JP6254754B2 - Heating method of heated material - Google Patents

Heating method of heated material Download PDF

Info

Publication number
JP6254754B2
JP6254754B2 JP2012000599A JP2012000599A JP6254754B2 JP 6254754 B2 JP6254754 B2 JP 6254754B2 JP 2012000599 A JP2012000599 A JP 2012000599A JP 2012000599 A JP2012000599 A JP 2012000599A JP 6254754 B2 JP6254754 B2 JP 6254754B2
Authority
JP
Japan
Prior art keywords
furnace
combustion
soaking zone
width direction
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012000599A
Other languages
Japanese (ja)
Other versions
JP2013139611A (en
Inventor
晃央 奥村
晃央 奥村
雅文 芝田
雅文 芝田
平本 祐二
祐二 平本
齋藤 俊明
俊明 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012000599A priority Critical patent/JP6254754B2/en
Publication of JP2013139611A publication Critical patent/JP2013139611A/en
Application granted granted Critical
Publication of JP6254754B2 publication Critical patent/JP6254754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

本発明は、被加熱材の長手方向が炉幅方向となるように炉内に装入された被加熱材を炉長方向に搬送しながら加熱して炉外へと抽出する加熱炉を用いた被加熱材の加熱方法に関する。   The present invention uses a heating furnace that heats and extracts the material to be heated inserted into the furnace in the furnace length direction so that the longitudinal direction of the material to be heated becomes the furnace width direction. The present invention relates to a method for heating a material to be heated.

例えば、熱間圧延設備の連続式加熱炉(以下、加熱炉という。)は、スラブやビレット、ブルーム等の鋳片(被加熱材)の圧延長手方向が炉幅方向となるように、装入口から炉内に装入された鋳片を、ウォーキングビーム(搬送手段)によって搬送しながら、炉内の予熱帯、加熱帯、均熱帯を順次通過する間に、炉内のバーナによって鋳片を所定温度まで加熱した後、抽出口から炉外へと抽出する。そして、加熱された鋼片は、次工程の圧延ラインへと送られる。   For example, a continuous heating furnace (hereinafter, referred to as a heating furnace) of a hot rolling facility is installed so that the longitudinal direction of rolling of a slab (material to be heated) such as a slab, billet, or bloom is the furnace width direction. While the slab charged into the furnace from the entrance is transported by walking beam (conveying means), the slab is passed by the burner in the furnace while passing through the pre-tropical zone, heating zone, and soaking zone in the furnace. After heating to a predetermined temperature, it is extracted out of the furnace through the extraction port. And the heated steel slab is sent to the rolling line of the next process.

また、最近では、鋼片を全体的に均一に加熱するだけでなく、鋼片の圧延長手方向の先端側と後端側との間で温度分布に傾斜を持たせるように、炉幅方向の温度を変えて鋼片を加熱(傾斜加熱という。)することが行われている(例えば、特許文献1,2を参照。)。   Also, recently, not only the steel slab is heated uniformly throughout, but also in the furnace width direction so that the temperature distribution is inclined between the front end side and the rear end side in the rolling longitudinal direction of the steel slab. The steel slab is heated (referred to as gradient heating) by changing the temperature of (see, for example, Patent Documents 1 and 2).

例えば、板厚の薄い鋼板を熱間圧延により製造する場合、鋼片の先端から圧延を開始してから後端の圧延が終了するまでの時間が長くなるため、鋼片の後端側の温度低下が大きくなる(サーマルダウンという。)。この場合、鋼片の後端側が目標の仕上圧延温度よりも低くなることによって、変形抵抗が大きくなり、荷重変動による形状悪化等を招くことになる。そこで、このような鋼片の後端側の温度低下を見越して、鋼片の後端側の温度が先端側の温度より高くなるように傾斜加熱を行う。これにより、鋼片の後端側を目標の仕上圧延温度の範囲内で圧延することができ、鋼片の後端側での荷重変動を小さくすることが可能となる。   For example, when a thin steel plate is manufactured by hot rolling, the time from the start of rolling from the tip of the steel slab to the end of rolling at the rear end becomes longer. Decrease increases (referred to as thermal down). In this case, when the rear end side of the steel slab becomes lower than the target finish rolling temperature, the deformation resistance increases, leading to deterioration of the shape due to load fluctuation. Therefore, in anticipation of such a temperature drop on the rear end side of the steel slab, the gradient heating is performed so that the temperature on the rear end side of the steel slab becomes higher than the temperature on the front end side. Thereby, the rear end side of the steel slab can be rolled within the range of the target finish rolling temperature, and the load fluctuation on the rear end side of the steel slab can be reduced.

特開2009−161837号公報JP 2009-161837 A 特開2009−263701号公報JP 2009-263701 A 特開平11−323431号公報Japanese Patent Application Laid-Open No. 11-323431

ところで、上記加熱炉では、燃料消費量やCO排出量の削減等の観点から、燃焼排ガスの排熱を回収して燃焼空気を予熱することが可能な蓄熱式バーナ(リジェネバーナ)を用いて、エネルギー効率の向上(省エネルギー化)を図ることが行われている。 Incidentally, in the oven, from the viewpoint of reduction of the fuel consumption and CO 2 emissions, using waste heat recovered by the combustion air can be preheated to a regenerative burner of the combustion exhaust gas (regenerative burners) In order to improve energy efficiency (energy saving), efforts are being made.

具体的に、蓄熱式バーナを備えた加熱炉では、被加熱材の搬送路を挟んだ両側に相対向して配置された一対の蓄熱式バーナの間で、燃焼と排気とを交互に繰り返す交番燃焼を行いながら、排気時に燃焼排ガスの排熱を蓄熱体によって蓄熱回収し、燃焼時に蓄熱体に蓄熱された熱によって燃焼空気を予熱することが行われる。   Specifically, in a heating furnace equipped with a regenerative burner, alternating alternating combustion and exhaust are repeated between a pair of regenerative burners arranged opposite to each other across the conveying path of the material to be heated. While performing combustion, the exhaust heat of the combustion exhaust gas is stored and recovered by the heat storage body during exhaust, and the combustion air is preheated by the heat stored in the heat storage body during combustion.

しかしながら、このような蓄熱式バーナを備えた加熱炉では、炉幅方向に配置された蓄熱式バーナの間で燃焼フレーム(火炎)が形成されるために、炉幅方向の温度分布を制御することが難しく、上述した炉幅方向の温度を変えて鋼片を傾斜加熱することが困難であった。   However, in a heating furnace equipped with such a regenerative burner, since a combustion frame (flame) is formed between regenerative burners arranged in the furnace width direction, the temperature distribution in the furnace width direction is controlled. It was difficult to change the temperature in the furnace width direction as described above and to heat the steel slab at an inclined temperature.

このため、加熱炉の炉長方向に並ぶ複数の蓄熱式バーナとは別に、炉幅方向に複数の連続式バーナを並べて配置し、これら炉幅方向に並ぶ複数の連続式バーナの間で燃焼量を調整しながら、炉幅方向の温度分布を制御することが行われている(特許文献3を参照。)。   For this reason, apart from the plurality of regenerative burners arranged in the furnace length direction of the heating furnace, a plurality of continuous burners are arranged in the furnace width direction, and the combustion amount between the plurality of continuous burners arranged in the furnace width direction The temperature distribution in the furnace width direction is controlled while adjusting (see Patent Document 3).

しかしながら、特許文献3に記載の発明では、炉長方向に並ぶ複数の蓄熱式バーナを用いて炉幅方向の温度分布を制御することが困難なために、主な燃焼を蓄熱式バーナで行い、温度制御に必要な燃焼を連続式バーナで行わなければならず、蓄熱式バーナの燃焼を必ずしも最大限に利用したものとはなっていない。   However, in the invention described in Patent Document 3, since it is difficult to control the temperature distribution in the furnace width direction using a plurality of regenerative burners arranged in the furnace length direction, main combustion is performed with the regenerative burner, Combustion necessary for temperature control must be performed by a continuous burner, and the combustion of the regenerative burner is not necessarily utilized to the maximum extent.

本発明は、このような従来の事情に鑑みて提案されたものであり、蓄熱式バーナを備えた加熱炉において、炉幅方向の温度分布の制御を蓄熱式バーナを用いて行うことで、被加熱材に対する傾斜加熱を更に効率良く行うことを可能とした被加熱材の加熱方法を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and in a heating furnace equipped with a heat storage burner, the temperature distribution in the furnace width direction is controlled using the heat storage burner. It is an object of the present invention to provide a method for heating a material to be heated that makes it possible to more efficiently perform inclined heating on the heating material.

上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
(1) 被加熱材の長手方向が炉幅方向となるように炉内に装入された被加熱材を炉長方向に搬送しながら、この被加熱材が炉内に設けられた予熱帯と、加熱帯と、均熱帯とを順次通過する間に、被加熱材を加熱して炉外へと抽出する加熱炉を用いた被加熱材の加熱方法であって、
前記加熱炉の炉幅方向において相対向する一対の蓄熱式バーナを前記炉長方向に複数並べて配置し、この炉長方向に並ぶ蓄熱式バーナの数を前記均熱帯において全体の1/2以下とし、
前記均熱帯の搬送路上部側の炉室天部に、非蓄熱式バーナであるルーフバーナを炉長方向および炉幅方向に並べて配置し、
前記均熱帯の搬送路下部側の炉室側面に、非蓄熱式バーナであって前記蓄熱式バーナの火炎長よりも短い火炎を発生させる短炎バーナを炉長方向に複数配置し、
前記均熱帯の炉長方向に隣接し、炉幅方向において相対向する一対の蓄熱式バーナの間で互いに逆向きの燃焼フレームを形成するように、前記炉幅方向において相対向する蓄熱式バーナの間で燃焼と排気とを交互に切り替える交番燃焼を行うと共に、排気側の蓄熱式バーナが燃焼排ガスからの排熱を蓄熱体によって蓄熱回収し、燃焼側の蓄熱式バーナが蓄熱体に蓄熱された熱によって燃焼空気を予熱し、
なお且つ、前記均熱帯の炉幅方向の一方側に並ぶ複数の蓄熱式バーナと、炉幅方向の他方側に並ぶ複数の蓄熱式バーナとの間で、互いの燃焼量に差を設け(加熱帯と均熱帯双方で燃焼量に差を設ける場合を除く)、
更に、前記被加熱材の温度を上げる側の前記均熱帯の搬送路上部側の炉室天部の炉幅方向において分割された複数の加熱領域の前記ルーフバーナの燃焼量を炉幅方向の温度分布の傾斜に合わせて段階的に高め、
かつ、前記被加熱材の温度を上げる側の前記均熱帯の搬送路下部側の炉室側面の前記短炎バーナの燃焼量を高めることによって、前記均熱帯の炉幅方向における温度分布に傾斜を持たせて、前記均熱帯を通過する前記被加熱材に対して傾斜加熱を行い、
なお且つ、前記均熱帯の炉幅方向において温度を上げたい又は下げたい側とは反対側に配置された蓄熱式バーナの燃焼量を増やす又は減らすことによって、前記均熱帯の炉幅方向における温度分布を、この蓄熱式バーナとは反対側において高め又は低めに設定することを特徴とする被加熱材の加熱方法。
(2) 前記炉長方向に並ぶ蓄熱式バーナの数を、前記均熱帯において全体の1/3以下とすることを特徴とする前記(1)に記載の被加熱材の加熱方法。
The gist of the present invention aimed at solving the above problems is as follows.
(1) While transporting the material to be heated inserted in the furnace in the furnace length direction so that the longitudinal direction of the material to be heated is the furnace width direction, A heating method of a heated material using a heating furnace that heats the heated material and extracts it outside the furnace while sequentially passing through the heating zone and the soaking zone,
A plurality of a pair of regenerative burners facing each other in the furnace width direction of the heating furnace are arranged side by side in the furnace length direction, and the number of regenerative burners arranged in the furnace length direction is ½ or less of the whole in the soaking zone. ,
A roof burner that is a non-heat storage burner is arranged side by side in the furnace length direction and the furnace width direction in the top of the furnace chamber on the upper side of the soaking zone,
A plurality of short flame burners that generate a flame shorter than the flame length of the regenerative burner on the side of the furnace chamber at the lower part of the soaking zone are arranged in the furnace length direction.
The regenerative burner opposed to each other in the furnace width direction so as to form a combustion frame opposite to each other between a pair of regenerative burners opposed to each other in the furnace length direction adjacent to the soaking zone. In addition, alternating combustion that alternately switches between combustion and exhaust gas was performed, and the heat storage burner on the exhaust side collected and recovered exhaust heat from the combustion exhaust gas by the heat storage body, and the heat storage burner on the combustion side was stored in the heat storage body Preheat combustion air with heat,
In addition, there is a difference in the amount of combustion between the plurality of regenerative burners arranged on one side in the soaking zone and the plurality of regenerative burners arranged on the other side in the furnace width direction. Excluding the case where there is a difference in the amount of combustion in both the tropical and soaking tropics),
Furthermore, the combustion amount of the roof burner in a plurality of heating regions divided in the furnace width direction of the furnace chamber top on the upper side of the soaking zone on the side of raising the temperature of the material to be heated is the temperature distribution in the furnace width direction. Step by step to match the slope of the
Further, by increasing the combustion amount of the short flame burner on the side of the furnace chamber on the lower side of the soaking zone on the side of raising the temperature of the heated material, the temperature distribution in the soaking zone in the width direction of the furnace is inclined. Give the material to be heated that passes through the soaking zone inclined heating,
In addition, by increasing or decreasing the combustion amount of the regenerative burner disposed on the side opposite to the side where the temperature is desired to be raised or lowered in the soaking zone width direction, the temperature distribution in the soaking zone width direction Is set to be higher or lower on the side opposite to the regenerative burner.
(2) The method for heating a material to be heated according to (1), wherein the number of regenerative burners arranged in the furnace length direction is 1/3 or less of the whole in the soaking zone.

以上のように、本発明では、加熱炉の炉幅方向において相対向する一対の蓄熱式バーナを炉長方向に複数並べて配置し、この炉長方向に並ぶ蓄熱式バーナの数を均熱帯において全体の1/2以下とする、好ましくは1/3以下とすることで、被加熱材が炉内の予熱帯と加熱帯とを通過する間に、被加熱材を必要な温度まで十分に加熱する能力を担保することが可能である。   As described above, in the present invention, a plurality of a pair of regenerative burners facing each other in the furnace width direction of the heating furnace are arranged side by side in the furnace length direction, and the number of regenerative burners arranged in the furnace length direction is the whole in the soaking zone. When the material to be heated passes through the pre-tropical zone and the heating zone in the furnace, the material to be heated is sufficiently heated to a necessary temperature. Capability can be secured.

また、本発明では、被加熱材が炉内の均熱帯を通過する間に、均熱帯の炉長方向において隣接する蓄熱式バーナの間で互いに逆向きの燃焼フレームを形成するように、炉幅方向において相対向する蓄熱式バーナの間で燃焼と排気とを交互に切り替える交番燃焼を行う。このとき、燃焼フレームの衝突による局所的な温度上昇を防ぐことが可能である。   Further, in the present invention, while the material to be heated passes through the soaking zone in the furnace, the furnace width is formed so as to form combustion frames in opposite directions between the regenerative burners adjacent in the soaking zone direction of the soaking zone. Alternating combustion is performed by alternately switching between combustion and exhaust between regenerative burners facing each other in the direction. At this time, it is possible to prevent a local temperature rise due to the collision of the combustion flame.

そして、本発明では、排気側の蓄熱式バーナが燃焼排ガスからの排熱を蓄熱体によって蓄熱回収し、燃焼側の蓄熱式バーナが蓄熱体に蓄熱された熱によって燃焼空気を予熱し、なお且つ、均熱帯の炉幅方向の一方側に並ぶ複数の蓄熱式バーナと、炉長方向の他方側に並ぶ複数の蓄熱式バーナとの間で、互いの燃焼量に差を設けることによって、均熱帯の炉幅方向における温度分布に傾斜を持たせて、均熱帯を通過する被加熱材に対して傾斜加熱を行う。   In the present invention, the exhaust-side regenerative burner heat-collects and recovers the exhaust heat from the combustion exhaust gas by the regenerator, the combustion-side regenerative burner preheats the combustion air with the heat stored in the regenerator, and By providing a difference in the amount of combustion between a plurality of regenerative burners arranged on one side in the soaking zone and a plurality of regenerative burners arranged on the other side in the furnace length direction, The temperature distribution in the furnace width direction is inclined, and the heated material passing through the soaking zone is inclined and heated.

特に、本発明では、均熱帯の炉幅方向(被加熱材の長手方向)において温度を上げたい又は下げたい側とは反対側に配置された蓄熱式バーナの燃焼量を増やす又は減らすことによって、均熱帯の炉幅方向における温度分布を、この蓄熱式バーナとは反対側において高め又は低めに設定することが可能である。   In particular, in the present invention, by increasing or decreasing the combustion amount of the regenerative burner disposed on the side opposite to the side where the temperature is desired to be increased or decreased in the soaking zone width direction (longitudinal direction of the material to be heated), It is possible to set the temperature distribution in the direction of the soaking zone in the soaking zone to be higher or lower on the side opposite to the regenerative burner.

これにより、本発明では、均熱帯の炉長方向に並ぶ蓄熱式バーナを用いて、均熱帯の炉幅方向における温度分布を制御しながら、この均熱帯を通過する被加熱材に対して傾斜加熱を効率良く行うことが可能である。   As a result, in the present invention, by using a regenerative burner arranged in the direction of the soaking zone in the soaking zone, while controlling the temperature distribution in the soaking zone width direction, the heated material passing through the soaking zone is inclinedly heated. Can be performed efficiently.

図1は、連続熱間圧延ラインの一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a continuous hot rolling line. 図2は、加熱炉の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the heating furnace. 図3は、加熱炉の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of the heating furnace. 図4は、加熱炉の構成を示す側面図である。FIG. 4 is a side view showing the configuration of the heating furnace. 図5は、均熱帯の構成を示す平面図である。FIG. 5 is a plan view showing a soaking configuration. 図6は、均熱帯の構成を示す断面図である。FIG. 6 is a cross-sectional view showing a soaking zone configuration. 図7は、均熱帯の炉幅方向における温度分布を示すグラフである。FIG. 7 is a graph showing a temperature distribution in the soaking zone width direction. 図8は、抽出時のブルームの炉幅方向における温度分布を示すグラフである。FIG. 8 is a graph showing a temperature distribution in the furnace width direction of the bloom during extraction.

以下、本発明を適用した被加熱材の加熱方法について、図面を参照して詳細に説明する。
本実施形態では、例えば図1に示すような連続熱間圧延ライン101において、圧延前にスラブ(被加熱材)を加熱する場合を例に挙げて説明する。
Hereinafter, a heating method of a material to be heated to which the present invention is applied will be described in detail with reference to the drawings.
In the present embodiment, a case where a slab (material to be heated) is heated before rolling in a continuous hot rolling line 101 as shown in FIG. 1 will be described as an example.

この連続熱間圧延ライン101は、図1に示すように、スラブを加熱炉1で加熱した後、スラブの表面に発生した酸化スケール等をデスケーリング装置2で除去し、粗圧延機3及び仕上圧延機4により所定の板厚まで圧延された帯状の鋼板を冷却設備5により冷却した後、巻取機6によりロール状に巻き取る設備である。   In this continuous hot rolling line 101, as shown in FIG. 1, after the slab is heated in the heating furnace 1, the oxide scale and the like generated on the surface of the slab are removed by the descaling device 2, and the rough rolling mill 3 and finish This is a facility in which a belt-shaped steel sheet rolled to a predetermined plate thickness by a rolling mill 4 is cooled by a cooling facility 5 and then wound into a roll by a winder 6.

そして、上記加熱炉1では、本発明を適用した被加熱材の加熱方法を用いて、スラブ圧延長手方向の先端側と後端側との間で温度分布に傾斜を持たせるように、炉幅方向の温度を変えてスラブSを傾斜加熱することが行われる。   And in the said heating furnace 1, using the heating method of the to-be-heated material to which this invention is applied, a furnace is provided so that temperature distribution may be inclined between the front end side and the rear end side in the longitudinal direction of the slab rolling. Inclination heating of the slab S is performed by changing the temperature in the width direction.

具体的に、この加熱炉1は、図2、図3及び図4に示すように、一端側に加熱前のスラブSが装入される装入口10aと、他端側に加熱後のスラブSが抽出される抽出口10bとが設けられた炉室10を備えている。   Specifically, as shown in FIGS. 2, 3, and 4, the heating furnace 1 includes a charging port 10 a into which the slab S before heating is inserted at one end side, and a slab S after heating at the other end side. And a furnace chamber 10 provided with an extraction port 10b from which water is extracted.

この炉室10の内部は、炉長方向において、装入口10a側から順に、予熱帯10Aと加熱帯10Bと均熱帯10Cとに区画されている。なお、これら予熱帯10Aと加熱帯10Bと均熱帯10Cとの間は、炉室10の天部及び床部から突出されて、炉幅方向に延在する仕切り壁11によって仕切られていてもよい。   The interior of the furnace chamber 10 is partitioned into a pre-tropical zone 10A, a heating zone 10B, and a soaking zone 10C in order from the loading port 10a side in the furnace length direction. The pretropical zone 10A, the heating zone 10B, and the soaking zone 10C may be partitioned by a partition wall 11 that protrudes from the top and floor of the furnace chamber 10 and extends in the furnace width direction. .

加熱炉1は、炉室10内にウォーキングビーム等の搬送手段を備え、この搬送手段によってスラブSを搬送する搬送路Tが形成されている。また、スラブSは、その圧延長手方向が炉幅方向となるように炉室10の装入口10aから炉内へと装入される。そして、このスラブSは、搬送手段により搬送されながら、炉室10内の予熱帯10A、加熱帯10B、均熱帯10Cを順次通過した後、炉室10の抽出口10bから炉外へと抽出されることになる。   The heating furnace 1 includes a conveying means such as a walking beam in the furnace chamber 10, and a conveying path T for conveying the slab S is formed by the conveying means. The slab S is charged into the furnace from the charging port 10a of the furnace chamber 10 so that the rolling longitudinal direction is the furnace width direction. The slab S is extracted from the extraction port 10b of the furnace chamber 10 to the outside of the furnace after sequentially passing through the pre-tropical zone 10A, the heating zone 10B, and the soaking zone 10C in the furnace chamber 10 while being conveyed by the conveying means. Will be.

加熱炉1は、炉室10内でスラブSを加熱する加熱手段として、複数の蓄熱式バーナ(リジェネバーナ)12を備えている。これら複数の蓄熱式バーナ12は、予熱帯10A及び加熱帯10Bの搬送路Tを挟んだ上部側及び下部側の両側面、並びに均熱帯10Cの搬送路Tを挟んだ下部側の両側面において、それぞれ炉長方向に並んで設けられている。   The heating furnace 1 includes a plurality of regenerative burners (regenerative burners) 12 as heating means for heating the slab S in the furnace chamber 10. The plurality of regenerative burners 12 are arranged on both upper and lower side surfaces sandwiching the transport path T of the pretropical zone 10A and heating zone 10B, and on both lower side surfaces sandwiching the transport path T of the soaking zone 10C. Each is provided side by side in the furnace length direction.

本発明では、これら炉長方向に並ぶ蓄熱式バーナの数を均熱帯10Cにおいて全体の1/2以下とする、好ましくは1/3以下とする。これにより、スラブSが炉内の予熱帯10Aと加熱帯10Bとを通過する間に、このスラブSを必要な温度まで十分に加熱する一方、スラブSが炉内の均熱帯10Cを通過する間に、この均熱帯10Cを通過するスラブSに対して傾斜加熱を行う。   In the present invention, the number of regenerative burners arranged in the furnace length direction is set to 1/2 or less, preferably 1/3 or less of the whole in the soaking zone 10C. Thus, while the slab S passes through the pre-tropical zone 10A and the heating zone 10B in the furnace, the slab S is sufficiently heated to a required temperature, while the slab S passes through the soaking zone 10C in the furnace. In addition, inclined heating is performed on the slab S passing through the soaking zone 10C.

具体的に、均熱帯10Cの下部側には、図5に拡大して示すように、搬送路Tを挟んだ両側に相対向して配置された第1及び第2の蓄熱式バーナ12A,12Bと、これら第1及び第2の蓄熱式バーナ12A,12Bと炉長方向において隣接して配置された第3及び第4の蓄熱式バーナ12C,12Dとによって1つの加熱ゾーンHが構成されている。なお、予熱帯10A及び加熱帯10Bの上部側及び下部側には、それぞれ1つの加熱ゾーンHが構成され、均熱帯10Cの下部側には、2つの加熱ゾーンHが構成されている。   Specifically, on the lower side of the soaking zone 10C, as shown in an enlarged view in FIG. 5, the first and second regenerative burners 12A and 12B disposed opposite to each other on both sides of the conveyance path T. The first and second heat storage burners 12A and 12B and the third and fourth heat storage burners 12C and 12D arranged adjacent to each other in the furnace length direction constitute one heating zone H. . Note that one heating zone H is configured on each of the upper and lower sides of the pre-tropical zone 10A and the heating zone 10B, and two heating zones H are configured on the lower side of the soaking zone 10C.

また、第1の蓄熱式バーナ12Aと第3の蓄熱式バーナ12Cとの間、及び、第2の蓄熱式バーナ12Bと第4の蓄熱式バーナ12Dとの間には、それぞれ排気時に燃焼排ガスGからの排熱を蓄熱体13によって蓄熱回収し、燃焼時に蓄熱体13に蓄熱された熱によって燃焼空気Kを予熱するための熱交換器(熱交換手段)14が設けられている。   Further, between the first heat storage burner 12A and the third heat storage burner 12C, and between the second heat storage burner 12B and the fourth heat storage burner 12D, the combustion exhaust gas G is emitted during exhaust. A heat exchanger (heat exchange means) 14 is provided for collecting and recovering the exhaust heat from the heat storage body 13 and preheating the combustion air K with the heat stored in the heat storage body 13 during combustion.

これにより、各加熱ゾーンHでは、第1の蓄熱式バーナ12Aと第2の蓄熱式バーナ12Bとの間、及び、第3の蓄熱式バーナ12Cと第4の蓄熱式バーナ12Dとの間で、燃焼と排気とを交互に切り替えて交番燃焼を行うと共に、第1の蓄熱式バーナ12Aと第3の蓄熱式バーナ12Cとの間、及び、第2の蓄熱式バーナ12Bと第4の蓄熱式バーナ12Dとの間で、燃焼排ガスGからの排熱回収と燃焼空気Kの予熱とを行うことが可能となっている。   Thereby, in each heating zone H, between the 1st heat storage type burner 12A and the 2nd heat storage type burner 12B, and between the 3rd heat storage type burner 12C and the 4th heat storage type burner 12D, While alternating combustion is performed by alternately switching between combustion and exhaust, the first heat storage burner 12A and the third heat storage burner 12C, and the second heat storage burner 12B and the fourth heat storage burner are used. Between 12D, it is possible to perform exhaust heat recovery from the combustion exhaust gas G and preheat the combustion air K.

なお、図5では、燃焼側を第1及び第4の蓄熱式バーナ12A,12Dとし、排気側を第2及び第3の蓄熱式バーナ12B,12Cとした状態を例示している。具体的に、燃焼側の第1及び第4の蓄熱式バーナ12A,12Dでは、蓄熱体13によって予熱された燃焼空気Kと燃料Eを供給することによって、炉幅方向において互いに逆向きとなる燃焼フレーム(火炎)Frを形成している。本発明では、このように燃焼フレームFrの衝突を回避することによって、局所的な温度上昇を防ぐことが可能である。   FIG. 5 illustrates a state where the combustion side is the first and fourth heat storage burners 12A and 12D, and the exhaust side is the second and third heat storage burners 12B and 12C. Specifically, in the first and fourth regenerative burners 12A and 12D on the combustion side, the combustion air K and the fuel E preheated by the heat accumulator 13 are supplied, so that the combustion is reversed in the furnace width direction. A frame (flame) Fr is formed. In the present invention, it is possible to prevent a local temperature rise by avoiding the collision of the combustion flame Fr in this way.

一方、排気側の第2及び第3の蓄熱式バーナ12B,12Cでは、第1及び第4の蓄熱式バーナ12A,12Dからの燃焼排ガスGを排気しながら、この燃焼排ガスGからの排熱が蓄熱体13によって蓄熱回収される。また、燃焼側を第2及び第3の蓄熱式バーナ12B,12Cとし、排気側を第1及び第4の蓄熱式バーナ12A,12Dとした場合は、図示を省略するものの、これとは逆の動作となる。   On the other hand, in the second and third regenerative burners 12B and 12C on the exhaust side, exhaust heat from the combustion exhaust gas G is exhausted while exhausting the combustion exhaust gas G from the first and fourth heat storage burners 12A and 12D. Heat storage and recovery are performed by the heat storage body 13. Further, when the combustion side is the second and third heat storage burners 12B and 12C and the exhaust side is the first and fourth heat storage burners 12A and 12D, the illustration is omitted, but the reverse It becomes operation.

また、加熱炉1は、図示を省略するものの、各部の制御を行うマイクロコンピュータ(CPU)等からなる制御部(制御手段)を備えている。加熱炉1は、この制御部からの制御信号に基づき、第1乃至第4の蓄熱式バーナ12A〜12Dの燃焼と排気とを切り替えると共に、各蓄熱式バーナ12A〜12Dの燃焼量を調整する。   Although not shown, the heating furnace 1 includes a control unit (control means) including a microcomputer (CPU) that controls each unit. The heating furnace 1 switches between combustion and exhaust of the first to fourth regenerative burners 12A to 12D and adjusts the combustion amount of each regenerative burner 12A to 12D based on a control signal from the control unit.

そして、本発明を適用した被加熱材の加熱方法では、均熱帯10Cの炉幅方向の一方側に並ぶ第1及び第3の蓄熱式バーナ12A,12Cと、炉長方向の他方側に並ぶ第2及び第4の蓄熱式バーナ12B,12Dとの間で、燃焼量を調整することによって、加熱ゾーンHの炉幅方向における温度分布を制御する。   And in the heating method of the to-be-heated material to which this invention is applied, the 1st and 3rd regenerative burners 12A and 12C arranged on one side in the furnace width direction of the soaking zone 10C and the first arranged on the other side in the furnace length direction. The temperature distribution in the furnace width direction of the heating zone H is controlled by adjusting the amount of combustion between the second and fourth heat storage burners 12B and 12D.

具体的に、スラブSの圧延長手方向において温度を上げたい側とは反対側の蓄熱式バーナの燃焼量を増やす(又は減らす)ことによって、加熱ゾーンHの炉幅方向における温度分布を、この蓄熱式バーナとは反対側において高め(又は低め)に設定することができる。すなわち、この加熱ゾーンHの炉幅方向における温度分布は、第1及び第3の蓄熱式バーナ12A,12Cと第2及び第4の蓄熱式バーナ12B,12Dとの間の燃焼量の割合とは逆の割合で高める(又は低める)ことができる。   Specifically, the temperature distribution in the furnace width direction of the heating zone H is increased by increasing (or decreasing) the combustion amount of the regenerative burner on the side opposite to the side where the temperature is desired to be increased in the rolling longitudinal direction of the slab S. It can be set higher (or lower) on the side opposite to the regenerative burner. That is, the temperature distribution in the furnace width direction of the heating zone H is the ratio of the combustion amount between the first and third heat storage burners 12A and 12C and the second and fourth heat storage burners 12B and 12D. It can be increased (or decreased) at the opposite rate.

したがって、本発明では、このような蓄熱式バーナ12A〜12Dを備えた加熱炉1を用いて、加熱ゾーンHの炉幅方向における温度分布を制御しながら、この加熱ゾーンHを通過するスラブSに対して傾斜加熱を行うことが可能である。   Accordingly, in the present invention, the slab S that passes through the heating zone H is controlled using the heating furnace 1 having such heat storage burners 12A to 12D while controlling the temperature distribution in the furnace width direction of the heating zone H. In contrast, it is possible to perform gradient heating.

また、加熱炉1には、上記蓄熱式バーナ12A〜12Dの他にも、スラブSに対して傾斜加熱を行うための非蓄熱式バーナを配置することが可能である。具体的に、均熱帯10Cの上部側には、図2〜図4及び図6に示すように、炉室10の天部から下方に向けて燃焼フレームFtを形成する複数のルーフバーナ15が設けられている。   In addition to the heat storage burners 12A to 12D, a non-heat storage burner for performing inclined heating on the slab S can be disposed in the heating furnace 1. Specifically, as shown in FIGS. 2 to 4 and 6, a plurality of roof burners 15 that form a combustion frame Ft downward from the top of the furnace chamber 10 are provided on the upper side of the soaking zone 10C. ing.

これら複数のルーフバーナ15は、炉室10の天部において炉長方向及び炉幅方向に並んで配置されると共に、炉幅方向において分割された複数の領域H1〜H4毎に燃焼量を調整することによって、この炉幅方向における温度分布を制御することが可能となっている。   The plurality of roof burners 15 are arranged side by side in the furnace length direction and the furnace width direction at the top of the furnace chamber 10, and adjust the combustion amount for each of the plurality of regions H1 to H4 divided in the furnace width direction. Thus, the temperature distribution in the furnace width direction can be controlled.

具体的に、スラブSの圧延長手方向において温度を上げたい側のルーフバーナ15の燃焼量を増やす(又は減らす)ことによって、炉幅方向における温度分布を、このルーフバーナ15側において高め(又は低め)に設定することができる。なお、図6では、領域H1>H2>H3>H4の順で燃焼量を高めることによって、炉幅方向における温度分布を領域H1>H2>H3>H4の順で高めることが可能である。   Specifically, the temperature distribution in the furnace width direction is increased (or decreased) on the roof burner 15 side by increasing (or decreasing) the combustion amount of the roof burner 15 on the side where the temperature is desired to be increased in the rolling longitudinal direction of the slab S. Can be set to In FIG. 6, the temperature distribution in the furnace width direction can be increased in the order of the region H1> H2> H3> H4 by increasing the combustion amount in the order of the region H1> H2> H3> H4.

したがって、本発明では、均熱帯10Cを通過するスラブSに対して、上記蓄熱式バーナ12A〜12Dによる傾斜加熱に加えて、上記ルーフバーナ15による傾斜加熱を行うことが可能である。   Therefore, in the present invention, the slab S passing through the soaking zone 10C can be subjected to the gradient heating by the roof burner 15 in addition to the gradient heating by the heat storage burners 12A to 12D.

また、加熱炉1には、上記傾斜加熱を行う蓄熱式バーナ12A〜12Dやルーフバーナ15の他にも、スラブSに対して局所加熱を行うための非蓄熱式バーナを配置することが可能である。具体的に、均熱帯10Cの下部側には、図2〜図4及び図6に示すように、複数の短炎バーナ16が設けられている。   In addition to the heat storage burners 12A to 12D and the roof burner 15 that perform the inclined heating, the heating furnace 1 can be provided with a non-heat storage burner for performing local heating on the slab S. . Specifically, as shown in FIGS. 2 to 4 and 6, a plurality of short flame burners 16 are provided on the lower side of the soaking zone 10 </ b> C.

この短炎バーナ16は、炉室10のスラブSの温度を上げたい側の側面に配置されて、炉幅方向において上記蓄熱式バーナ12A〜12Dが形成する燃焼フレームFrよりも短い燃焼フレームFsを形成する。これにより、スラブSの温度を上げたい側を局所的に加熱することが可能である。   The short flame burner 16 is disposed on the side surface of the furnace chamber 10 on the side where the temperature of the slab S is desired to be raised, and has a combustion frame Fs shorter than the combustion frame Fr formed by the heat storage burners 12A to 12D in the furnace width direction. Form. Thereby, the side which wants to raise the temperature of the slab S can be heated locally.

以上のように、本発明を適用した被加熱材の加熱方法では、加熱炉1の炉幅方向において相対向する一対の蓄熱式バーナ12を炉長方向に複数並べて配置し、この炉長方向に並ぶ蓄熱式バーナ12の数を均熱帯10Cにおいて全体の1/2以下とする、好ましくは1/3以下とすることで、スラブSが炉内の予熱帯10Aと加熱帯10Bとを通過する間に、スラブSを必要な温度まで十分に加熱する能力を担保することが可能である。   As described above, in the method for heating a material to be heated to which the present invention is applied, a plurality of a pair of regenerative burners 12 facing each other in the furnace width direction of the heating furnace 1 are arranged side by side in the furnace length direction, By setting the number of the regenerative burners 12 to be ½ or less, preferably 1 / or less of the total in the soaking zone 10C, the slab S passes through the pre-tropical zone 10A and the heating zone 10B in the furnace. In addition, it is possible to ensure the ability to sufficiently heat the slab S to the required temperature.

また、本発明では、スラブSが炉内の均熱帯10Cを通過する間に、均熱帯10Cの炉長方向において隣接する第1の蓄熱式バーナ12Aと第3の蓄熱式バーナ12Cとの間、及び、第2の蓄熱式バーナ12Bと第4の蓄熱式バーナ12Dとの間で、互いに逆向きの燃焼フレームを形成するように、炉幅方向において相対向する第1の蓄熱式バーナ12Aと第2の蓄熱式バーナ12Bとの間、及び、第3の蓄熱式バーナ12Cと第4の蓄熱式バーナ12Dとの間で、燃焼と排気とを交互に切り替えて交番燃焼を行う。このとき、燃焼フレームFrの衝突による局所的な温度上昇を防ぐことが可能である。   In the present invention, while the slab S passes through the soaking zone 10C in the furnace, between the first heat storage burner 12A and the third heat storage burner 12C adjacent in the furnace length direction of the soaking zone 10C, In addition, the first heat storage burner 12A and the first heat storage burner 12A facing each other in the furnace width direction and the second heat storage burner 12D and the fourth heat storage burner 12D are formed so as to form a combustion frame opposite in direction to each other. Alternate combustion is performed by alternately switching combustion and exhaust between the second heat storage burner 12B and between the third heat storage burner 12C and the fourth heat storage burner 12D. At this time, it is possible to prevent a local temperature increase due to the collision of the combustion flame Fr.

そして、本発明では、排気側の蓄熱式バーナ12A,12D(又は12B,12C)が燃焼排ガスGからの排熱を蓄熱体13によって蓄熱回収し、燃焼側の蓄熱式バーナ12B,12C(又は12A,12D)が蓄熱体13に蓄熱された熱によって燃焼空気Kを予熱し、なお且つ、均熱帯10Cの炉幅方向の一方側に並ぶ第1及び第3の蓄熱式バーナ12A,12Cと、炉長方向の他方側に並ぶ第2及び第4の蓄熱式バーナ12B,12Dとの間で、互いの燃焼量に差を設けることによって、均熱帯10Cの炉幅方向における温度分布に傾斜を持たせて、均熱帯10Cを通過するスラブSに対して傾斜加熱を行う。   In the present invention, the exhaust-side regenerative burners 12A, 12D (or 12B, 12C) collect and recover the exhaust heat from the combustion exhaust gas G by the heat accumulator 13, and the combustion-side regenerative burners 12B, 12C (or 12A). , 12D) preheats the combustion air K with the heat stored in the heat accumulator 13, and the first and third regenerative burners 12A, 12C lined up on one side in the furnace width direction of the soaking zone 10C, By providing a difference in the amount of combustion between the second and fourth heat storage burners 12B and 12D arranged on the other side in the longitudinal direction, the temperature distribution in the furnace width direction of the soaking zone 10C is inclined. Then, the slant heating is performed on the slab S passing through the soaking zone 10C.

特に、本発明では、均熱帯10Cの炉幅方向(スラブSの長手方向)において温度を上げたい又は下げたい側とは反対側に配置された蓄熱式バーナ12A,12C(又は12B,12D)の燃焼量を増やす又は減らすことによって、均熱帯10Cの炉幅方向における温度分布を、この蓄熱式バーナ12A,12C(又は12B,12D)とは反対側において高め又は低めに設定することが可能である。   In particular, in the present invention, the regenerative burners 12A, 12C (or 12B, 12D) disposed on the opposite side of the soaking zone 10C in the furnace width direction (longitudinal direction of the slab S) from the side where the temperature is desired to be raised or lowered. By increasing or decreasing the combustion amount, it is possible to set the temperature distribution in the furnace width direction of the soaking zone 10C to be higher or lower on the side opposite to the regenerative burner 12A, 12C (or 12B, 12D). .

これにより、本発明では、炉長方向に並ぶ複数の蓄熱式バーナ12を用いて、炉幅方向の温度分布を変えることができるため、スラブSに対して傾斜加熱を更に効率良く行うことが可能である。   Thereby, in this invention, since the temperature distribution of a furnace width direction can be changed using the some thermal storage type burner 12 located in a line with a furnace length direction, it is possible to perform gradient heating with respect to the slab S more efficiently. It is.

以上のように、本発明によれば、上述したサーマルダウンによるスラブSの後端側の温度低下を見越して、スラブSの後端側の温度が先端側の温度より高くなるようにスラブSの圧延長手方向における温度分布に傾斜を持たせることができるため、上記連続熱間圧延ライン101において、スラブSの先端から後端までを目標の仕上圧延温度の範囲内で圧延することが可能となる。   As described above, according to the present invention, in anticipation of the temperature decrease on the rear end side of the slab S due to the above-described thermal down, the temperature on the rear end side of the slab S is set higher than the temperature on the front end side. Since the temperature distribution in the rolling longitudinal direction can be inclined, the continuous hot rolling line 101 can be rolled from the front end to the rear end of the slab S within the target finish rolling temperature range. Become.

なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記加熱炉1では、第1及び第3の蓄熱式バーナ12A,12Cと第2及び第4の蓄熱式バーナ12B,12Dとの間で燃焼量に差を設けることによって、上記加熱ゾーンHを通過するスラブSに対して傾斜加熱を行うことが可能であるものの、第1及び第3の蓄熱式バーナ12A,12Cと第2及び第4の蓄熱式バーナ12B,12Dとの間で燃焼量に差を設けずに、スラブSに対する加熱を行った場合には、スラブSの圧延方向における先端部と後端部とを均一に加熱することも可能である。
In addition, this invention is not necessarily limited to the thing of the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the heating furnace 1, by providing a difference in the combustion amount between the first and third regenerative burners 12A and 12C and the second and fourth regenerative burners 12B and 12D, the heating zone H Although it is possible to perform inclined heating on the slab S that passes through, the amount of combustion between the first and third heat storage burners 12A, 12C and the second and fourth heat storage burners 12B, 12D When the slab S is heated without providing a difference, it is possible to uniformly heat the front end and the rear end in the rolling direction of the slab S.

但し、蓄熱式バーナによる一般的な交番燃焼では、炉幅方向の温度分布が中高傾向と呼ばれる中央側が端部側よりも温度が高くなる傾向を示すことが知られている。したがって、第1及び第3の蓄熱式バーナ12A,12Cと第2及び第4の蓄熱式バーナ12B,12Dとの間で燃焼量に差を設けずに均一加熱を行った場合、このような中高傾向を示すことが考えられるが、第1及び第3の蓄熱式バーナ12A,12Cと第2及び第4の蓄熱式バーナ12B,12Dとの間の燃焼量を調整することで、炉幅方向の温度分布をより平坦に近づけることも可能である。   However, it is known that in general alternating combustion using a regenerative burner, the temperature distribution in the furnace width direction tends to be higher at the center side than the end side, which is called the middle-high tendency. Therefore, when uniform heating is performed without providing a difference in the amount of combustion between the first and third heat storage burners 12A and 12C and the second and fourth heat storage burners 12B and 12D, such a medium-high Although it is possible to show a tendency, by adjusting the combustion amount between the 1st and 3rd regenerative burners 12A and 12C and the 2nd and 4th regenerative burners 12B and 12D, It is also possible to make the temperature distribution more flat.

また、上記加熱炉1では、更なる燃料消費量及びCO排出量の削減を図るため、上記ルーフバーナ15の代わりに、上記炉幅方向の温度分布が制御可能な蓄熱式バーナ12A〜12Dを配置することも可能である。また、上記短炎バーナ16は、上述したスラブSの圧延長手方向において生じた加熱不足量を補償するものであり、必要に応じて配置(又は稼働)すればよく、省略することも可能である。 Further, in the heating furnace 1, in order to further reduce the fuel consumption and the CO 2 emission amount, regenerative burners 12A to 12D capable of controlling the temperature distribution in the furnace width direction are arranged instead of the roof burner 15. It is also possible to do. The short flame burner 16 compensates for the insufficient heating amount generated in the rolling longitudinal direction of the slab S described above, and may be disposed (or operated) as necessary, and may be omitted. is there.

また、本発明は、上記連続熱間圧延ライン101において、圧延前にスラブSを加熱する場合に適用したものに限らず、被加熱材として、上記スラブSの他にも、ビレット、ブルーム等の鋳片を加熱する場合や、非鉄系金属を加熱する場合にも適用可能である。   Further, the present invention is not limited to the case where the slab S is heated before rolling in the continuous hot rolling line 101, but as a material to be heated, in addition to the slab S, billets, blooms, and the like. The present invention is also applicable when heating a slab or when heating a non-ferrous metal.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

本実施例では、上記加熱炉1を用いて被加熱材を傾斜加熱するシミュレーションを行った。具体的には、熱流動解析ソフトとして、ANSYS社製のFLUENTを用いた。その計算条件としては、被加熱材としてブルーム(長さ11750mm×幅380mm×高さ315mm)、搬送方向に並ぶブルームの間隔を125mm、加熱炉への進入温度を1200℃、ブルームの搬送速度を3.6分ピッチ(1.76mm/s)、加熱炉の全燃焼量を300万kcal/hrとした。また、加熱炉のサイズを、長さ7600mm×幅13500mm×高さ2200mm、空気比を1.1、燃料組成を(CH:90.56%、C:5.82%、C:2.59%、i-C10:0.52%、n-C10:0.50%、i-C12:0.01%、)、予熱空気温度を1000℃一定、ノズル冷却空気量を最大燃焼時の必要燃焼空気量の1%(燃焼空気量の内数)とした。 In this example, a simulation was performed in which the material to be heated is heated by using the heating furnace 1. Specifically, FLUENT manufactured by ANSYS was used as heat flow analysis software. The calculation conditions are as follows: bloom as the material to be heated (length 11750 mm × width 380 mm × height 315 mm), spacing between blooms arranged in the transport direction is 125 mm, entrance temperature to the heating furnace is 1200 ° C., and bloom transport speed is 3 .6 minute pitch (1.76 mm / s), and the total combustion amount of the heating furnace was 3 million kcal / hr. The size of the heating furnace is 7600 mm long × 13500 mm wide × 2200 mm high, the air ratio is 1.1, the fuel composition is (CH 4 : 90.56%, C 2 H 6 : 5.82%, C 3 H 8: 2.59%, i- C 4 H 10: 0.52%, n-C 4 H 10: 0.50%, i-C 5 H 12: 0.01%,), the preheated air temperature The nozzle cooling air amount was constant at 1000 ° C. and 1% of the required combustion air amount at the time of maximum combustion (the number of combustion air amount).

また、物理現象としては、炉内ガスの乱流、燃料と燃焼空気の燃焼反応、炉内ガス−ブルーム−炉壁間の放射熱伝達、壁面内部熱伝導、ブルームの内部熱伝導があり、それぞれ表1のように取り扱った。なお、これらは全て熱流動解析ソフトに実装されているため、それを利用することにした。   Also, physical phenomena include turbulent flow of furnace gas, combustion reaction of fuel and combustion air, radiant heat transfer between furnace gas-bloom and furnace wall, heat transfer inside wall, and heat transfer inside bloom, They were handled as shown in Table 1. Since these are all implemented in the thermal flow analysis software, we decided to use them.

Figure 0006254754
Figure 0006254754

そして、実施例1では、炉長方向に並ぶ蓄熱式バーナの数を均熱帯において全体の1/3とし、この均熱帯の炉幅方向における燃焼量の割合をブルームの前端:ブルームの後端=1:1.4(125万kCal/hr:175万kCal/hr)とし、実施例2では、この均熱帯の炉幅方向における燃焼量の割合をブルームの前端:ブルームの後端=1:2(100万kCal/hr:200万kCal/hr)とし、比較例1では、この均熱帯の炉幅方向における燃焼量の割合をブルームの前端:ブルームの後端=1:1(150万kCal/hr:150kCal/hr)として計算を行い、その加熱ゾーンにおける温度分布を求めた。その結果を図7に示す。なお、図7の横軸は加熱ゾーンの炉幅位置(m)を表し、縦軸は炉高−炉長間の平均ガス温度(℃)を表している。   And in Example 1, the number of the regenerative burners arranged in the furnace length direction is 1/3 of the whole in the soaking zone, and the ratio of the combustion amount in the soaking zone width direction in the soaking zone is the front end of the bloom: the rear end of the bloom = 1: 1.4 (1.25 million kCal / hr: 1.75 million kCal / hr) In Example 2, the ratio of the amount of combustion in the soaking zone in the width direction of the soaking zone is defined as the front end of the bloom: the rear end of the bloom = 1: 2. (Million kCal / hr: 2 million kCal / hr) In Comparative Example 1, the ratio of the amount of combustion in the soaking zone in the soaking zone is the front end of the bloom: the rear end of the bloom = 1: 1 (1.5 million kCal / hr: 150 kCal / hr), and the temperature distribution in the heating zone was determined. The result is shown in FIG. 7 represents the furnace width position (m) of the heating zone, and the vertical axis represents the average gas temperature (° C.) between the furnace height and the furnace length.

図7に示すように、実施例1,2では、燃焼量が少ない前端側でガス温度が高くなっており、加熱ゾーンの炉幅方向に傾斜した温度分布を持たせることが可能である。一方、比較例1では、加熱ゾーンの炉幅方向において中央側が端部側よりも温度が高くなる中高分布を示している。   As shown in FIG. 7, in Examples 1 and 2, the gas temperature is high on the front end side where the amount of combustion is small, and it is possible to have a temperature distribution inclined in the furnace width direction of the heating zone. On the other hand, Comparative Example 1 shows a medium-high distribution in which the temperature on the center side is higher than that on the end side in the furnace width direction of the heating zone.

また、これら実施例1,2及び比較例1について、抽出時のブルームの炉幅方向における温度分布を求めた。その結果を図8に示す。なお、図8の横軸はブルームの炉幅位置(m)を表し、縦軸はブルームの断面平均温度(℃)を表している。   Moreover, about these Examples 1, 2 and the comparative example 1, the temperature distribution in the furnace width direction of the bloom at the time of extraction was calculated | required. The result is shown in FIG. In addition, the horizontal axis of FIG. 8 represents the furnace width position (m) of the bloom, and the vertical axis represents the cross-sectional average temperature (° C.) of the bloom.

図8に示すように、実施例1,2では、燃焼量が少ない前端側でブルームの断面温度が高くなっており、ブルームの炉幅方向に傾斜した温度分布を持たせることが可能である。一方、比較例1では、ブルームの炉幅方向において中央側が端部側よりも温度が高くなる中高分布を示している。   As shown in FIG. 8, in the first and second embodiments, the cross-sectional temperature of the bloom is high on the front end side where the combustion amount is small, and it is possible to have a temperature distribution inclined in the furnace width direction of the bloom. On the other hand, Comparative Example 1 shows a medium-high distribution in which the temperature on the center side is higher than the end side in the furnace width direction of the bloom.

以上のことから、本発明では、均熱帯の炉長方向に並ぶ蓄熱式バーナを用いて、均熱帯の炉幅方向における温度分布を制御しながら、この均熱帯を通過する被加熱材に対して傾斜加熱を効率良く行うことが可能である。   From the above, in the present invention, the heat storage burner arranged in the direction of the soaking zone in the soaking zone is used to control the temperature distribution in the soaking zone width direction, while the material to be heated passing through this soaking zone is controlled. It is possible to efficiently perform the gradient heating.

なお、上記図7に示す結果から、燃料合計流量を同じとした場合、全体的に温度が低下することから、加熱炉の炉長方向の全体において傾斜加熱を行った場合には、投入燃料に対してブルームの平均温度が低下することになる。したがって、傾斜加熱を効率良く実施するためには、本発明のように傾斜加熱を行う蓄熱式バーナの数を全体の1/2以下、好ましくは1/3以下とすることが望ましい。   From the results shown in FIG. 7 above, when the total fuel flow rate is the same, the temperature decreases as a whole. Therefore, when inclined heating is performed in the entire furnace length direction of the heating furnace, On the other hand, the average temperature of the bloom is lowered. Therefore, in order to efficiently perform the gradient heating, it is desirable that the number of regenerative burners that perform the gradient heating as in the present invention is ½ or less, preferably 3 or less of the whole.

1…加熱炉 2…デスケーリング装置 3…粗圧延機 4…仕上圧延機 5…冷却設備 6…巻取機 10…炉室 10a…装入口 10b…抽出口 10A…予熱帯 10B…加熱帯 10C…均熱帯 11…仕切り壁 12A…第1の蓄熱式バーナ 12B…第2の蓄熱式バーナ 12C…第3の蓄熱式バーナ 12D…第4の蓄熱式バーナ 13…蓄熱体 14…熱交換器 15…ルーフバーナ 16…短炎バーナ 101…連続熱間圧延ライン   DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Descaling device 3 ... Rough rolling mill 4 ... Finishing mill 5 ... Cooling equipment 6 ... Winding machine 10 ... Furnace room 10a ... Loading port 10b ... Extraction port 10A ... Pre-tropical zone 10B ... Heating zone 10C ... Soaking zone 11 ... Partition wall 12A ... First heat storage burner 12B ... Second heat storage burner 12C ... Third heat storage burner 12D ... Fourth heat storage burner 13 ... Heat storage body 14 ... Heat exchanger 15 ... Roof burner 16 ... Short flame burner 101 ... Continuous hot rolling line

Claims (2)

被加熱材の長手方向が炉幅方向となるように炉内に装入された被加熱材を炉長方向に搬送しながら、この被加熱材が炉内に設けられた予熱帯と、加熱帯と、均熱帯とを順次通過する間に、被加熱材を加熱して炉外へと抽出する加熱炉を用いた被加熱材の加熱方法であって、
前記加熱炉の炉幅方向において相対向する一対の蓄熱式バーナを前記炉長方向に複数並べて配置し、この炉長方向に並ぶ蓄熱式バーナの数を前記均熱帯において全体の1/2以下とし、
前記均熱帯の搬送路上部側の炉室天部に、非蓄熱式バーナであるルーフバーナを炉長方向および炉幅方向に並べて配置し、
前記均熱帯の搬送路下部側の炉室側面に、非蓄熱式バーナであって前記蓄熱式バーナの火炎長よりも短い火炎を発生させる短炎バーナを炉長方向に複数配置し、
前記均熱帯の炉長方向に隣接し、炉幅方向において相対向する一対の蓄熱式バーナの間で互いに逆向きの燃焼フレームを形成するように、前記炉幅方向において相対向する蓄熱式バーナの間で燃焼と排気とを交互に切り替える交番燃焼を行うと共に、排気側の蓄熱式バーナが燃焼排ガスからの排熱を蓄熱体によって蓄熱回収し、燃焼側の蓄熱式バーナが蓄熱体に蓄熱された熱によって燃焼空気を予熱し、
なお且つ、前記均熱帯の炉幅方向の一方側に並ぶ複数の蓄熱式バーナと、炉幅方向の他方側に並ぶ複数の蓄熱式バーナとの間で、互いの燃焼量に差を設け(加熱帯と均熱帯双方で燃焼量に差を設ける場合を除く)、
更に、前記被加熱材の温度を上げる側の前記均熱帯の搬送路上部側の炉室天部の炉幅方向において分割された複数の加熱領域の前記ルーフバーナの燃焼量を炉幅方向の温度分布の傾斜に合わせて段階的に高め、
かつ、前記被加熱材の温度を上げる側の前記均熱帯の搬送路下部側の炉室側面の前記短炎バーナの燃焼量を高めることによって、前記均熱帯の炉幅方向における温度分布に傾斜を持たせて、前記均熱帯を通過する前記被加熱材に対して傾斜加熱を行い、
なお且つ、前記均熱帯の炉幅方向において温度を上げたい又は下げたい側とは反対側に配置された蓄熱式バーナの燃焼量を増やす又は減らすことによって、前記均熱帯の炉幅方向における温度分布を、この蓄熱式バーナとは反対側において高め又は低めに設定することを特徴とする被加熱材の加熱方法。
While transporting the material to be heated inserted in the furnace in the furnace length direction so that the longitudinal direction of the material to be heated is the furnace width direction, And a heating method of a heated material using a heating furnace that heats the heated material and extracts it outside the furnace while sequentially passing through the soaking zone,
A plurality of a pair of regenerative burners facing each other in the furnace width direction of the heating furnace are arranged side by side in the furnace length direction, and the number of regenerative burners arranged in the furnace length direction is ½ or less of the whole in the soaking zone. ,
A roof burner that is a non-heat storage burner is arranged side by side in the furnace length direction and the furnace width direction in the top of the furnace chamber on the upper side of the soaking zone,
A plurality of short flame burners that generate a flame shorter than the flame length of the regenerative burner on the side of the furnace chamber at the lower part of the soaking zone are arranged in the furnace length direction.
The regenerative burner opposed to each other in the furnace width direction so as to form a combustion frame opposite to each other between a pair of regenerative burners opposed to each other in the furnace length direction adjacent to the soaking zone. In addition, alternating combustion that alternately switches between combustion and exhaust gas was performed, and the heat storage burner on the exhaust side collected and recovered exhaust heat from the combustion exhaust gas by the heat storage body, and the heat storage burner on the combustion side was stored in the heat storage body Preheat combustion air with heat,
In addition, there is a difference in the amount of combustion between the plurality of regenerative burners arranged on one side in the soaking zone and the plurality of regenerative burners arranged on the other side in the furnace width direction. Excluding the case where there is a difference in the amount of combustion in both the tropical and soaking tropics),
Furthermore, the combustion amount of the roof burner in a plurality of heating regions divided in the furnace width direction of the furnace chamber top on the upper side of the soaking zone on the side of raising the temperature of the material to be heated is the temperature distribution in the furnace width direction. Step by step to match the slope of the
Further, by increasing the combustion amount of the short flame burner on the side of the furnace chamber on the lower side of the soaking zone on the side of raising the temperature of the heated material, the temperature distribution in the soaking zone in the width direction of the furnace is inclined. Give the material to be heated that passes through the soaking zone inclined heating,
In addition, by increasing or decreasing the combustion amount of the regenerative burner disposed on the side opposite to the side where the temperature is desired to be raised or lowered in the soaking zone width direction, the temperature distribution in the soaking zone width direction Is set to be higher or lower on the side opposite to the regenerative burner.
前記炉長方向に並ぶ蓄熱式バーナの数を、前記均熱帯において全体の1/3以下とすることを特徴とする請求項1に記載の被加熱材の加熱方法。   The method for heating a material to be heated according to claim 1, wherein the number of regenerative burners arranged in the furnace length direction is 1/3 or less of the whole in the soaking zone.
JP2012000599A 2012-01-05 2012-01-05 Heating method of heated material Expired - Fee Related JP6254754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000599A JP6254754B2 (en) 2012-01-05 2012-01-05 Heating method of heated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000599A JP6254754B2 (en) 2012-01-05 2012-01-05 Heating method of heated material

Publications (2)

Publication Number Publication Date
JP2013139611A JP2013139611A (en) 2013-07-18
JP6254754B2 true JP6254754B2 (en) 2017-12-27

Family

ID=49037338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000599A Expired - Fee Related JP6254754B2 (en) 2012-01-05 2012-01-05 Heating method of heated material

Country Status (1)

Country Link
JP (1) JP6254754B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704177B2 (en) * 1995-05-16 2005-10-05 新日本製鐵株式会社 Continuous heating apparatus and heating method
JP3356596B2 (en) * 1995-08-16 2002-12-16 新日本製鐵株式会社 Heating furnace combustion control method
JP3356595B2 (en) * 1995-08-16 2002-12-16 新日本製鐵株式会社 Heating furnace combustion control method
JP2002030332A (en) * 2000-07-11 2002-01-31 Nkk Corp Method for operating heating furnace
JP5181679B2 (en) * 2008-01-09 2013-04-10 新日鐵住金株式会社 Heating furnace and temperature control method for heated material
JP5181803B2 (en) * 2008-04-23 2013-04-10 新日鐵住金株式会社 Heating method of heated material
JP2010196132A (en) * 2009-02-26 2010-09-09 Nippon Steel Engineering Co Ltd Method for controlling temperature in furnace width direction in heating furnace having heat storage type burner
JP5458661B2 (en) * 2009-05-18 2014-04-02 新日鐵住金株式会社 Heating furnace and heating method

Also Published As

Publication number Publication date
JP2013139611A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
TWI552812B (en) Verfahren und anlage zur herstellung eines metallbandes
JP5181803B2 (en) Heating method of heated material
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP6254754B2 (en) Heating method of heated material
US3081073A (en) Metal heating furnace apparatus
JP2019210531A (en) Heat storage type alternating combustion device for heating furnace
US2133673A (en) Continuous heating furnace
US4884967A (en) Steel reheating furnace
JP2002213879A (en) Atmosphere control method for heating furnace, and the heating furnace
JPH0953114A (en) Method for controlling combustion in heating furnace
JP4237842B2 (en) Billet continuous heating device
JP5181679B2 (en) Heating furnace and temperature control method for heated material
JP2000273530A (en) Continuous heating apparatus for steel material
JP2000212645A (en) Continuous heating of steel material
JP4935305B2 (en) Heating control method for continuous heating furnace
JP7117902B2 (en) heating furnace
JP4110584B2 (en) Continuous heat treatment equipment for metal strip
JP7302553B2 (en) Furnace temperature control method for heating furnace, steel manufacturing method and heating equipment
JP4605082B2 (en) Method for producing metal material using a plurality of continuous heating furnaces
JPH11279649A (en) Device and method for heating steel slab
JP5003019B2 (en) Steel manufacturing method using continuous heating furnace
JPS62267425A (en) Operating method for heating furnace in alternate rolling system
JP4499870B2 (en) Walking hearth furnace
JP4133358B2 (en) Manufacturing method of hot-rolled steel sheet
JP5678581B2 (en) Walking beam furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171201

R150 Certificate of patent or registration of utility model

Ref document number: 6254754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees