JP4133358B2 - Manufacturing method of hot-rolled steel sheet - Google Patents

Manufacturing method of hot-rolled steel sheet Download PDF

Info

Publication number
JP4133358B2
JP4133358B2 JP2003008854A JP2003008854A JP4133358B2 JP 4133358 B2 JP4133358 B2 JP 4133358B2 JP 2003008854 A JP2003008854 A JP 2003008854A JP 2003008854 A JP2003008854 A JP 2003008854A JP 4133358 B2 JP4133358 B2 JP 4133358B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
heating furnace
slab
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003008854A
Other languages
Japanese (ja)
Other versions
JP2004216439A (en
Inventor
満 吉田
紀章 田中
寛 木村
浩嗣 野口
武広 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003008854A priority Critical patent/JP4133358B2/en
Publication of JP2004216439A publication Critical patent/JP2004216439A/en
Application granted granted Critical
Publication of JP4133358B2 publication Critical patent/JP4133358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱延ラインにおいて、加熱炉で熱消費を低下させて鋼材を加熱する熱延鋼板の製造方法に関し、特に、熱延ラインにおいて加熱炉温度を調整しつつ所定の仕上圧延温度を確保する熱延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
鋼材の熱間圧延は、例えば図1に示すように、1つあるいは複数の加熱炉2で加熱された鋼材(スラブ)1を粗圧延機3で粗圧延して粗バーとし、仕上圧延機4で仕上圧延した後に、巻取機5で巻取る工程で行われている。熱間圧延において一般的に使用されている加熱炉は図2に示すウォーキングビーム(WB)により鋼材を搬送する連続式加熱炉であり、図中では鋼材がこの加熱炉2の左側から装入されて、予熱帯7、加熱帯8及び均熱帯9を順次通過して加熱終了後に右側から抽出されて次の粗圧延工程(図1の粗圧延機3)に搬送される。
そして、仕上圧延では、粗バー先端が仕上圧延機の第1スタンドに噛込んで仕上圧延された鋼板が巻取機に噛込むまでは低速圧延で通板させる必要があって、仕上圧延機速度パターンが決められる。また、低速圧延では圧延機の負荷制約を緩和するため圧延温度を高く設定する必要がある。
【0003】
熱間圧延では、種々の鋼種、製品寸法の圧延負荷に対応して、それらの圧延材料によって定まる仕上温度を確保するために加熱炉での加熱温度が制御されていて、Ar3変態点以上とするために1000℃以上に鋼材を加熱昇温する。加熱炉から抽出された鋼材は、粗圧延と仕上圧延とを施されるが、圧延時の加工発熱による入熱はあるものの、圧延速度パターンに基づく放熱、デスケーリングによる水冷や圧延ロールとの接触による抜熱により、圧延材の温度は製品となるまでに次第に降下する。
【0004】
温度降下は、50〜200℃程度となり、製品の寸法によって異なるが、薄手材(板厚1mm前後)ほど温度降下が大きくなる。このため薄手材の圧延で良好な材質を得ることができる仕上圧延温度を確保するには、加熱炉の鋼材加熱設定温度を厚手材よりも高温に設定することが要求される。
【0005】
また、ハイテン等の合金成分を含有する鋼材は、硬質であるため高い圧延荷重が生じる。このため、これらの鋼材については、圧延機の負荷制約を緩和するのに圧延温度を高くする必要があるので、加熱炉における鋼材加熱温度を高く設定している。
【0006】
一方、加熱炉への鋼材(スラブ)装入操業は、省エネを目的としてHCR操業(Hot Charge Rolling)が一般的に行われている。
【0007】
HCR操業の下では鋼材の装入温度の変動が大きく低温材が散在する。その原因としては、例えば、次のようなことが原因となる。
【0008】
▲1▼製造された鋼材(スラブ)は製鋼工程での出鋼材順に圧延に供されることはなく、鋼材ヤードに滞留された別タイミングの出鋼材が圧延材の要求に合致する鋼材として選定されて加熱炉に装入される。このため鋼材ヤードにおいて滞留時間が長い鋼材が選定されることもあり、例えば滞留時間が6時間と12時間では温度降下に約100℃の差が生じるので、鋼材ヤードでの滞留時間の長い鋼材は低温材となる。
【0009】
▲2▼鋼材は保温台車で加熱炉に装入されるが、保温台車が不足し、すべての鋼材が保温台車で装入できなく、保温台車を用いないで装入する鋼材が存在する。この鋼材はヤード滞留時間6時間で約150℃の温度降下があり、低温材装入の原因となる。
【0010】
▲3▼鋼材ヤードにおける山積段数は異なっていて、小段数のほうが温度降下が大であり、特に1〜3段積の場合は、それ以上の段積鋼材に比較して滞留時間12時間で約100℃以上の温度降下がある。
【0011】
▲4▼鋼材ヤードにおける山積位置によっても温度降下量が異なる。即ち、山積の中央は冷えにくく、最下段或いは最上段は冷えやすく、1時間当りで中央に比較して約50〜100℃以上温度低下する。
【0012】
▲5▼鋼材ヤードにおいては、圧延、出鋼スケジュールにあわせて鋼材配置替えを行うが、この際にも約100℃の鋼材温度が低下する。
【0013】
低温の鋼材(低温材)をまとめて加熱炉に装入すれば、加熱炉への鋼材の装入温度の変動は避けられるが、製品の納期に対応する必要性等のため、同一圧延単位に組み込み可能な低温材を集中させるには限度がある。また、低温HCR材は散発するので、装入温度を志向した圧延単位編成を実施する場合には、再度鋼材ヤード内にて配置換えを実施する必要があり、ヤード内物流を圧迫するのみならず、平均HCR材温度を悪化させる弊害が生じる。
【0014】
したがって、低温材をまとめて加熱炉に挿入することは困難であるから、HCR操業の下では、低温材を散在させて加熱炉に装入することを避けることはできない。このため、鋼材装入温度にばらつきが生じる。
【0015】
加熱炉操業は、大きな変動なく燃焼を行うことがエネルギー効率上好ましいが、加熱炉に装入する鋼材温度のばらつきや炉抽出温度も製品サイズや品質毎に目標抽出温度が異なるため、装入されたすべての鋼材を目標温度に昇温させようとすると、昇温量最大を必要とする炉内燃料負荷の高い低温材(ネック材)を目標温度に昇温させねばならない。ところが、昇温量がネック材より小さい鋼材は目標温度より不必要に大きく加熱されてしまうこととなり、また、炉温も上昇下降を繰り返すことにより炉体への投入熱量を大きくしてしまう。その結果、加熱エネルギーの大幅なロスが生じる。
【0016】
従来の加熱炉の省エネ化などを狙いとした加熱炉操業方法には、加熱炉の出力変動を行うことなく加熱炉の設定温度を一定にしたものがある(例えば、特許文献1参照)。
【0017】
この方法では、加熱炉の出力変動を行うと、加熱炉の温度制御は応答性が悪いため、昇温するまでの時間はライン休止としなければならず、生産性を阻害し、また、温度昇降で炉が傷み、炉のメンテナンス費が増加する等の問題が生じることを解消することを目的とするものである。そして、具体的手段として圧延材料に依存しない一定温度にスラブを加熱する工程と、加熱されたスラブを粗圧延して粗バーとする工程と、この粗バーを圧延材料に依存する所定の温度に誘導加熱装置で加熱する工程と、加熱された粗バーを仕上圧延する工程とを備えていることが開示されている。
【0018】
即ち、加熱炉温度を一定にし、スラブ抽出温度も一定にし、圧延材ごとに異なる必要温度は仕上圧延前に誘導加熱装置で加熱昇温させようとするものである。
【0019】
しかしながら、この方法は、加熱炉に装入される鋼材温度のばらつき、特に低温のネック材が散在することに対応するものではなく、かつネック材の散在が原因となる加熱炉のエネルギーロスを防止することを目的とするものではない。
【0020】
【特許文献】
特開平9−308903号公報(第2頁右欄 第27〜31行、第2図)
【0021】
【発明が解決しようとする課題】
本発明は、熱延鋼板の製造方法において、加熱炉に装入される装入温度の低いスラブ(鋼材)は、製品寸法、鋼種、表面性状等に依存する加熱抽出温度よりも低い温度で抽出して、近傍の装入温度の高いスラブが過加熱されて予定抽出温度より高い温度で抽出されることを防止することを解決課題とするものである。
【0022】
【課題を解決するための手段】
熱延鋼板の製造方法においては、加熱炉内に複数のスラブを装入して加熱し、予定抽出温度で抽出するHCR操業が一般的に行われているが、装入スラブに低温スラブが散在し、低温スラブを予定抽出温度に加熱すると近傍の装入温度が高いスラブは予定抽出温度よりも高く加熱されてしまう。
【0023】
そこで、本発明者は装入温度の高いスラブを予定抽出温度で抽出し、装入温度の低いスラブ(ネック材)は予定抽出温度よりも低い温度で抽出し、仕上圧延前に必要温度に補償的に加熱すれば、加熱炉のエネルギーロスを防止し、かつスケール生成を抑制し得ることを見出して本発明を完成した。
【0024】
本発明の要旨は次のとおりである。
【0025】
(1) 加熱炉に複数の鋼材(スラブ)を装入して加熱し抽出する際に、装入された鋼材(スラブ)中に散在し、炉内で最も燃焼負荷が高く昇温量最大を必要とする装入温度の低い低温鋼材(スラブ)を加熱炉より抽出して、熱間圧延する熱延鋼板の製造方法において、前記低温鋼材よりも装入温度の高い鋼材は仕上圧延目標温度と加熱炉抽出から仕上圧延完了までの温度降下量を基に設定した目標抽出温度で加熱炉より抽出するが、炉内で最も燃焼負荷が高く昇温量最大を必要とする装入温度の低い低温鋼材は前記目標抽出温度より低温で抽出し、熱延ラインに設置した加熱炉以外の加熱装置で仕上目標温度となるように補償的に加熱することを特徴とする熱延鋼板の製造方法。
【0026】
(2) 加熱炉以外の加熱装置が、熱延ラインの粗圧延機の前又は後、粗圧延機と仕上圧延機の間、又は仕上圧延機列間に配置されていることを特徴とする上記(1)記載の熱延鋼板の製造方法。
【0027】
【発明の実施の形態】
熱延鋼板の製造方法においては、圧延材であるスラブを加熱炉で加熱するHCR操業が行われている。HCR操業では、複数のスラブを加熱炉に装入するが、その装入スラブ中に低温スラブが散在することが避けられない。
【0028】
図3は、加熱炉へのスラブ装入順本数とスラブの装入温度との関係の例を示す図である。
【0029】
図3のa〜dに示すように、加熱炉への装入スラブ中には低温スラブが散在する。このような低温スラブが散在する原因としては、aは保温台車を使用できなかったこと、bは保温台車を使用できず、かつスラブヤードでの積山段数が少なかったこと、cはスラブヤードでの配置替え時間が長かったこと、dはスラブヤードの積山段数が少なかったこと、及びeはスラブヤードでの滞留時間が長かったことに起因するものと考えられる。
【0030】
加熱炉への装入スラブ中に低温スラブが散在すると、昇温量最大を必要とする低温スラブを熱延に必要な温度まで昇温させねばならない。しかし、その周辺にある装入温度の高いスラブは、必要以上に過加熱されることとなり、エネルギーロスが発生すると共にスケールが生成するという弊害が生じる。
【0031】
本発明者は、現有の加熱燃焼制御システムをベースにして、加熱炉におけるネック材となる低温スラブを必要温度に加熱すると共に、装入温度の高いスラブの過加熱を防止することについて鋭意研究した。その結果、熱延ラインの仕上圧延機前に粗バー加熱装置(BH)を設置して、燃焼ネック材(低温スラブ)については加熱炉抽出温度を下げて抽出し、粗バー加熱装置(BH)により仕上圧延前に必要な温度まで補償的に昇温させ、スラブ昇熱負担を加熱炉と加熱装置とで分担させることにより加熱炉の昇温変動を抑制し、燃料原単位の削減を図れることを見出した。 以下、図を参酌して本発明の加熱炉操業について説明する。
【0032】
図4及び図5は加熱炉内装入スラブの目標抽出温度設定のマクロフロー図である。
【0033】
図4の例は、炉内の燃焼負荷の高いスラブ(ネック材)を判定し、当該ネック材以外で「目標抽出温度」を確保するように加熱し、ネック材については低温抽出して加熱装置(BH)により加熱を行う場合の例である。
【0034】
但し、ネック材の抽出温度がBHによる加熱を実施しても、「仕上圧延目標温度」が確保できないほど低くなるときは、当該ネック材を加熱炉にて「目標抽出温度」を確保するようにし、BHは使用しない。
【0035】
図5の例は、図4と▲1▼〜▲4▼までは同じであるが、▲5▼の代わりに▲6▼を行う例である。
【0036】
但し、ネック材の抽出温度がBHを使用しても「仕上圧延目標温度」が確保できない程低くなるときは、当該ネック材の目標抽出温度を仕上圧延可能な目標温度まで下げる。
【0037】
まず、図4の加熱炉操業のフロー図に従って説明する。
【0038】
▲1▼加熱炉内のスラブの「一次目標抽出温度」を算出する。
【0039】
即ち、装入する各スラブ毎に仕上圧延機出側で少なくともAr3変態点温度以上を確保可能な「仕上圧延目標温度」に、炉抽出から仕上圧延までの温度降下量(加工発熱等も加味した放冷)を下記のように「温度降下量」として加えて、各スラブの「一次目標抽出温度」を算出する。
「一次目標抽出温度」=「仕上圧延目標温度」+「温度降下量」
【0040】
▲2▼「ネック材」を選定する。
・炉内で最も燃焼負荷の高く昇温量最大を必要とする「ネック材」を探す。
【0041】
1)少なくとも炉内全スラブを対象として、装入温度実績、予定在炉時間(=抽出予定時刻−装入時刻実績)を基に各スラブの「仮予測抽出温度」を算出する。
【0042】
なお、装入時刻〜現在迄の炉温は実績温度を使用し、現在〜抽出予定時刻までの炉温は現在の炉温実績をそのまま使用することが好ましい。
【0043】
2)前記1)で算出した各スラブの「仮予測抽出温度」と▲1▼で算出した「一次目標抽出温度」より下記のように「昇温不足量」を算出する。
昇温不足量:α=「一次目標抽出温度」−「仮予測抽出温度」
ここで、炉内全スラブ中でαの最も大きいものを「ネック材」として選定する。
【0044】
▲3▼「ネック材」に基づく加熱炉温設定パターンを決定する。
【0045】
前記選定した「ネック材」が抽出予定時刻で前記「一次目標抽出温度」に達するように昇温不足量αの値に基づいて下記3つの中から炉温設定パターンを決定する。
【0046】
1)パターン1:α>0のスラブがあるとき
現在の炉温設定では抽出予定時刻において「ネック材」の抽出温度が「「一次目標抽出温度」まで達しないので「ネック材」の抽出温度が「一次目標抽出温度」に達するように炉温設定を上げる。
【0047】
2)パターン2:全てのスラブがα<0のとき
現在の炉温設定では抽出予定時刻において「ネック材」の抽出温度が「一次目標抽出温度」よりも高くなるので、「ネック材」の抽出温度が「一次目標抽出温度」となるように炉温設定を下げる。
【0048】
3)パターン3:「ネック材」がα=0となるとき
現在の炉温設定を維持する。
【0049】
▲4▼前記▲3▼で選択した設定パターンによる加熱炉温を設定した場合の各スラブ抽出温度を算出する。
【0050】
ここで前記▲3▼で選択した設定パターンによる加熱炉温の設定と現在から抽出予定時刻までの在炉時間に基づいて各スラブの抽出温度を算出する。この結果、▲4▼では、「ネック材」については「予測抽出温度」=「一次目標抽出温度」となるが、加熱炉内の「ネック材」前後のスラブの「予測抽出温度」は前記▲1▼で算出した「一次目標抽出温度」よりも高くなり、過剰に加熱されるため、加熱炉以外の加熱装置BHを用いて「ネック材」を補償的に加熱することで目標抽出温度を「一次目標抽出温度」よりも低温の抽出温度(「二次目標抽出温度」とする)に変更可能かを判断する。
【0051】
▲5▼「ネック材」の「一次目標抽出温度」の設定変更の判断(1)
1)前記▲2▼で選択した「ネック材」を除外した加熱炉内の他のスラブで前記▲2▼〜▲4▼を再度実施する。
この結果、炉温設定を下げてしまうため、最初に選択した「ネック材」は昇温不足となるが、他のスラブの過剰加熱代は緩和される。
【0052】
2)前記1)での炉温設定を変更した場合の最初に選択した「ネック材」の目標抽出温度を「二次目標抽出温度」として算出する。
【0053】
3)前記2)で算出した最初に選択した「ネック材」の「二次目標抽出温度」で抽出した時に、加熱炉以外の加熱装置BHで補償的に加熱したときの仕上圧延予定温度を下記式から算出する。
仕上圧延予定温度=「二次目標抽出温度」−「加熱炉抽出〜仕上圧延までの温度降下量」+BH最大昇温量
4)前記3)の仕上圧延予定温度が前記▲1▼で設定した「仕上圧延目標温度」を確保可能かをチェックし、最初に選択した「ネック材」の目標抽出温度を最終決定する。
【0054】
(a)仕上圧延予定温度≧仕上圧延目標温度のときは、最初に選択した「ネック材」の目標抽出温度を▲5▼−2)で算出した「二次目標抽出温度」に修正する(前記▲1▼で算出した「一次目標抽出温度」は用いない。)。
【0055】
(b)仕上圧延予定温度<仕上圧延目標温度のときはネック材の抽出温度を▲1▼で決めた「一次目標抽出温度」のままとする(前記▲5▼−2)で算出した「二次目標抽出温度」は用いない。)。
【0056】
5)最初に選択した「ネック材」以外の目標抽出温度は▲1▼で算出した「一次目標抽出温度」とする。
【0057】
次いで、図4の変形例である図5の加熱炉操業のフロー図に従って説明する。
【0058】
▲1▼〜▲4▼は、図4のフロー図と一緒で、▲5▼のネック材の目標抽出温度の設定方法(1)の代わりに▲6▼のネック材の目標抽出温度の設定方法(2)を行う例であるので、▲6▼について述べる。
【0059】
▲6▼「ネック材」の「一次目標抽出温度」の設定変更の判断方法(2)
1)前記▲2▼で選択した「ネック材」を除外した加熱炉内の他のスラブで前記▲2▼〜▲4▼を再度実施する。
【0060】
この結果、炉温設定を下げてしまうため、最初に選択した「ネック材」は昇温不足となるが、他のスラブの過剰加熱代は緩和される。
【0061】
2)前記1)での炉温設定を変更した場合の最初に選択した「ネック材」の目標抽出温度を「二次目標抽出温度」として算出する。
【0062】
3)前記2)で算出した最初に選択した「ネック材」の「二次目標抽出温度」で抽出した時の仕上圧延予定温度を下式から算出する。
仕上圧延予定温度=「二次目標抽出温度」−「加熱炉抽出〜仕上圧延までの温度降下量」+BH最大昇温量
【0063】
4)前記3)の仕上圧延予定温度が前記▲1▼で設定した「仕上圧延目標温度」を確保可能かをチェックし、最初に選択した「ネック材」の目標抽出温度を最終決定する。
【0064】
(a)仕上圧延予定温度≧仕上圧延目標温度のときは、最初に選択した「ネック材」の目標抽出温度を▲6▼−2)で算出した「二次目標抽出温度」に修正する(前記▲1▼で算出した「一次目標抽出温度」は用いない。)。
【0065】
(b)仕上圧延予定温度<仕上圧延目標温度のときはネック材の抽出温度を前記「二次目標抽出温度」に変更しBHで温度を補償しても「仕上圧延目標温度」を確保できないため、次式にて「三次目標抽出温度」として算出する。
三次目標抽出温度=「仕上圧延目標温度」+「加熱炉抽出〜仕上圧延の温度降下量」−BH最大昇温量
【0066】
5)ネック材以外の目標温度は▲1▼で算出した「一次目標抽出温度」とする。
【0067】
なお、ネック材の抽出温度変更(「二次目標抽出温度」や「三次目標抽出温度」の設定)タイミングについて過加熱の影響を評価するには、現在炉内にあるスラブに加えて装入端にあるスラブが抽出される時点迄に装入される全スラブについての過加熱代を評価する為のデータ(装入温度、在炉時間等)を基に装入時点で変更を実施することが望ましい。
【0068】
しかし、一般に加熱炉の在炉時間は2時間を超える長時間になるため装入温度等の予測が困難であり、装入温度の精度という観点からも、装入直前に測定した温度を使用するのが望ましい。
【0069】
前記のように一般に熱延鋼板の製造工程においては連続式加熱炉が使用されており、予熱帯、加熱帯、及び均熱帯により構成される。炉温の変更は各加熱帯毎に実施するため過剰加熱の影響はネック材と同一加熱帯内にあるスラブに及ぶ。そこで、加熱炉内で燃焼負荷の高い加熱帯直前にて▲6▼の目標抽出温度変更を実施することで、精度の良い装入温度測定値を使用可能となる
【0070】
次に加熱装置(BH)による昇温加熱について説明する。
【0071】
低温抽出スラブを加熱炉以外の加熱装置(BH)で仕上目標温度に昇温加熱する場合には、図6に示すように、加熱炉2より低温抽出した鋼材(スラブ)1を粗圧延機3で粗バーとなし、粗圧延機3と仕上圧延機4との間に配置した加熱装置(BH)6により、仕上目標温度に加熱昇温する。加熱装置の昇温量が不足するときには、加熱装置を直列に複数台配置すれば、昇温量が確保できる。なお、昇温効率の面からは仕上圧延機前に加熱装置(BH)6を設置することが好ましいが、粗圧延機前後、仕上圧延機間等に設置しても同様の効果を得ることが可能である。また、加熱装置としては粗バーを加熱する能力を有し、加熱量をスラブ(粗バー)毎に調整可能で、かつスラブ(粗バー)内で調整可能な加熱装置であれば使用できる。例えば、誘導加熱装置、ガス加熱装置や通電加熱装置等があるが、誘導加熱装置を用いることが操作性能上から好ましく、通常1台の加熱装置で約50℃の昇温が可能である。
【0072】
また、本発明では、粗圧延機と仕上圧延機間に一般に配置されているシャー、コイルボックス、バー接合装置、デスケーリング装置やエッジ加熱装置等を熱延ラインに任意に配置することができ、これらの装置と加熱装置との位置関係は制限されるものではない。
【0073】
図7(a)、(b)は、加熱炉操業において、全装入スラブ中で装入温度が低く、前記の手順を経て「ネック材」と判断されたスラブ(図中の▲、●)が存在する場合の、従来のスラブ抽出温度と本発明のスラブ抽出温度とを対比して示す模式図である。なお、便宜上「ネック材」(図中の▲、●)以外の他の全てのスラブ(図中の△、○)は同一装入温度であると仮定して1本毎に表示してある。
【0074】
図7(a)は従来のスラブ抽出温度の場合であり、加熱炉への装入スラブ中に低温材(「ネック材」▲)が存在していると、低温材を目標抽出温度まで加熱するため、「ネック材」より装入温度の高いスラブは目標抽出温度以上に過加熱され、特に「ネック材」近傍のスラブ程、過剰な加熱量は大きくなってしまう(△印で示している。)。
【0075】
これに対して、本発明の場合である図7(b)では低温材(「ネック材」)は目標抽出温度よりも低くなる(●印で示している)が、装入温度の高いスラブを目標抽出温度に設定して加熱するので、「ネック材」以外の大多数の装入温度の高いスラブは過加熱されていることがない(○印で示している)。ここで、低温材は、目標抽出温度以下で抽出されるが、抽出後に仕上圧延完了するまでに加熱装置(バーヒーター加熱)により、目標抽出温度に相当し、圧延完了目標温度を確保できる温度まで昇温させる。
【0076】
【実施例】
以下、従来例と本発明例とを比較した実施例を示す。
【0077】
加熱炉に5本(スラブ▲1▼〜▲5▼)のスラブを順次装入し、その内の1本の低温材(スラブ▲3▼)の装入温度を500℃とし、他(スラブ▲1▼、▲2▼、▲4▼、▲5▼)の装入温度を800℃としたときの抽出温度変更試験を行った。
【0078】
加熱炉での目標抽出温度(T)は、圧延材料によって決まる「仕上圧延目標温度(Taim)」に、加熱炉抽出から仕上圧延までの水冷、放冷や加工発熱によって生じる温度降下量(ΔT)を加えた温度(T=Taim+ΔT)となる。本試験では、仕上圧延目標温度(Taim)=850℃、加熱炉以外で加熱をしない場合の前記加熱炉抽出から仕上圧延までの温度降下量温度降下量(ΔT)=350℃を考慮すれば各スラブの目標抽出温度は1200℃となる。
【0079】
従来例の場合の加熱炉操業の結果を表1に示す。最大昇温量となるスラブ(ネック材)▲3▼を1200℃に加熱する設定の加熱炉操業を行うため、ネック材のスラブ▲3▼以外のスラブは過加熱され、特にネック材の最近傍のスラブ▲2▼、▲4▼が1250℃まで加熱された。結果として全スラブの実績抽出温度の平均は1232℃となった。
【0080】
【表1】

Figure 0004133358
【0081】
(発明例1)
これに対して、先ず本発明のうち図4に示す方法の適用例を以下に示す。ここでは加熱炉以外の加熱装置(BH)として最大昇温量が50℃の誘導加熱装置を用いた。
【0082】
本発明例では、「一次目標抽出温度」は従来例の目標抽出温度(T)と同じに設定した場合、現在の炉温設定では「仮予測抽出温度」は1150℃と算出され、スラブ▲3▼が昇温不足量α=50℃「ネック材」として選定される。ここで、α=50>0となるので、現在の炉温設定では抽出予定時刻において「ネック材」の抽出温度が「一次目標抽出温度」まで達しないので「ネック材」の抽出温度が「一次目標抽出温度」に達するように炉温設定を上げるようなパターン(パターン1)に決定する。これによって「ネック材」の目標抽出温度は一次目標抽出温度1200℃となるが、「ネック材」以外のスラブは従来例と同じく1230〜1250℃に過加熱されることになる。
【0083】
そこで、過加熱の原因となる「ネック材」のスラブ▲3▼を除外して「一次目標抽出温度」設定変更の判断を行ったところ、現状の炉温設定で全てのスラブが「α=0」となったため現状の炉温を維持するパターン(パターン3)に決定した。これによって「ネック材」のスラブ▲3▼の予測抽出温度(「二次抽出温度」T2)は1150℃となるが、このままでは「ネック材」のスラブ▲3▼の仕上圧延での「仕上圧延目標温度」が確保できないため、仕上圧延機の入側に設置したBH(誘導加熱装置)を用いて不足分の温度を加熱補償することにした。
【0084】
ここで加熱炉以外に用いた加熱装置(BH)の最大昇温量は50℃であるため、「ネック材」のスラブ▲3▼の目標抽出温度を1150℃とし、このときの「仕上圧延目標温度」(Taim=850℃)を確保するために、BH昇温量を50℃とした。実績抽出温度の平均は1190℃となった。
【0085】
その加熱炉操業の結果を表2に示すが、従来法に対し42℃(=1232−1190)の抽出温度低減ができた。
【0086】
【表2】
Figure 0004133358
【0087】
(発明例2)
次に本発明のうち図5に示す方法を適用する。ここでは加熱炉以外の加熱装置(BH)として最大昇温量が30℃の誘導加熱装置を用いた。さらに試験で使用し加熱炉に装入したスラブ条件は前記(発明例1)と同じ条件であった。
【0088】
「一次目標抽出温度」は前記(発明例1)と同じ目標抽出温度(T)と同じに設定し、現在の炉温設定では「仮予測抽出温度」は1150℃と算出され、スラブ▲3▼が昇温不足量α=50℃「ネック材」として選定される。ここで、α=50>0となるので、現在の炉温設定では抽出予定時刻において「ネック材」の抽出温度が「一次目標抽出温度」まで達しないので「ネック材」の抽出温度が「一次目標抽出温度」に達するように炉温設定を上げるようなパターン(パターン1)に決定する。これによって「ネック材」の目標抽出温度は一次目標抽出温度1200℃となるが、「ネック材」以外のスラブは従来例と同じく1230〜1250℃に過加熱されることになる。
【0089】
そこで、過加熱の原因となる「ネック材」のスラブ▲3▼を除外して「一次目標抽出温度」設定変更の判断を行ったところ、現状の炉温設定で全てのスラブが「α=0」となったため現状の炉温を維持するパターン(パターン3)に決定した。これによって「ネック材」のスラブ▲3▼の抽出予定温度(「二次抽出温度」T2)は1150℃となるが、このままでは「ネック材」のスラブ▲3▼の仕上圧延での「仕上圧延目標温度」が確保できないため、仕上圧延機の入側に設置したBH(誘導加熱装置)を用いて不足分の温度を加熱補償することにした。
【0090】
このときのBH最大昇温量=30℃のため、仕上圧延予定温度は830℃であり、このままBHを用いても「仕上圧延予定温度<仕上圧延目標温度」となって、仕上圧延目標温度(Taim=850℃)が確保できなくなってしまう。
【0091】
そこで、「ネック材」のスラブ▲3▼の「三次目標抽出温度」を下式により算出する。
Figure 0004133358
【0092】
「ネック材」のスラブ▲3▼の「三次目標抽出温度(T3)」は1170℃となるように加熱炉温度を設定した場合のスラブ▲1▼〜▲5▼までの操業結果を表3に示す。「ネック材」以外のスラブは抽出温度1200℃以上の過加熱になったものの、全スラブの実績抽出温度の平均は1210℃となり、従来法に対し22℃(=1232−1210)の加熱温度低減ができた。
【0093】
【表3】
Figure 0004133358
【0094】
【発明の効果】
本発明によれば、加熱炉操業において装入温度の高いスラブが予定抽出温度より高く加熱されないので、エネルギーロスを防止することができると共に、加熱、圧延時のスケール生成、成長を抑制することが可能となる。
【図面の簡単な説明】
【図1】従来の熱延ラインの概要を示す図である。
【図2】加熱炉に装入されるスラブの搬送の概要を示す図である。
【図3】加熱炉に装入されるスラブの装入順と装入温度との関係を示す図である。
【図4】加熱炉内装入スラブの目標抽出温度設定のマクロフロー図である。
【図5】加熱炉内装入スラブの目標抽出温度設定のマクロフロー図である。
【図6】加熱装置(BH)を配置した熱延ラインの概要を示す図である。
【図7】加熱炉内でのスラブの温度を示す模式図である。
【符号の説明】
1 鋼材
2 加熱炉
3 粗圧延機
4 仕上圧延機
5 巻取機
6 加熱装置(BH)
7 予熱帯
8 加熱帯
9 均熱帯[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a hot-rolled steel sheet that heats steel by reducing heat consumption in a heating furnace in a hot-rolling line, and in particular, ensures a predetermined finish rolling temperature while adjusting the furnace temperature in the hot-rolling line. The present invention relates to a method for manufacturing a hot-rolled steel sheet.
[0002]
[Prior art]
For example, as shown in FIG. 1, hot rolling of a steel material is performed by roughly rolling a steel material (slab) 1 heated in one or a plurality of heating furnaces 2 with a roughing mill 3 to form a rough bar, and then finishing mill 4 After the finish rolling at, the winding process is performed by the winder 5. A heating furnace generally used in hot rolling is a continuous heating furnace that conveys steel by a walking beam (WB) shown in FIG. 2. In the figure, steel is charged from the left side of the heating furnace 2. Then, after passing through the pre-tropical zone 7, the heating zone 8 and the soaking zone 9 in succession, it is extracted from the right side after the heating and is conveyed to the next rough rolling step (rough rolling mill 3 in FIG. 1).
In finish rolling, it is necessary to pass through the low-speed rolling until the steel plate, which has been rolled with the end of the rough bar engaged in the first stand of the finish rolling mill, is caught in the winder. A pattern is decided. In low-speed rolling, it is necessary to set the rolling temperature high in order to ease the load constraints on the rolling mill.
[0003]
In hot rolling, the heating temperature in the heating furnace is controlled in order to ensure the finishing temperature determined by the rolling material corresponding to the rolling load of various steel types and product dimensions, and Ar Three In order to make the transformation point or higher, the steel material is heated to 1000 ° C or higher. The steel material extracted from the heating furnace is subjected to rough rolling and finish rolling, but there is heat input due to processing heat generated during rolling, but heat dissipation based on the rolling speed pattern, water cooling by descaling, and contact with the rolling roll The temperature of the rolled material gradually decreases until it becomes a product due to the heat removal by.
[0004]
The temperature drop is about 50 to 200 ° C., and varies depending on the size of the product. For this reason, in order to secure the finish rolling temperature at which a good material can be obtained by rolling the thin material, it is required to set the steel material heating set temperature of the heating furnace to be higher than that of the thick material.
[0005]
Moreover, since the steel material containing alloy components, such as high tension, is hard, a high rolling load arises. For this reason, about these steel materials, since it is necessary to make rolling temperature high in order to ease the load restrictions of a rolling mill, the steel material heating temperature in a heating furnace is set high.
[0006]
On the other hand, the steel material (slab) charging operation to the heating furnace is generally performed by HCR operation (Hot Charge Rolling) for the purpose of energy saving.
[0007]
Under the HCR operation, the charging temperature of the steel material varies greatly and low temperature materials are scattered. The cause is, for example, the following.
[0008]
(1) The manufactured steel material (slab) is not subjected to rolling in the order of steel output in the steelmaking process, and the steel output material at another timing retained in the steel material yard is selected as the steel material meeting the requirements of the rolled material. Charged in the furnace. For this reason, steel materials with a long residence time may be selected in the steel material yard. For example, when the residence time is 6 hours and 12 hours, there is a difference of about 100 ° C. in the temperature drop. It becomes a low temperature material.
[0009]
{Circle around (2)} Steel materials are charged into a heating furnace with a heat insulation cart, but there is a shortage of heat insulation carts, and all steel materials cannot be charged with a heat insulation cart, and there are steel materials that are charged without using a heat insulation cart. This steel material has a temperature drop of about 150 ° C. with a yard residence time of 6 hours, which causes low temperature material charging.
[0010]
(3) The number of steps in the steel material yard is different, and the temperature drop is larger in the small number of steps. Especially in the case of 1-3 steps, the residence time is about 12 hours compared to the higher number of steps. There is a temperature drop of 100 ° C. or more.
[0011]
(4) The amount of temperature drop varies depending on the pile position in the steel yard. That is, the center of the mountain is difficult to cool, and the lowermost stage or the uppermost stage is easy to cool, and the temperature lowers by about 50 to 100 ° C. or more per hour compared to the center.
[0012]
{Circle around (5)} In the steel material yard, the steel material is rearranged in accordance with the rolling and steel production schedules, but the steel material temperature of about 100 ° C. also decreases at this time.
[0013]
If low temperature steel materials (low temperature materials) are charged together in the heating furnace, fluctuations in the charging temperature of the steel materials into the heating furnace can be avoided, but due to the necessity of meeting the delivery date of the product, etc. There is a limit to the concentration of low temperature materials that can be incorporated. Moreover, since low-temperature HCR materials are sporadic, when rolling unit knitting aimed at the charging temperature is performed, it is necessary to perform relocation in the steel material yard again, not only pressing the logistics in the yard. In addition, a negative effect that deteriorates the average HCR material temperature occurs.
[0014]
Therefore, since it is difficult to insert the low temperature materials together into the heating furnace, it is inevitable that the low temperature materials are scattered and charged into the heating furnace under the HCR operation. For this reason, the steel material charging temperature varies.
[0015]
In the furnace operation, it is preferable in terms of energy efficiency to perform combustion without large fluctuations. However, since the target extraction temperature varies depending on the product size and quality, the steel material variation in the furnace and the furnace extraction temperature are charged. In order to raise the temperature of all the steel materials to the target temperature, it is necessary to raise the temperature of the low temperature material (neck material) with a high fuel load in the furnace that requires the maximum amount of temperature increase to the target temperature. However, a steel material whose temperature rise is smaller than the neck material will be heated unnecessarily higher than the target temperature, and the furnace temperature will also rise and fall repeatedly, increasing the amount of heat input to the furnace body. As a result, a significant loss of heating energy occurs.
[0016]
As a conventional heating furnace operating method aimed at energy saving of a heating furnace, there is one in which the set temperature of the heating furnace is made constant without changing the output of the heating furnace (see, for example, Patent Document 1).
[0017]
In this method, when the output of the heating furnace is varied, the temperature control of the heating furnace is poorly responsive, so the time until the temperature rises must be paused in the line, impeding productivity, and the temperature rise and fall The purpose of this is to eliminate problems such as damage to the furnace and an increase in furnace maintenance costs. And, as a specific means, a step of heating the slab to a constant temperature independent of the rolling material, a step of roughly rolling the heated slab into a rough bar, and the rough bar to a predetermined temperature depending on the rolling material It is disclosed that the method includes a step of heating with an induction heating device and a step of finish rolling the heated coarse bar.
[0018]
That is, the heating furnace temperature is made constant, the slab extraction temperature is also made constant, and the necessary temperature that differs for each rolled material is heated by the induction heating device before finish rolling.
[0019]
However, this method does not deal with variations in the temperature of steel materials charged in the heating furnace, especially the dispersion of low-temperature neck materials, and prevents energy loss of the heating furnace caused by the scattering of neck materials. It is not intended to do.
[0020]
[Patent Literature]
JP-A-9-308903 (right column, page 2, lines 27-31, FIG. 2)
[0021]
[Problems to be solved by the invention]
The present invention relates to a method for producing a hot-rolled steel sheet, in which a slab (steel material) having a low charging temperature charged in a heating furnace is extracted at a temperature lower than a heating extraction temperature depending on product dimensions, steel type, surface properties, etc. Thus, it is an object of the present invention to prevent a nearby slab having a high charging temperature from being overheated and extracted at a temperature higher than the planned extraction temperature.
[0022]
[Means for Solving the Problems]
In the method of manufacturing a hot-rolled steel sheet, an HCR operation in which a plurality of slabs are charged and heated in a heating furnace and extracted at a predetermined extraction temperature is generally performed, but low-temperature slabs are scattered in the charging slabs. When the low temperature slab is heated to the planned extraction temperature, the slab having a high charging temperature in the vicinity is heated higher than the planned extraction temperature.
[0023]
Therefore, the present inventor extracts a slab having a high charging temperature at a planned extraction temperature, and a slab (neck material) having a low charging temperature is extracted at a temperature lower than the planned extraction temperature, and compensates for the necessary temperature before finish rolling. The present invention was completed by discovering that heating could prevent energy loss of the heating furnace and suppress scale formation.
[0024]
The gist of the present invention is as follows.
[0025]
(1) For heating furnace When charging multiple steel materials (slabs), heating and extracting, Scattered in the steel (slab) charged, Low charging temperature with the highest combustion load in the furnace and requiring maximum temperature rise In the method of manufacturing a hot-rolled steel sheet that is extracted from a heating furnace and hot-rolled at a low temperature steel (slab), Than the low-temperature steel Steel with a high charging temperature is extracted from the heating furnace at the target extraction temperature set based on the finish rolling target temperature and the temperature drop from heating furnace extraction to finish rolling. The combustion load is highest in the furnace and the maximum temperature rise is required. A low temperature steel material having a low charging temperature is extracted at a temperature lower than the target extraction temperature, and is heated in a compensatory manner so as to reach a finishing target temperature by a heating device other than a heating furnace installed in a hot rolling line. Manufacturing method of steel sheet.
[0026]
(2) The heating apparatus other than the heating furnace is disposed before or after the rough rolling mill of the hot rolling line, between the rough rolling mill and the finishing rolling mill, or between the finishing rolling mill rows. (1) The manufacturing method of the hot-rolled steel sheet as described.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
In the method of manufacturing a hot-rolled steel sheet, an HCR operation is performed in which a slab that is a rolled material is heated in a heating furnace. In the HCR operation, a plurality of slabs are charged into a heating furnace, but it is inevitable that low-temperature slabs are scattered in the charging slabs.
[0028]
FIG. 3 is a diagram showing an example of the relationship between the number of slabs inserted into the heating furnace and the slab charging temperature.
[0029]
As shown to ad of FIG. 3, the low temperature slab is scattered in the charging slab to a heating furnace. The reason why such low-temperature slabs are scattered is that a was unable to use a heat-retaining cart, b was unable to use a heat-retaining cart, and there were few piles at the slab yard, and c was a slab yard. It is considered that the rearrangement time was long, d was a small number of piles in the slab yard, and e was a long residence time in the slab yard.
[0030]
If the low temperature slabs are scattered in the charging slab into the heating furnace, the low temperature slabs that require the maximum temperature increase must be heated to the temperature required for hot rolling. However, the slab having a high charging temperature in the vicinity thereof is overheated more than necessary, resulting in an adverse effect that energy loss occurs and scale is generated.
[0031]
The present inventor conducted extensive research on heating a low-temperature slab, which becomes a neck material in a heating furnace, to a necessary temperature and preventing overheating of a slab having a high charging temperature based on the existing heating and combustion control system. . As a result, a coarse bar heating device (BH) is installed in front of the finish rolling mill of the hot rolling line, and the combustion neck material (low temperature slab) is extracted by lowering the heating furnace extraction temperature, and the coarse bar heating device (BH) The temperature of the heating furnace and the heating device can be shared between the heating furnace and the heating device to suppress the temperature fluctuation of the heating furnace and to reduce the fuel consumption rate. I found. Hereinafter, the heating furnace operation of the present invention will be described with reference to the drawings.
[0032]
4 and 5 are macro flow diagrams for setting the target extraction temperature of the slab containing the heating furnace.
[0033]
In the example of FIG. 4, a slab (neck material) with a high combustion load in the furnace is determined and heated to ensure a “target extraction temperature” other than the neck material. It is an example in the case of heating by (BH).
[0034]
However, if the extraction temperature of the neck material is so low that the “finish rolling target temperature” cannot be ensured even when heating with BH is performed, the “target extraction temperature” of the neck material should be secured in the heating furnace. , BH is not used.
[0035]
The example of FIG. 5 is the same as FIG. 4 from (1) to (4), but is an example of performing (6) instead of (5).
[0036]
However, when the extraction temperature of the neck material becomes so low that the “finish rolling target temperature” cannot be ensured even when BH is used, the target extraction temperature of the neck material is lowered to a target temperature at which finishing rolling can be performed.
[0037]
First, it demonstrates according to the flowchart of the heating furnace operation of FIG.
[0038]
(1) Calculate the “primary target extraction temperature” of the slab in the heating furnace.
[0039]
That is, at least Ar on the finishing mill exit side for each slab to be charged Three Add the temperature drop from furnace extraction to finish rolling (cooling in consideration of processing heat generation etc.) as the “temperature drop” as shown below to the “finish rolling target temperature” that can secure the temperature above the transformation point temperature. Calculate the “primary target extraction temperature” for each slab.
"Primary target extraction temperature" = "Finish rolling target temperature" + "Temperature drop"
[0040]
(2) Select “neck material”.
・ Find the “neck material” that has the highest combustion load and requires the highest temperature rise in the furnace.
[0041]
1) At least for all slabs in the furnace, the “temporary predicted extraction temperature” of each slab is calculated based on the actual charging temperature and the planned in-furnace time (= the planned extraction time−the actual charging time).
[0042]
In addition, it is preferable to use the actual temperature as the furnace temperature from the charging time to the present, and to use the current actual furnace temperature as the furnace temperature from the present to the scheduled extraction time.
[0043]
2) From the “temporary predicted extraction temperature” of each slab calculated in 1) and the “primary target extraction temperature” calculated in (1), the “temperature rise deficiency” is calculated as follows.
Insufficient temperature rise: α = “Primary target extraction temperature” − “Temporary predicted extraction temperature”
Here, the one having the largest α among all the slabs in the furnace is selected as the “neck material”.
[0044]
(3) A heating furnace temperature setting pattern based on the “neck material” is determined.
[0045]
A furnace temperature setting pattern is determined from the following three on the basis of the value of the temperature rise deficiency α so that the selected “neck material” reaches the “primary target extraction temperature” at the scheduled extraction time.
[0046]
1) Pattern 1: When there is a slab with α> 0
At the current furnace temperature setting, the extraction temperature of the “neck material” does not reach the “primary target extraction temperature” at the scheduled extraction time, so the furnace temperature setting is set so that the extraction temperature of the “neck material” reaches the “primary target extraction temperature” Raise.
[0047]
2) Pattern 2: When all slabs are α <0
At the current furnace temperature setting, the extraction temperature of the “neck material” is higher than the “primary target extraction temperature” at the scheduled extraction time, so the furnace temperature is set so that the extraction temperature of the “neck material” becomes the “primary target extraction temperature”. Lower the setting.
[0048]
3) Pattern 3: When “neck material” is α = 0
Maintain current furnace temperature setting.
[0049]
(4) Each slab extraction temperature is calculated when the heating furnace temperature is set according to the setting pattern selected in (3) above.
[0050]
Here, the extraction temperature of each slab is calculated based on the setting of the heating furnace temperature according to the setting pattern selected in (3) above and the in-furnace time from the present to the scheduled extraction time. As a result, in (4), “predicted extraction temperature” = “primary target extraction temperature” for “neck material”, but “predicted extraction temperature” of the slabs before and after “neck material” in the heating furnace is Since it becomes higher than the “primary target extraction temperature” calculated in 1 ▼ and is excessively heated, the target extraction temperature is set to “ It is determined whether the temperature can be changed to an extraction temperature lower than the “primary target extraction temperature” (referred to as “secondary target extraction temperature”).
[0051]
(5) Judgment of changing the setting of “Primary target extraction temperature” for “Neck material” (1)
1) Repeat steps (2) to (4) again with another slab in the heating furnace excluding the “neck material” selected in step (2).
As a result, the furnace temperature setting is lowered, so that the initially selected “neck material” is underheated, but the overheating allowance of other slabs is alleviated.
[0052]
2) The target extraction temperature of the “neck material” selected first when the furnace temperature setting in 1) is changed is calculated as the “secondary target extraction temperature”.
[0053]
3) When extracted at the “secondary target extraction temperature” of the first selected “neck material” calculated in the above 2), the expected finish rolling temperature when heated in a compensatory manner by the heating device BH other than the heating furnace is as follows: Calculate from the formula.
Finishing rolling scheduled temperature = “secondary target extraction temperature” − “temperature drop from heating furnace extraction to finishing rolling” + BH maximum temperature increase
4) Check whether it is possible to secure the “finish rolling target temperature” set in (1) above for the scheduled finish rolling temperature in 3) above, and finally determine the target extraction temperature of the first selected “neck material”.
[0054]
(A) When the final rolling rolling temperature is equal to or higher than the final rolling target temperature, the target extraction temperature of the initially selected “neck material” is corrected to the “secondary target extraction temperature” calculated in (5) -2) (described above) (“Primary target extraction temperature” calculated in (1) is not used.)
[0055]
(B) When the finish rolling scheduled temperature is less than the finish rolling target temperature, the extraction temperature of the neck material is kept at the “primary target extraction temperature” determined in (1) (2) calculated in (2) above. “Next target extraction temperature” is not used. ).
[0056]
5) The target extraction temperature other than the initially selected “neck material” is the “primary target extraction temperature” calculated in (1).
[0057]
Next, a description will be given in accordance with a flow chart of heating furnace operation in FIG. 5 which is a modification of FIG.
[0058]
(1) to (4) are the same as the flow chart of FIG. 4, and instead of the method (1) of setting the target extraction temperature of the neck material of (5), the method of setting the target extraction temperature of the neck material of (6) Since (2) is an example, (6) will be described.
[0059]
(6) Judgment method for changing the setting of “Primary target extraction temperature” for “Neck material” (2)
1) Repeat steps (2) to (4) again with another slab in the heating furnace excluding the “neck material” selected in step (2).
[0060]
As a result, the furnace temperature setting is lowered, so that the initially selected “neck material” is underheated, but the overheating allowance of other slabs is alleviated.
[0061]
2) The target extraction temperature of the “neck material” selected first when the furnace temperature setting in 1) is changed is calculated as the “secondary target extraction temperature”.
[0062]
3) The planned finish rolling temperature when extracted at the “secondary target extraction temperature” of the “neck material” selected first in 2) is calculated from the following equation.
Finishing rolling scheduled temperature = “secondary target extraction temperature” − “temperature drop from heating furnace extraction to finishing rolling” + BH maximum temperature increase
[0063]
4) Check whether it is possible to secure the “finish rolling target temperature” set in (1) above for the scheduled finish rolling temperature in 3) above, and finally determine the target extraction temperature of the first selected “neck material”.
[0064]
(A) When the scheduled finish rolling temperature ≧ the finish rolling target temperature, the target extraction temperature of the initially selected “neck material” is corrected to the “secondary target extraction temperature” calculated in (6) -2) (described above) (“Primary target extraction temperature” calculated in (1) is not used.)
[0065]
(B) If the finish rolling scheduled temperature is less than the finish rolling target temperature, the “finish rolling target temperature” cannot be secured even if the neck material extraction temperature is changed to the “secondary target extraction temperature” and the temperature is compensated with BH. The “third target extraction temperature” is calculated by the following equation.
Tertiary target extraction temperature = “finish rolling target temperature” + “temperature reduction of heating furnace extraction to finish rolling” −BH maximum temperature increase
[0066]
5) The target temperature other than the neck material is the “primary target extraction temperature” calculated in (1).
[0067]
To evaluate the influence of overheating on the timing of changing the extraction temperature of the neck material (setting of “secondary target extraction temperature” and “tertiary target extraction temperature”), in addition to the slab currently in the furnace, the charging end It is possible to make changes at the time of charging based on data (charging temperature, in-furnace time, etc.) for evaluating the overheating allowance for all slabs charged up to the point in time when the slab is extracted desirable.
[0068]
However, since the in-furnace time of the heating furnace is generally longer than 2 hours, it is difficult to predict the charging temperature, and the temperature measured immediately before charging is used from the viewpoint of the accuracy of the charging temperature. Is desirable.
[0069]
As described above, a continuous heating furnace is generally used in the manufacturing process of a hot-rolled steel sheet, and is constituted by a pre-tropical zone, a heating zone, and a soaking zone. Since the furnace temperature is changed for each heating zone, the influence of overheating extends to the slab in the same heating zone as the neck material. Therefore, by performing the target extraction temperature change (6) immediately before the heating zone where the combustion load is high in the heating furnace, it is possible to use accurate measured charging temperature values.
[0070]
Next, temperature rising heating by the heating device (BH) will be described.
[0071]
In the case where the low temperature extraction slab is heated to the finishing target temperature with a heating device (BH) other than the heating furnace, the steel material (slab) 1 extracted at a low temperature from the heating furnace 2 is rough rolled 3 as shown in FIG. Then, the temperature is raised to the finishing target temperature by the heating device (BH) 6 arranged between the rough rolling mill 3 and the finishing mill 4. When the temperature rise amount of the heating device is insufficient, the temperature rise amount can be secured by arranging a plurality of heating devices in series. In addition, from the aspect of temperature rise efficiency, it is preferable to install the heating device (BH) 6 before the finishing mill, but the same effect can be obtained even if installed before and after the roughing mill, between the finishing mills, etc. Is possible. Moreover, as a heating apparatus, if it has the capability to heat a rough bar and can adjust heating amount for every slab (rough bar) and can adjust within a slab (rough bar), it can be used. For example, there are an induction heating device, a gas heating device, an electric heating device, and the like. It is preferable to use an induction heating device from the viewpoint of operation performance, and a temperature of about 50 ° C. can usually be raised with one heating device.
[0072]
Further, in the present invention, a shear, a coil box, a bar joining device, a descaling device, an edge heating device, etc. that are generally arranged between the rough rolling mill and the finish rolling mill can be arbitrarily arranged in the hot rolling line, The positional relationship between these devices and the heating device is not limited.
[0073]
FIGS. 7 (a) and 7 (b) show slabs in which the charging temperature is low in all the charging slabs in the heating furnace operation and are determined as “neck materials” through the above procedure (▲, ● in the figure). It is a schematic diagram which contrasts the conventional slab extraction temperature when this exists, and the slab extraction temperature of this invention. For convenience, all the slabs (Δ, ○ in the figure) other than the “neck material” (▲, ● in the figure) are displayed one by one assuming that they have the same charging temperature.
[0074]
FIG. 7A shows the case of the conventional slab extraction temperature. When a low temperature material (“neck material” ▲) is present in the slab charged into the heating furnace, the low temperature material is heated to the target extraction temperature. Therefore, a slab having a charging temperature higher than that of the “neck material” is overheated to a temperature higher than the target extraction temperature. In particular, the slab in the vicinity of the “neck material” has an excessive heating amount (indicated by Δ). ).
[0075]
On the other hand, in FIG. 7B, which is the case of the present invention, the low temperature material (“neck material”) is lower than the target extraction temperature (indicated by the mark ●), but the slab having a high charging temperature is used. Since heating is performed with the target extraction temperature set, the majority of slabs with a high charging temperature other than the “neck material” are not overheated (indicated by a circle). Here, the low temperature material is extracted below the target extraction temperature, but after the extraction, until the finish rolling is completed, the heating device (bar heater heating) corresponds to the target extraction temperature and to a temperature at which the rolling completion target temperature can be secured. Raise the temperature.
[0076]
【Example】
Examples in which a conventional example and an example of the present invention are compared are shown below.
[0077]
Five slabs (slabs (1) to (5)) are sequentially charged into the heating furnace, and one of the low temperature materials (slab (3)) is charged at 500 ° C., and the other (slabs ▲). (1), (2), (4), (5)) The extraction temperature change test was conducted when the charging temperature was 800 ° C.
[0078]
The target extraction temperature (T) in the heating furnace is the “finish rolling target temperature (Taim)” determined by the rolling material, and the amount of temperature drop (ΔT) caused by water cooling, cooling, and processing heat generation from the heating furnace extraction to finish rolling. The added temperature (T = Taim + ΔT). In this test, the finish rolling target temperature (Taim) = 850 ° C., the temperature drop amount from the heating furnace extraction to the finish rolling when heating is not performed in other than the heating furnace, and the temperature drop amount (ΔT) = 350 ° C. The target extraction temperature of the slab is 1200 ° C.
[0079]
Table 1 shows the results of the furnace operation in the case of the conventional example. The slab other than the neck material slab (3) is overheated, especially in the vicinity of the neck material, in order to perform the furnace operation in which the slab (neck material) (3), which is the maximum temperature rise, is heated to 1200 ° C. The slabs (2) and (4) were heated to 1250 ° C. As a result, the average of the actual extraction temperatures of all slabs was 1232 ° C.
[0080]
[Table 1]
Figure 0004133358
[0081]
(Invention Example 1)
On the other hand, an application example of the method shown in FIG. Here, an induction heating apparatus having a maximum temperature rise of 50 ° C. was used as a heating apparatus (BH) other than the heating furnace.
[0082]
In the present invention example, when the “primary target extraction temperature” is set to be the same as the target extraction temperature (T) of the conventional example, the “temporary predicted extraction temperature” is calculated as 1150 ° C. at the current furnace temperature setting, and the slab (3) ▼ is selected as the “neck material” where the temperature rise is insufficient α = 50 ° C. Here, since α = 50> 0, in the current furnace temperature setting, the extraction temperature of the “neck material” does not reach the “primary target extraction temperature” at the scheduled extraction time, so the extraction temperature of the “neck material” is “primary”. The pattern (pattern 1) is set so that the furnace temperature setting is increased to reach the “target extraction temperature”. As a result, the target extraction temperature of the “neck material” is the primary target extraction temperature of 1200 ° C., but the slab other than the “neck material” is overheated to 1320 to 1250 ° C. as in the conventional example.
[0083]
Therefore, when the “primary target extraction temperature” setting change was determined by excluding the slab (3) of the “neck material” that causes overheating, all the slabs were “α = 0” at the current furnace temperature setting. Therefore, the pattern for maintaining the current furnace temperature (Pattern 3) was determined. As a result, the predicted extraction temperature (“secondary extraction temperature” T2) of the slab (3) of the “neck material” is 1150 ° C., but the “finish rolling” in the finish rolling of the slab (3) of the “neck material” remains unchanged. Since the “target temperature” could not be secured, it was decided to use the BH (induction heating device) installed on the entrance side of the finishing mill to compensate for the insufficient temperature.
[0084]
Here, since the maximum heating amount of the heating device (BH) used other than the heating furnace is 50 ° C., the target extraction temperature of the slab (3) of the “neck material” is set to 1150 ° C. In order to ensure the “temperature” (Taim = 850 ° C.), the BH temperature rise was set to 50 ° C. The average of the actual extraction temperature was 1190 ° C.
[0085]
The results of the furnace operation are shown in Table 2, and the extraction temperature was reduced by 42 ° C. (= 1232-1190) compared to the conventional method.
[0086]
[Table 2]
Figure 0004133358
[0087]
(Invention Example 2)
Next, the method shown in FIG. 5 is applied in the present invention. Here, an induction heating device having a maximum temperature rise of 30 ° C. was used as a heating device (BH) other than the heating furnace. Furthermore, the slab conditions used in the test and charged in the heating furnace were the same as the above (Invention Example 1).
[0088]
The “primary target extraction temperature” is set to the same target extraction temperature (T) as in the above (Invention Example 1), and the “temporary predicted extraction temperature” is calculated as 1150 ° C. at the current furnace temperature setting, and the slab (3) Is selected as the “neck material” where the temperature rise is insufficient α = 50 ° C. Here, since α = 50> 0, in the current furnace temperature setting, the extraction temperature of the “neck material” does not reach the “primary target extraction temperature” at the scheduled extraction time, so the extraction temperature of the “neck material” is “primary”. The pattern (pattern 1) is set so that the furnace temperature setting is increased to reach the “target extraction temperature”. As a result, the target extraction temperature of the “neck material” is the primary target extraction temperature of 1200 ° C., but the slab other than the “neck material” is overheated to 1320 to 1250 ° C. as in the conventional example.
[0089]
Therefore, when the “primary target extraction temperature” setting change was determined by excluding the slab (3) of the “neck material” that causes overheating, all the slabs were “α = 0” at the current furnace temperature setting. Therefore, the pattern for maintaining the current furnace temperature (Pattern 3) was determined. As a result, the expected extraction temperature (“secondary extraction temperature” T2) of the slab (3) of the “neck material” becomes 1150 ° C. However, the “finish rolling” in the finish rolling of the slab (3) of the “neck material” remains unchanged. Since the “target temperature” could not be secured, it was decided to use the BH (induction heating device) installed on the entrance side of the finishing mill to compensate for the insufficient temperature.
[0090]
Since the BH maximum temperature rise at this time = 30 ° C., the finish rolling scheduled temperature is 830 ° C. Even if BH is used as it is, “finish rolling scheduled temperature <finish rolling target temperature” is satisfied, and the finish rolling target temperature ( (Taim = 850 ° C.) cannot be secured.
[0091]
Therefore, the “third target extraction temperature” of the slab “3” of the “neck material” is calculated by the following equation.
Figure 0004133358
[0092]
Table 3 shows the operation results from slabs (1) to (5) when the furnace temperature is set so that the "third target extraction temperature (T3)" of slab (3) for "neck material" is 1170 ° C. Show. Extraction temperature for slabs other than "Neck Material" But Although overheated at 1200 ° C or higher, the average of the actual extraction temperatures of all slabs was 1210 ° C, and the heating temperature could be reduced by 22 ° C (= 1232-1210) compared to the conventional method.
[0093]
[Table 3]
Figure 0004133358
[0094]
【The invention's effect】
According to the present invention, since the slab having a high charging temperature is not heated higher than the planned extraction temperature in the heating furnace operation, energy loss can be prevented and scale generation and growth during heating and rolling can be suppressed. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a conventional hot rolling line.
FIG. 2 is a diagram showing an outline of conveyance of a slab charged in a heating furnace.
FIG. 3 is a diagram showing a relationship between a charging order of slabs charged in a heating furnace and a charging temperature.
FIG. 4 is a macro flow diagram for setting a target extraction temperature for a heating furnace interior slab.
FIG. 5 is a macro flow diagram for setting a target extraction temperature for a heating furnace interior slab.
FIG. 6 is a diagram showing an outline of a hot rolling line in which a heating device (BH) is arranged.
FIG. 7 is a schematic diagram showing the temperature of the slab in the heating furnace.
[Explanation of symbols]
1 Steel
2 Heating furnace
3 Rough rolling mill
4 Finishing mill
5 Winding machine
6 Heating device (BH)
7 Pre-tropical
8 Heating zone
9 Soaking

Claims (2)

加熱炉に複数の鋼材(スラブ)を装入して加熱し抽出する際に、装入された鋼材(スラブ)中に散在し、炉内で最も燃焼負荷が高く昇温量最大を必要とする装入温度の低い低温鋼材(スラブ)を加熱炉より抽出して、熱間圧延する熱延鋼板の製造方法において、前記低温鋼材よりも装入温度の高い鋼材は仕上圧延目標温度と加熱炉抽出から仕上圧延完了までの温度降下量を基に設定した目標抽出温度で加熱炉より抽出するが、炉内で最も燃焼負荷が高く昇温量最大を必要とする装入温度の低い低温鋼材は前記目標抽出温度より低温で抽出し、熱延ラインに設置した加熱炉以外の加熱装置で仕上目標温度となるように補償的に加熱することを特徴とする熱延鋼板の製造方法。When multiple steel materials (slabs) are charged into a heating furnace and heated and extracted, they are scattered in the steel materials (slabs) charged , and the combustion load is highest in the furnace and the maximum temperature rise is required. In a method for producing a hot-rolled steel sheet in which a low temperature steel material (slab) having a low charging temperature is extracted from a heating furnace and hot rolled, the steel material having a higher charging temperature than the low temperature steel material is subjected to the finish rolling target temperature and the heating furnace extraction. Extraction from the heating furnace at the target extraction temperature set based on the temperature drop from completion to finish rolling, but the low temperature steel material with the lowest combustion temperature and the highest combustion load in the furnace that requires the maximum temperature rise A method for producing a hot-rolled steel sheet, wherein the steel sheet is extracted at a temperature lower than the target extraction temperature and heated in a compensatory manner so as to reach a finishing target temperature by a heating device other than a heating furnace installed in a hot rolling line. 加熱炉以外の加熱装置が、熱延ラインの粗圧延機の前又は後、粗圧延機と仕上圧延機の間、又は仕上圧延機列間に配置されていることを特徴とする請求項1記載の熱延鋼板の製造方法。The heating apparatus other than the heating furnace is arranged before or after the rough rolling mill of the hot rolling line, between the rough rolling mill and the finishing rolling mill, or between the finishing rolling mill rows. Manufacturing method for hot-rolled steel sheets.
JP2003008854A 2003-01-16 2003-01-16 Manufacturing method of hot-rolled steel sheet Expired - Fee Related JP4133358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008854A JP4133358B2 (en) 2003-01-16 2003-01-16 Manufacturing method of hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008854A JP4133358B2 (en) 2003-01-16 2003-01-16 Manufacturing method of hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2004216439A JP2004216439A (en) 2004-08-05
JP4133358B2 true JP4133358B2 (en) 2008-08-13

Family

ID=32898519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008854A Expired - Fee Related JP4133358B2 (en) 2003-01-16 2003-01-16 Manufacturing method of hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP4133358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117095B (en) * 2023-01-06 2023-06-20 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and preparation method thereof

Also Published As

Publication number Publication date
JP2004216439A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP5655852B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
TWI261000B (en) Hot rolling method and apparatus for steel strip
KR101541572B1 (en) Optimization device, optimization method, and optimization program recording medium recorded
EP1452247B1 (en) Method of manufacturing steel plate
CN109112287A (en) The continuous annealing method of steel plate
US20150034268A1 (en) Method and plant for producing a metal strip
JP5181803B2 (en) Heating method of heated material
JP4133358B2 (en) Manufacturing method of hot-rolled steel sheet
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP6229632B2 (en) Rolling order determination system and rolling order determination method for hot rolling
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
CN107405658A (en) Rolling equipment
JP3620464B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
CN106102939B (en) The hot-rolling method of high carbon steel
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JP4631105B2 (en) Heating control method for heating furnace
JP2005048202A (en) Method for manufacturing hot-rolled steel sheet
JP3793503B2 (en) Steel plate heating method
JP6015680B2 (en) Steel cooling equipment and steel cooling method
JP2001321818A (en) Method of manufacturing for hot-rolled steel sheet
JP4691839B2 (en) Steel plate manufacturing method and steel plate manufacturing equipment
JP3791368B2 (en) Hot-rolled steel strip rolling method
JP2019084583A (en) Manufacturing method and manufacturing apparatus of hot rolled steel plate
CN118043146A (en) System and method for producing flat rolled stock
KR102090549B1 (en) Apparatus and method for controlling head&#39;s temperature of thick hot rolled steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4133358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees