JP6219086B2 - Inductor device and power supply device - Google Patents

Inductor device and power supply device Download PDF

Info

Publication number
JP6219086B2
JP6219086B2 JP2013158045A JP2013158045A JP6219086B2 JP 6219086 B2 JP6219086 B2 JP 6219086B2 JP 2013158045 A JP2013158045 A JP 2013158045A JP 2013158045 A JP2013158045 A JP 2013158045A JP 6219086 B2 JP6219086 B2 JP 6219086B2
Authority
JP
Japan
Prior art keywords
current
core
magnetic flux
main winding
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158045A
Other languages
Japanese (ja)
Other versions
JP2015029015A (en
Inventor
和也 岡部
和也 岡部
信裕 多田
信裕 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2013158045A priority Critical patent/JP6219086B2/en
Publication of JP2015029015A publication Critical patent/JP2015029015A/en
Application granted granted Critical
Publication of JP6219086B2 publication Critical patent/JP6219086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、インダクタ装置および電源装置に関する。   The present invention relates to an inductor device and a power supply device.

従来、磁気コアの磁路に設けられた磁気ギャップに永久磁石を配置し、直流重畳によって直流磁界を打ち消すことが提案されている。例えば、特許文献1には、コアに巻かれたコイルが作る磁界とは逆向きに着磁されている薄板磁石をコアギャップ部に配置するインダクタ部品が開示されている。このように、薄板磁石を配置することにより、薄板磁石を配置する前よりも、一定のインダクタを維持できる最大の電流である飽和電流を大きくすることができる。   Conventionally, it has been proposed to arrange a permanent magnet in a magnetic gap provided in a magnetic path of a magnetic core and cancel a DC magnetic field by DC superposition. For example, Patent Document 1 discloses an inductor component in which a thin plate magnet that is magnetized in a direction opposite to a magnetic field created by a coil wound around a core is disposed in a core gap portion. Thus, by arranging the thin plate magnet, the saturation current, which is the maximum current that can maintain a constant inductor, can be made larger than before the thin plate magnet is arranged.

特開2003−7542号公報Japanese Patent Laid-Open No. 2003-7542

しかし、上記特許文献1のインダクタ部品では、コイルに流れる電流が反転した場合、その電流がコイルに生成する磁束の向きと薄板磁石がコイルに生成する磁束の向きが同じになる。これにより、電流がコイルに生成し得る最大の磁束密度は、飽和磁束密度から薄板磁石がコイルに生成する磁束密度を差分した磁束密度になる。その結果、コイルに流れる電流が反転した場合、薄板磁石を配置する前よりも、電流がコイルに生成し得る最大の磁束密度が小さくなるので、飽和電流が小さくなってしまう問題がある。   However, in the inductor component of Patent Document 1, when the current flowing in the coil is reversed, the direction of the magnetic flux generated in the coil by the current is the same as the direction of the magnetic flux generated in the coil by the thin plate magnet. As a result, the maximum magnetic flux density that can be generated in the coil by the current is a magnetic flux density obtained by subtracting the magnetic flux density generated in the coil by the thin plate magnet from the saturation magnetic flux density. As a result, when the current flowing through the coil is reversed, the maximum magnetic flux density that can be generated by the current in the coil is smaller than before the thin plate magnet is disposed, and thus there is a problem that the saturation current is reduced.

そこで、本発明は上記問題に鑑みてなされたものであり、コイルに流れる電流の向きに関わらず、飽和電流を大きくすることを可能とするインダクタ装置および電源装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an inductor device and a power supply device that can increase the saturation current regardless of the direction of the current flowing through the coil.

本発明の一態様に係るインダクタ装置は、
閉磁路のコアと、
前記コアに巻かれている主巻線と、
前記コアに巻かれている補助巻線と、
前記主巻線に流れる電流が前記コアに生成する磁束の方向に対して反対方向の磁束を生成するように、前記補助巻線に電流を流す駆動部と、
を備える。
An inductor device according to an aspect of the present invention includes:
A closed magnetic core,
A main winding wound around the core;
An auxiliary winding wound around the core;
A drive unit for causing a current to flow in the auxiliary winding such that a current flowing in the main winding generates a magnetic flux in a direction opposite to a direction of a magnetic flux generated in the core;
Is provided.

本発明の一態様は、上記インダクタ装置において、
前記駆動部は、前記補助巻線に所定の大きさの電流を流す。
One aspect of the present invention is the above inductor device,
The driving unit supplies a current having a predetermined magnitude to the auxiliary winding.

本発明の一態様は、上記インダクタ装置において、
前記所定の大きさは、前記補助巻線に電流が流れていない場合に、前記コアに飽和磁束密度を生成するときに前記主巻線に流れる電流の大きさ以下である。
One aspect of the present invention is the above inductor device,
The predetermined magnitude is equal to or less than the magnitude of the current flowing through the main winding when a saturation magnetic flux density is generated in the core when no current flows through the auxiliary winding.

本発明の一態様は、上記インダクタ装置において、
前記コアは、磁路上にギャップを有さない。
One aspect of the present invention is the above inductor device,
The core has no gap on the magnetic path.

本発明の一態様に係る電源装置は、
閉磁路のコアと、
前記コアに巻かれている主巻線と、
前記コアに巻かれている補助巻線と、
前記主巻線に流れる電流が前記コアに生成する磁束の方向に対して反対方向の磁束を生成するように、前記補助巻線に電流を流す駆動部と、
前記主巻線に電流または電圧を供給する電源と、
を備える。
A power supply device according to one embodiment of the present invention includes:
A closed magnetic core,
A main winding wound around the core;
An auxiliary winding wound around the core;
A drive unit for causing a current to flow in the auxiliary winding such that a current flowing in the main winding generates a magnetic flux in a direction opposite to a direction of a magnetic flux generated in the core;
A power supply for supplying current or voltage to the main winding;
Is provided.

本発明の一態様は、上記電源装置において、
前記主巻線に流れる電流の向きを制御し、前記電流の向きに応じた指令を前記駆動部へ出力する制御部を更に備え、
前記駆動部は、前記制御部が出力した指令に基づいて前記補助巻線に電流を流す。
One embodiment of the present invention is the above power supply device,
Further comprising a control unit for controlling the direction of the current flowing through the main winding and outputting a command corresponding to the direction of the current to the drive unit;
The drive unit causes a current to flow through the auxiliary winding based on a command output from the control unit.

本発明の一態様は、上記電源装置において、
前記主巻線に流れる電流を検出する電流検出部を更に備え、
前記駆動部は、前記電流検出部が検出した電流の向きに応じた向きに、前記補助巻線に電流を流す。
One embodiment of the present invention is the above power supply device,
A current detection unit for detecting a current flowing through the main winding;
The drive unit causes a current to flow through the auxiliary winding in a direction corresponding to the direction of the current detected by the current detection unit.

本発明の一態様は、上記電源装置において、
前記駆動部は、前記補助巻線に所定の大きさの電流を流す。
One embodiment of the present invention is the above power supply device,
The driving unit supplies a current having a predetermined magnitude to the auxiliary winding.

本発明の一態様は、上記電源装置において、
前記所定の大きさは、前記補助巻線に電流が流れていない場合に、前記コアに飽和磁束密度を生成するときに前記主巻線に流れる電流の大きさ以下である。
One embodiment of the present invention is the above power supply device,
The predetermined magnitude is equal to or less than the magnitude of the current flowing through the main winding when a saturation magnetic flux density is generated in the core when no current flows through the auxiliary winding.

本発明の一態様は、上記電源装置において、
前記コアは、磁路上にギャップを有さない。
One embodiment of the present invention is the above power supply device,
The core has no gap on the magnetic path.

したがって、本発明の一態様に係るインダクタ装置は、主巻線に流れる電流の向きによらず、主巻線の電流がコアに生成する磁束の方向に対して、反対方向の磁束が補助巻線の電流により生成される。そのため、主巻線の電流がコアに生成する磁束が一部、補助巻線の電流がコアに生成する磁束によって打ち消されるため、補助巻線に電流を流さない場合と比較して、主巻線の電流がコアに生成できる磁束の最大値を大きくすることができる。よって、補助巻線に電流を流さない場合と比較して、主巻線に流せる飽和電流を大きくすることができる。したがって、本発明の一態様に係るインダクタ装置は、主巻線に流れる電流の向きによらず、主巻線の飽和電流を大きくとることができる。別の観点からいえば、補助巻線に所定の電流を流すことで、主巻線がコアに形成する磁束のダイナミックレンジを広げることができる。このため、コアの断面積を小さくしたとしても、補助巻線に電流を流さない場合と同じ飽和電流を維持することができる。このように、飽和電流をある一定値にしたまま、コアの断面積を小さくすることができるので、コアを小型化することができる。そのため、コアを備えるインダクタ装置を小型化することができる。   Therefore, in the inductor device according to one aspect of the present invention, the magnetic flux in the opposite direction to the direction of the magnetic flux generated in the core by the current in the main winding is independent of the direction of the current flowing in the main winding. Generated by the current. Therefore, part of the magnetic flux generated in the core by the current of the main winding is canceled out by the magnetic flux generated in the core of the auxiliary winding. The maximum value of the magnetic flux that can be generated in the core can be increased. Therefore, the saturation current that can be passed through the main winding can be increased as compared with the case where no current is passed through the auxiliary winding. Therefore, the inductor device according to one embodiment of the present invention can increase the saturation current of the main winding regardless of the direction of the current flowing through the main winding. From another point of view, the dynamic range of the magnetic flux formed in the core by the main winding can be expanded by passing a predetermined current through the auxiliary winding. For this reason, even if the cross-sectional area of the core is reduced, it is possible to maintain the same saturation current as when no current is passed through the auxiliary winding. As described above, since the cross-sectional area of the core can be reduced while keeping the saturation current at a certain value, the core can be reduced in size. Therefore, the inductor device including the core can be reduced in size.

また、本発明の一態様に係る電源装置は、主巻線に流れる電流の向きによらず、主巻線の電流がコアに生成する磁束の方向に対して、反対方向の磁束が補助巻線の電流により生成される。そのため、主巻線の電流がコアに生成する磁束が一部、補助巻線の電流がコアに生成する磁束によって打ち消されるため、補助巻線に電流を流さない場合と比較して、主巻線の電流がコアに生成できる磁束の最大値を大きくすることができる。よって、補助巻線に電流を流さない場合と比較して、主巻線に流せる飽和電流を大きくすることができる。したがって、本発明の一態様に係る電源装置は、主巻線に流れる電流の向きによらず、主巻線の飽和電流を大きくとることができる。別の観点からいえば、補助巻線に所定の電流を流すことで、主巻線がコアに形成する磁束のダイナミックレンジを広げることができる。このため、コアの断面積を小さくしたとしても、補助巻線に電流を流さない場合と同じ飽和電流を維持することができる。このように、飽和電流をある一定値にしたまま、コアの断面積を小さくすることができるので、コアを小型化することができる。そのため、コアを備える電源装置を小型化することができる。   In the power supply device according to one embodiment of the present invention, the magnetic flux in the direction opposite to the direction of the magnetic flux generated in the core by the current in the main winding is independent of the direction of the current flowing in the main winding. Generated by the current. Therefore, part of the magnetic flux generated in the core by the current of the main winding is canceled out by the magnetic flux generated in the core of the auxiliary winding. The maximum value of the magnetic flux that can be generated in the core can be increased. Therefore, the saturation current that can be passed through the main winding can be increased as compared with the case where no current is passed through the auxiliary winding. Therefore, the power supply device according to one embodiment of the present invention can increase the saturation current of the main winding regardless of the direction of the current flowing through the main winding. From another point of view, the dynamic range of the magnetic flux formed in the core by the main winding can be expanded by passing a predetermined current through the auxiliary winding. For this reason, even if the cross-sectional area of the core is reduced, it is possible to maintain the same saturation current as when no current is passed through the auxiliary winding. As described above, since the cross-sectional area of the core can be reduced while keeping the saturation current at a certain value, the core can be reduced in size. Therefore, a power supply device provided with a core can be reduced in size.

図1は、本発明の第1の実施形態に係るインダクタ装置1の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of an inductor device 1 according to the first embodiment of the present invention. 図2(A)は、主巻線L1に流れる電流の向きが図1の矢印A1のときの、インダクタ装置1のインダクタンス値と主巻線L1に流れる電流I1との関係を示すグラフの一例である。図2(B)は、主巻線L1に流れる電流の向きが図1の矢印A1のときの、コアCOの磁束密度Bと磁界Hとの関係を示すグラフの一例である。FIG. 2A is an example of a graph showing the relationship between the inductance value of the inductor device 1 and the current I1 flowing through the main winding L1 when the direction of the current flowing through the main winding L1 is the arrow A1 in FIG. is there. FIG. 2B is an example of a graph showing the relationship between the magnetic flux density B of the core CO and the magnetic field H when the direction of the current flowing through the main winding L1 is the arrow A1 in FIG. 図3(A)は、主巻線L1に流れる電流の向きが図1の矢印A1と逆向きのときの、インダクタ装置1のインダクタンス値と主巻線L1に流れる電流I1との関係を示すグラフの一例である。図3(B)は、主巻線L1に流れる電流の向きが図1の矢印A1と逆向きのときの、コアCOの磁束密度Bと磁界Hとの関係を示すグラフの一例である。FIG. 3A is a graph showing the relationship between the inductance value of the inductor device 1 and the current I1 flowing through the main winding L1 when the direction of the current flowing through the main winding L1 is opposite to the arrow A1 in FIG. It is an example. FIG. 3B is an example of a graph showing the relationship between the magnetic flux density B of the core CO and the magnetic field H when the direction of the current flowing through the main winding L1 is opposite to the arrow A1 in FIG. 図4は、本発明の第2の実施形態に係る電源装置10の構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of the configuration of the power supply device 10 according to the second embodiment of the present invention. 図5は、本発明の第3の実施形態に係る電源装置20の構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of the configuration of the power supply device 20 according to the third embodiment of the present invention.

以下、本発明に係る各実施形態について図面に基づいて説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1に示すように、本発明の第1の実施形態に係るインダクタ装置1は、閉磁路のコアCOと、コアCOに巻かれている主巻線L1と、コアCOに巻かれている補助巻線L2と、補助巻線L2の一端と他端とが接続された駆動部DRVとを備える。本実施形態において、一例として、コアCOは、磁路上にギャップを有さない。これにより、磁束が周囲に漏れ出すことを防ぐことができるので、漏れ磁束に起因するノイズを周囲のデバイスに生じさせないようにすることができる。
(First embodiment)
As shown in FIG. 1, the inductor device 1 according to the first embodiment of the present invention includes a closed magnetic circuit core CO, a main winding L1 wound around the core CO, and an auxiliary coil wound around the core CO. A winding L2 and a drive unit DRV to which one end and the other end of the auxiliary winding L2 are connected are provided. In the present embodiment, as an example, the core CO does not have a gap on the magnetic path. Thereby, since it is possible to prevent the magnetic flux from leaking out to the surroundings, it is possible to prevent noise caused by the leakage magnetic flux from being generated in the surrounding devices.

主巻線L1に矢印A1の向きの電流が流れると、コアCOの内部に矢印Φ1の向きの磁束が形成される。駆動部DRVは、コアCOの内部に矢印Φ1の向きとは反対に向きである矢印Φ2の向きに磁束を形成するように、補助巻線L2に矢印A2の向きの電流を供給する。このように、駆動部DRVは、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成するように、補助巻線L2に電流を流す。その際、駆動部DRVは、補助巻線L2に所定の大きさの電流を流す。ここで、所定の大きさは、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさ以下である。より好ましくは、所定の大きさは、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさである。   When a current in the direction of arrow A1 flows through the main winding L1, a magnetic flux in the direction of arrow Φ1 is formed inside the core CO. The drive unit DRV supplies a current in the direction of the arrow A2 to the auxiliary winding L2 so that a magnetic flux is formed in the core CO in the direction of the arrow Φ2 that is opposite to the direction of the arrow Φ1. In this way, the drive unit DRV causes a current to flow through the auxiliary winding L2 such that the current flowing through the main winding L1 generates a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core CO. At that time, the drive unit DRV causes a current of a predetermined magnitude to flow through the auxiliary winding L2. Here, the predetermined magnitude is equal to or less than the magnitude of the current flowing through the main winding L1 when the saturation magnetic flux density is generated in the core CO when no current flows through the auxiliary winding L2. More preferably, the predetermined magnitude is the magnitude of the current that flows in the main winding L1 when a saturation magnetic flux density is generated in the core CO when no current flows in the auxiliary winding L2.

続いて、本実施形態において、インダクタンス値Lと主巻線L1に流れる電流I1との関係と、コアCOの磁束密度Bと磁界Hとの関係の一例について説明する。   Subsequently, in this embodiment, an example of the relationship between the inductance value L and the current I1 flowing through the main winding L1 and the relationship between the magnetic flux density B of the core CO and the magnetic field H will be described.

図2(A)に示すように、主巻線L1に流れる電流I1が0から飽和電流Imaxまでの範囲で一定のインダクタンス値を示す。ここで、飽和電流は、一定のインダクタを維持できる最大の電流である。   As shown in FIG. 2A, the current I1 flowing through the main winding L1 exhibits a constant inductance value in the range from 0 to the saturation current Imax. Here, the saturation current is the maximum current that can maintain a constant inductor.

一例として、補助巻線L2には、予め所定の電流が流れており、補助巻線L2の周りに−H0の磁界が発生することを前提とする。図2(B)に示すように、主巻線L1に流れる電流I1が0の場合、点P1に示すように、磁界の値は−H0で、磁束密度は−B0である。主巻線L1に流れる電流I1がImaxの場合、点P2に示すように、磁界の値は+H1で、磁束密度は+B1である。   As an example, it is assumed that a predetermined current flows in advance in the auxiliary winding L2, and a magnetic field of −H0 is generated around the auxiliary winding L2. As shown in FIG. 2B, when the current I1 flowing through the main winding L1 is 0, the value of the magnetic field is −H0 and the magnetic flux density is −B0, as indicated by a point P1. When the current I1 flowing through the main winding L1 is Imax, the value of the magnetic field is + H1 and the magnetic flux density is + B1, as indicated by a point P2.

これにより、図2(B)に示すように、インダクタ装置1の磁束密度のダイナミックレンジΔB1(=B1+B0)は、補助巻線L2に電流を流さない場合のインダクタ装置1の磁束密度のダイナミックレンジΔB0(=B1)より大きい。よって、主巻線L1に流れる電流の向きが図1の矢印A1の場合に、補助巻線L2に所定の電流を流すことで、補助巻線L2に電流を流さない場合よりも、磁束密度のダイナミックレンジを大きくすることができる。それに伴い、補助巻線L2に所定の電流を流すことで、補助巻線L2に電流を流さない場合よりも、飽和電流Imaxを大きくすることができる。   Thereby, as shown in FIG. 2B, the dynamic range ΔB1 (= B1 + B0) of the magnetic flux density of the inductor device 1 is the dynamic range ΔB0 of the magnetic flux density of the inductor device 1 when no current is passed through the auxiliary winding L2. Greater than (= B1). Therefore, when the direction of the current flowing through the main winding L1 is the arrow A1 in FIG. 1, by passing a predetermined current through the auxiliary winding L2, the magnetic flux density is higher than when no current is passed through the auxiliary winding L2. The dynamic range can be increased. Accordingly, by flowing a predetermined current through the auxiliary winding L2, the saturation current Imax can be made larger than when no current is passed through the auxiliary winding L2.

図3(A)に示すように、主巻線L1に流れる電流I1が飽和電流Iminから0までの範囲で一定のインダクタンス値を示す。   As shown in FIG. 3A, the current I1 flowing through the main winding L1 exhibits a constant inductance value in the range from the saturation current Imin to 0.

一例として、補助巻線L2には、予め所定の電流が流れており、補助巻線L2の周りに+H0の磁界が発生することを前提とする。図3(B)に示すように、主巻線L1に流れる電流I1が0の場合、点P3に示すように、磁界の値は+H0で、磁束密度は+B0である。主巻線L1に流れる電流I1がIminの場合、点P4に示すように、磁界の値は−H1で、磁束密度は−B1である。   As an example, it is assumed that a predetermined current flows through the auxiliary winding L2 in advance, and a magnetic field of + H0 is generated around the auxiliary winding L2. As shown in FIG. 3B, when the current I1 flowing through the main winding L1 is 0, the magnetic field value is + H0 and the magnetic flux density is + B0, as indicated by a point P3. When the current I1 flowing through the main winding L1 is Imin, the value of the magnetic field is −H1 and the magnetic flux density is −B1, as indicated by a point P4.

これにより、図3(B)に示すように、インダクタ装置1の磁束密度のダイナミックレンジΔB2(=B0+B1)は、補助巻線L2に電流を流さない場合のインダクタ装置1の磁束密度のダイナミックレンジΔB0(=B1)より大きい。よって、主巻線L1に流れる電流の向きが図1の矢印A1と逆向きの場合に、補助巻線L2に所定の電流を流すことで、補助巻線L2に電流を流さない場合よりも、磁束密度のダイナミックレンジを大きくすることができる。それに伴い、補助巻線L2に所定の電流を流すことで、補助巻線L2に電流を流さない場合よりも、飽和電流Imaxを大きくすることができる。   Thereby, as shown in FIG. 3B, the dynamic range ΔB2 (= B0 + B1) of the magnetic flux density of the inductor device 1 is the dynamic range ΔB0 of the magnetic flux density of the inductor device 1 when no current is passed through the auxiliary winding L2. Greater than (= B1). Therefore, when the direction of the current flowing through the main winding L1 is opposite to the direction of the arrow A1 in FIG. 1, by flowing a predetermined current through the auxiliary winding L2, compared to when no current flows through the auxiliary winding L2, The dynamic range of the magnetic flux density can be increased. Accordingly, by flowing a predetermined current through the auxiliary winding L2, the saturation current Imax can be made larger than when no current is passed through the auxiliary winding L2.

このように、主巻線L1に流れる電流の向きが図1の矢印A1の向きであっても、矢印A1の向きと逆向きであっても、飽和電流Imaxを大きくすることができる。すなわち、主巻線L1に流れる電流の向きによらず、飽和電流Imaxを大きくすることができる。   Thus, the saturation current Imax can be increased regardless of whether the direction of the current flowing through the main winding L1 is the direction of the arrow A1 in FIG. 1 or the direction opposite to the direction of the arrow A1. That is, the saturation current Imax can be increased regardless of the direction of the current flowing through the main winding L1.

以上、第1の実施形態におけるインダクタ装置1は、閉磁路のコアCOと、コアCOに巻かれている主巻線L1と、コアCOに巻かれている補助巻線L2と、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成するように、補助巻線L2に電流を流す駆動部DRVと、を備える。   As described above, the inductor device 1 according to the first embodiment includes the core CO of a closed magnetic circuit, the main winding L1 wound around the core CO, the auxiliary winding L2 wound around the core CO, and the main winding L1. And a drive unit DRV that causes a current to flow through the auxiliary winding L <b> 2 such that a current flowing through the auxiliary coil L <b> 2 generates a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core CO.

これにより、主巻線L1に流れる電流の向きによらず、主巻線L1の電流がコアに生成する磁束の方向に対して、反対方向の磁束が補助巻線L2の電流により生成される。そのため、主巻線L1の電流がコアCOに生成する磁束が一部、補助巻線の電流がコアに生成する磁束によって打ち消されるため、補助巻線L2に電流を流さない場合と比較して、主巻線L1の電流がコアに生成できる磁束の最大値を大きくすることができる。よって、補助巻線に電流を流さない場合と比較して、主巻線に流せる飽和電流を大きくすることができる。したがって、本実施形態に係るインダクタ装置は、主巻線L1に流れる電流の向きによらず、主巻線L1の飽和電流を大きくとることができる。   Thereby, irrespective of the direction of the current flowing through the main winding L1, a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core by the current of the main winding L1 is generated by the current of the auxiliary winding L2. Therefore, a part of the magnetic flux generated in the core CO by the current of the main winding L1 is canceled out by the magnetic flux generated in the core by the magnetic flux generated in the core, so that compared to the case where no current is passed through the auxiliary winding L2, The maximum value of the magnetic flux that can be generated in the core by the current of the main winding L1 can be increased. Therefore, the saturation current that can be passed through the main winding can be increased as compared with the case where no current is passed through the auxiliary winding. Therefore, the inductor device according to the present embodiment can increase the saturation current of the main winding L1 regardless of the direction of the current flowing through the main winding L1.

別の観点からいえば、補助巻線L2に所定の電流を流すことで、主巻線L1がコアCOに形成する磁束のダイナミックレンジを広げることができる。このため、コアCOの断面積を小さくしたとしても、補助巻線L2に電流を流さない場合と同じ飽和電流を維持することができる。このように、飽和電流をある一定値にしたまま、コアCOの断面積を小さくすることができるので、コアCOを小型化することができる。そのため、従来よりもインダクタ装置1を小型化することができる。   From another viewpoint, the dynamic range of the magnetic flux formed by the main winding L1 in the core CO can be expanded by flowing a predetermined current through the auxiliary winding L2. For this reason, even if the cross-sectional area of the core CO is reduced, the same saturation current as when no current is passed through the auxiliary winding L2 can be maintained. Thus, since the cross-sectional area of the core CO can be reduced while keeping the saturation current at a certain constant value, the core CO can be reduced in size. Therefore, the inductor device 1 can be made smaller than before.

(第2の実施形態)
続いて、第2の実施形態の電源装置10について説明する。図4に示すように、電源装置10は、インダクタ装置2と、インダクタ装置2と電気配線で接続された制御部CONとを備える。
(Second Embodiment)
Then, the power supply device 10 of 2nd Embodiment is demonstrated. As shown in FIG. 4, the power supply device 10 includes an inductor device 2 and a control unit CON connected to the inductor device 2 by electric wiring.

ここで、インダクタ装置2は、閉磁路のコアCOを備える。インダクタ装置2は、コアCOに巻かれ、一端がNMOSトランジスタNM1のソースに、他端が第1主力端子TOUT1に接続された主巻線L1を更に備える。インダクタ装置2は、更にコアCOに巻かれ、両端が駆動部DRVに接続されている補助巻線L2と、制御部CONと電気配線で接続されている駆動部DRVとを備える。   Here, the inductor device 2 includes a core CO having a closed magnetic circuit. The inductor device 2 further includes a main winding L1 wound around the core CO and having one end connected to the source of the NMOS transistor NM1 and the other end connected to the first main power terminal TOUT1. The inductor device 2 further includes an auxiliary winding L2 wound around the core CO and having both ends connected to the drive unit DRV, and a drive unit DRV connected to the control unit CON by electrical wiring.

第1の実施形態と同様に、一例として、コアCOは、磁路上にギャップを有さない。これにより、磁束が周囲に漏れ出すことを防ぐことができるので、漏れ磁束に起因するノイズを周囲のデバイスに生じさせないようにすることができる。   Similar to the first embodiment, as an example, the core CO does not have a gap on the magnetic path. Thereby, since it is possible to prevent the magnetic flux from leaking out to the surroundings, it is possible to prevent noise caused by the leakage magnetic flux from being generated in the surrounding devices.

電源装置10は、更に、ゲートが制御部CONに接続され、ドレインが電源陽極端子THに接続され、ソースが主巻線L1に接続されたNMOSトランジスタNM1を備える。   The power supply device 10 further includes an NMOS transistor NM1 having a gate connected to the control unit CON, a drain connected to the power supply anode terminal TH, and a source connected to the main winding L1.

電源装置10は、更に、ゲートが制御部CONに接続され、ドレインがNMOSトランジスタNM1のソースに接続され、ソースが電源陰極端子TLと第2出力端子TOUT2に接続されたNMOSトランジスタNM2を備える。   The power supply device 10 further includes an NMOS transistor NM2 having a gate connected to the control unit CON, a drain connected to the source of the NMOS transistor NM1, and a source connected to the power supply cathode terminal TL and the second output terminal TOUT2.

電源装置10は、更に、陽極が電源陽極端子THに接続され、陰極が電源陰極端子TLに接続された電源BATを備える。   The power supply device 10 further includes a power supply BAT having an anode connected to the power supply anode terminal TH and a cathode connected to the power supply cathode terminal TL.

電源装置10は、更に、電源BATの陽極とNMOSトランジスタNM1のドレインとに接続された電源陽極端子THを備える。   The power supply device 10 further includes a power supply anode terminal TH connected to the anode of the power supply BAT and the drain of the NMOS transistor NM1.

電源装置10は、更に、電源BATの陰極と、NMOSトランジスタNM2のソースと、第2出力端子TOUT2とに接続された電源陰極端子TLを備える。   The power supply device 10 further includes a power supply cathode terminal TL connected to the cathode of the power supply BAT, the source of the NMOS transistor NM2, and the second output terminal TOUT2.

電源装置10は、更に、コンデンサCの一端が第1出力端子TOUT1に接続され、コンデンサCの他端が第2出力端子TOUT2に接続されたコンデンサCを備える。   The power supply device 10 further includes a capacitor C in which one end of the capacitor C is connected to the first output terminal TOUT1, and the other end of the capacitor C is connected to the second output terminal TOUT2.

電源装置10は、更に、主巻線L1の他端とコンデンサCの一端に接続された第1出力端子TOUT1を備える。   The power supply device 10 further includes a first output terminal TOUT1 connected to the other end of the main winding L1 and one end of the capacitor C.

電源装置10は、更に、電源陽極端子THと、NMOSトランジスタNM2のソースとコンデンサCの他端とに接続された第2出力端子TOUT2を備える。   The power supply device 10 further includes a power supply anode terminal TH, and a second output terminal TOUT2 connected to the source of the NMOS transistor NM2 and the other end of the capacitor C.

制御部CONは、主巻線L1に流れる電流の向きを制御し、上記電流の向きに応じた指令を駆動部DRVへ出力する。具体的には、例えば、制御部CONは、主巻線L1に流れる電流の向きを、NMOSトランジスタNM1のソースからコンデンサCの一端への向き(図4の矢印A3の向き)に制御する場合、正モードである旨の指令を駆動部DRVへ出力する。一方、例えば、制御部CONは、主巻線L1に流れる電流の向きを、コンデンサCの一端からNMOSトランジスタNM1のソースへの向き(図4の矢印A4の向き)に制御する場合、負モードである旨の指令を駆動部DRVへ出力する。   The controller CON controls the direction of the current flowing through the main winding L1, and outputs a command corresponding to the direction of the current to the drive unit DRV. Specifically, for example, when the control unit CON controls the direction of the current flowing through the main winding L1 to the direction from the source of the NMOS transistor NM1 to one end of the capacitor C (the direction of the arrow A3 in FIG. 4), A command indicating the normal mode is output to the drive unit DRV. On the other hand, for example, when the control unit CON controls the direction of the current flowing through the main winding L1 to the direction from one end of the capacitor C to the source of the NMOS transistor NM1 (the direction of the arrow A4 in FIG. 4), the control unit CON is in the negative mode. A command to that effect is output to the drive unit DRV.

駆動部DRVは、制御部CONが出力した指令に基づいて、補助巻線L2に所定の大きさの電流を流す。ここで、所定の大きさは、第1の実施形態と同様に、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさ以下である。より好ましくは、所定の大きさは、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさである。   The drive unit DRV causes a current having a predetermined magnitude to flow through the auxiliary winding L2 based on a command output from the control unit CON. Here, as in the first embodiment, the predetermined magnitude is the current flowing in the main winding L1 when the saturation magnetic flux density is generated in the core CO when no current flows in the auxiliary winding L2. It is below the size. More preferably, the predetermined magnitude is the magnitude of the current that flows in the main winding L1 when a saturation magnetic flux density is generated in the core CO when no current flows in the auxiliary winding L2.

具体的には、例えば、駆動部DRVは、制御部CONから正モードである旨の指令を受信した場合、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成する向き(例えば、図4の矢印A5の向き)に所定の大きさの電流を補助巻線L2に流す。一方、例えば、駆動部DRVは、制御部CONから負モードである旨の指令を受信した場合、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成する向き(例えば、図4の矢印A6の向き)に所定の大きさの電流を補助巻線L2に流す。これにより、補助巻線L2に流れる電流は、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束をコアCOに生成する。その結果、主巻線L1に流れる電流がコアCOに生成する磁束密度の最大値を大きくすることができるので、主巻線L1の飽和電流を大きくすることができる。   Specifically, for example, when the drive unit DRV receives a command indicating that it is in the positive mode from the control unit CON, the current flowing through the main winding L1 is in a direction opposite to the direction of the magnetic flux generated in the core CO. A current having a predetermined magnitude is supplied to the auxiliary winding L2 in the direction in which the magnetic flux is generated (for example, the direction of the arrow A5 in FIG. 4). On the other hand, for example, when the driving unit DRV receives an instruction from the control unit CON indicating that it is in the negative mode, the driving unit DRV generates a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core CO by the current flowing through the main winding L1. A current having a predetermined magnitude is caused to flow through the auxiliary winding L2 in a direction (for example, a direction indicated by an arrow A6 in FIG. 4). As a result, the current flowing in the auxiliary winding L2 generates a magnetic flux in the core CO in a direction opposite to the direction of the magnetic flux generated in the core CO by the current flowing in the main winding L1. As a result, since the maximum value of the magnetic flux density generated in the core CO by the current flowing through the main winding L1 can be increased, the saturation current of the main winding L1 can be increased.

制御部CONによる主巻線L1に流れる電流の向きの制御の詳細について以下、説明する。電源BATからコンデンサCに電圧を供給する正モードの場合、制御部CONは、PWM(Pulse Width Modulation)信号をNMOSトランジスタNM1のゲートへ供給する。これにより、NMOSトランジスタNM1のオンとオフがPWM信号のデューティーサイクルに応じて切り替わる。   Details of the control of the direction of the current flowing through the main winding L1 by the control unit CON will be described below. In the positive mode in which voltage is supplied from the power supply BAT to the capacitor C, the control unit CON supplies a PWM (Pulse Width Modulation) signal to the gate of the NMOS transistor NM1. As a result, the NMOS transistor NM1 is turned on and off according to the duty cycle of the PWM signal.

また、正モードの場合、制御部CONは、ローレベルの信号をNMOSトランジスタNM2のゲートへ供給する。これにより、NMOSトランジスタNM2はオフする。なお、制御部CONは、逆PWM信号をNMOSトランジスタNM1のゲートへ供給してもよい。   In the positive mode, the control unit CON supplies a low level signal to the gate of the NMOS transistor NM2. As a result, the NMOS transistor NM2 is turned off. Note that the control unit CON may supply the inverse PWM signal to the gate of the NMOS transistor NM1.

NMOSトランジスタNM1がオンの場合、電源BATからNMOSトランジスタNM1と主巻線L1を介して、コンデンサCに電流が供給される。したがって、正モードでNMOSトランジスタNM1がオンの場合に、主巻線L1に流れる電流の向きは、NMOSトランジスタNM1のソースからコンデンサCの一端への向き(図4の矢印A3の向き)である。このようにして、正モードの場合に、電源BATは、主巻線L1に電流または電圧を供給する。   When the NMOS transistor NM1 is on, a current is supplied from the power source BAT to the capacitor C through the NMOS transistor NM1 and the main winding L1. Therefore, when the NMOS transistor NM1 is on in the positive mode, the direction of the current flowing through the main winding L1 is the direction from the source of the NMOS transistor NM1 to one end of the capacitor C (the direction of the arrow A3 in FIG. 4). In this way, in the positive mode, the power source BAT supplies a current or voltage to the main winding L1.

一方、コンデンサCから電源BATに電圧を供給する負モードの場合、制御部CONは、ローレベルの信号をNMOSトランジスタNM1のゲートへ供給する。これにより、NMOSトランジスタNM1がオフする。なお、制御部CONは、逆PWM信号をNMOSトランジスタNM1のゲートへ供給してもよい。   On the other hand, in the negative mode in which a voltage is supplied from the capacitor C to the power supply BAT, the control unit CON supplies a low level signal to the gate of the NMOS transistor NM1. As a result, the NMOS transistor NM1 is turned off. Note that the control unit CON may supply the inverse PWM signal to the gate of the NMOS transistor NM1.

また、負モードの場合、制御部CONは、PWM信号をNMOSトランジスタNM2のゲートへ供給する。これにより、NMOSトランジスタNM2のオンとオフがPWM信号のデューティーサイクルに応じて切り替わる。   In the negative mode, the control unit CON supplies the PWM signal to the gate of the NMOS transistor NM2. As a result, the NMOS transistor NM2 is turned on and off according to the duty cycle of the PWM signal.

NMOSトランジスタNM2がオフの場合、コンデンサCの一端から主巻線L1とNMOSトランジスタNM1とを介して、電源BATに電流が供給される。NMOSトランジスタNM2がオンの場合、コンデンサCの一端から主巻線L1を介して、NMOSトランジスタNM2に電流が供給される。したがって、負モードの場合、主巻線L1に流れる電流の向きは、コンデンサCの一端からNMOSトランジスタNM1のソースへの向き(図4の矢印A4の向き)である。このようにして、負モードの場合に、コンデンサCは、主巻線L1に電流または電圧を供給することができる。   When the NMOS transistor NM2 is off, a current is supplied from one end of the capacitor C to the power supply BAT via the main winding L1 and the NMOS transistor NM1. When the NMOS transistor NM2 is on, a current is supplied from one end of the capacitor C to the NMOS transistor NM2 via the main winding L1. Therefore, in the negative mode, the direction of the current flowing through the main winding L1 is the direction from one end of the capacitor C to the source of the NMOS transistor NM1 (the direction of the arrow A4 in FIG. 4). In this way, in the negative mode, the capacitor C can supply current or voltage to the main winding L1.

以上、第2の実施形態において、制御部CONは、主巻線L1に流れる電流の向きを制御し、上記電流の向きに応じた指令を駆動部DRVへ出力する。駆動部DRVは、制御部CONが出力した指令に基づいて補助巻線L2に電流を流す。   As described above, in the second embodiment, the control unit CON controls the direction of the current flowing through the main winding L1, and outputs a command corresponding to the current direction to the drive unit DRV. The drive unit DRV causes a current to flow through the auxiliary winding L2 based on a command output from the control unit CON.

これにより、駆動部DRVは、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成するように、補助巻線L2に電流を流すことができる。その結果、主巻線L1に流れる電流がコアCOに生成する磁束密度の最大値を大きくすることができるので、主巻線L1の飽和電流を大きくすることができる。   Thereby, the drive part DRV can flow an electric current through the auxiliary winding L2 such that the electric current flowing through the main winding L1 generates a magnetic flux in the opposite direction to the direction of the magnetic flux generated in the core CO. As a result, since the maximum value of the magnetic flux density generated in the core CO by the current flowing through the main winding L1 can be increased, the saturation current of the main winding L1 can be increased.

(第3の実施形態)
続いて、第3の実施形態の電源装置20について説明する。図5に示すように、第3の実施形態における電源装置20の構成は、第2の実施形態における電源装置10の構成に対して、一端がNMOSトランジスタNM1のソースに他端が主巻線L1の一端に接続され、かつ駆動部DRVと電気配線で接続された電流検出部SCが追加され、制御部CONと駆動部DRVの間の電気配線が削除され、インダクタ装置2がインダクタ装置3に変更されたものになっている。なお、図4と共通する要素には同一の符号を付し、その具体的な説明を省略する。
(Third embodiment)
Next, the power supply device 20 according to the third embodiment will be described. As shown in FIG. 5, the configuration of the power supply device 20 in the third embodiment is different from the configuration of the power supply device 10 in the second embodiment in that one end is the source of the NMOS transistor NM1 and the other end is the main winding L1. The current detection unit SC connected to one end of the drive unit and connected to the drive unit DRV by electrical wiring is added, the electrical wiring between the control unit CON and the drive unit DRV is deleted, and the inductor device 2 is changed to the inductor device 3 It has been done. In addition, the same code | symbol is attached | subjected to the element which is common in FIG. 4, and the specific description is abbreviate | omitted.

電流検出部SCは、主巻線L1に流れる電流を検出し、検出した電流を示す電流信号を駆動部DRVへ供給する。   The current detection unit SC detects a current flowing through the main winding L1, and supplies a current signal indicating the detected current to the drive unit DRV.

駆動部DRVは、電流検出部SCが検出した電流の向きに応じた向きに、所定の大きさの電流を補助巻線L2に流す。ここで、所定の大きさは、第1の実施形態と同様に、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさ以下である。より好ましくは、所定の大きさは、補助巻線L2に電流が流れていない場合に、コアCOに飽和磁束密度を生成するときに主巻線L1に流れる電流の大きさである。   The drive unit DRV causes a current of a predetermined magnitude to flow through the auxiliary winding L2 in a direction corresponding to the direction of the current detected by the current detection unit SC. Here, as in the first embodiment, the predetermined magnitude is the current flowing in the main winding L1 when the saturation magnetic flux density is generated in the core CO when no current flows in the auxiliary winding L2. It is below the size. More preferably, the predetermined magnitude is the magnitude of the current that flows in the main winding L1 when a saturation magnetic flux density is generated in the core CO when no current flows in the auxiliary winding L2.

具体的には、例えば、電流検出部SCから入力された電流信号が、NMOSトランジスタNM1のソースからコンデンサCの一端への向き(図5の矢印A7の向き)の電流を示す場合、駆動部DRVは、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成する向き(例えば、図5の矢印A9の向き)に所定の大きさの電流を補助巻線L2に流す。一方、例えば、電流検出部SCから入力された電流信号が、コンデンサCの一端からNMOSトランジスタNM1のソースへの向き(図5の矢印A8の向き)の電流を示す場合、駆動部DRVは、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成する向き(例えば、図5の矢印A10の向き)に所定の大きさの電流を補助巻線L2に流す。   Specifically, for example, when the current signal input from the current detection unit SC indicates a current in the direction from the source of the NMOS transistor NM1 to one end of the capacitor C (the direction of the arrow A7 in FIG. 5), the drive unit DRV Auxiliary winding of a current of a predetermined magnitude in a direction in which the current flowing through the main winding L1 generates a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core CO (for example, the direction of arrow A9 in FIG. 5). Flow on line L2. On the other hand, for example, when the current signal input from the current detection unit SC indicates the current in the direction from the one end of the capacitor C to the source of the NMOS transistor NM1 (direction of arrow A8 in FIG. 5), the drive unit DRV A current having a predetermined magnitude is applied to the auxiliary winding L2 in a direction in which the current flowing through the winding L1 generates a magnetic flux in a direction opposite to the direction of the magnetic flux generated in the core CO (for example, in the direction of arrow A10 in FIG. 5). Shed.

これにより、主巻線L1に流れる電流がコアCOに生成する磁束の向きと、補助巻線L2に流れる電流がコアCOに生成する磁束の向きが逆になる。その結果、主巻線L1に流れる電流がコアCOに生成する磁束密度の最大値を大きくすることができるので、主巻線L1の飽和電流を大きくすることができる。   As a result, the direction of the magnetic flux generated in the core CO by the current flowing in the main winding L1 and the direction of the magnetic flux generated in the core CO by the current flowing in the auxiliary winding L2 are reversed. As a result, since the maximum value of the magnetic flux density generated in the core CO by the current flowing through the main winding L1 can be increased, the saturation current of the main winding L1 can be increased.

以上、第3の実施形態において、電流検出部SCは、主巻線L1に流れる電流を検出する。駆動部DRVは、電流検出部SCが検出した電流の向きに応じた向きに、補助巻線L2に電流を流す。   As described above, in the third embodiment, the current detection unit SC detects the current flowing through the main winding L1. The drive unit DRV causes a current to flow through the auxiliary winding L2 in a direction corresponding to the direction of the current detected by the current detection unit SC.

これにより、駆動部DRVは、主巻線L1に流れる電流がコアCOに生成する磁束の方向に対して反対方向の磁束を生成するように、補助巻線L2に電流を流すことができる。その結果、主巻線L1に流れる電流がコアCOに生成する磁束密度の最大値を大きくすることができるので、主巻線L1の飽和電流を大きくすることができる。   Thereby, the drive part DRV can flow an electric current through the auxiliary winding L2 such that the electric current flowing through the main winding L1 generates a magnetic flux in the opposite direction to the direction of the magnetic flux generated in the core CO. As a result, since the maximum value of the magnetic flux density generated in the core CO by the current flowing through the main winding L1 can be increased, the saturation current of the main winding L1 can be increased.

なお、実施形態は例示であり、発明の範囲はそれらに限定されない。   In addition, embodiment is an illustration and the range of invention is not limited to them.

1、2、3 インダクタ装置
10、20 電源装置
CON 制御部
DRV 駆動部
SC 電流検出部
1, 2, 3 Inductor device 10, 20 Power supply device CON control unit DRV drive unit SC current detection unit

Claims (6)

閉磁路のコアと、
前記コアに巻かれている主巻線と、
前記コアに巻かれている補助巻線と、
前記主巻線に流れる電流が前記コアに生成する磁束の方向に対して反対方向の磁束を生成するように、前記補助巻線に電流を流す駆動部と、
を備え、
前記駆動部は、前記補助巻線に所定の大きさの電流を流し、
前記所定の大きさは、前記補助巻線に電流が流れていない場合に、前記コアに飽和磁束密度を生成するときに前記主巻線に流れる電流の大きさであるインダクタ装置。
A closed magnetic core,
A main winding wound around the core;
An auxiliary winding wound around the core;
A drive unit for causing a current to flow in the auxiliary winding such that a current flowing in the main winding generates a magnetic flux in a direction opposite to a direction of a magnetic flux generated in the core;
Bei to give a,
The drive unit sends a current of a predetermined magnitude to the auxiliary winding,
The inductor device, wherein the predetermined magnitude is a magnitude of a current that flows through the main winding when a saturation magnetic flux density is generated in the core when no current flows through the auxiliary winding .
前記コアは、磁路上にギャップを有さない請求項に記載のインダクタ装置。 The inductor device according to claim 1 , wherein the core does not have a gap on a magnetic path. 閉磁路のコアと、
前記コアに巻かれている主巻線と、
前記コアに巻かれている補助巻線と、
前記主巻線に流れる電流が前記コアに生成する磁束の方向に対して反対方向の磁束を生成するように、前記補助巻線に電流を流す駆動部と、
前記主巻線に電流または電圧を供給する電源と、
を備え
前記駆動部は、前記補助巻線に所定の大きさの電流を流し、
前記所定の大きさは、前記補助巻線に電流が流れていない場合に、前記コアに飽和磁束密度を生成するときに前記主巻線に流れる電流の大きさである電源装置。
A closed magnetic core,
A main winding wound around the core;
An auxiliary winding wound around the core;
A drive unit for causing a current to flow in the auxiliary winding such that a current flowing in the main winding generates a magnetic flux in a direction opposite to a direction of a magnetic flux generated in the core;
A power supply for supplying current or voltage to the main winding;
Equipped with a,
The drive unit sends a current of a predetermined magnitude to the auxiliary winding,
The power supply apparatus according to claim 1, wherein the predetermined magnitude is a magnitude of a current flowing through the main winding when a saturation magnetic flux density is generated in the core when no current flows through the auxiliary winding .
前記主巻線に流れる電流の向きを制御し、前記電流の向きに応じた指令を前記駆動部へ出力する制御部を更に備え、
前記駆動部は、前記制御部が出力した指令に基づいて前記補助巻線に電流を流す
請求項に記載の電源装置。
Further comprising a control unit for controlling the direction of the current flowing through the main winding and outputting a command corresponding to the direction of the current to the drive unit;
The power supply device according to claim 3 , wherein the drive unit causes a current to flow through the auxiliary winding based on a command output by the control unit.
前記主巻線に流れる電流を検出する電流検出部を更に備え、
前記駆動部は、前記電流検出部が検出した電流の向きに応じた向きに、前記補助巻線に電流を流す
請求項に記載の電源装置。
A current detection unit for detecting a current flowing through the main winding;
The power supply device according to claim 3 , wherein the drive unit causes a current to flow through the auxiliary winding in a direction corresponding to a direction of the current detected by the current detection unit.
前記コアは、磁路上にギャップを有さない請求項3から5のいずれか一項に記載の電源装置。 The power supply device according to claim 3 , wherein the core does not have a gap on a magnetic path.
JP2013158045A 2013-07-30 2013-07-30 Inductor device and power supply device Active JP6219086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158045A JP6219086B2 (en) 2013-07-30 2013-07-30 Inductor device and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158045A JP6219086B2 (en) 2013-07-30 2013-07-30 Inductor device and power supply device

Publications (2)

Publication Number Publication Date
JP2015029015A JP2015029015A (en) 2015-02-12
JP6219086B2 true JP6219086B2 (en) 2017-10-25

Family

ID=52492567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158045A Active JP6219086B2 (en) 2013-07-30 2013-07-30 Inductor device and power supply device

Country Status (1)

Country Link
JP (1) JP6219086B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542487B2 (en) * 1974-05-27 1980-10-31
JPS56115510A (en) * 1980-02-19 1981-09-10 Nippon Gakki Seizo Kk Electric power source device
JPS5913313A (en) * 1982-07-13 1984-01-24 Mitsubishi Electric Corp Correction of d.c. field distortion in transformer
JPH04116811A (en) * 1990-09-06 1992-04-17 Toyota Autom Loom Works Ltd Inductor
JP2006114662A (en) * 2004-10-14 2006-04-27 Sumitomo Electric Ind Ltd Reactor and step-up/down converter
US20070115085A1 (en) * 2005-11-18 2007-05-24 Hamilton Sundstrand Corporation Direct current link inductor for power source filtration
JP2012256681A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Dc reactor

Also Published As

Publication number Publication date
JP2015029015A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP6219086B2 (en) Inductor device and power supply device
JP2015104116A (en) Switch device
JP2010092746A (en) Driving circuit for solenoid operation mechanism
JP2006217789A (en) Permanent magnet electric generator
WO2015125793A1 (en) Inrush current suppression circuit
US10305390B2 (en) Filter circuit for eliminating inrush current, DC coil control circuit, and electromagnetic contactor
JP5959459B2 (en) DC-DC converter
JP2007200978A (en) Solenoid driving method
JP2007181375A (en) High-voltage pulse generation circuit and pulse width changing method
JP2007185002A (en) Permanent magnet generator
JP4512855B2 (en) Magnetizer
JP6289832B2 (en) Inductor device and power supply device
JP2013090491A (en) Forward-flyback power supply circuit
JP2015133857A (en) High-voltage electric power unit
JP7199573B2 (en) Electromagnetic coil drive circuit
JP2015162537A (en) Solenoid apparatus
KR100667872B1 (en) Massage apparatus using a dc power
JP2014204486A (en) Power source device
JP7011358B1 (en) Pulse control device for inductor-based electromagnetic devices
JP5360427B2 (en) Power supply
JP2013070555A (en) Motor drive
JP4176090B2 (en) Voltage conversion circuit and power supply device
JP3415280B2 (en) Power supply
JP2008220138A (en) Permanent magnet generator
WO2012008575A1 (en) Method for driving an inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6219086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150