JP6256399B2 - Electropolishing apparatus and electropolishing method - Google Patents

Electropolishing apparatus and electropolishing method Download PDF

Info

Publication number
JP6256399B2
JP6256399B2 JP2015064931A JP2015064931A JP6256399B2 JP 6256399 B2 JP6256399 B2 JP 6256399B2 JP 2015064931 A JP2015064931 A JP 2015064931A JP 2015064931 A JP2015064931 A JP 2015064931A JP 6256399 B2 JP6256399 B2 JP 6256399B2
Authority
JP
Japan
Prior art keywords
electropolishing
electrolytic
electrolytic solution
metal sample
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064931A
Other languages
Japanese (ja)
Other versions
JP2016183393A (en
Inventor
仲道 治郎
治郎 仲道
大輔 月居
大輔 月居
睦雄 塩賀
睦雄 塩賀
雅広 高野
雅広 高野
幸彦 藤原
幸彦 藤原
馬場 和彦
和彦 馬場
昂平 丹所
昂平 丹所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015064931A priority Critical patent/JP6256399B2/en
Publication of JP2016183393A publication Critical patent/JP2016183393A/en
Application granted granted Critical
Publication of JP6256399B2 publication Critical patent/JP6256399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、電子顕微鏡で観察する金属試料を電解研磨するための電解研磨装置に関するものであり、特に、電解研磨時に金属試料表面に生成して研磨の妨げとなる付着物を除去し、極めて平滑な試料表面を得ることのできる電解研磨装置に関するものである。
また、本発明は、電子顕微鏡で観察する金属試料を電解研磨する電解研磨方法に関するものである。
The present invention relates to an electropolishing apparatus for electropolishing a metal sample to be observed with an electron microscope. In particular, the present invention removes deposits that are generated on the surface of a metal sample during electropolishing and hinders polishing, and are extremely smooth. The present invention relates to an electropolishing apparatus capable of obtaining a simple sample surface.
The present invention also relates to an electrolytic polishing method for electrolytic polishing a metal sample observed with an electron microscope.

材料分析の分野において、走査型電子顕微鏡(SEM)等の電子顕微鏡による表面観察が非常に重要になってきている。特に、金属の組織を解析する上で電子顕微鏡による観察は極めて有用であり、広く行われている。   In the field of material analysis, surface observation with an electron microscope such as a scanning electron microscope (SEM) has become very important. In particular, observation with an electron microscope is extremely useful and widely used in analyzing metal structures.

金属組織を電子顕微鏡で観察する場合、観察対象である金属試料の表面を予め研磨して平滑にしておく必要がある。そのための研磨方法としては、電解研磨、化学研磨、イオンミリング、集束イオンビーム(FIB)等、様々な方法が知られているが、中でも電解研磨は、表面に損傷を与えることなく、短時間で広い範囲を平滑化できるため、一般的に利用されている。   When observing a metal structure with an electron microscope, it is necessary to polish and smooth the surface of a metal sample to be observed in advance. For this purpose, various methods such as electrolytic polishing, chemical polishing, ion milling, and focused ion beam (FIB) are known. Of these, electrolytic polishing is performed in a short time without damaging the surface. Since a wide range can be smoothed, it is generally used.

しかし、近年の電子顕微鏡の発達により、低加速電圧による観察や高倍率による観察が可能となった結果、試料表面に存在するわずかな凹凸が観察像に影響を与え、精度の高い組織観察が困難になるという問題が生じている。また、材料の高精度化により試料組織が複雑になり、以前の材料に比べて平滑な材料を得ることが難しくなってきている。そのため、電子顕微鏡を用いた組織観察の分野では、観察する金属試料の表面をさらに平滑に研磨する技術が求められている。   However, with the recent development of electron microscopes, observation with low acceleration voltage and observation with high magnification is possible. As a result, slight unevenness on the sample surface affects the observation image, making accurate tissue observation difficult. The problem of becoming. In addition, the accuracy of the material increases the complexity of the sample structure, making it difficult to obtain a smooth material as compared to previous materials. For this reason, in the field of tissue observation using an electron microscope, there is a demand for a technique for further smoothly polishing the surface of a metal sample to be observed.

一方、電解研磨の分野においては、電解研磨中にジェット流や攪拌により電解液を流動させることによって平滑な研磨面を得る方法が知られている。例えば、特許文献1では、X線光電子分光(XPS)等の分析法を用いて金属試料の表面を分析する際に、バスケット状の陽極内に該金属試料を設置し、前記陽極を上下動させながら電解研磨を行うことによって金属試料の表面を平滑化することが提案されている。   On the other hand, in the field of electrolytic polishing, a method of obtaining a smooth polished surface by flowing an electrolytic solution by jet flow or stirring during electrolytic polishing is known. For example, in Patent Document 1, when analyzing the surface of a metal sample using an analysis method such as X-ray photoelectron spectroscopy (XPS), the metal sample is placed in a basket-like anode, and the anode is moved up and down. However, it has been proposed to smooth the surface of a metal sample by performing electropolishing.

特開2008−184639号公報JP 2008-184439 A

しかし、特許文献1に記載されたような方法を用いることにより、研磨面の平滑さをある程度改善することはできるものの、電子顕微鏡で観察する金属試料としては十分な平滑さを得ることができない場合があった。電子顕微鏡による組織観察をより高い精度で行うためには、金属表面をさらに平滑に研磨することのできる電解研磨装置の開発が求められている。   However, the smoothness of the polished surface can be improved to some extent by using the method described in Patent Document 1, but sufficient smoothness cannot be obtained as a metal sample to be observed with an electron microscope. was there. In order to perform structure observation with an electron microscope with higher accuracy, development of an electropolishing apparatus capable of further smoothly polishing a metal surface is required.

本発明は、上記の実情に鑑み開発されたものであり、電子顕微鏡で観察する金属試料を極めて平滑に研磨することのできる電解研磨装置および電解研磨方法を提供することを目的とする。   The present invention has been developed in view of the above circumstances, and an object thereof is to provide an electrolytic polishing apparatus and an electrolytic polishing method capable of polishing a metal sample observed with an electron microscope very smoothly.

発明者らは、上記の目的を達成すべく鋭意研究を行った結果、次の(1)〜(3)の知見を得た。
(1)最適と考えられる条件、例えば、使用する電解液の組成や温度、電圧、電流等、で電解研磨を実施したとしても、電解研磨中に、腐食生成物と考えられる微細な付着物が金属表面に生成する。
(2)前記付着物が残存した状態で電解研磨を継続すると最終的な研磨面の凹凸が大きくなるが、電解研磨中に該付着物を速やかに除去することができれば、研磨面の平滑性を向上させることができる。
(3)前記付着物は、電解液の攪拌や、被研磨物(金属試料)を上下動させると行った方法では除去することが困難であるが、電解研磨中に電解液に超音波を印加することにより除去することができる。
The inventors obtained the following findings (1) to (3) as a result of intensive studies to achieve the above object.
(1) Even if the electropolishing is carried out under conditions that are considered to be optimum, for example, the composition, temperature, voltage, current, etc. of the electrolytic solution used, fine deposits that are considered corrosion products are found during the electropolishing. It forms on the metal surface.
(2) If the electropolishing is continued with the deposit remaining, the final polished surface becomes uneven. If the deposit can be removed quickly during the electropolishing, the smoothness of the polished surface will be improved. Can be improved.
(3) The deposit is difficult to remove by stirring the electrolytic solution or by moving the workpiece (metal sample) up and down, but applying ultrasonic waves to the electrolytic solution during electrolytic polishing This can be removed.

本発明は前記知見に立脚するものであり、その要旨構成は次のとおりである。
1.電子顕微鏡で観察する金属試料を電解研磨するための電解研磨装置であって、
電解液中で前記金属試料を電解研磨するための電解研磨手段と、
電解研磨中に前記電解液に超音波を印加するための超音波印加手段と、を備える電解研磨装置。
The present invention is based on the above findings, and the gist of the present invention is as follows.
1. An electropolishing apparatus for electropolishing a metal sample to be observed with an electron microscope,
An electropolishing means for electropolishing the metal sample in an electrolytic solution;
An electropolishing apparatus comprising: an ultrasonic wave application means for applying an ultrasonic wave to the electrolytic solution during electropolishing.

2.前記電解液の温度を調整するための温度調整手段を備える、前記1に記載の電解研磨装置。 2. 2. The electropolishing apparatus according to 1, wherein a temperature adjusting unit for adjusting the temperature of the electrolytic solution is provided.

3.前記電解研磨手段による電解研磨中に前記超音波印加手段により超音波を印加する制御を行う制御手段を有する、前記1または2に記載の電解研磨装置。 3. 3. The electropolishing apparatus according to 1 or 2, further comprising a control unit that performs control to apply ultrasonic waves by the ultrasonic wave application unit during electropolishing by the electropolishing unit.

4.電子顕微鏡で観察する金属試料を電解液中で電解研磨する電解研磨方法であって、
電解研磨中に前記電解液へ超音波を印加する電解研磨方法。
4). An electropolishing method for electropolishing a metal sample to be observed with an electron microscope in an electrolyte solution,
An electrolytic polishing method in which ultrasonic waves are applied to the electrolytic solution during electrolytic polishing.

5.前記電解液の温度を25〜−40℃に保持する、前記4に記載の電解研磨方法。 5. 5. The electrolytic polishing method according to 4, wherein the temperature of the electrolytic solution is maintained at 25 to −40 ° C.

本発明によれば、電解液に超音波を印加するという極めて簡便な方法により電解研磨中に金属試料表面に生成する付着物を除去し、金属試料を極めて平滑に研磨することができる。かかる電解研磨装置および電解研磨方法は、電子顕微鏡で観察する金属試料の最終研磨を行ううえで極めて有用である。   According to the present invention, the deposit generated on the surface of the metal sample during electropolishing can be removed by an extremely simple method of applying ultrasonic waves to the electrolytic solution, and the metal sample can be polished extremely smoothly. Such an electropolishing apparatus and an electropolishing method are extremely useful in performing final polishing of a metal sample observed with an electron microscope.

本発明の一実施形態における電解研磨装置の概略図である。It is the schematic of the electropolishing apparatus in one Embodiment of this invention. 本発明の他の実施形態における電解研磨装置の概略図である。It is the schematic of the electropolishing apparatus in other embodiment of this invention. 本発明の他の実施形態における電解研磨装置の概略図である。It is the schematic of the electropolishing apparatus in other embodiment of this invention. 電解研磨後の試料表面を観察した電子顕微鏡写真である。It is the electron micrograph which observed the sample surface after electropolishing.

次に、本発明を実施する方法について具体的に説明する。
本発明の電解研磨装置は、電子顕微鏡で観察する金属試料を電解研磨するための電解研磨装置であり、電解液中で前記金属試料を電解研磨するための電解研磨手段と、電解研磨中に前記電解液に超音波を印加するための超音波印加手段とを備えている。そして、本発明の電解研磨方法においては、前記金属試料を電解液中で電解研磨する間に、前記電解液へ超音波の印加が行われる。
Next, a method for carrying out the present invention will be specifically described.
The electropolishing apparatus of the present invention is an electropolishing apparatus for electropolishing a metal sample to be observed with an electron microscope, and an electropolishing means for electropolishing the metal sample in an electrolytic solution, Ultrasonic application means for applying ultrasonic waves to the electrolytic solution. In the electrolytic polishing method of the present invention, ultrasonic waves are applied to the electrolytic solution while the metal sample is electrolytically polished in the electrolytic solution.

[金属試料]
本発明の電解研磨装置および電解研磨方法は、電子顕微鏡で観察する金属試料を処理対象とするものである。前記金属試料としては、特に限定されず、電解研磨が可能なものであれば任意の金属材料を用いることができる。ここで、「金属材料」とは、純金属や合金だけでなく、繊維強化金属等の金属基複合材料、サーメット、超硬合金等の金属含有材料全般を指すものとする。中でも、本発明は鉄鋼材料の組織観察用試料の作製に極めて好適に用いることができる。
[Metal sample]
The electropolishing apparatus and the electropolishing method of the present invention are intended to treat a metal sample observed with an electron microscope. The metal sample is not particularly limited, and any metal material can be used as long as electropolishing is possible. Here, the “metal material” means not only pure metals and alloys, but also metal-based composite materials such as fiber reinforced metals, metal-containing materials such as cermets and cemented carbides in general. Especially, this invention can be used very suitably for preparation of the sample for structure | tissue observation of steel materials.

金属試料のサイズは目的に応じて適宜決定すればよいが、過度に大きいと電解研磨によって全体を平滑にすることが困難となる。そのため、研磨面のサイズを、30×30mm以下とすることが好ましい。   The size of the metal sample may be appropriately determined according to the purpose, but if it is excessively large, it becomes difficult to smooth the entire surface by electropolishing. For this reason, the size of the polished surface is preferably 30 × 30 mm or less.

金属試料は、電解研磨に先立って機械研磨等により鏡面研磨しておくことが好ましい。これにより、電解研磨後の研磨面をさらに平滑にすることができる。なお、機械研磨等の作業性の点から、あらかじめ金属試料を樹脂に埋め込む場合があるが、本発明においては、そのような樹脂に埋め込まれた金属試料を用いることも出来る。この場合、後述する直流電源の陽極端子と金属試料とを、導電ペーストやCuテープ、ステンレスチャッキング等を用いて接続することができる。   The metal sample is preferably mirror-polished by mechanical polishing or the like prior to electrolytic polishing. Thereby, the polished surface after electrolytic polishing can be further smoothed. In addition, from the viewpoint of workability such as mechanical polishing, a metal sample may be embedded in a resin in advance, but in the present invention, a metal sample embedded in such a resin can also be used. In this case, an anode terminal of a DC power source, which will be described later, and a metal sample can be connected using a conductive paste, Cu tape, stainless steel chucking, or the like.

[電解研磨手段]
上記金属試料は、表面を平滑化するために電解液中で電解研磨される。電解研磨の態様は特に限定されず、任意の態様で行うことができるが、典型的には、金属試料の少なくとも一部を電解液中に浸漬した状態で、該金属試料が陽極となるように通電することによって行うことができる。前記通電には、一般的な直流電源を使用することができる。前記電源の陽極端子は前記金属試料に接続され、陰極端子は別途電解液中に浸漬された陰極に接続され、前記金属試料と陰極との間に電圧が印加される。前記電源としては、通常の2電極式のものを用いることもできるが、必要に応じてポテンショスタット、ガルバノスタット等の3電極式の電源を使用することもできる。3電極式の電源を使用する場合、金属試料の近傍に参照電極を設置した状態で電解研磨を行うことができる。
[Electrolytic polishing means]
The metal sample is electropolished in an electrolytic solution to smooth the surface. The mode of electropolishing is not particularly limited and can be performed in any mode, but typically, the metal sample becomes an anode in a state where at least a part of the metal sample is immersed in the electrolytic solution. This can be done by energizing. For the energization, a general DC power source can be used. An anode terminal of the power source is connected to the metal sample, a cathode terminal is connected to a cathode separately immersed in an electrolytic solution, and a voltage is applied between the metal sample and the cathode. As the power source, a normal two-electrode type power source can be used, but a three-electrode type power source such as a potentiostat or a galvanostat can be used as necessary. When a three-electrode power source is used, electrolytic polishing can be performed with a reference electrode placed in the vicinity of the metal sample.

上記陰極の材質は特に限定されず、任意の材質からなる電極を使用することができるが、耐食性の観点からはステンレス、白金、または白金めっきしたチタンからなる電極を陰極として用いることが好ましい。均一に電解研磨するためには、陰極のサイズを金属試料の研磨領域より大きくすることが好ましい。   The material of the cathode is not particularly limited, and an electrode made of an arbitrary material can be used. However, from the viewpoint of corrosion resistance, an electrode made of stainless steel, platinum, or platinum-plated titanium is preferably used as the cathode. In order to perform electrolytic polishing uniformly, it is preferable to make the size of the cathode larger than the polishing region of the metal sample.

電解研磨時の通電は、印加電位が一定となるように行ってもよいし(定電位電解)、電流が一定となるように行ってもよい(定電流電解)。また、電位や電流を連続的または断続的に変化させながら電解を行うこともできる。さらに、電解研磨量を制御するという観点からは、金属試料に電解領域サイズを制限するためのマスキングを施し、電解開始時点からの経過時間や、積算電流値に基づいて電解研磨を終了する電解研磨量制御手段を備えた電解研磨手段を用いることが好ましい。   The energization at the time of electrolytic polishing may be performed so that the applied potential is constant (constant potential electrolysis) or may be performed so that the current is constant (constant current electrolysis). Electrolysis can also be performed while changing the potential and current continuously or intermittently. Furthermore, from the viewpoint of controlling the amount of electropolishing, the metal polishing is masked to limit the electrolysis region size, and the electropolishing is completed based on the elapsed time from the start of electrolysis or the accumulated current value. It is preferable to use an electropolishing means provided with a quantity control means.

[電解液]
電解研磨に使用する電解液の種類は、研磨対象としての金属試料に応じて選択される。例えば、金属試料が鉄鋼である場合には、過塩素酸とメタノールの混合液や、過塩素酸と酢酸とエタノールの混合液などを使用することができる。前記過塩素酸とメタノールの混合液の組成比としては、体積%で、過酸化水素:5〜30%、メタノール95〜70%のものを用いることが好ましい。前記過塩素酸とメタノールの混合液に、さらに2−n−ブトキシエタノールを加えたものや、過塩素酸と酢酸の混合溶液を用いることもできる。また、金属試料が銅系材料である場合には、濃度50体積%程度のリン酸を含む溶液等を用いることもできる。
[Electrolyte]
The type of electrolyte used for electropolishing is selected according to the metal sample as the object to be polished. For example, when the metal sample is steel, a mixed solution of perchloric acid and methanol, a mixed solution of perchloric acid, acetic acid, and ethanol can be used. As the composition ratio of the mixed solution of perchloric acid and methanol, it is preferable to use a volume percentage of hydrogen peroxide: 5 to 30% and methanol 95 to 70%. What added 2-n-butoxyethanol further to the mixed solution of perchloric acid and methanol, and the mixed solution of perchloric acid and acetic acid can also be used. When the metal sample is a copper-based material, a solution containing phosphoric acid having a concentration of about 50% by volume can also be used.

上記電解液を保持するための容器(電解槽)としては、電解液によって腐食されない材質からなるものを使用することが好ましく、ガラス製容器を用いることがより好ましい。   As a container (electrolysis tank) for holding the electrolytic solution, it is preferable to use a material made of a material that is not corroded by the electrolytic solution, and it is more preferable to use a glass container.

[超音波印加手段]
本発明においては、金属試料を電解液中で電解研磨する間に、前記電解液へ超音波を印加することが重要である。電解研磨を行っている間に超音波を印加することにより、電解によって金属試料の表面に発生する微細な付着物を速やかに除去し、金属試料表面の平滑性が低下することを防止できる。ここで、「電解研磨中に前記電解液へ超音波を印加する」とは、電解研磨開始から終了までの時間(電解時間)の少なくとも一部において電解液へ超音波を印加することを意味する。超音波を印加する時間は特に限定されないが、十分な平滑化効果を得るという観点からは、超音波の印加時間を電解研磨時間の50%以上(例えば、電解研磨時間が10秒であれば超音波の印加時間は5秒以上)とすることが好ましく、電解研磨時間の80%以上とすることがより好ましく、電解研磨時間の100%とすることがさらに好ましい。また、電解研磨が開始される前から超音波の印加を開始してもよく、同様に、電解研磨が終了した後も超音波の印加を継続してもよい。
[Ultrasonic application means]
In the present invention, it is important to apply ultrasonic waves to the electrolytic solution while electrolytic polishing the metal sample in the electrolytic solution. By applying ultrasonic waves during the electropolishing, fine deposits generated on the surface of the metal sample by electrolysis can be quickly removed, and the smoothness of the surface of the metal sample can be prevented from being lowered. Here, “applying ultrasonic waves to the electrolytic solution during electrolytic polishing” means applying ultrasonic waves to the electrolytic solution during at least part of the time (electrolytic time) from the start to the end of electrolytic polishing. . The time for applying the ultrasonic wave is not particularly limited, but from the viewpoint of obtaining a sufficient smoothing effect, the ultrasonic wave application time is 50% or more of the electrolytic polishing time (for example, if the electrolytic polishing time is 10 seconds, The application time of the sonic wave is preferably 5 seconds or more), more preferably 80% or more of the electropolishing time, and further preferably 100% of the electropolishing time. Further, application of ultrasonic waves may be started before electropolishing is started, and similarly, application of ultrasonic waves may be continued after electropolishing is completed.

前記超音波の印加を行うための超音波印加手段としては、電解液に超音波を印加できるものであれば任意のものを用いることができる。例えば、投げ込み式(プローブタイプ)の超音波振動子を電解液中に直接浸漬して用いることや、超音波振動子の上に電解液を収容した電解槽を設置することができる。また、超音波振動子が取り付けられた槽の内部に水等の媒体を収容し、さらにその内部に前記媒体に浸漬した状態で電解槽を設置し、該媒体を経由して電解液に超音波を印加することも可能である。超音波印加手段の出力は、処理対象である金属試料のサイズや、電解液の量等に応じて決定すればよく、例えば、10W以上とすることができる。   As the ultrasonic wave application means for applying the ultrasonic wave, any means can be used as long as it can apply ultrasonic waves to the electrolytic solution. For example, a throwing type (probe type) ultrasonic transducer can be used by directly immersing it in an electrolytic solution, or an electrolytic cell containing the electrolytic solution can be installed on the ultrasonic transducer. Further, a medium such as water is accommodated in a tank to which an ultrasonic vibrator is attached, and an electrolytic tank is installed in a state where the medium is immersed in the medium. Can also be applied. What is necessary is just to determine the output of an ultrasonic application means according to the size of the metal sample which is a process target, the quantity of electrolyte solution, etc., for example, can be 10 W or more.

なお、本発明においては、超音波を印加することに加えて、さらに任意の方法で電解液の攪拌を行うことができる。電解液を攪拌する方法の例としては、電解槽中に設置したスターラー(攪拌子)や、スクリュー等の攪拌手段による攪拌、金属試料自体を電解液中で振動、揺動させることによる攪拌等が挙げられる。電解研磨中に電解液を攪拌することにより、電解槽内の電解液の組成や温度を均一にし、さらに良好な研磨面を得ることができる。   In the present invention, in addition to applying ultrasonic waves, the electrolytic solution can be further stirred by an arbitrary method. Examples of the method of stirring the electrolytic solution include a stirrer (stirring bar) installed in the electrolytic cell, stirring by a stirring means such as a screw, stirring by vibrating and swinging the metal sample itself in the electrolytic solution, and the like. Can be mentioned. By stirring the electrolytic solution during electrolytic polishing, the composition and temperature of the electrolytic solution in the electrolytic cell can be made uniform, and a better polished surface can be obtained.

[温度調整手段]
さらに本発明の電解装置においては、電解液の温度を調整するための温度調整手段を設けることが好ましい。これにより、超音波の印加に起因する発熱等による電解液温度の変動を抑制し、さらに平滑な研磨面を得ることが可能となる。前記温度調整手段としては、加熱手段および冷却手段の一方または両方を用いてもよいし、一定温度の熱媒を循環させて温度調整を行う熱交換式の温度調整装置を用いることもできる。
[Temperature adjustment means]
Furthermore, in the electrolysis apparatus of the present invention, it is preferable to provide a temperature adjusting means for adjusting the temperature of the electrolytic solution. As a result, it is possible to suppress fluctuations in the electrolyte temperature due to heat generation caused by application of ultrasonic waves, and to obtain a smoother polished surface. As the temperature adjusting means, one or both of a heating means and a cooling means may be used, or a heat exchange type temperature adjusting device that adjusts the temperature by circulating a constant temperature heat medium may be used.

電解液の温度は、処理対象の金属試料や、電解液の組成、電解条件(電位、電流)等に応じて決定すればよい。電解液の温度が高くなりすぎると電解による金属の溶解が過度に促進され、その結果、平滑性が低下する場合がある。そのため、電解液温度を25〜−40℃とすることが好ましく、20〜−30℃とすることがより好ましい。特に平滑性が要求される場合には、電解液温度を0℃以下とすることがさらに好ましい。   The temperature of the electrolytic solution may be determined according to the metal sample to be treated, the composition of the electrolytic solution, the electrolysis conditions (potential, current), and the like. If the temperature of the electrolytic solution becomes too high, dissolution of the metal by electrolysis is excessively promoted, and as a result, smoothness may be lowered. Therefore, the electrolytic solution temperature is preferably 25 to -40 ° C, and more preferably 20 to -30 ° C. In particular, when smoothness is required, the electrolyte temperature is more preferably 0 ° C. or lower.

[制御装置]
さらに本発明の電解装置においては、電解研磨手段による電解研磨中に前記超音波印加手段による超音波の印加を行うよう制御を行う制御手段を設けることが好ましい。これにより、電解研磨中に確実に超音波を印加して研磨面の平滑性を向上させることができる。制御の方法は特に限定されないが、例えば、予め定めたタイミングで電解研磨と超音波発生の印加とを開始させるような制御装置や、電解研磨用の電源に連動させて超音波印加手段を稼働させる装置等を用いることができる。
[Control device]
Furthermore, in the electrolysis apparatus of the present invention, it is preferable to provide a control means for performing control so that the ultrasonic wave is applied by the ultrasonic wave application means during the electropolishing by the electropolishing means. This makes it possible to improve the smoothness of the polished surface by reliably applying ultrasonic waves during electropolishing. The control method is not particularly limited. For example, the control unit that starts the electrolytic polishing and the application of ultrasonic generation at a predetermined timing, or the ultrasonic application unit is operated in conjunction with the power source for electrolytic polishing. A device or the like can be used.

以上説明したように、本発明の電解研磨装置を用いて電解研磨を行う。なお、最適な電解研磨条件は、金属試料の材質や組織によって異なるため、処理対象に応じて電解液組成、電解液温度、電圧(定電位電解の場合)、電流(定電流電解の場合)、電荷研磨時間を調整する。例えば、金属試料が炭素量0.040%以下の鉄鋼材料である場合、8%過塩素酸−10%酢酸−エタノール混合液を電解液とし、電解液温度を室温、60V、60秒の条件で定電位電解を行うことができる。また、他の材料についても、一般的に電解液温度は20〜−40℃、電圧10V〜70V、研磨時間2〜120秒程度の範囲で最適な研磨条件を見つけることが望ましい。   As described above, electrolytic polishing is performed using the electrolytic polishing apparatus of the present invention. The optimal electropolishing conditions differ depending on the material and structure of the metal sample. Therefore, the electrolyte composition, electrolyte temperature, voltage (for constant potential electrolysis), current (for constant current electrolysis), Adjust the charge polishing time. For example, when the metal sample is a steel material having a carbon content of 0.040% or less, an 8% perchloric acid-10% acetic acid-ethanol mixed solution is used as the electrolytic solution, and the electrolytic solution temperature is room temperature, 60V, 60 seconds. Constant potential electrolysis can be performed. For other materials as well, it is generally desirable to find optimum polishing conditions in the range of electrolyte temperature of 20 to -40 ° C., voltage of 10 V to 70 V, and polishing time of about 2 to 120 seconds.

電解研磨終了後は、電解液から金属試料を取り出し、電解液の付着による汚れや腐食を防ぐために、直ちに試料の洗浄を行う。前記洗浄には、アルコール、有機溶媒、蒸留水等を使用することができる。洗浄後は金属試料を乾燥させる。前記乾燥にはドライヤーや乾燥機を用いてもよい。   After the electrolytic polishing is completed, the metal sample is taken out from the electrolytic solution, and the sample is immediately cleaned in order to prevent dirt and corrosion due to adhesion of the electrolytic solution. For the washing, alcohol, organic solvent, distilled water or the like can be used. After washing, the metal sample is dried. A dryer or a dryer may be used for the drying.

<第1の実施形態>
次に、図面を用いて、本発明の実施形態について具体的に説明する。なお、以下の説明において共通する装置や部材等には同じ番号を付している。
図1は、本発明の第1の実施形態における電解研磨装置1の概略図である。図中、2は電解研磨手段であり、電解液3を収容するための電解槽4、陰極5、および直流電源6を備えている。金属試料7は陽極となるように直流電源6に接続された状態で電解液3に浸漬されている。
<First Embodiment>
Next, embodiments of the present invention will be specifically described with reference to the drawings. In the following description, the same numbers are assigned to common devices and members.
FIG. 1 is a schematic view of an electropolishing apparatus 1 according to the first embodiment of the present invention. In the figure, reference numeral 2 denotes an electropolishing means, which includes an electrolytic cell 4 for accommodating an electrolytic solution 3, a cathode 5, and a DC power source 6. The metal sample 7 is immersed in the electrolytic solution 3 while being connected to a DC power source 6 so as to serve as an anode.

一方、8は超音波印加手段であり、超音波発振器9と超音波発振器9に接続された超音波振動子10を備えている。電解槽4は、超音波振動子10の上に設置されており、電解槽4を介して電解液に超音波が印加される。なお、この例では電解槽4の下部に超音波振動子10が設けられているが、側面等、他の位置に設けることもできる。   On the other hand, 8 is an ultrasonic wave application means, which includes an ultrasonic oscillator 9 and an ultrasonic transducer 10 connected to the ultrasonic oscillator 9. The electrolytic cell 4 is installed on the ultrasonic vibrator 10, and ultrasonic waves are applied to the electrolytic solution through the electrolytic cell 4. In this example, the ultrasonic transducer 10 is provided in the lower part of the electrolytic cell 4, but it may be provided at other positions such as a side surface.

本実施形態では、超音波振動子10の上に電解槽4を設置するだけでよいため、例えば、既存の電解研磨装置を、一般的に入手可能な超音波振動子の上に設置するといった極めて簡便な方法で、超音波を併用した電解研磨処理が可能となる。   In this embodiment, since it is only necessary to install the electrolytic bath 4 on the ultrasonic transducer 10, for example, an existing electrolytic polishing apparatus is installed on a generally available ultrasonic transducer. An electropolishing process using ultrasonic waves can be performed by a simple method.

<第2の実施形態>
図2は、本発明の第2の実施形態における電解研磨装置1の概略図である。本実施形態では、超音波振動子10の上に媒体としての水11を満たした槽12が設置されており、電解槽4は水11に浸漬されている。したがって、超音波は前記水11を介して電解槽4の内部の電解液3へ印加される。なお、この例では槽12の下部に超音波振動子10が設けられているが、槽12の側面等、他の位置に設けることもできる。
<Second Embodiment>
FIG. 2 is a schematic view of an electropolishing apparatus 1 according to the second embodiment of the present invention. In the present embodiment, a tank 12 filled with water 11 as a medium is installed on the ultrasonic vibrator 10, and the electrolytic tank 4 is immersed in the water 11. Accordingly, the ultrasonic wave is applied to the electrolytic solution 3 inside the electrolytic cell 4 through the water 11. In this example, the ultrasonic transducer 10 is provided in the lower part of the tank 12, but it may be provided at other positions such as a side surface of the tank 12.

本実施形態の場合、一般的に入手可能な超音波洗浄機を超音波印加手段8および槽12として利用することもできる。その場合、超音波洗浄機内に既存の電解装置を設置するといった極めて簡便な方法で、超音波を併用した電解研磨処理が可能となる。また、本実施形態では、槽12内の水11を熱媒として利用し、間接的に電解液3の温度を調整することもできる。   In the case of the present embodiment, a generally available ultrasonic cleaner can be used as the ultrasonic application means 8 and the tank 12. In that case, an electrolytic polishing process using ultrasonic waves can be performed by an extremely simple method of installing an existing electrolytic device in an ultrasonic cleaning machine. Moreover, in this embodiment, the temperature of the electrolyte solution 3 can also be adjusted indirectly using the water 11 in the tank 12 as a heat medium.

<第3の実施形態>
図3は、本発明の第3の実施形態における電解研磨装置1の概略図である。本実施形態では、超音波発振子の上に槽を設置することに代えて、電解槽4の内部に、超音波振動子10を設置している。この場合、超音波振動子10としては投げ込み式の超音波振動子を使用することができる。また、図3においては電解槽4の略中央、陰極5と金属試料7の間に超音波振動子10を設置しているが、他の位置、例えば、電解槽4の内壁に接するように設置することもできる。
<Third Embodiment>
FIG. 3 is a schematic view of an electropolishing apparatus 1 according to the third embodiment of the present invention. In this embodiment, instead of installing a tank on the ultrasonic oscillator, an ultrasonic vibrator 10 is installed inside the electrolytic cell 4. In this case, a throw-in type ultrasonic transducer can be used as the ultrasonic transducer 10. In FIG. 3, the ultrasonic vibrator 10 is installed at the approximate center of the electrolytic cell 4, between the cathode 5 and the metal sample 7, but installed at another position, for example, in contact with the inner wall of the electrolytic cell 4. You can also

次に、実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。本発明の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、そのような態様も本発明の技術的範囲に含まれる。   Next, the present invention will be specifically described based on examples. The following examples show preferred examples of the present invention, and the present invention is not limited to the examples. Modifications can be made within the scope that can meet the spirit of the present invention, and such embodiments are also included in the technical scope of the present invention.

金属試料として、10×10×5mmtのステンレス鋼板を用いて電解研磨を実施した。電解研磨条件は、電解液:10%過塩素酸−90%メタノール混合液、電解液温度:室温、電解方法:定電位電解、印加電圧:25V、電解研磨時間:10秒とした。そして、電解研磨を行う間、超音波洗浄機(エスエヌディ製、UK−3KS)を用いて、周波数38kHzで超音波を印加した。電解研磨終了後、電解液から金属試料を取り出して、メタノールで一次洗浄を行い、続いて、エタノールを用いて、二次洗浄、三次洗浄を行い、次いで、熱風乾燥を行った。   Electropolishing was carried out using a 10 × 10 × 5 mmt stainless steel plate as the metal sample. The electrolytic polishing conditions were: electrolytic solution: 10% perchloric acid-90% methanol mixed solution, electrolytic solution temperature: room temperature, electrolytic method: constant potential electrolysis, applied voltage: 25 V, and electrolytic polishing time: 10 seconds. During the electropolishing, an ultrasonic wave was applied at a frequency of 38 kHz using an ultrasonic cleaner (manufactured by SND, UK-3KS). After completion of the electropolishing, a metal sample was taken out of the electrolytic solution, subjected to primary cleaning with methanol, followed by secondary cleaning and tertiary cleaning using ethanol, and then hot air drying.

さらに、比較のために、上記電解研磨の間に超音波を印加しなかったもの、超音波の印加に代えてスターラーによる攪拌を行ったもの、超音波の印加に代えて金属試料を上下方向に振動させたもの、および超音波印加なしでの電解研磨後に電解液中で10秒間超音波処理を行ったものを用意した。それぞれの方法で得られた金属試料の表面をSEMで観察して得た写真を図4に示す。   Further, for comparison, those in which ultrasonic waves were not applied during the above-described electropolishing, those in which stirring was performed by a stirrer instead of ultrasonic waves, and metal samples were vertically moved in place of ultrasonic waves. Those that were vibrated and those that were subjected to ultrasonic treatment in an electrolytic solution for 10 seconds after electropolishing without applying ultrasonic waves were prepared. The photograph obtained by observing the surface of the metal sample obtained by each method with SEM is shown in FIG.

実験の結果、超音波の印加に代えてスターラーによる攪拌を行ったもの(B)、超音波の印加に代えて金属試料を上下方向に振動させたもの(C)、および電解研磨後に超音波を印加したもの(D)では、金属試料の表面に微細な粉末状の付着物が残存していたのに対して、電解研磨中に超音波を印加した実施例(A)では平滑な研磨面が得られていた。前記付着物は電解研磨によって溶出した金属試料の成分が電解液と反応して生じたものや、鋼中析出物の残存、および、前記付着物や析出物の存在により発生した表層の凹凸であると考えられる。   As a result of the experiment, a stirrer was used instead of applying ultrasonic waves (B), a metal sample was vibrated vertically instead of applying ultrasonic waves (C), and ultrasonic waves were applied after electropolishing. In the applied sample (D), fine powdery deposits remained on the surface of the metal sample, whereas in Example (A) in which ultrasonic waves were applied during electrolytic polishing, a smooth polished surface was obtained. It was obtained. The deposits are formed by reacting the components of the metal sample eluted by electropolishing with the electrolytic solution, the residual precipitates in the steel, and the surface irregularities generated by the presence of the deposits and precipitates. it is conceivable that.

また、超音波印加なしでの電解研磨後に電解液中で超音波処理を行った(D)においても付着物が残留していたことから、単に超音波処理を行えばよいわけではなく、電解研磨と同時に超音波の印加を行うことによって初めて平滑な研磨面を得ることができることが分かる。   Moreover, since the deposits remained even in (D) where ultrasonic treatment was performed in an electrolytic solution after electrolytic polishing without applying ultrasonic waves, it was not necessary to simply perform ultrasonic treatment. At the same time, it can be seen that a smooth polished surface can be obtained only by applying ultrasonic waves.

なお、上記実施例では金属試料としてステンレス鋼板を用い、10%過塩素酸−90%メタノール混合液を電解液としたが、他の金属と電解液の組み合わせにおいても、同様の付着物が発生し、本発明の超音波を併用した電解研磨によりその付着物を除去できることを確認した。   In the above examples, a stainless steel plate was used as the metal sample, and a 10% perchloric acid-90% methanol mixed solution was used as the electrolytic solution. However, similar deposits were generated even in the combination of other metals and the electrolytic solution. It was confirmed that the deposits could be removed by electropolishing combined with the ultrasonic wave of the present invention.

電解研磨中に超音波を印加すると試料表面から付着物が除去できる理由は、以下のように考えられる。電解研磨に使用される電解液は、通常、酸を水やアルコール等の溶媒で希釈したものであるため、電解液中には水素と酸素が多く含まれている。また、電解液を繰り返し使用する場合には、該電解液中にはそれまでの電解研磨で生成した金属酸化物や水酸化物等が存在する。このような電解液中で電解研磨を行うと、金属試料の表面付近では、溶出した金属と電解液中の酸素、水素とが反応して金属酸化物や水酸化物が形成される。これらの腐食生成物の形成と成長は、溶出金属イオン濃度の高い試料表面付近で行われるが、超音波はこれらの腐食生成物を破砕し、成長を抑制すると考えられる。さらに、超音波による電解液の攪拌効果で金属イオンの濃度が均一になるので、腐食生成物の形成も抑制されると考えられる。これらの効果は、電解研磨液の種類と条件を問わず期待できる。超音波を印加せずに電解研磨を行った場合、腐食生成物が多量に形成され、金属試料の表面に吸着する。そして、電解研磨を終えた後に超音波を印加しても、腐食生成物は除去されずに残存してしまう。   The reason why deposits can be removed from the sample surface by applying ultrasonic waves during electropolishing is considered as follows. Since the electrolytic solution used for electrolytic polishing is usually an acid diluted with a solvent such as water or alcohol, the electrolytic solution contains a large amount of hydrogen and oxygen. In addition, when the electrolytic solution is repeatedly used, metal oxides, hydroxides, and the like that have been generated by electrolytic polishing so far exist in the electrolytic solution. When electropolishing is performed in such an electrolytic solution, the eluted metal reacts with oxygen and hydrogen in the electrolytic solution to form metal oxides and hydroxides near the surface of the metal sample. The formation and growth of these corrosion products are performed in the vicinity of the sample surface having a high concentration of eluted metal ions, but it is considered that the ultrasonic waves crush these corrosion products and suppress the growth. Furthermore, since the concentration of metal ions becomes uniform due to the stirring effect of the electrolytic solution by ultrasonic waves, it is considered that the formation of corrosion products is also suppressed. These effects can be expected regardless of the type and conditions of the electrolytic polishing liquid. When electropolishing is performed without applying ultrasonic waves, a large amount of corrosion products are formed and adsorbed on the surface of the metal sample. And even if an ultrasonic wave is applied after electropolishing is finished, the corrosion product remains without being removed.

このように本発明によれば、電解液に超音波を印加するという極めて簡便な方法により電解研磨中に金属試料表面に生成する付着物を除去し、金属試料を極めて平滑に研磨することができる。かかる電解研磨装置および電解研磨方法は、電子顕微鏡による高精度な金属組織の観察を行ううえで極めて有用である。   As described above, according to the present invention, it is possible to remove deposits generated on the surface of a metal sample during electrolytic polishing by an extremely simple method of applying ultrasonic waves to the electrolytic solution and polish the metal sample extremely smoothly. . Such an electropolishing apparatus and an electropolishing method are extremely useful for observing a metal structure with high accuracy by an electron microscope.

1 電解研磨装置
2 電解研磨手段
3 電解液
4 電解槽
5 陰極
6 直流電源
7 金属試料
8 超音波印加手段
9 超音波発信器
10 超音波振動子
11 水
12 槽
DESCRIPTION OF SYMBOLS 1 Electropolishing apparatus 2 Electropolishing means 3 Electrolytic solution 4 Electrolytic tank 5 Cathode 6 DC power supply 7 Metal sample 8 Ultrasonic application means 9 Ultrasonic transmitter 10 Ultrasonic vibrator 11 Water 12 tank

Claims (3)

電子顕微鏡で観察する金属試料としての鉄鋼材料を電解研磨するための電解研磨装置であって、
電解液中で前記金属試料を電解研磨するための電解研磨手段と、
電解研磨中に前記電解液に超音波を印加するための超音波印加手段と、
前記電解液の温度を0℃以下に調整する温度調整手段とを備える電解研磨装置。
An electropolishing apparatus for electropolishing a steel material as a metal sample to be observed with an electron microscope,
An electropolishing means for electropolishing the metal sample in an electrolytic solution;
Ultrasonic application means for applying ultrasonic waves to the electrolyte during electropolishing;
An electropolishing apparatus comprising temperature adjusting means for adjusting the temperature of the electrolytic solution to 0 ° C. or lower .
前記電解研磨手段による電解研磨中に前記超音波印加手段により超音波を印加する制御を行う制御手段を有する、請求項1に記載の電解研磨装置。 The electropolishing apparatus according to claim 1, further comprising a control unit that performs control to apply ultrasonic waves by the ultrasonic wave application unit during electropolishing by the electropolishing unit. 電子顕微鏡で観察する金属試料としての鉄鋼材料を電解液中で電解研磨する電解研磨方法であって、
前記電解液の温度を0℃以下、−40℃以上に保持し、
電解研磨中に前記電解液へ超音波を印加する電解研磨方法。
An electropolishing method for electropolishing a steel material as a metal sample to be observed with an electron microscope in an electrolyte solution,
Holding the temperature of the electrolyte at 0 ° C. or lower, −40 ° C. or higher,
An electrolytic polishing method in which ultrasonic waves are applied to the electrolytic solution during electrolytic polishing.
JP2015064931A 2015-03-26 2015-03-26 Electropolishing apparatus and electropolishing method Active JP6256399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064931A JP6256399B2 (en) 2015-03-26 2015-03-26 Electropolishing apparatus and electropolishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064931A JP6256399B2 (en) 2015-03-26 2015-03-26 Electropolishing apparatus and electropolishing method

Publications (2)

Publication Number Publication Date
JP2016183393A JP2016183393A (en) 2016-10-20
JP6256399B2 true JP6256399B2 (en) 2018-01-10

Family

ID=57242803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064931A Active JP6256399B2 (en) 2015-03-26 2015-03-26 Electropolishing apparatus and electropolishing method

Country Status (1)

Country Link
JP (1) JP6256399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982641A (en) * 2019-05-22 2020-11-24 天津大学 FeCoNiCrMnAl high-entropy alloy electrolytic corrosion electrolyte and display method of metallographic structure thereof
TWI755999B (en) * 2020-12-28 2022-02-21 國家中山科學研究院 Electrolytic polishing treatment method of stainless steel workpiece
CN114808098B (en) * 2022-05-20 2024-06-04 苏州科技大学 Titanium alloy micro part electrolytic polishing method and device based on ultrasonic vibration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111841A (en) * 1973-02-28 1974-10-24
JPS5424318B2 (en) * 1974-07-03 1979-08-20
JPS58110066U (en) * 1982-01-18 1983-07-27 株式会社エイコ−エンジニアリング Electrolytic polishing equipment
JPS59100866U (en) * 1982-12-22 1984-07-07 昭和電線電纜株式会社 Electrolytic polishing equipment
JPH02105038A (en) * 1988-10-14 1990-04-17 Toshiba Corp Electrolytic polishing device for sample of electronic microscope
JP2937467B2 (en) * 1990-11-16 1999-08-23 エスアンドシー株式会社 Electropolishing, electrolytic deburring method and apparatus
GB9607810D0 (en) * 1996-04-15 1996-06-19 Maysonic Ultrasonics Ltd Removal of contaminants from steel surfaces
JP5005369B2 (en) * 2007-01-29 2012-08-22 清 松田 Electropolishing equipment
JP2013108119A (en) * 2011-11-18 2013-06-06 Doshisha Composite plating method

Also Published As

Publication number Publication date
JP2016183393A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6256399B2 (en) Electropolishing apparatus and electropolishing method
JP5145083B2 (en) Method for electrolytic polishing of titanium
CN105624753B (en) A kind of medical porous titanium or titanium alloy uniform deposition hydroxyapatite coating layer technique
CN108118388B (en) Ni-Ti alloy electrochemical polishing solution and polishing method
CN106086994B (en) A kind of preparation method of the ceramic film based on laser remolten and differential arc oxidation
JP2000508380A (en) Method of removing film from metal surface using electrolysis and cavitation
US5853561A (en) Method for surface texturing titanium products
CN105369340A (en) Titanium alloy polishing method
CN106400099A (en) Electron back scattering diffraction sample electrolytic polishing device
US6531049B1 (en) Method of removing Ti film and apparatus
CN103911645B (en) Magnesium alloy anode oxidation method
CN1306071C (en) Magnesium anodisation system and methods
CN102356185B (en) Method, apparatus and solution for electropolishing metallic stents
CN102356184B (en) Method and solution for electropolishing stents made of high strength medical alloys
JP2006514712A (en) Electro-polishing method for nickel-titanium alloy dental instruments
JP2006348336A (en) Electrolytic polishing liquid, and method for producing metal product
KR20200008453A (en) Electrolytic polishing method of metal tube using ultrasonic wave
RU2602903C1 (en) Method of producing wear-resistant coatings on articles made from aluminium and alloys thereof
JP4124744B2 (en) Method for electrolytic polishing of titanium or titanium alloy
RU2451773C2 (en) Method for metal and alloy electrochemical polishing
TWI261629B (en) Surface treatment process for enhancing the release of metal ions from sacrificial electrode and sacrificial electrode prepared by said process
CN113661276B (en) Electropolishing method
KR20190065796A (en) Preparing method of aluminum alloy coating layer without crack
TWI487816B (en) Alkaline electrolysis derusting method
CN113897662B (en) Movable device and method for electropolishing TC4 titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6256399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250