JP6253261B2 - Vibration actuator and optical equipment - Google Patents

Vibration actuator and optical equipment Download PDF

Info

Publication number
JP6253261B2
JP6253261B2 JP2013114317A JP2013114317A JP6253261B2 JP 6253261 B2 JP6253261 B2 JP 6253261B2 JP 2013114317 A JP2013114317 A JP 2013114317A JP 2013114317 A JP2013114317 A JP 2013114317A JP 6253261 B2 JP6253261 B2 JP 6253261B2
Authority
JP
Japan
Prior art keywords
vibrator
vibration
type actuator
actuator according
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013114317A
Other languages
Japanese (ja)
Other versions
JP2014233191A (en
JP2014233191A5 (en
Inventor
一治 大澤
一治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013114317A priority Critical patent/JP6253261B2/en
Publication of JP2014233191A publication Critical patent/JP2014233191A/en
Publication of JP2014233191A5 publication Critical patent/JP2014233191A5/ja
Application granted granted Critical
Publication of JP6253261B2 publication Critical patent/JP6253261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、撮像装置のレンズ鏡筒等に用いる振動型アクチュエータに関するものである。   The present invention relates to a vibration type actuator used for a lens barrel or the like of an imaging apparatus.

圧電素子の超音波振動を利用した超音波モータは、小型で高い駆動力が得られ、広い速度レンジに対応でき、低振動かつ低騒音であるという特徴を有する。超音波モータの駆動原理としては、圧電効果による圧電素子の伸縮を用いて振動子の共振を発生させ、その振動を振動子に圧接された摩擦部材に伝えることで物体を駆動する。駆動のために振動子に発生させる振動モード及びその組み合わせは多種多様であり、それぞれの振動モードを発生しやすいように、様々な形状の振動子が提案されている。   An ultrasonic motor using the ultrasonic vibration of a piezoelectric element is characterized by being small in size and capable of obtaining a high driving force, capable of supporting a wide speed range, low vibration and low noise. As a driving principle of the ultrasonic motor, the object is driven by generating resonance of the vibrator using the expansion and contraction of the piezoelectric element due to the piezoelectric effect and transmitting the vibration to a friction member pressed against the vibrator. There are a wide variety of vibration modes generated by the vibrator for driving and combinations thereof, and vibrators having various shapes have been proposed so as to easily generate the respective vibration modes.

直方体形状のチップ型振動子に複数の振動モードを発生させ、振動子において摩擦部材との接触部に楕円運動を発生させることで摩擦部材を駆動する構造が知られている。特許文献1や特許文献2に開示の装置では、2つの振動モードを組み合わせて接触部に楕円運動を発生させて摩擦部材を駆動する。この方式の特徴として、超音波モータの中でも振動子が比較的小型であり、また回転駆動および直進駆動の両駆動方式への応用が容易であるという点が挙げられる。そのため、チップ型振動子を用いた超音波モータは、小型で高トルクのモータが求められるカメラ等のレンズ鏡筒内にて、フォーカスレンズの直進駆動やカム筒の回転駆動等に使用される。   A structure in which a friction member is driven by generating a plurality of vibration modes in a rectangular parallelepiped chip-type vibrator and causing an elliptical motion in a contact portion of the vibrator with the friction member is known. In the devices disclosed in Patent Literature 1 and Patent Literature 2, the friction member is driven by combining the two vibration modes to generate an elliptical motion in the contact portion. The feature of this method is that, among ultrasonic motors, the vibrator is relatively small, and it can be easily applied to both rotational drive and straight drive methods. Therefore, an ultrasonic motor using a chip-type vibrator is used for a straight drive of a focus lens, a rotary drive of a cam cylinder, and the like in a lens barrel such as a camera that requires a small and high-torque motor.

特開平11−32491号公報Japanese Patent Laid-Open No. 11-32491 特開平6−284752号公報JP-A-6-284752

チップ型振動子を用いた超音波モータは、振動子が自由に振動するように両端を固定せず、両端自由梁における振動モードの共振を利用して摩擦部材の駆動を行う。振動子の長さは、両端自由梁の振動モードを発生させるのに適切な値に設定される。しかし、両端自由梁における振動モードは振動子の長さが最短になる振動モードではないため、振動子には未だ小型化の余地がある。チップ型振動子をさらに小型化するためには、振動子の小型化に適した振動モードを利用して振動子の接触部に楕円運動を発生させ、摩擦部材を駆動する必要があった。
本発明の目的は、振動子を小型化することにより、小型の振動型アクチュエータを提供することである。
The ultrasonic motor using the chip-type vibrator does not fix both ends so that the vibrator vibrates freely, and drives the friction member by utilizing the vibration mode resonance in the free beams at both ends. The length of the vibrator is set to an appropriate value for generating the vibration mode of the free beams at both ends. However, since the vibration mode in the free beams at both ends is not the vibration mode in which the length of the vibrator is shortest, the vibrator still has room for miniaturization. In order to further reduce the size of the chip-type vibrator, it is necessary to drive the friction member by generating an elliptical motion at the contact portion of the vibrator by using a vibration mode suitable for downsizing the vibrator.
An object of the present invention is to provide a small vibration type actuator by downsizing a vibrator.

上記課題を解決するために、本発明に係る装置は、圧電素子を有する振動子と、前記振動子の第1の端部が固定された支持部材と、前記振動子にて前記第1の端部とは反対側の第2の端部に設けられた、前記振動子に対し相対的に移動する摩擦部材と接触する接触部と、を備え、前記接触部は、片持ち梁としての前記振動子の、前記接触部と前記摩擦部材とが接触する方向に変位する屈曲振動の腹およびねじり振動の腹に位置する。
In order to solve the above problems, an apparatus according to the present invention includes a vibrator having a piezoelectric element, a support member to which a first end portion of the vibrator is fixed, and the first end of the vibrator. A contact portion provided at a second end opposite to the contact portion and contacting a friction member that moves relative to the vibrator, wherein the contact portion is the vibration as a cantilever. It is located on the antinode of bending vibration and antinode of torsional vibration that are displaced in the direction in which the contact portion and the friction member contact each other.

本発明によれば、振動子を小型化することにより、小型の振動型アクチュエータを提供できる。   According to the present invention, a small vibration type actuator can be provided by downsizing the vibrator.

図2乃至図8と併せて本発明の第1実施形態を説明するために、超音波モータの構成例を示す図である。It is a figure which shows the structural example of an ultrasonic motor in order to demonstrate 1st Embodiment of this invention combined with FIG. 2 thru | or FIG. 片持ち梁の振動を説明するための図である。It is a figure for demonstrating the vibration of a cantilever beam. 異音の発生や駆動性能の低下への対策を例示する図である。It is a figure which illustrates the countermeasure against generation | occurrence | production of abnormal noise, or the fall of drive performance. 超音波モータを適用した光学素子の駆動機構部の構成例を示す図である。It is a figure which shows the structural example of the drive mechanism part of the optical element to which an ultrasonic motor is applied. 超音波モータに用いる振動子の形状を説明する図である。It is a figure explaining the shape of the vibrator used for an ultrasonic motor. 図5とは異なる構成の振動子の形状を説明する斜視図である。It is a perspective view explaining the shape of the vibrator | oscillator different from FIG. 振動子の保持構造を例示する斜視図である。It is a perspective view which illustrates the holding structure of a vibrator. 溝部または孔部を形成した振動子を例示する斜視図である。It is a perspective view which illustrates the vibrator which formed the slot or the hole. 本発明の第2実施形態に係る超音波モータの構成例を示す図である。It is a figure which shows the structural example of the ultrasonic motor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る超音波モータの構成例を示す図である。It is a figure which shows the structural example of the ultrasonic motor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る超音波モータの構成例を示す図である。It is a figure which shows the structural example of the ultrasonic motor which concerns on 4th Embodiment of this invention. 固定条件による面外方向1次屈曲振動モードでの梁の形状変化を表した図である。It is a figure showing the shape change of the beam in an out-of-plane direction primary bending vibration mode by fixed conditions. 固定条件による面外方向1次ねじり振動モードでの梁の形状変化を表した図である。It is a figure showing the shape change of the beam in the out-of-plane direction primary torsional vibration mode by fixed conditions.

以下、本発明の各実施形態に係る振動型アクチュエータについて説明する。各実施形態では振動型アクチュエータとして超音波モータを例にして説明する。例えば、小型で高出力のモータが求められる撮像装置等の光学機器のレンズ鏡筒において、光学素子(フォーカスレンズ等)の直進駆動や、カム筒の回転駆動のための駆動源として利用可能である。   Hereinafter, the vibration type actuator according to each embodiment of the present invention will be described. In each embodiment, an ultrasonic motor will be described as an example of a vibration type actuator. For example, in a lens barrel of an optical device such as an imaging apparatus that requires a small and high-output motor, it can be used as a drive source for linear drive of an optical element (focus lens or the like) or rotational drive of a cam barrel. .

[第1実施形態]
図1は本発明の第1実施形態に係る超音波モータ1の構成例を示す。図1(A)は超音波モータ1を、振動子11と被駆動部材(以下、摩擦部材という)31の相対移動方向から見た場合の図である。図1(B)は、図1(A)に示す超音波モータ1のA−A線に沿う断面図である。
振動子11は振動子支持部材(以下、単に支持部材という)21に保持されている。支持部材21はレンズ鏡筒等に固定されるベース部材51に対して固定されている。支持部材21の振動子固定部21aには、振動子11の片側の第1の端部が固定される。これにより振動子11は片持ち梁の構造となる。振動子11にて固定されていない方の第2の端部、つまり前記第1の端部と反対側の端部には、摩擦部材31との接触部14が設けられている。
[First Embodiment]
FIG. 1 shows a configuration example of an ultrasonic motor 1 according to the first embodiment of the present invention. FIG. 1A is a view of the ultrasonic motor 1 as seen from the relative movement direction of the vibrator 11 and a driven member (hereinafter referred to as a friction member) 31. FIG. 1B is a cross-sectional view taken along line AA of the ultrasonic motor 1 shown in FIG.
The vibrator 11 is held by a vibrator support member (hereinafter simply referred to as a support member) 21. The support member 21 is fixed to a base member 51 fixed to a lens barrel or the like. The first end of one side of the vibrator 11 is fixed to the vibrator fixing portion 21 a of the support member 21. Thus, the vibrator 11 has a cantilever structure. A contact portion 14 with the friction member 31 is provided at the second end portion that is not fixed by the vibrator 11, that is, at the end portion opposite to the first end portion.

振動子11は複数の圧電素子12を有する。これらの圧電素子12に対し、不図示の制御手段である圧電素子駆動部から適切な交流電圧を印加すると、振動子11は片持ち梁における屈曲振動及びねじり振動を行う。この振動を最も効率よく摩擦部材31に伝達するために、接触部14は屈曲振動の腹とねじり振動の腹とが重なる領域に設けられている。   The vibrator 11 has a plurality of piezoelectric elements 12. When an appropriate AC voltage is applied to these piezoelectric elements 12 from a piezoelectric element driving unit which is a control means (not shown), the vibrator 11 performs bending vibration and torsional vibration in the cantilever. In order to transmit this vibration to the friction member 31 most efficiently, the contact portion 14 is provided in a region where the antinode of bending vibration and the antinode of torsional vibration overlap.

図2は屈曲振動の腹とねじり振動の腹を表した説明図である。図2(A)は振動子11の支持部材21にて片側の端部(第1の端部)が固定された振動子11の屈曲振動モードを表している。この屈曲振動モードにおいて、屈曲振動の腹の位置を破線の矩形枠で示す。屈曲振動の腹とは、破線の矩形枠の平面近傍にて、大きな変位が得られる領域11aを示す。図2(B)は支持部材21に第1の端部が固定された振動子11のねじり振動モードを表している。このねじり振動モードにおいて、ねじり振動の腹の位置を破線の矩形枠で示す。ねじり振動の腹とは、破線の矩形枠の平面近傍にて、大きなねじり角が得られる領域11bを示す。なお、図2は、振動モードの例として第3次振動モードにおける腹の説明図である。腹の定義は第3次振動モードには限らない。つまり、屈曲振動モードの腹とは大きな変位が得られる領域、ねじり振動モードの腹とは大きなねじり角が得られる領域を指す。   FIG. 2 is an explanatory view showing an antinode of bending vibration and an antinode of torsional vibration. FIG. 2A shows a bending vibration mode of the vibrator 11 in which one end (first end) is fixed by the support member 21 of the vibrator 11. In this bending vibration mode, the position of the antinode of bending vibration is indicated by a broken-line rectangular frame. The antinode of bending vibration indicates a region 11a in which a large displacement is obtained in the vicinity of the plane of the broken rectangular frame. FIG. 2B shows a torsional vibration mode of the vibrator 11 whose first end is fixed to the support member 21. In this torsional vibration mode, the position of the antinode of torsional vibration is indicated by a broken-line rectangular frame. The antinode of torsional vibration refers to a region 11b where a large torsion angle is obtained in the vicinity of the plane of the rectangular frame with broken lines. FIG. 2 is an explanatory view of the antinode in the third vibration mode as an example of the vibration mode. The definition of the antinode is not limited to the third vibration mode. That is, the antinode of the bending vibration mode indicates a region where a large displacement can be obtained, and the antinode of the torsional vibration mode indicates a region where a large torsion angle can be obtained.

図1において、可動部材である摩擦部材31には丸穴31aと長穴31bが設けられている。丸穴31aと長穴31bには、摩擦部材31を保持する保持部材41に設けた、複数の柱状のガイド部41aがそれぞれ嵌合することで案内される。摩擦部材31はガイド部41aの長手方向に移動可能に保持されている。摩擦部材31と保持部材41との間には、付勢手段を構成する加圧部材61が設けられている。加圧部材61は、ばね等の弾性部材であり、ガイド部41aにそれぞれ挿通されている。
加圧部材61による適度の付勢力により、摩擦部材31は接触部14に圧接される。保持部材41は側面に複数の溝部41bを有しており、ベース部材51に設けた複数の溝部51bと対向している。これらの溝部41bと51bとの間に転動部材71を挟み込むことにより、保持部材41はベース部材51に対して相対的に(図1中x方向参照)、移動可能である。転動部材71はボールやコロ等である。
In FIG. 1, a friction member 31 which is a movable member is provided with a round hole 31a and a long hole 31b. A plurality of columnar guide portions 41a provided on the holding member 41 that holds the friction member 31 are guided by fitting into the round hole 31a and the long hole 31b, respectively. The friction member 31 is held so as to be movable in the longitudinal direction of the guide portion 41a. Between the friction member 31 and the holding member 41, a pressurizing member 61 constituting an urging unit is provided. The pressure member 61 is an elastic member such as a spring, and is inserted through the guide portion 41a.
The friction member 31 is pressed against the contact portion 14 by an appropriate biasing force by the pressure member 61. The holding member 41 has a plurality of groove portions 41 b on the side surface, and faces the plurality of groove portions 51 b provided on the base member 51. By holding the rolling member 71 between the groove portions 41b and 51b, the holding member 41 is movable relative to the base member 51 (see the x direction in FIG. 1). The rolling member 71 is a ball or a roller.

上記の構成において、振動子11を振動させて2つの振動モードを適切に重ね合わせると、接触部14にA−A断面と略平行な平面内の楕円運動を発生させることができる。接触部14の楕円運動を摩擦部材31に伝達することで摩擦部材31および保持部材41が図1中のx方向に駆動される。また保持部材41に設けた出力取り出し部41cには、駆動対象が接続される。駆動対象とは、例えばフォーカスレンズ等の光学部材であり、振動型アクチュエータにより駆動される部材を意味する。   In the above configuration, when the vibrator 11 is vibrated and the two vibration modes are appropriately overlapped, the contact portion 14 can generate an elliptical motion in a plane substantially parallel to the AA cross section. By transmitting the elliptical motion of the contact portion 14 to the friction member 31, the friction member 31 and the holding member 41 are driven in the x direction in FIG. In addition, a drive target is connected to the output extraction portion 41 c provided in the holding member 41. The driving target is an optical member such as a focus lens, for example, and means a member driven by a vibration type actuator.

図4は、超音波モータ1の適用例を示す図である。図4では、カメラ用のレンズユニットにおけるフォーカスレンズ駆動を行うレンズ鏡筒の構成例を示す。図4(A)は駆動機構部をレンズ鏡筒の光軸方向から見た場合の図である。図4(B)は、図4(A)に示すB−B線で切断した場合の断面図である。駆動方向をx方向で示す。
駆動対象であるフォーカスレンズ(以下、単にレンズという)111は、レンズ鏡筒の光軸方向に沿って移動可能に支持されている。レンズ保持部材121には、丸穴121aと長穴121bが設けられている。丸穴121aと長穴121bは、複数のガイド部材131によってそれぞれ案内される。円柱状のガイド部材131は、光軸方向に沿ってレンズ鏡筒内に配置されている。つまり、ガイド部材131のそれぞれの長軸がレンズ鏡筒の光軸と略平行となるように、ガイド部材131の端部がレンズ鏡筒の固定部に取り付けられている。レンズ保持部材121は、複数のガイド部材131に沿って摺動することにより、レンズ鏡筒の光軸と略平行な方向に移動する。
FIG. 4 is a diagram illustrating an application example of the ultrasonic motor 1. FIG. 4 shows a configuration example of a lens barrel that drives a focus lens in a camera lens unit. FIG. 4A is a view when the drive mechanism is viewed from the optical axis direction of the lens barrel. FIG. 4B is a cross-sectional view taken along line BB shown in FIG. The driving direction is indicated by the x direction.
A focus lens (hereinafter simply referred to as a lens) 111 to be driven is supported so as to be movable along the optical axis direction of the lens barrel. The lens holding member 121 is provided with a round hole 121a and a long hole 121b. The round hole 121a and the long hole 121b are guided by a plurality of guide members 131, respectively. The columnar guide member 131 is disposed in the lens barrel along the optical axis direction. That is, the end portion of the guide member 131 is attached to the fixed portion of the lens barrel so that each major axis of the guide member 131 is substantially parallel to the optical axis of the lens barrel. The lens holding member 121 moves in a direction substantially parallel to the optical axis of the lens barrel by sliding along the plurality of guide members 131.

超音波モータ1のベース部材51は、レンズ鏡筒の固定部に取り付けられる。出力取り出し部41cとレンズ保持部材121は接続されている。レンズ保持部材121には溝部121cが設けられ、これに出力取り出し部41cが係合している。図4の例では、出力取り出し部41cが突出軸であり、レンズ保持部材121には溝部121cが形成されている。逆に、出力取り出し部41cが溝部で、レンズ保持部材121に突出軸を設けてもよい。この構成において振動子11を駆動した場合、出力取り出し部41cを介してレンズ保持部材121およびレンズ111がレンズ鏡筒の光軸方向に移動する。
ここで、摩擦部材31の駆動において、片持ち梁における屈曲振動モードおよびねじり振動モードを利用することによる振動子11の小型化について詳述する。一般的な梁の場合、屈曲振動、ねじり振動等の振動モードでの梁の形状は、両端の固定条件によって変化することが知られている。
The base member 51 of the ultrasonic motor 1 is attached to the fixed part of the lens barrel. The output extraction portion 41c and the lens holding member 121 are connected. The lens holding member 121 is provided with a groove 121c, and the output extraction portion 41c is engaged therewith. In the example of FIG. 4, the output extraction portion 41 c is a protruding shaft, and the groove portion 121 c is formed in the lens holding member 121. Conversely, the output take-out portion 41c may be a groove, and the lens holding member 121 may be provided with a protruding shaft. When the vibrator 11 is driven in this configuration, the lens holding member 121 and the lens 111 move in the optical axis direction of the lens barrel via the output extraction portion 41c.
Here, the miniaturization of the vibrator 11 by using the bending vibration mode and the torsional vibration mode in the cantilever in driving the friction member 31 will be described in detail. In the case of a general beam, it is known that the shape of the beam in vibration modes such as bending vibration and torsional vibration changes depending on the fixing conditions at both ends.

まず、固定条件による面外方向1次屈曲振動モードでの梁の形状変化を、図12にて模式的に例示する。図12(A)は梁の両端部を固定しない場合の面外方向1次屈曲振動を表す図である。図12(B)は梁の両端を固定した場合の面外方向1次屈曲振動を表す図である。図12(C)は梁の片側の端部だけを固定した場合の面外方向1次屈曲振動を表す図である。それぞれの場合において、特定の周波数fでの梁の共振に適した梁の長さをそれぞれl,l,lと記す。これらは下式で示す通りである。 First, FIG. 12 schematically illustrates the beam shape change in the out-of-plane primary bending vibration mode due to the fixed condition. FIG. 12A is a diagram showing the out-of-plane primary bending vibration when both ends of the beam are not fixed. FIG. 12B is a diagram showing the out-of-plane primary bending vibration when both ends of the beam are fixed. FIG. 12C is a diagram illustrating the out-of-plane primary bending vibration when only one end of the beam is fixed. In each case, the beam lengths suitable for beam resonance at a specific frequency f are denoted as l 1 , l 2 , and l 3 , respectively. These are as shown in the following formula.

Figure 0006253261
上式中、断面2次モーメントI、縦弾性係数E、密度ρ、梁の断面積Aが一定である場合、l,l,lの関係について、「l≒l/2.5=l/2.5」となる。つまり、面外方向1次屈曲振動の共振に適した梁の長さは、梁の片端を固定した図12(C)の場合に最も短くなる。
Figure 0006253261
In the above formula, moment of inertia I, the modulus of longitudinal elasticity E, when the density [rho, the cross-sectional area A of the beam is constant, the relationship l 1, l 2, l 3, "l 3l 1/2. 5 = l 2 /2.5 ”. That is, the length of the beam suitable for resonance of the out-of-plane primary bending vibration is the shortest in the case of FIG. 12C in which one end of the beam is fixed.

次に、固定条件による面外方向1次ねじり振動モードでの梁の形状変化を図13にて模式的に例示する。図13(A)は梁の両端を固定しない場合の1次ねじり振動を表す図である。図13(B)は梁の両端を固定した場合の面外方向1次ねじり振動を表す図である。図13(C)は梁の片端を固定した場合の面外方向1次ねじり振動を表す図である。それぞれの場合において、特定の周波数fでの梁の共振に適した梁の長さL,L,Lと記す。これらは下式で示す通りである。 Next, FIG. 13 schematically illustrates the beam shape change in the out-of-plane primary torsional vibration mode depending on the fixing condition. FIG. 13A is a diagram showing primary torsional vibration when both ends of the beam are not fixed. FIG. 13B is a diagram illustrating out-of-plane primary torsional vibration when both ends of the beam are fixed. FIG. 13C is a diagram illustrating out-of-plane primary torsional vibration when one end of the beam is fixed. In each case, the beam lengths L 1 , L 2 , and L 3 suitable for the resonance of the beam at a specific frequency f are described. These are as shown in the following formula.

Figure 0006253261
上式中、断面ねじりモーメントJ、横弾性係数G、密度ρ、断面2次モーメントIpが一定である場合、L,L,Lの関係は「L=L/2=L/2」となる。つまり、面外方向1次ねじり振動の共振に適した梁の長さは、梁の片端を固定した図13(C)の場合に最も短くなる。
Figure 0006253261
In the above formula, sectional torsional moment J, shear modulus G, the density [rho, if a second moment Ip is constant, L 1, L 2, the relationship of L 3 is "L 3 = L 1/2 = L 2 / 2 ". That is, the length of the beam suitable for resonance in the out-of-plane direction primary torsional vibration is the shortest in the case of FIG. 13C in which one end of the beam is fixed.

図1(A)に示すように、振動子11の第1の端部を支持部材21に固定し、摩擦部材31の駆動に振動子11の片持ち梁における屈曲振動及びねじり振動を用いることで、振動子11の長さを短くすることができる。振動子11の小型化により、超音波モータのサイズを小さくできる。   As shown in FIG. 1A, the first end of the vibrator 11 is fixed to the support member 21, and bending vibration and torsional vibration in a cantilever beam of the vibrator 11 are used to drive the friction member 31. The length of the vibrator 11 can be shortened. The size of the ultrasonic motor can be reduced by downsizing the vibrator 11.

次に、振動子11の構成及び固定方法を説明する。
図5は本実施形態における振動子11の第1の構成例を示す。図5(A)は振動子11と支持部材21の一部を示す斜視図である。振動子11は、例えば圧電素子12を平板部材13に貼り付けた構造をもつ。平板部材13の第1の端部は支持部材21に対して接着や締結等により保持されている。平板部材13は、例えばステンレス鋼等を用いた金属板である。平板部材13にて接触部14を設ける位置は、例えば片持ち梁における1次屈曲振動モードの腹であって、かつ1次ねじり振動モードの腹となる位置である。図5に示す接触部14は、平板部材13にて圧電素子12とは反対側であって、支持部材21に保持されていない第2の端部に配置される。接触部14は、例えば樹脂材や金属材の接着又は平板部材13に対する切削加工やプレス加工により形成される。なお、接触部14を圧電素子12に設ける場合には、例えば樹脂材や金属材の接着により形成される。
Next, the configuration and fixing method of the vibrator 11 will be described.
FIG. 5 shows a first configuration example of the vibrator 11 in the present embodiment. FIG. 5A is a perspective view showing a part of the vibrator 11 and the support member 21. The vibrator 11 has a structure in which, for example, a piezoelectric element 12 is attached to a flat plate member 13. The first end of the flat plate member 13 is held with respect to the support member 21 by adhesion, fastening, or the like. The flat plate member 13 is a metal plate using, for example, stainless steel. The position where the contact portion 14 is provided on the flat plate member 13 is, for example, a position where the cantilever is an antinode of the primary bending vibration mode and an antinode of the primary torsional vibration mode. The contact portion 14 shown in FIG. 5 is disposed on the second end portion that is opposite to the piezoelectric element 12 on the flat plate member 13 and is not held by the support member 21. The contact portion 14 is formed, for example, by bonding a resin material or a metal material, or by cutting or pressing the flat plate member 13. In addition, when providing the contact part 14 in the piezoelectric element 12, it forms by adhesion | attachment of a resin material or a metal material, for example.

圧電素子12は、片持ち梁形状における、長手方向に直交する幅方向にて2分割された2相の分極領域部12a、12bを備える。2相の分極領域部12a、12bの伸縮のタイミングを制御することより2つの振動モードの振動を振動子11に発生させることができる。図5(B)は、分極領域部12a、12bが同じタイミングで伸縮する場合の振動モードを誇張して表す側面図及び正面図である。図5(C)は、分極領域部12a、12bが逆のタイミングで伸縮する場合の振動モードを誇張して表す側面図及び正面図である。図5(B)では、圧電素子12が2相共に同方向に伸縮し、振動子11にて片持ち梁における屈曲振動が発生する様子を模式的に示している。また図5(C)では、圧電素子12の一方の相の分極領域部が伸びた時に、他方の相の分極領域部が縮むため、片持ち梁におけるねじり振動が発生する様子を模式的に示している。摩擦部材31を駆動するために圧電素子駆動部は、圧電素子12に印加する交流電圧を制御し、2つの振動モードの振動を組み合わせて摩擦部材31に楕円運動を発生させる。図5の構成例では、圧電素子12に2相の分極領域部を設けているが、屈曲振動及びねじり振動が発生可能な配置であれば、圧電素子の分極領域部として2相より多い相数でもよい。   The piezoelectric element 12 includes two-phase polarization region portions 12a and 12b that are divided into two in the width direction orthogonal to the longitudinal direction in a cantilever shape. By controlling the expansion / contraction timing of the two-phase polarization region portions 12a and 12b, vibrations in two vibration modes can be generated in the vibrator 11. FIG. 5B is a side view and a front view exaggeratingly showing a vibration mode when the polarization region portions 12a and 12b expand and contract at the same timing. FIG. 5C is a side view and a front view exaggeratingly showing a vibration mode when the polarization region portions 12a and 12b expand and contract at opposite timings. FIG. 5B schematically shows a state in which the piezoelectric element 12 expands and contracts in the same direction in both phases and bending vibration is generated in the cantilever by the vibrator 11. FIG. 5C schematically shows a state in which torsional vibration is generated in the cantilever because the polarization region of the other phase contracts when the polarization region of one phase of the piezoelectric element 12 expands. ing. In order to drive the friction member 31, the piezoelectric element driving unit controls the AC voltage applied to the piezoelectric element 12 and causes the friction member 31 to generate an elliptical motion by combining the vibrations of the two vibration modes. In the configuration example of FIG. 5, the piezoelectric element 12 is provided with a two-phase polarization region portion. However, if the arrangement is capable of generating bending vibration and torsional vibration, the number of phases larger than two phases as the polarization region portion of the piezoelectric element. But you can.

図6は本実施形態における振動子11の第2の構成例を示す。図6(A)は振動子11と支持部材21の一部を示す斜視図である。振動子11は圧電素子12のみで構成されており、第1の端部が支持部材21に接着や締結等で固定されている。接触部14を設ける位置は、例えば片持ち梁における1次屈曲振動モードの腹であって、かつ1次ねじり振動モードの腹となる位置である。接触部14は、振動子11が支持部材21に保持された部分(被保持部)とは反対側の第2の端部に設けられている。接触部14は、例えば樹脂材や金属材の接着により形成される。圧電素子12は片持ち梁形状における幅方向に2分割され、さらには長手方向および幅方向に対して直交する厚み方向に2分割されることにより、4相の分極領域部12c、12d、12e、12fを備える。これらの4相の分極領域部12c、12d、12e、12fの伸縮のタイミングを制御することより、2つの振動モードの振動を振動子11に発生させることができる。   FIG. 6 shows a second configuration example of the vibrator 11 in the present embodiment. FIG. 6A is a perspective view showing a part of the vibrator 11 and the support member 21. The vibrator 11 is composed of only the piezoelectric element 12, and the first end is fixed to the support member 21 by bonding or fastening. The position where the contact portion 14 is provided is, for example, a position where the cantilever is an antinode of the primary bending vibration mode and an antinode of the primary torsional vibration mode. The contact portion 14 is provided at the second end portion on the opposite side to the portion (held portion) where the vibrator 11 is held by the support member 21. The contact part 14 is formed by adhesion of a resin material or a metal material, for example. The piezoelectric element 12 is divided into two in the width direction in the cantilever shape, and further divided into two in the thickness direction perpendicular to the longitudinal direction and the width direction, whereby four-phase polarization region portions 12c, 12d, 12e, 12f. By controlling the expansion / contraction timing of these four-phase polarization region portions 12c, 12d, 12e, and 12f, vibrations in two vibration modes can be generated in the vibrator 11.

図6(B)は振動子11に片持ち梁における屈曲振動モードを発生させた場合を誇張して表した側面図及び正面図である。片持ち梁にて幅方向に並んで配置した分極領域部12cおよび12dを1つの組とし、分極領域部12eおよび12fを1つの組とし、これらの2つの組を逆方向に伸縮させることで、片持ち梁における屈曲振動が発生する。また、図6(C)は振動子11に片持ち梁におけるねじり振動モードを発生させた場合を誇張して表した側面図及び正面図である。振動子11の長手方向に沿う方向から見た場合に、対角に位置する分極領域部12cおよび12fを1つの組とし、対角に位置する分極領域部12dおよび12eを1つの組とする。これらの2つの組を逆方向に伸縮させることで、片持ち梁におけるねじり振動が発生する。摩擦部材31を駆動するために圧電素子駆動部は圧電素子12に印加する交流電圧を制御し、2つの振動モードの振動を組み合わせて摩擦部材31に楕円運動を発生させる。   FIG. 6B is a side view and a front view exaggeratingly showing the case where the bending vibration mode in the cantilever is generated in the vibrator 11. By making the polarization region portions 12c and 12d arranged side by side in the width direction with a cantilever beam as one set, the polarization region portions 12e and 12f as one set, and expanding and contracting these two sets in opposite directions, Bending vibration occurs in the cantilever beam. FIG. 6C is a side view and a front view exaggeratingly showing the case where the vibrator 11 is caused to generate the torsional vibration mode in the cantilever. When viewed from the direction along the longitudinal direction of the vibrator 11, the polarization region portions 12c and 12f positioned diagonally are set as one set, and the polarization region portions 12d and 12e positioned diagonally are set as one set. By expanding and contracting these two sets in the opposite direction, torsional vibration in the cantilever occurs. In order to drive the friction member 31, the piezoelectric element driving unit controls the AC voltage applied to the piezoelectric element 12 and causes the friction member 31 to generate an elliptical motion by combining the vibrations of the two vibration modes.

本構成例では4相の分極領域部を設けているが、屈曲振動及びねじり振動が発生可能な配置であれば圧電素子12の分極領域部として4相より多い相数でもよい。
なお、第1および第2の構成例にて発生させる屈曲振動とねじり振動は共に1次の振動モードとしている。これに限らず、摩擦部材31の駆動に十分な振動振幅を得られる範囲内であれば、2次以上の高次の振動モードでもよい。
In this configuration example, a four-phase polarization region portion is provided. However, the number of phases larger than four phases may be used as the polarization region portion of the piezoelectric element 12 as long as it is an arrangement capable of generating bending vibration and torsional vibration.
Note that the bending vibration and the torsional vibration generated in the first and second configuration examples are both in the primary vibration mode. Not limited to this, as long as the vibration amplitude sufficient for driving the friction member 31 is within a range that can be obtained, a secondary or higher order vibration mode may be used.

図7は、図5で示した振動子11の第1の構成例について固定方法を例示した斜視図である。図7(A)は、振動子11の第1の端部を支持部材21に接着した構成を示す。図7(B)は、平板部材13の第1の端部の側面部に締結部13a、13bをそれぞれ設け、複数の締結部材211により支持部材21に締結した構成を示す。図7(C)は、平板部材13の端部に締結部13cを設け、複数の締結部材211により支持部材21に締結した構成を示す。これらの構成例では、接着や締結により平板部材13を固定することで振動子11の片側の端部が支持部材21に固定される。同様の方法により、圧電素子12を支持部材21に直接固定してもよい。さらに、図7(D)では、振動子11の片側の端部を、確実に固定して理想的な片持ち梁に近づけるための構成を示す。振動子11の片側の端部を、固定用部材221と支持部材21とで挟持することにより、圧電素子12および平板部材13の両部材を堅牢に固定できる。なお、図示は省略するが、図6に示す第2の構成例に係る振動子11を支持部材21に対して固定する方法についても図7と同様であり、接着や締結、固定用部材を用いる方法が適宜に採用される。   FIG. 7 is a perspective view illustrating a fixing method for the first configuration example of the vibrator 11 illustrated in FIG. 5. FIG. 7A shows a configuration in which the first end of the vibrator 11 is bonded to the support member 21. FIG. 7B shows a configuration in which fastening portions 13 a and 13 b are provided on the side surface portion of the first end portion of the flat plate member 13 and fastened to the support member 21 by a plurality of fastening members 211. FIG. 7C shows a configuration in which a fastening portion 13 c is provided at the end of the flat plate member 13 and fastened to the support member 21 by a plurality of fastening members 211. In these configuration examples, one end of the vibrator 11 is fixed to the support member 21 by fixing the flat plate member 13 by bonding or fastening. The piezoelectric element 12 may be directly fixed to the support member 21 by a similar method. Further, FIG. 7D shows a configuration for securely fixing one end portion of the vibrator 11 to be close to an ideal cantilever beam. By sandwiching the end portion on one side of the vibrator 11 between the fixing member 221 and the support member 21, both the piezoelectric element 12 and the flat plate member 13 can be firmly fixed. Although illustration is omitted, the method for fixing the vibrator 11 according to the second configuration example shown in FIG. 6 to the support member 21 is also the same as that in FIG. 7, and bonding, fastening, and fixing members are used. A method is appropriately employed.

なお、振動子11にねじり振動モードを発生させる時、例えば、図5(C)に示すように圧電素子12の分極領域部12aと12bの伸縮が逆方向となる。このため、片持ち梁における幅方向中心部で伸縮が阻害しあい駆動効率が低下する可能性がある。そこで、振動子11の片持ち梁における幅方向の中央位置にて、片持ち梁における厚み方向の溝部又は孔部を設けると、分極領域同士の伸縮の阻害による影響を低減できる。前記第1および第2の構成例にて、振動子11の片持ち梁における幅方向の中央に孔部を形成した例を図8に示す。図8(A)は、図5に示す第1の構成例にて、振動子11に孔部11aを形成した例を示す。振動子11を構成する圧電素子12及び平板部材13に対し、振動子11の片持ち梁における幅方向の中央位置(図中の破線参照)に沿って延在する孔部11aを設けている。また、孔部11aに代えて溝部を設ける場合には、振動子11において圧電素子12と平板部13のどちらに設けてもよい。図8(B)は、図6に示す第2の構成例にて、振動子11を構成する圧電素子12に、振動子11の片持ち梁における幅方向の中央位置(図中の破線参照)に沿って孔部11aを設けている。   When the torsional vibration mode is generated in the vibrator 11, for example, as shown in FIG. 5C, the expansion and contraction of the polarization region portions 12a and 12b of the piezoelectric element 12 are reversed. For this reason, expansion and contraction may be hindered at the center in the width direction of the cantilever beam, and driving efficiency may be reduced. Therefore, if a groove or hole in the thickness direction of the cantilever is provided at the center position in the width direction of the cantilever of the vibrator 11, the influence of inhibition of expansion and contraction between the polarization regions can be reduced. FIG. 8 shows an example in which a hole is formed in the center in the width direction of the cantilever of the vibrator 11 in the first and second configuration examples. FIG. 8A shows an example in which the hole 11a is formed in the vibrator 11 in the first configuration example shown in FIG. The piezoelectric element 12 and the flat plate member 13 constituting the vibrator 11 are provided with a hole 11a extending along the center position in the width direction of the cantilever of the vibrator 11 (see the broken line in the drawing). Further, in the case where a groove is provided instead of the hole 11 a, the vibrator 11 may be provided on either the piezoelectric element 12 or the flat plate 13. FIG. 8B is the second configuration example shown in FIG. 6, in which the piezoelectric element 12 constituting the vibrator 11 is placed at the center position in the width direction of the cantilever of the vibrator 11 (see the broken line in the figure). Is provided with a hole 11a.

本実施形態では、振動子の長さを短くできる振動モードとして、片端が固定端で他端が自由端の片持ち梁における振動モードを利用することにより、振動子を小型化し、小型超音波モータを実現できる。
なお、本実施形態で説明した超音波モータ1は、振動型アクチュエータの一例であり、本発明は各種形態での適用が可能である。例えば、被駆動部材として円環状部材を用いることで回転駆動方式の超音波モータにも本発明は応用可能である。また、不要振動や異音発生への対策を講じることができる。以下、第1実施形態の変形例を説明する。
In this embodiment, as a vibration mode in which the length of the vibrator can be shortened, the vibrator is downsized by using a vibration mode in a cantilever having one end fixed and the other end free. Can be realized.
The ultrasonic motor 1 described in this embodiment is an example of a vibration type actuator, and the present invention can be applied in various forms. For example, the present invention can be applied to a rotationally driven ultrasonic motor by using an annular member as a driven member. It is also possible to take measures against unwanted vibrations and abnormal noise. Hereinafter, modifications of the first embodiment will be described.

[第1実施形態の変形例]
図3は、振動子11の振動が支持部材21やベース部材51に伝達する場合に、異音の発生や駆動性能の低下が起こらないようにするための構成を例示する。図3(A)は、超音波モータ1において、振動子11と支持部材21との間に振動減衰部材81を配置した構成例を、振動子11と摩擦部材31の相対移動方向から見た場合の図である。振動子11から支持部材21やベース部材51への振動の伝達を防ぐため、振動減衰部材81を支持部材21に隣接させると効果的である。この振動減衰部材81は、例えばブチルゴムなどの減衰性を有する緩衝材である。振動減衰部材81の介在により、振動子11から支持部材21へ伝達する振動のレベルを低減できる。
[Modification of First Embodiment]
FIG. 3 exemplifies a configuration for preventing generation of abnormal noise and deterioration of driving performance when vibration of the vibrator 11 is transmitted to the support member 21 and the base member 51. FIG. 3A shows a configuration example in which the vibration damping member 81 is disposed between the vibrator 11 and the support member 21 in the ultrasonic motor 1 when viewed from the relative movement direction of the vibrator 11 and the friction member 31. FIG. In order to prevent transmission of vibration from the vibrator 11 to the support member 21 and the base member 51, it is effective to place the vibration damping member 81 adjacent to the support member 21. The vibration damping member 81 is a shock-absorbing material such as butyl rubber. By virtue of the vibration damping member 81, the level of vibration transmitted from the vibrator 11 to the support member 21 can be reduced.

また、図3(B)は、超音波モータ1において支持部材21とベース部材51との間に振動減衰部材81を配置した構成例を、振動子11と摩擦部材31の相対移動方向から見た場合の図である。振動減衰部材81の介在により、振動子11から支持部材21を介してベース部材51へ伝達する振動のレベルを低減できる。
なお、このような変形例については後述する実施形態にも適用できる。
FIG. 3B shows a configuration example in which the vibration damping member 81 is disposed between the support member 21 and the base member 51 in the ultrasonic motor 1 as viewed from the relative movement direction of the vibrator 11 and the friction member 31. FIG. By virtue of the vibration damping member 81, the level of vibration transmitted from the vibrator 11 to the base member 51 via the support member 21 can be reduced.
Such modifications can also be applied to the embodiments described later.

[第2実施形態]
次に本発明の第2実施形態を説明する。第2実施形態にて第1実施形態の場合と同様の構成部については既に使用した符号を用いることにより、その詳細な説明を省略し、主に相違点を説明する。このような説明の省略の仕方は後述する他の実施形態でも同様である。
図9は本実施形態に係る超音波モータ2の構成例を示す。図9(A)は超音波モータ2を、振動子11と摩擦部材31の相対移動方向から見た場合の図である。駆動方向(x方向)を紙面に垂直な方向とする。また図9(B)は、図9(A)に示す超音波モータ2のC−C線に沿う断面図である。x方向を左右方向とする。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those used in the first embodiment, and the detailed description thereof will be omitted. Differences will be mainly described. The method of omitting such description is the same in other embodiments described later.
FIG. 9 shows a configuration example of the ultrasonic motor 2 according to the present embodiment. FIG. 9A is a diagram of the ultrasonic motor 2 when viewed from the relative movement direction of the vibrator 11 and the friction member 31. The driving direction (x direction) is a direction perpendicular to the paper surface. FIG. 9B is a cross-sectional view taken along the line CC of the ultrasonic motor 2 shown in FIG. The x direction is the left-right direction.

振動子11は、第1の端部が支持部材21の固定部21aに固定されている。この支持部材21は、x方向に移動可能な可動部材である。複数の転動部材71は、支持部材21に設けた溝部21bとベース部材51に設けた溝部51bとの間に配置されている。複数の転動部材71の介在によって、支持部材21はベース部材51に対してx方向にのみ移動可能に支持されている。振動子11は片持ち梁の構造となる。振動子11を構成する圧電素子12に対し、圧電素子駆動部から適切な交流電圧を印加すると振動子11は片持ち梁における屈曲振動及びねじり振動を行う。この振動を最も効率よく摩擦部材31に伝達するため、接触部14は屈曲振動の腹とねじり振動の腹が重なる位置に設けられている。また、摩擦部材31は丸穴31aと長穴31bを有する。丸穴31aと長穴31bは摩擦部材31の保持部材41に設けた複数の柱状のガイド部41aにそれぞれ嵌合された状態で案内される。このため、摩擦部材31はガイド部41aの長手方向に移動可能に保持されている。保持部材41はベース部材51に固定され、ガイド部41aには加圧部材61が配置されている。加圧部材61は摩擦部材31を適度の付勢力で接触部14に圧接させる。   The first end of the vibrator 11 is fixed to the fixing portion 21 a of the support member 21. The support member 21 is a movable member that can move in the x direction. The plurality of rolling members 71 are disposed between the groove portion 21 b provided in the support member 21 and the groove portion 51 b provided in the base member 51. The support member 21 is supported by the plurality of rolling members 71 so as to be movable only in the x direction with respect to the base member 51. The vibrator 11 has a cantilever structure. When an appropriate AC voltage is applied from the piezoelectric element driving unit to the piezoelectric element 12 constituting the vibrator 11, the vibrator 11 performs bending vibration and torsional vibration in the cantilever. In order to transmit this vibration to the friction member 31 most efficiently, the contact portion 14 is provided at a position where the antinode of bending vibration and the antinode of torsional vibration overlap. The friction member 31 has a round hole 31a and a long hole 31b. The round hole 31 a and the long hole 31 b are guided in a state of being fitted to a plurality of columnar guide portions 41 a provided in the holding member 41 of the friction member 31. For this reason, the friction member 31 is held so as to be movable in the longitudinal direction of the guide portion 41a. The holding member 41 is fixed to the base member 51, and a pressurizing member 61 is disposed on the guide portion 41a. The pressurizing member 61 presses the friction member 31 against the contact portion 14 with an appropriate urging force.

上記の構成において、振動子11における2つの振動モードを適切に重ね合わせることにより、接触部14にC−C断面と略平行な平面内の楕円運動を発生させることができる。接触部14の楕円運動を摩擦部材31に伝達することで、振動子11および支持部材21が図中のx方向に駆動される。支持部材21に設けた出力取り出し部21cは駆動対象に接続されており、駆動対象(光学素子のホルダ等)が駆動される。
本実施形態では、振動子11の片持ち梁における屈曲振動及びねじり振動を用いることで摩擦部材31を駆動する場合に、振動子11の長さを短くすることができる。振動子11および支持部材21の移動によって駆動対象を駆動することができる。
In the above configuration, by appropriately overlapping the two vibration modes in the vibrator 11, it is possible to cause the contact portion 14 to generate an elliptical motion in a plane substantially parallel to the CC cross section. By transmitting the elliptical motion of the contact portion 14 to the friction member 31, the vibrator 11 and the support member 21 are driven in the x direction in the figure. The output extraction portion 21c provided on the support member 21 is connected to a drive target, and the drive target (such as a holder of an optical element) is driven.
In the present embodiment, the length of the vibrator 11 can be shortened when the friction member 31 is driven by using bending vibration and torsional vibration in the cantilever of the vibrator 11. The object to be driven can be driven by the movement of the vibrator 11 and the support member 21.

[第3実施形態]
次に本発明の第3実施形態を説明する。
図10は本実施形態に係る超音波モータ3の構成例を示す。図10(A)は超音波モータ3を、振動子11と摩擦部材31の相対移動方向から見た場合の図である。駆動方向(x方向)を紙面に垂直な方向とする。また図10(B)は、図10(A)に示す超音波モータ3のD−D線に沿う断面図である。x方向を左右方向とする。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
FIG. 10 shows a configuration example of the ultrasonic motor 3 according to this embodiment. FIG. 10A is a view of the ultrasonic motor 3 when viewed from the relative movement direction of the vibrator 11 and the friction member 31. The driving direction (x direction) is a direction perpendicular to the paper surface. FIG. 10B is a cross-sectional view taken along line DD of the ultrasonic motor 3 shown in FIG. The x direction is the left-right direction.

振動子11を保持する支持部材21は、ベース部材51に対して相対移動可能な可動部材であり、丸穴21dと長穴21eを有する。丸穴21dと長穴21eには、ベース部材51に設けた複数の柱状のガイド部51aがそれぞれ嵌合され、支持部材21が案内される。支持部材21はガイド部51aの長手方向に移動可能に支持されている。振動子11の第1の端部は、支持部材21の固定部21aに取り付けられる。よって振動子11は片持ち梁の構造となる。この場合、支持部材21の質量及び慣性モーメントを振動子11の質量及び慣性モーメントに比べて十分に大きく設計することで、振動子11の振動時に支持部材21の発振が抑制される。振動子11を構成する圧電素子12に対し、圧電素子駆動部から適切な交流電圧を印加すると、振動子11は片持ち梁における屈曲振動及びねじり振動を行う。この振動を最も効率よく摩擦部材31に伝達するため、接触部14は屈曲振動の腹とねじり振動の腹が重なる位置に設けられている。また、摩擦部材31は保持部材41に固定されている。保持部材41は複数の溝部41bを有する。ベース部材51は、複数の溝部41bにそれぞれ対向する複数の溝部51bを有する。複数の転動部材71は複数の溝部41bと51bとの間に挟み込まれた状態で配置される。複数の転動部材71の介在により、保持部材41はベース部材51に対してx方向にのみ移動可能に支持されている。また、支持部材21とベース部材51との間には加圧部材61が配置されている。加圧部材61は支持部材21及び振動子11を介して、適度の力で接触部14を摩擦部材31に圧接させる。   The support member 21 that holds the vibrator 11 is a movable member that can move relative to the base member 51, and has a round hole 21d and a long hole 21e. A plurality of columnar guide portions 51a provided in the base member 51 are fitted into the round hole 21d and the long hole 21e, respectively, and the support member 21 is guided. The support member 21 is supported so as to be movable in the longitudinal direction of the guide portion 51a. The first end of the vibrator 11 is attached to the fixed portion 21 a of the support member 21. Therefore, the vibrator 11 has a cantilever structure. In this case, by designing the mass and moment of inertia of the support member 21 to be sufficiently larger than the mass and moment of inertia of the vibrator 11, oscillation of the support member 21 is suppressed when the vibrator 11 vibrates. When an appropriate AC voltage is applied from the piezoelectric element driving unit to the piezoelectric element 12 constituting the vibrator 11, the vibrator 11 performs bending vibration and torsional vibration in the cantilever. In order to transmit this vibration to the friction member 31 most efficiently, the contact portion 14 is provided at a position where the antinode of bending vibration and the antinode of torsional vibration overlap. The friction member 31 is fixed to the holding member 41. The holding member 41 has a plurality of groove portions 41b. The base member 51 has a plurality of groove portions 51b that respectively face the plurality of groove portions 41b. The plurality of rolling members 71 are arranged in a state of being sandwiched between the plurality of groove portions 41b and 51b. Due to the interposition of the plurality of rolling members 71, the holding member 41 is supported so as to be movable only in the x direction with respect to the base member 51. A pressure member 61 is disposed between the support member 21 and the base member 51. The pressure member 61 presses the contact portion 14 against the friction member 31 with an appropriate force through the support member 21 and the vibrator 11.

上記の構成において、振動子11における2つの振動モードを適切に重ね合わせることで、接触部14にD−D断面と略平行な平面内の楕円運動を発生させることができる。接触部14の楕円運動を伝達することにより、摩擦部材31および保持部材41がx方向に駆動される。保持部材41に設けた出力取り出し部41cには駆動対象が接続されて駆動される。
本実施形態によれば、振動子11の片持ち梁における屈曲振動及びねじり振動を用いることで摩擦部材31を駆動する場合に、振動子11の長さを短くすることができる。
In the above configuration, by appropriately superimposing the two vibration modes in the vibrator 11, it is possible to cause the contact portion 14 to generate an elliptical motion in a plane substantially parallel to the DD cross section. By transmitting the elliptical motion of the contact portion 14, the friction member 31 and the holding member 41 are driven in the x direction. A drive target is connected to the output extraction portion 41c provided in the holding member 41 and is driven.
According to the present embodiment, when the friction member 31 is driven by using bending vibration and torsional vibration in the cantilever of the vibrator 11, the length of the vibrator 11 can be shortened.

[第4実施形態]
次に本発明の第4実施形態を説明する。
図11は本実施形態に係る超音波モータ4の構成例を示す。図11(A)は超音波モータ4を、振動子11と摩擦部材31の相対移動方向から見た場合の図である。x方向を紙面に垂直な方向とする。また図11(B)は、図11(A)に示す超音波モータ4のE−E線に沿う断面図である。振動子11を保持する支持部材21はレンズ鏡筒等に固定されるベース部材51に固定されている。振動子11の第1の端部が固定部21aに取り付けられることにより、振動子11は片持ち梁の構造となる。振動子11を構成する圧電素子12に対して圧電素子駆動部から適切な交流電圧を印加すると、振動子11は片持ち梁における屈曲振動及びねじり振動を行う。この振動を最も効率よく摩擦部材31に伝達するため、接触部14は屈曲振動の腹とねじり振動の腹が重なる位置に設けられている。また、摩擦部材31は保持部材41に固定されている。複数の転動部材71は、保持部材41に設けた複数の溝部41bと、ベース部材51に設けた複数の溝部51bとの間に挟み込まれた状態で配置される。これにより、保持部材41はベース部材51に対し、x方向にのみ移動可能に支持されている。振動子11の固定部21aと、接触部14の接触面との間隔は適切な長さに設定されている。振動子11を固定部21aに固定した際、振動子11に撓みが生じ、振動子11の弾性力により適度の力で接触部14が摩擦部材31に対して圧接される。よって加圧部材は不要である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described.
FIG. 11 shows a configuration example of the ultrasonic motor 4 according to the present embodiment. FIG. 11A is a diagram when the ultrasonic motor 4 is viewed from the relative movement direction of the vibrator 11 and the friction member 31. The x direction is a direction perpendicular to the paper surface. FIG. 11B is a cross-sectional view taken along line EE of the ultrasonic motor 4 shown in FIG. The support member 21 that holds the vibrator 11 is fixed to a base member 51 that is fixed to a lens barrel or the like. By attaching the first end of the vibrator 11 to the fixed portion 21a, the vibrator 11 has a cantilever structure. When an appropriate AC voltage is applied to the piezoelectric element 12 constituting the vibrator 11 from the piezoelectric element driving unit, the vibrator 11 performs bending vibration and torsional vibration in the cantilever. In order to transmit this vibration to the friction member 31 most efficiently, the contact portion 14 is provided at a position where the antinode of bending vibration and the antinode of torsional vibration overlap. The friction member 31 is fixed to the holding member 41. The plurality of rolling members 71 are arranged in a state of being sandwiched between the plurality of groove portions 41 b provided in the holding member 41 and the plurality of groove portions 51 b provided in the base member 51. Thus, the holding member 41 is supported so as to be movable only in the x direction with respect to the base member 51. The distance between the fixed portion 21a of the vibrator 11 and the contact surface of the contact portion 14 is set to an appropriate length. When the vibrator 11 is fixed to the fixing portion 21 a, the vibrator 11 is bent, and the contact portion 14 is pressed against the friction member 31 with an appropriate force by the elastic force of the vibrator 11. Therefore, no pressure member is required.

上記の構成において、振動子11における2つの振動モードを適切に重ね合わせることにより、接触部14にE−E断面と略平行な平面内の楕円運動を発生させることができる。接触部14の楕円運動を伝達することで、摩擦部材31および保持部材41がx方向に駆動される。保持部材41に設けた出力取り出し部41cには、フォーカスレンズ等の駆動対象が接続されて駆動される。
本実施形態では、振動子11の片持ち梁における屈曲振動及びねじり振動を用いて摩擦部材31を駆動する場合に、振動子11の長さを短くすることができる。簡易な構成で小型の振動型アクチュエータを実現できる。
In the above configuration, by appropriately overlapping the two vibration modes in the vibrator 11, the contact portion 14 can be caused to generate an elliptical motion in a plane substantially parallel to the EE cross section. By transmitting the elliptical motion of the contact portion 14, the friction member 31 and the holding member 41 are driven in the x direction. A drive target such as a focus lens is connected to the output extraction portion 41c provided in the holding member 41 and is driven.
In the present embodiment, when the friction member 31 is driven using bending vibration and torsional vibration in the cantilever of the vibrator 11, the length of the vibrator 11 can be shortened. A small vibration actuator can be realized with a simple configuration.

1ないし4 超音波モータ
11 振動子
12 圧電素子
14 接触部
21 支持部材
31 摩擦部材(被駆動部材)
1 to 4 ultrasonic motor 11 vibrator 12 piezoelectric element 14 contact portion 21 support member 31 friction member (driven member)

Claims (13)

圧電素子を有する振動子と、
前記振動子の第1の端部が固定された支持部材と、
前記振動子にて前記第1の端部とは反対側の第2の端部に設けられた、前記振動子に対し相対的に移動する摩擦部材と接触する接触部と、を備え、
前記接触部は、片持ち梁としての前記振動子の、前記接触部と前記摩擦部材とが接触する方向に変位する屈曲振動の腹およびねじり振動の腹に位置することを特徴とする振動型アクチュエータ。
A vibrator having a piezoelectric element;
A support member to which a first end of the vibrator is fixed;
A contact portion that is provided at a second end portion of the vibrator opposite to the first end portion and that contacts a friction member that moves relative to the vibrator;
The contact portion is located on an antinode of bending vibration and an antinode of torsional vibration that are displaced in a direction in which the contact portion and the friction member are in contact with each other as the cantilever. .
前記圧電素子は複数の分極領域部を有することを特徴とする請求項1に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the piezoelectric element has a plurality of polarization region portions. 前記振動子は前記圧電素子を平板部材に取り付けた構造であることを特徴とする請求項1または2に記載の振動型アクチュエータ。   3. The vibration type actuator according to claim 1, wherein the vibrator has a structure in which the piezoelectric element is attached to a flat plate member. 前記圧電素子は、前記平板部材の長手方向に直交する幅方向に分割された2相の分極領域部を有することを特徴とする請求項3に記載の振動型アクチュエータ。   4. The vibration type actuator according to claim 3, wherein the piezoelectric element has a two-phase polarization region divided in a width direction orthogonal to a longitudinal direction of the flat plate member. 前記圧電素子は、接着または前記平板部材に設けた締結部により前記支持部材に固定されることを特徴とする請求項3または4に記載の振動型アクチュエータ。   5. The vibration type actuator according to claim 3, wherein the piezoelectric element is fixed to the support member by bonding or a fastening portion provided on the flat plate member. 前記圧電素子は、長手方向に直交する幅方向および厚み方向にそれぞれ2分割された4相の分極領域部を有することを特徴とする請求項2に記載の振動型アクチュエータ。   3. The vibration type actuator according to claim 2, wherein the piezoelectric element has a four-phase polarization region portion that is divided into two in the width direction and the thickness direction perpendicular to the longitudinal direction. 4. 前記振動子は、長手方向に直交する幅方向の中央位置に溝部又は孔部を有することを特徴とする請求項1ないし6のいずれか1項に記載の振動型アクチュエータ。   The vibration type actuator according to any one of claims 1 to 6, wherein the vibrator has a groove or a hole at a center position in a width direction orthogonal to the longitudinal direction. 前記振動子は、片持ち梁として1次屈曲振動および1次ねじり振動を行うことを特徴とする請求項1ないし7のいずれか1項に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the vibrator performs primary bending vibration and primary torsional vibration as a cantilever beam. 前記支持部材を支持するベース部材をさらに備え、
前記振動子と支持部材との間、または前記支持部材とベース部材との間に振動減衰部材を設けたことを特徴とする請求項1ないし8のいずれか1項に記載の振動型アクチュエータ。
A base member for supporting the support member;
9. The vibration type actuator according to claim 1, further comprising a vibration damping member provided between the vibrator and the support member or between the support member and the base member.
前記接触部を前記摩擦部材に対して付勢する付勢手段を備えることを特徴とする請求項1ないし9のいずれか1項に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, further comprising a biasing unit that biases the contact portion against the friction member. 前記接触部は前記振動子の撓みにより前記摩擦部材に圧接していることを特徴とする請求項1ないし9のいずれか1項に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the contact portion is in pressure contact with the friction member due to bending of the vibrator. 請求項1ないし11のいずれか1項に記載の振動型アクチュエータと、
前記摩擦部材を保持する保持部材と、
光学素子を保持する可動部材を備え、
前記可動部材は前記保持部材に接続され、前記摩擦部材および保持部材の移動によって駆動されることを特徴とする光学機器。
The vibration type actuator according to any one of claims 1 to 11,
A holding member for holding the friction member;
A movable member for holding the optical element;
The optical apparatus, wherein the movable member is connected to the holding member and is driven by movement of the friction member and the holding member.
請求項1ないし11のいずれか1項に記載の振動型アクチュエータと、
光学素子を保持する可動部材を備え、
前記可動部材は前記支持部材に接続され、前記支持部材の移動によって駆動されることを特徴とする光学機器。
The vibration type actuator according to any one of claims 1 to 11,
A movable member for holding the optical element;
The optical device is characterized in that the movable member is connected to the support member and driven by movement of the support member.
JP2013114317A 2013-05-30 2013-05-30 Vibration actuator and optical equipment Expired - Fee Related JP6253261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114317A JP6253261B2 (en) 2013-05-30 2013-05-30 Vibration actuator and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114317A JP6253261B2 (en) 2013-05-30 2013-05-30 Vibration actuator and optical equipment

Publications (3)

Publication Number Publication Date
JP2014233191A JP2014233191A (en) 2014-12-11
JP2014233191A5 JP2014233191A5 (en) 2016-07-14
JP6253261B2 true JP6253261B2 (en) 2017-12-27

Family

ID=52126284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114317A Expired - Fee Related JP6253261B2 (en) 2013-05-30 2013-05-30 Vibration actuator and optical equipment

Country Status (1)

Country Link
JP (1) JP6253261B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253742B (en) 2015-06-12 2019-07-12 精工爱普生株式会社 Motor Piexoelectric actuator, motor, robot and pump
KR20230101812A (en) * 2020-11-04 2023-07-06 미쓰미덴기가부시기가이샤 Optical element driving device, camera module, and camera mounting device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237779A (en) * 1986-04-08 1987-10-17 Tohoku Metal Ind Ltd Torsional displacement type piezoelectric element
JPH05308786A (en) * 1992-04-30 1993-11-19 Ricoh Co Ltd Driving mechanism
JP2538754B2 (en) * 1993-09-21 1996-10-02 山一電機株式会社 Torsion oscillator
JP3680602B2 (en) * 1998-12-21 2005-08-10 セイコーエプソン株式会社 Piezoelectric actuators, watches and portable devices
JP4172100B2 (en) * 1999-07-07 2008-10-29 ソニー株式会社 Piezoelectric vibration angular velocity sensor and method for manufacturing the vibrator
JP2002191181A (en) * 2000-12-20 2002-07-05 Matsushita Electric Ind Co Ltd Flexure displacement type actuator and electronic device using the same
JP2003274678A (en) * 2002-01-10 2003-09-26 Sony Corp Driving arrangement
JP2009112173A (en) * 2007-11-01 2009-05-21 Fujikura Ltd Piezoelectric fan unit
JP4739359B2 (en) * 2008-02-18 2011-08-03 セイコーインスツル株式会社 Piezoelectric actuator and electronic device including the same
WO2011074579A1 (en) * 2009-12-15 2011-06-23 日本電気株式会社 Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
JP2012065435A (en) * 2010-09-15 2012-03-29 Nikon Corp Vibration actuator, lens barrel, and camera

Also Published As

Publication number Publication date
JP2014233191A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US11063205B2 (en) Vibration actuator and method for manufacturing the same
JP2012005309A5 (en)
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JP6141106B2 (en) Vibration actuator and optical equipment
JP6049277B2 (en) Vibration type driving device
JP6253261B2 (en) Vibration actuator and optical equipment
JP2007325466A (en) Driving apparatus
JP5742856B2 (en) Displacement member, drive member, actuator and drive device
JP6605012B2 (en) Vibration wave motor and lens driving device using vibration wave motor
US10924037B2 (en) Vibration motor that prevents resonance of contact member, and electronic apparatus
JP4394158B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP6632283B2 (en) Vibration wave motor, camera and lens barrel
WO2016152224A1 (en) Piezoelectric actuator and electronic timepiece
JP4150056B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4245183B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP6708472B2 (en) Vibration wave motor and optical device equipped with the vibration wave motor
JP6639244B2 (en) Vibration type actuator and electronic equipment
JP7258675B2 (en) Vibrating motors and optical equipment
JPH08182351A (en) Ultrasonic actuator
CN102629840A (en) Oscillation motor and lens driving mechanism
JP2022057781A (en) Vibration-type drive device and device with the same
JP2012151924A (en) Vibrator retention mechanism, vibration motor and lens drive device
JP2008178209A (en) Ultrasonic actuator
JP2016036233A (en) Vibration type actuator, optical device and imaging device
JP5892251B2 (en) Actuator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R151 Written notification of patent or utility model registration

Ref document number: 6253261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees