近い方から順に、前記第一蛍光体、前記第二蛍光体及び前記第三蛍光体が配置されている請求項1から10のいずれか1項に記載の発光装置。   The light emission according to any one of claims 1 to 10, wherein in the fluorescent member, the first phosphor, the second phosphor, and the third phosphor are arranged in order from the side closer to the light emitting element. apparatus.
JP2016137685A 2015-08-20 2016-07-12 Light emitting device Active JP6256541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/234,249 US10026876B2 (en) 2015-08-20 2016-08-11 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163043 2015-08-20
JP2015163043 2015-08-20

Publications (2)

Publication Number Publication Date
JP2017041629A JP2017041629A (en) 2017-02-23
JP6256541B2 true JP6256541B2 (en) 2018-01-10

Family

ID=58203519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137685A Active JP6256541B2 (en) 2015-08-20 2016-07-12 Light emitting device

Country Status (1)

Country Link
JP (1) JP6256541B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438229B1 (en) * 2016-03-29 2021-03-10 Mitsubishi Chemical Corporation Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
JP7004892B2 (en) * 2017-04-11 2022-01-21 日亜化学工業株式会社 Luminescent device
WO2018198949A1 (en) * 2017-04-27 2018-11-01 パナソニックIpマネジメント株式会社 Wavelength converting element, light-emitting device, and illumination device
JP2019016632A (en) 2017-07-04 2019-01-31 日亜化学工業株式会社 Light-emitting device
DE102017122996A1 (en) * 2017-10-04 2019-04-04 Osram Opto Semiconductors Gmbh Phosphor mixture, conversion element and optoelectronic component
US10879429B2 (en) 2018-05-29 2020-12-29 Nichia Corporation Light emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203475A (en) * 2008-02-28 2009-09-10 Mitsubishi Chemicals Corp Sealing resin and method of producing the same
JP5319743B2 (en) * 2010-09-08 2013-10-16 株式会社東芝 Light emitting device
JP5864851B2 (en) * 2010-12-09 2016-02-17 シャープ株式会社 Light emitting device
JP6335884B2 (en) * 2012-05-22 2018-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
JP6356606B2 (en) * 2012-10-04 2018-07-11 株式会社東芝 Dental lighting device
JP6380826B2 (en) * 2013-09-20 2018-08-29 パナソニックIpマネジメント株式会社 Light source device

Also Published As

Publication number Publication date
JP2017041629A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6256541B2 (en) Light emitting device
US10026876B2 (en) Light emitting device
JP6526603B2 (en) Light emitting device
JP6384302B2 (en) Light emitting device
JP6384468B2 (en) Light emitting device
US9954145B2 (en) White light apparatus with enhanced color contrast
JP6406109B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
US10199547B2 (en) Red phosphor and light emitting device including the same
US9735323B2 (en) Light emitting device having a triple phosphor fluorescent member
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP6361549B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP2016154205A (en) Light-emitting device
JP6520553B2 (en) Light emitting device
US9716212B2 (en) Light emitting device
JP7311819B2 (en) Light-emitting device and lamp equipped with the same
JP2012195420A (en) White-light-emitting device
JP5446493B2 (en) Phosphor and light emitting device using the same
JP6637449B2 (en) Oxyfluoride phosphor composition and lighting device therefor
JP6252396B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP7125631B2 (en) Light-emitting device and lamp equipped with the same
JP2023032473A (en) Light-emitting device and lighting fixture with them
JP5956643B2 (en) Yellow light emitting phosphor and light emitting device package using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6256541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250