JP6216506B2 - Expandable styrene resin particles and method for producing the same, styrene resin foam molded article - Google Patents

Expandable styrene resin particles and method for producing the same, styrene resin foam molded article Download PDF

Info

Publication number
JP6216506B2
JP6216506B2 JP2012274069A JP2012274069A JP6216506B2 JP 6216506 B2 JP6216506 B2 JP 6216506B2 JP 2012274069 A JP2012274069 A JP 2012274069A JP 2012274069 A JP2012274069 A JP 2012274069A JP 6216506 B2 JP6216506 B2 JP 6216506B2
Authority
JP
Japan
Prior art keywords
styrene resin
resin particles
weight
parts
expandable styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274069A
Other languages
Japanese (ja)
Other versions
JP2014118474A (en
Inventor
矢野 義仁
義仁 矢野
丸橋 正太郎
正太郎 丸橋
大原 洋一
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012274069A priority Critical patent/JP6216506B2/en
Publication of JP2014118474A publication Critical patent/JP2014118474A/en
Application granted granted Critical
Publication of JP6216506B2 publication Critical patent/JP6216506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は発泡性スチレン系樹脂粒子とその製造方法、該発泡性スチレン系樹脂粒子を用いて得られる断熱材などに利用されるスチレン系樹脂発泡成形体に関するものである。   The present invention relates to an expandable styrene resin particle and a method for producing the same, and a styrene resin foam molded article used for a heat insulating material obtained by using the expandable styrene resin particle.

発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体は、軽量性、断熱性、緩衝性などのバランスに優れた発泡体として従来から食品容器箱、保冷箱、緩衝材、そして、住宅などの断熱材として広く利用されている。   Styrenic resin foam molded products obtained by using expandable styrene resin particles have been conventionally used as a food product box, a cold box, a cushioning material, and a foam having an excellent balance of light weight, heat insulation, buffering properties, and the like. It is widely used as a heat insulating material for houses.

近年、地球温暖化などの諸問題に関連し、住宅など建築物の断熱性能向上による省エネルギー化が志向されつつありスチレン系樹脂発泡成形体の需要拡大が期待されるとともに、さらなる断熱性能の向上について種々の検討がなされている。   In recent years, in connection with various problems such as global warming, energy saving has been aimed at by improving the heat insulation performance of buildings such as houses, and the demand for styrene resin foam molded products is expected to increase, and further improvement of heat insulation performance Various studies have been made.

上記発泡性スチレン系樹脂粒子は、スチレン系樹脂粒子に発泡剤を含浸させることで得られる。さらに発泡性スチレン系樹脂粒子を加熱してスチレン系樹脂発泡粒子を得るが、発泡剤を含浸させた直後に発泡させると、セルと呼ばれる気泡のサイズが大きくなり過ぎてしまったり、セルが生成されなかったりすることから、外観美麗な発泡粒子が得られず、型内成形ができない為、通常、室温にて5日以上放置する熟成期間が必要である。   The expandable styrene resin particles can be obtained by impregnating styrene resin particles with a foaming agent. Furthermore, the foamable styrene resin particles are heated to obtain styrene resin foam particles. However, if foaming is performed immediately after impregnating the foaming agent, the size of the cells called cells may become too large or cells may be generated. For this reason, foam particles having a beautiful appearance cannot be obtained, and in-mold molding cannot be performed. Therefore, an aging period of usually leaving at room temperature for 5 days or more is necessary.

スチレン系樹脂発泡成形体の断熱性能向上に関して、例えば、特許文献1には、処理により35g/l又はこれより小さい密度を有する発泡体をもたらすことができ、かつ均斉に分布されたグラファイト粉末を含有することを特徴とする、粒子状膨張性スチレン重合体が提案されている。グラファイト粉末を用いた際の問題点として難燃性の低下があり、これに対して、難燃化剤として、70重量%又はこれより多い臭素分を有する有機臭素化合物を含有する技術が提案されている。   Regarding the heat insulation performance improvement of the styrenic resin foam molded article, for example, Patent Document 1 can provide a foam having a density of 35 g / l or less by treatment, and contains a uniformly distributed graphite powder. A particulate expandable styrene polymer has been proposed. As a problem when using graphite powder, there is a decrease in flame retardancy. On the other hand, as a flame retardant, a technique containing an organic bromine compound having a bromine content of 70% by weight or more is proposed. ing.

また、特許文献2には、密度が10〜100Kg/m、独立気泡率が60% 以上、平均気泡径が20〜1000μ mで、黒鉛粉を含有するスチレン系樹脂発泡体であって、黒鉛粉のアスペクト比が5以上であることを特徴とするスチレン系樹脂発泡体が提案されている。 Patent Document 2 discloses a styrene resin foam having a density of 10 to 100 kg / m 3 , a closed cell ratio of 60% or more, an average cell diameter of 20 to 1000 μm, and containing graphite powder. A styrenic resin foam characterized by an aspect ratio of the powder of 5 or more has been proposed.

また、発泡性スチレン系樹脂粒子の熟成期間の短縮に関して、例えば、特許文献3には、直径0.1〜50μmの小孔が、発泡性スチレン系粒子の表面から中心に向かって50μmまでの表面領域において、1〜100個/mm存在し、且つ、表面から中心に向かって200μmを除く中心領域において5〜500個/mm存在し、表面領域の小孔数と中心領域の小孔数の比が1:5〜500の範囲であることを特徴とする、発泡性スチレン系樹脂粒子が提案されており、13℃において3日以内で熟成が完了する技術が提案されている。 Regarding shortening of the aging period of the expandable styrene resin particles, for example, Patent Document 3 discloses a surface having a small hole with a diameter of 0.1 to 50 μm from the surface of the expandable styrene resin particles to 50 μm toward the center. in the region, 1-100 / mm 2 exist, and 5 to 500 pieces in the central region except for 200μm toward the center from the surface / mm 2 exist, the small pore number of small holes number and the central region of the surface region Has a ratio of 1: 5 to 500, and expandable styrenic resin particles have been proposed. A technique for completing the ripening within 13 days at 13 ° C. has been proposed.

しかしながら、特許文献1に開示された従来技術では、難燃剤としてヘキサブロモシクロドデカン等の有機臭素化合物を用いているが、特許文献1に開示された有機臭素化合物は、難分解性、高蓄積性などの点から環境に悪影響を及ぼす恐れがあり、今後は難燃性ポリスチレン系樹脂発泡成形体の分野においては使用し難い問題がある。   However, in the conventional technique disclosed in Patent Document 1, an organic bromine compound such as hexabromocyclododecane is used as a flame retardant. However, the organic bromine compound disclosed in Patent Document 1 is hardly decomposable and highly accumulative. In the future, there is a problem that it is difficult to use in the field of flame retardant polystyrene-based resin foam moldings.

特許文献2に開示された従来技術では、黒鉛粉を分散させる目的で流動パラフィンを用いているが、流動パラフィンはスチレン系樹脂に対して可塑性を有することから、熟成期間が長くなるという問題がある。   In the prior art disclosed in Patent Document 2, liquid paraffin is used for the purpose of dispersing graphite powder. However, since liquid paraffin has plasticity with respect to a styrene resin, there is a problem that a ripening period becomes long. .

特許文献3に開示された従来技術では、熟成期間が3日以内と短縮されているが、熟成温度が13℃であり、巨大な低温倉庫を必要とする。また。熟成温度が低い方が、熟成期間が短縮されることは、従来より知られており、特許文献3に開示された技術でも、一般的な常温(例えば20〜30℃)では、やはり5日以上の熟成期間が必要という問題がある。さらには、輻射抑制剤、臭素系難燃剤を含有する発泡性スチレン系樹脂粒子の熟成期間の短縮に対して、有効であったか否かに関しては全く示唆されていない。   In the prior art disclosed in Patent Document 3, the aging period is shortened to 3 days or less, but the aging temperature is 13 ° C., and a huge low-temperature warehouse is required. Also. It has been conventionally known that the aging time is shortened when the aging temperature is lower. Even in the technique disclosed in Patent Document 3, it is still 5 days or more at a general normal temperature (for example, 20 to 30 ° C.). There is a problem that the aging period is necessary. Furthermore, there is no suggestion as to whether it was effective for shortening the aging period of expandable styrene resin particles containing a radiation inhibitor and a brominated flame retardant.

特表2001−525001号公報Special table 2001-525001 gazette 特開2005−2268号公報JP 2005-2268 A 特開2012−177033号公報JP 2012-177033 A

本発明は、上記問題点を鑑みて、グラファイトのような輻射伝熱抑制剤を添加した際の難燃性の低下に対する課題を解決すると共に、環境適合性の高い難燃剤を用いた断熱性および難燃性を両立するスチレン系樹脂発泡成形体を得ることのでき、且つ、実質的に熟成期間を必要としない発泡性スチレン系樹脂粒子および製造方法、当該発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体を提供することにある。   In view of the above problems, the present invention solves the problem of flame retardancy when a radiant heat transfer inhibitor such as graphite is added, and has heat insulation using a flame retardant with high environmental compatibility and Expandable styrene resin particles and production method capable of obtaining a styrene resin foam molded article having both flame retardancy and substantially not requiring an aging period, and styrene using the expandable styrene resin particles It is in providing a resin-based foamed molded article.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、輻射伝熱抑制剤、臭素系難燃剤を用いると共に、発泡剤として炭素数4の炭化水素と炭素数5の炭化水素を特定の重量比範囲となるように含有させることにより、断熱性および難燃性を両立し、環境適合にも優れ、且つ、熟成期間を必要としない発泡性スチレン系樹脂粒子が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors used a radiant heat transfer inhibitor and a bromine-based flame retardant, and used a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms as a blowing agent. It has been found that by containing in a specific weight ratio range, expandable styrene resin particles that achieve both heat insulation and flame retardancy, are environmentally friendly and do not require an aging period can be obtained. The present invention has been completed.

すなわち、本発明は、以下の構成からなる。
[1] スチレン系樹脂100重量部に対して、輻射伝熱抑制剤を1〜6重量部、臭素系難燃剤を0.5〜6重量部、炭素数4の炭化水素および炭素数5の炭化水素からなる発泡剤を4〜10重量部含有する発泡性スチレン系樹脂粒子であって、
発泡性スチレン系樹脂粒子中の、炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする、発泡性スチレン系樹脂粒子。
[2] スチレン系樹脂100重量部に対して、さらに、ラジカル発生剤を0.02〜1.0重量部含有することを特徴とする、[1]記載の発泡性スチレン系樹脂粒子
[3] さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部含有することを特徴とする、[1]または[2]に記載の発泡性スチレン系樹脂粒子。
[4] 輻射抑制剤が、グラファイト、グラフェン、活性炭、カーボンブラック、酸化チタンよりなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[3]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[5] 臭素系難燃剤が、臭素化ビスフェノール系化合物、臭素化スチレン−ブタジエン共重合体よりなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[4]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[6] 炭素数4の炭化水素が、ノルマルブタン、イソブタンよりなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[5]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[7] 炭素数5の炭化水素がノルマルペンタン、イソペンタンよりなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[6]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[8] ラジカル発生剤が、ジクミルパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン、ポリ−1,4−イソプロピルベンゼンよりなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[7]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[9] 熱安定剤がヒンダードアミン系化合物、リン系化合物、エポキシ化合物、またはこれらの混合物であることを特徴とする、[1]〜[8]のいずれか1項記載の発泡性スチレン系樹脂粒子。
[10] [1]〜[9]のいずれか1項に記載の発泡性スチレン系樹脂粒子を、加熱して予備発泡させて予備発泡粒子を得た後、成形キャビティ内に充填して型内発泡成形することにより得られることを特徴とする、スチレン系樹脂発泡成形体。
[11] スチレン系樹脂100重量部に対して、輻射抑制剤2〜6重量部、臭素系難燃剤1〜5重量部および、炭素数4の炭化水素と炭素数5の炭化水素からなる発泡剤4〜10重量部を押出機で溶融混練し、押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする、[1]〜[9]のいずれか1項記載の発泡成スチレン系樹脂粒子の製造方法。
[12] スチレン系樹脂100重量部に対して、輻射抑制剤2〜6重量部および臭素系難燃剤1〜5重量部を押出機で溶融混練し、コールドカット法またはホットカット法を用いてスチレン系樹脂粒子を得た後、
該スチレン系樹脂粒子を水中に懸濁させると共に、スチレン系樹脂100重量部に対して、炭素数4の炭化水素と炭素数5の炭化水素からなる発泡剤を4〜8重量部含有させることにより、発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の、炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする、[1]〜[9]のいずれか1項記載の発泡成スチレン系樹脂粒子の製造方法。
That is, this invention consists of the following structures.
[1] 1 to 6 parts by weight of a radiation heat transfer inhibitor, 0.5 to 6 parts by weight of a brominated flame retardant, carbon having 4 carbons and carbonizing to 5 carbons with respect to 100 parts by weight of a styrene resin Expandable styrenic resin particles containing 4 to 10 parts by weight of a foaming agent comprising hydrogen,
The expandable styrene resin particles, wherein the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable styrene resin particles is 2/98 to 20/80.
[2] The expandable styrene resin particles [3] according to [1], further containing 0.02 to 1.0 parts by weight of a radical generator with respect to 100 parts by weight of the styrene resin. Furthermore, the foamable styrene resin particles according to [1] or [2], further comprising 0.1 to 10 parts by weight of a heat stabilizer with respect to 100 parts by weight of the brominated flame retardant.
[4] The radiation suppressing agent according to any one of [1] to [3], wherein the radiation inhibitor is at least one selected from the group consisting of graphite, graphene, activated carbon, carbon black, and titanium oxide. Expandable styrene resin particles.
[5] Any one of [1] to [4], wherein the brominated flame retardant is at least one selected from the group consisting of brominated bisphenol compounds and brominated styrene-butadiene copolymers. 2. Expandable styrene resin particles according to item 1.
[6] The expandable styrene system according to any one of [1] to [5], wherein the hydrocarbon having 4 carbon atoms is at least one selected from the group consisting of normal butane and isobutane. Resin particles.
[7] The expandable styrenic resin according to any one of [1] to [6], wherein the hydrocarbon having 5 carbon atoms is at least one selected from the group consisting of normal pentane and isopentane. particle.
[8] The radical generator is at least one selected from the group consisting of dicumyl peroxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropylbenzene. [1] to [7], expandable styrene resin particles according to any one of [1] to [7].
[9] The expandable styrene resin particles according to any one of [1] to [8], wherein the heat stabilizer is a hindered amine compound, a phosphorus compound, an epoxy compound, or a mixture thereof. .
[10] The expandable styrenic resin particles according to any one of [1] to [9] are heated and pre-expanded to obtain pre-expanded particles, which are then filled in a molding cavity A styrene-based resin foam molded article obtained by foam molding.
[11] A foaming agent comprising 2 to 6 parts by weight of a radiation inhibitor, 1 to 5 parts by weight of a brominated flame retardant, and a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms with respect to 100 parts by weight of a styrene resin. 4-10 parts by weight is melt-kneaded with an extruder, extruded into a cutter chamber filled with pressurized circulating water through a die having a small hole attached to the tip of the extruder, and cut with a rotary cutter immediately after extrusion, A method of producing foamed styrene resin particles by cooling and solidifying with pressurized circulating water,
Any one of [1] to [9], wherein the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable styrene resin particles is 2/98 to 20/80 2. A process for producing foamed styrene resin particles according to item 1.
[12] With respect to 100 parts by weight of styrene resin, 2-6 parts by weight of radiation inhibitor and 1-5 parts by weight of bromine flame retardant are melt-kneaded with an extruder, and styrene is used by a cold cut method or a hot cut method. After obtaining the system resin particles,
By suspending the styrenic resin particles in water and containing 4 to 8 parts by weight of a foaming agent comprising a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms with respect to 100 parts by weight of the styrene resin. A production method for obtaining expandable styrene resin particles,
Any of [1] to [9], wherein the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable styrenic resin particles is 2/98 to 20/80 A process for producing foamed styrene resin particles according to claim 1.

本発明によれば、輻射伝熱抑制剤を用いた場合でも、難燃性の低下がみられず、環境適合性にも優れた難燃剤を使用していると共に、輻射伝熱抑制剤も含有している為、低い熱伝導率を有する、高い難燃性および断熱性が両立でき、さらには熟成期間を必要としない発泡性スチレン系樹脂粒子を提供することができる。および製造方法、当該発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体を提供することができる。   According to the present invention, even when a radiation heat transfer inhibitor is used, flame retardancy is not reduced and a flame retardant excellent in environmental compatibility is used, and also includes a radiation heat transfer inhibitor. Therefore, it is possible to provide expandable styrenic resin particles that have both low flame conductivity, high flame retardancy and heat insulation, and that do not require an aging period. And a manufacturing method and the styrene resin foaming molding using the said expandable styrene resin particle can be provided.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の発泡性スチレン系樹脂粒子は、スチレン系樹脂100重量部に対して、輻射伝熱抑制剤1〜6重量部、臭素系難燃剤0.5〜6重量部および、炭素数4の炭化水素および炭素数5の炭化水素からなる発泡剤を4〜10重量部を含有する発泡性スチレン系樹脂粒子である。   The expandable styrene resin particles of the present invention are composed of 1 to 6 parts by weight of a radiation heat transfer inhibitor, 0.5 to 6 parts by weight of a brominated flame retardant, and carbonization of 4 carbon atoms with respect to 100 parts by weight of a styrene resin. Expandable styrene resin particles containing 4 to 10 parts by weight of a foaming agent composed of hydrogen and a hydrocarbon having 5 carbon atoms.

本発明で用いられるスチレン系樹脂は、スチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体またはその誘導体が共重合されていても良い(ただし、後述する臭素化スチレン・ブタジエン共重合体は除く)。   The styrene resin used in the present invention is a copolymer of not only a styrene homopolymer (polystyrene homopolymer) but also other monomers or derivatives thereof copolymerizable with styrene within a range not impairing the effects of the present invention. (However, the brominated styrene / butadiene copolymer described later is excluded).

スチレンと共重合可能な他の単量体またはその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体;
ジビニルベンゼンなどの多官能性ビニル化合物;
アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどの(メタ)アクリル酸エステル化合物;
(メタ)アクリロニトリルなどのシアン化ビニル化合物;
ブダジエンなどのジエン系化合物またはその誘導体;
無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;
N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミドなどのN−アルキル置換マレイミド化合物、などがあげられる。
これらは単独で使用してもよく、2種以上を混合して使用してもよい。
Examples of other monomers copolymerizable with styrene or derivatives thereof include, for example, methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, Styrene derivatives such as trichlorostyrene;
Polyfunctional vinyl compounds such as divinylbenzene;
(Meth) acrylic acid ester compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate;
Vinyl cyanide compounds such as (meth) acrylonitrile;
Diene compounds such as budadiene or derivatives thereof;
Unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride;
N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-4-diphenylmaleimide, N-2-chlorophenylmaleimide, N-4-bromophenylmaleimide, N-1-naphthylmaleimide, etc. N-alkyl substituted maleimide compounds and the like.
These may be used alone or in combination of two or more.

本発明で用いられるスチレン系樹脂は、前記スチレン単独重合体、および/または、スチレンと共重合可能な他の単量体またはその誘導体との共重合体に限らず、本発明の効果を損なわない範囲で、前記他の単量体または誘導体の単独重合体、またはそれらの共重合体とのブレンド物であっても良い。   The styrene resin used in the present invention is not limited to the styrene homopolymer and / or a copolymer with other monomers copolymerizable with styrene or a derivative thereof, and does not impair the effects of the present invention. In the range, it may be a homopolymer of the other monomer or derivative, or a blend with the copolymer.

本発明で用いられるスチレン系樹脂には、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂、等をブレンドすることもできる。   For example, diene rubber reinforced polystyrene, acrylic rubber reinforced polystyrene, polyphenylene ether resin, and the like can be blended with the styrene resin used in the present invention.

本発明で用いられるスチレン系樹脂の中では、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、ポリスチレンホモポリマー、スチレン−アクリロニトリル共重合体、スチレン−アクリル酸ブチル共重合体が好ましい。   Among the styrenic resins used in the present invention, it is relatively inexpensive and can be foam-molded with low-pressure steam or the like without using a special method, and is excellent in the balance of heat insulation, flame retardancy, and buffering properties. Polystyrene homopolymer, styrene-acrylonitrile copolymer, and styrene-butyl acrylate copolymer are preferred.

本発明において、「輻射伝熱抑制剤」とは、発泡成形体中を伝わる伝熱機構のうち輻射伝熱を抑制することができる物質であって、同一の樹脂、発泡剤、セル構造、密度の発泡成形体において、輻射伝熱抑制剤を添加することによって、無添加系に比較して、熱伝導率を低くする効果を有する物質を言う。   In the present invention, the “radiant heat transfer inhibitor” is a substance that can suppress radiant heat transfer among heat transfer mechanisms that are transmitted through the foamed molded product, and has the same resin, foaming agent, cell structure, and density. In the foamed molded article, a substance having an effect of lowering the thermal conductivity compared to the additive-free system by adding a radiation heat transfer inhibitor is said.

本発明で用いられる輻射伝熱抑制剤としては、近赤外または赤外領域(例えば、800〜3000nm程度の波長域)の光を反射・散乱・吸収する特性を有する物質であれば、特に限定されるものではない。   The radiation heat transfer inhibitor used in the present invention is particularly limited as long as it has a property of reflecting, scattering and absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm). Is not to be done.

本発明で用いられる輻射伝熱抑制剤としては、例えば、
アルミニウム、酸化アルミニウム等のアルミニウム系化合物、アルミン酸亜鉛等の亜鉛系化合物;ハイドロタルサイト等のマグネシウム系化合物;銀等の銀系化合物:
チタン、酸化チタン、チタン酸ストロンチウム等のチタン系化合物;
ステンレス、ニッケル、錫、銀、銅、ブロンズ、シラスバルーン、セラミックバルーン、マイクロバルーン、パールマイカ等の熱線反射剤や、
カーボンブラック、グラファイト、グラフェン、活性炭などの炭素系化合物;
硫酸バリウム、硫酸ストロンチウム、硫酸カルシウム、メルカライト、ハロトリ石、ミョウバン石、鉄ミョウバン石等の硫酸金属塩;
三酸化アンチモン、酸化アンチモン、無水アンチモン酸亜鉛等のアンチモン系化合物;
酸化錫、酸化インジウム、酸化亜鉛、酸化インジニウム錫、等の金属酸化物;ア
ンモニウム系、尿素系、イモニウム系、アミニウム系、シアニン系、ポリメチン系、アントラキノン系、ジチオール系、銅イオン系、フェニレンジアミン系、フタロシアニン系、ベンゾトリアゾール系、ベンゾフェノン系、シュウ酸アニリド系、シアノアクリレート系、ベンゾトリアゾール系等の熱線吸収剤が挙げられる。
これら輻射伝熱抑制剤は、単独で使用してもよく、2種以上を混合して使用してもよい。
As a radiation heat transfer inhibitor used in the present invention, for example,
Aluminum compounds such as aluminum and aluminum oxide, zinc compounds such as zinc aluminate; magnesium compounds such as hydrotalcite; silver compounds such as silver:
Titanium compounds such as titanium, titanium oxide, strontium titanate;
Heat ray reflectors such as stainless steel, nickel, tin, silver, copper, bronze, shirasu balloon, ceramic balloon, micro balloon, pearl mica,
Carbon compounds such as carbon black, graphite, graphene, activated carbon;
Metal sulfates such as barium sulfate, strontium sulfate, calcium sulfate, mercalite, halothrite, alumite, iron alumite;
Antimony compounds such as antimony trioxide, antimony oxide, and anhydrous zinc antimonate;
Metal oxides such as tin oxide, indium oxide, zinc oxide, and indinium tin oxide; ammonium, urea, imonium, aminium, cyanine, polymethine, anthraquinone, dithiol, copper ion, phenylenediamine , Phthalocyanine, benzotriazole, benzophenone, oxalic anilide, cyanoacrylate, benzotriazole, and the like.
These radiation heat transfer inhibitors may be used alone or in combination of two or more.

これら輻射伝熱抑制剤の中でも、グラファイト、グラフェン、活性炭、酸化チタンが、熱伝導率低減効果とコストのバランスが優れる点から好ましい。比較的少量の含有量で熱伝導率低減効果が発揮される点から、グラファイト、グラフェンが特に好ましい。   Among these radiant heat transfer inhibitors, graphite, graphene, activated carbon, and titanium oxide are preferable from the viewpoint of excellent balance between thermal conductivity reduction effect and cost. Graphite and graphene are particularly preferable because the effect of reducing the thermal conductivity is exhibited with a relatively small amount.

本発明における輻射伝熱抑制剤の発泡性スチレン系樹脂粒子中での含有量、および、製造時に用いられる添加量は、目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果、難燃性などのバランスの点から、スチレン系樹脂100重量部に対して、1重量部以上6重量部以下であることが好ましく、1.5重量部以上5.5重量部以下であることがより好ましく、2重量部以上5重量以下であることがさらに好ましい。   The content of the radiation heat transfer inhibitor in the present invention in the expandable styrenic resin particles and the addition amount used at the time of production are easily controlled to the target expansion ratio, and the thermal conductivity reduction effect, flame retardancy From the viewpoint of balance such as property, it is preferably 1 part by weight or more and 6 parts by weight or less, more preferably 1.5 parts by weight or more and 5.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferably, it is 2 parts by weight or more and 5 parts by weight or less.

本発明で用いられる臭素系難燃剤としては、例えば、2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン(別名 テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))、2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン(別名 テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル))などの臭素化ビスフェノール系化合物;
臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフと共重合体などの臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009−516019号公報に開示されている)などが挙げられる。
これら臭素系難燃剤は単独で使用してもよく、2種以上を混合して使用してもよい。
Examples of the brominated flame retardant used in the present invention include 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane (also known as tetrabromobisphenol A-). Bis (2,3-dibromo-2-methylpropyl ether)), 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane (also known as tetrabromobisphenol A-bis ( Brominated bisphenol compounds such as 2,3-dibromopropyl ether));
Brominated styrene / butadiene block copolymers, brominated random styrene / butadiene copolymers, brominated butadiene / vinyl aromatic hydrocarbon copolymers such as brominated styrene / butadiene graphs and copolymers (for example, JP 2009) -Disclosed in JP-A-516019).
These brominated flame retardants may be used alone or in admixture of two or more.

本発明における臭素系難燃剤の発泡性スチレン系樹脂粒子中での含有量、および、製造時に用いられる添加量は、目的とする発泡倍率に制御しやすいと共に、輻射伝熱抑制剤添加時の難燃性などのバランスの点から、スチレン系樹脂100重量部に対して、0.5重量部以上6重量部以下であることが好ましく、1重量部以上5重量部以下であることがより好ましく、1.5重量部以上4重量以下であることがさらに好ましい。
ただし、臭素系難燃剤の含有量は、後述する、ラジカル発生剤、熱安定剤の添加有無、添加量などによっても異なる。
In the present invention, the content of the brominated flame retardant in the expandable styrenic resin particles and the addition amount used at the time of production are easily controlled to the target expansion ratio, and the difficulty in adding the radiation heat transfer inhibitor is difficult. From the viewpoint of balance such as flammability, it is preferably 0.5 to 6 parts by weight, more preferably 1 to 5 parts by weight, with respect to 100 parts by weight of the styrene resin. More preferably, it is 1.5 parts by weight or more and 4 parts by weight or less.
However, the content of the brominated flame retardant varies depending on the presence / absence, addition amount, etc. of a radical generator and a thermal stabilizer, which will be described later.

本発明で用いられる発泡剤としての炭素数4の炭化水素としては、ノルマルブタン、イソブタンが挙げられ、これらは単独で使用してもよく、2種を混合して使用してもよい。   Examples of the hydrocarbon having 4 carbon atoms as the blowing agent used in the present invention include normal butane and isobutane, and these may be used alone or in combination.

本発明で用いられる発泡剤としての炭素数5の炭化水素としては、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等が挙げられ、これらは単独で使用してもよく、2種を混合して使用してもよい。これらの中でも、目的とする発泡倍率に制御しやすいなどの点から、ノルマルペンタン、イソペンタンが好ましい。   Examples of the hydrocarbon having 5 carbon atoms as the blowing agent used in the present invention include normal pentane, isopentane, neopentane, cyclopentane and the like. These may be used alone or in combination of two. May be. Among these, normal pentane and isopentane are preferable from the viewpoint of easy control to the target expansion ratio.

本発明における発泡剤の添加量は、目的とする発泡倍率に制御しやすいなどの点から、スチレン系樹脂100重量部に対して、4重量部以上10重量部以下であることが好ましく、4.5重量部以上9重量部以下であることがより好ましく、5重量部以上8重量以下であることがさらに好ましい。   The addition amount of the foaming agent in the present invention is preferably 4 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the styrenic resin from the viewpoint that it is easy to control the target foaming ratio. It is more preferably 5 parts by weight or more and 9 parts by weight or less, and further preferably 5 parts by weight or more and 8 parts by weight or less.

さらに、本発明における発泡性スチレン系樹脂粒子中に含有される炭素数4の発泡剤と炭素数5の発泡剤の比率は、目的とする発泡倍率に制御しやすいと共に、熟成期間を必要としない点などから、2/98〜20/80が好ましく、5/95〜18/82がより好ましく、8/92〜15/85がさらに好ましい。   Further, the ratio of the foaming agent having 4 carbon atoms and the foaming agent having 5 carbon atoms contained in the expandable styrenic resin particles in the present invention can be easily controlled to the target foaming ratio and does not require an aging period. From the point etc., 2 / 98-20 / 80 are preferable, 5 / 95-18 / 82 are more preferable, and 8 / 92-15 / 85 are further more preferable.

本発明の発泡性スチレン系樹脂粒子においては、さらに、熱安定剤を併用することによって、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を制御することができる。   In the expandable styrene resin particles of the present invention, the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be controlled by using a heat stabilizer in combination.

本発明における熱安定剤は、用いられるスチレン系樹脂、発泡剤種および含有量、輻射伝熱抑止剤種および含有量、臭素系難燃剤種および含有量に応じて、適宜組み合わせて用いることができる。   The heat stabilizer in the present invention can be used in appropriate combination according to the styrene resin used, the foaming agent species and content, the radiation heat transfer inhibitor species and content, the brominated flame retardant species and content. .

本発明で用いられる熱安定剤としては、例えば、
トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルホスフェート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレイトなどのヒンダードフェノール系化合物;
2,2,6,6−テトラメチル−4−ピペリジルステアレート、1,2,2,6,6−ペンタメチル−4−ピペリジルステアレート、2,2,6,6−テトラメチル−4−ピペリジルベンゾエート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(2−(トリス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブチルカルボニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、ビス(2−(トリス(1,2,2,6,6−ペンタメチルピペリジルオキシカルボニル)ブチルカルボニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−ブチル−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)マロネート、1−(2−ヒドロキシエチル)−2,2,6,6−テトラメチル−4−ピペリジノール/コハク酸ジエチル重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−モルホリノ−s−トリアジン重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−t−オクチルアミノ−s−トリアジン重縮合物、テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン、テトラキス(1,2,2,6,6−ペンタメチルピペリジルオキシカルボニル)ブタン、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8,12−テトラアザドデカン、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8,12−テトラアザドデカン、1,6,11−トリス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカン1,6,11−トリス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカンなどのヒンダードアミン化合物;
トリスノニルフェニルホスファイト、トリス〔2−t−ブチル−4−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニルチオ)−5−メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジーt−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジーt−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6−トリーt−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)−4,4’−n−ブチリデンビス(2−t−ブチル−5−メチルフェノール)ジホスファイト、ヘキサ(トリデシル)−1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタントリホスファイト、テトラキス(2,4−ジーt−ブチルフェニル)ビフェニレンジホスホナイト、9,10−ジハイドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、2,2’−メチレンビス(4,6−t−ブチルフェニル)−2−エチルヘキシルホスファイト、2,2’−メチレンビス(4,6−t−ブチルフェニル)−オクタデシルホスファイト、2,2’−エチリデンビス(4,6−ジ−t−ブチルフェニル)フルオロホスファイト、トリス(2−〔(2,4,8,10−テトラキスーt−ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン−6−イル)オキシ〕エチル)アミン、2−エチル−2−ブチルプロピレングリコールと2,4,6−トリ−t−ブチルフェノールのホスファイトなどのリン系化合物;
2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンなどのアミン系化合物、3,3−チオビスプロピオン酸ジオデシルエステル、3,3’−チオビスプロピオン酸ジオクタデシルエステルなどの硫黄系化合物、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、臭素化ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などのエポキシ化合物が挙げられる。
これらの化合物は、単独または2種以上を混合して使用できる。
As the heat stabilizer used in the present invention, for example,
Triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis {3- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate}, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-t-butyl-4-hydroxyphenyl) propionate, 3,5-di-t- Butyl-4-hydroxy-benzyl phosphate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydride Kishibenjiru) benzene, tris (3,5-di -t- butyl-4-hydroxybenzyl) hindered phenolic compounds such as isocyanurate late;
2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6-tetramethyl-4-piperidyl benzoate Bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2- (tris (2,2 , 6,6-tetramethylpiperidyloxycarbonyl) butylcarbonyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, bis (2- (tris (1 , 2,2,6,6-pentamethylpiperidyloxycarbonyl) butylcarbonyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [ .5] undecane, bis (2,2,6,6-tetramethyl-4-piperidyl) di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6 , 6-Pentamethyl-4-piperidyl) -di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2-butyl 2- (3,5-di-tert-butyl-4-hydroxybenzyl) malonate, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / diethyl succinate polycondensation 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / dibromoethane polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4 -Piperidylamino Hexane / 2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / 2,4-dichloro-6 -T-octylamino-s-triazine polycondensate, tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane, tetrakis (1,2,2,6,6-pentamethylpiperidyloxycarbonyl) butane 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino) -s-triazin-6-yl] -1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4- Piperidyl) Ami F) -s-triazin-6-yl] -1,5,8,12-tetraazadodecane, 1,6,11-tris [2,4-bis (N-butyl-N- (2,2,6) , 6-Tetramethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane 1,6,11-tris [2,4-bis (N-butyl-N- (1,2,2, Hindered amine compounds such as 6,6-pentamethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane;
Trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecyl phosphite, octyldiphenylphos Phyto, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tri-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumyl) Phenyl) pentaerythritol diphosphite, Tora (tridecyl) isopropylidene diphenol diphosphite, tetra (tridecyl) -4,4′-n-butylidenebis (2-tert-butyl-5-methylphenol) diphosphite, hexa (tridecyl) -1,1,3- Tris (2-methyl-4-hydroxy-5-t-butylphenyl) butanetriphosphite, tetrakis (2,4-di-t-butylphenyl) biphenylene diphosphonite, 9,10-dihydro-9-oxa-10- Phosphophenanthrene-10-oxide, 2,2'-methylenebis (4,6-t-butylphenyl) -2-ethylhexyl phosphite, 2,2'-methylenebis (4,6-t-butylphenyl)- Octadecyl phosphite, 2,2'-ethylidenebis (4,6-di-t-butylphenyl) fluor Phosphite, tris (2-[(2,4,8,10-tetrakis-t-butyldibenzo [d, f] [1,3,2] dioxaphosphin-6-yl) oxy] ethyl) amine, Phosphorus compounds such as phosphite of 2-ethyl-2-butylpropylene glycol and 2,4,6-tri-t-butylphenol;
Amine compounds such as 2,2,4-trimethyl-1,2-dihydroquinoline polymer, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, 3,3- Sulfur compounds such as thiobispropionic acid didecyl ester, 3,3'-thiobispropionic acid dioctadecyl ester, bisphenol A diglycidyl ether type epoxy resin, brominated bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy Examples thereof include epoxy compounds such as resins and phenol novolac type epoxy resins.
These compounds can be used individually or in mixture of 2 or more types.

これら熱安定剤のうちでも、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が好ましい。   Among these heat stabilizers, a hindered amine compound, a phosphorus compound, and an epoxy compound are preferable because the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be arbitrarily controlled.

本発明における熱安定剤の発泡性スチレン系樹脂粒子中の含有量および添加量は、前記臭素系難燃剤100重量部に対して、0.1重量部以上10重量部以下であることが好ましく、0.3重量部以上8重量部以下であることがより好ましく、0.5重量部以上6重量部以下であることがさらに好ましい。   The content and addition amount of the heat stabilizer in the foamable styrene resin particles in the present invention are preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the brominated flame retardant, It is more preferably 0.3 parts by weight or more and 8 parts by weight or less, and further preferably 0.5 parts by weight or more and 6 parts by weight or less.

本発明では、臭素系難燃剤および熱安定剤は、後述する製造方法において、そのままスチレン系樹脂と溶融混練できるが、通常は、分散性等を考慮して、スチレン系樹脂とのマスターバッチを作り、該マスターバッチとスチレン系樹脂を溶融混練することが好ましい。   In the present invention, the brominated flame retardant and the heat stabilizer can be melt-kneaded with the styrene resin as they are in the production method described later, but usually a masterbatch with the styrene resin is prepared in consideration of dispersibility and the like. The master batch and the styrene resin are preferably melt-kneaded.

該マスターバッチとしては、スチレン系樹脂50重量%以上70重量%以下および、臭素系難燃剤と熱安定剤との混合物30重量%以上50重量%以下である(両者の合計量は100重量%)ことが好ましく、スチレン系樹脂55重量%以上65重量%以下および、臭素系難燃剤と熱安定剤との混合物35重量%以上45重量%以下であることがより好ましい。
該マスターバッチ中での臭素系難燃剤と熱安定剤との混合物の比率を30重量%以上50重量%以下にすることにより、臭素系難燃剤と熱安定剤との混合物の分散性が優れるため、低い添加量で優れた難燃性を得ることができる。
The master batch includes 50% by weight or more and 70% by weight or less of a styrene resin and 30% by weight or more and 50% by weight or less of a mixture of a brominated flame retardant and a heat stabilizer (the total amount of both is 100% by weight). It is preferable that the styrene-based resin is 55% by weight or more and 65% by weight or less and the mixture of the brominated flame retardant and the heat stabilizer is 35% by weight or more and 45% by weight or less.
The dispersibility of the mixture of the brominated flame retardant and the thermal stabilizer is excellent when the ratio of the mixture of the brominated flame retardant and the thermal stabilizer in the masterbatch is 30% by weight or more and 50% by weight or less. Excellent flame retardancy can be obtained with a low addition amount.

本発明の発泡性スチレン系樹脂粒子においては、ラジカル発生剤をさらに含有することにより、臭素系難燃剤と併用することで、臭素系難燃剤の熱重量分析における1%重量減少温度を制御することができる。   In the expandable styrene resin particles of the present invention, by further containing a radical generator, the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant is controlled by using it together with the brominated flame retardant. Can do.

本発明におけるラジカル発生剤は、用いるスチレン系樹脂、発泡剤種および含有量、輻射伝熱抑止剤種および含有量、臭素系難燃剤種および含有量に応じて適宜組み合わせて用いることができる。   The radical generator in the present invention can be used in appropriate combination according to the styrene resin to be used, the foaming agent type and content, the radiant heat transfer inhibitor type and content, the brominated flame retardant type and content.

本発明で用いられるラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン、ポリ−1,4−イソプロピルベンゼン等が挙げられる。   Examples of the radical generator used in the present invention include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropyl. Examples include benzene.

本発明におけるラジカル発生剤の発泡性スチレン系樹脂粒子中の含有量および添加量は、スチレン系樹脂100重量部に対して、0.05重量部以上、1.0重量部以下が好ましい。   In the present invention, the content and addition amount of the radical generator in the expandable styrene resin particles are preferably 0.05 parts by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the styrene resin.

本発明の発泡性スチレン系樹脂粒子では、必要に応じて、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィンなどの加工助剤;
前述したヒンダードアミン類、リン系安定剤、エポキシ化合物の他、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類などの耐光性安定剤、帯電防止剤、顔料などの着色剤などの添加剤;
シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウムなどの無機化合物、メタクリル酸メチル系共重合体、ポリエチレンワックスなどの、オレフィン系ワックス、タルク、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイドなどの脂肪酸ビスアマイド、エチレン−酢酸ビニル共重合体樹脂などの造核剤;
スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の、大気圧下における沸点が200℃以下である溶剤などの発泡助剤を含有していてもよい。
In the expandable styrenic resin particles of the present invention, if necessary, processing aids such as sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin, etc .;
In addition to the hindered amines, phosphorus stabilizers, and epoxy compounds described above, phenolic antioxidants, nitrogen stabilizers, sulfur stabilizers, light-resistant stabilizers such as benzotriazoles, antistatic agents, and colorants such as pigments Additives such as;
Silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate and other inorganic compounds, methyl methacrylate copolymer, polyethylene wax, olefin wax, talc, methylene Nucleating agents such as bisstearyl amide, ethylene bisstearyl amide, hexamethylene bispalmitic acid amide, fatty acid bisamide such as ethylene bisoleic acid amide, ethylene-vinyl acetate copolymer resin;
Foaming of aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, solvents such as ethyl acetate and butyl acetate having a boiling point of 200 ° C. or less under atmospheric pressure An auxiliary agent may be contained.

本発明の発泡性スチレン系樹脂粒子を製造する方法としては、押出機を用いてスチレン系樹脂と各種化合物とを溶融混練した後、粒子状に切断して得る方法が好ましく、以下の2つの方法が挙げられる。   The method for producing the expandable styrene resin particles of the present invention is preferably a method obtained by melt-kneading a styrene resin and various compounds using an extruder and then cutting into particles, and the following two methods Is mentioned.

すなわち、第1の製造方法として、
スチレン系樹脂100重量部に対して、炭素数4の炭化水素および炭素数5の炭化水素からなる発泡剤を4〜10重量部、輻射伝熱抑制剤を1〜6重量部、臭素系難燃剤を0.5〜6重量部、必要に応じて、ラジカル発生剤を0.02〜1.0重量部、熱安定剤を臭素系難燃剤100重量部に対して0.1〜10重量部、さらには必要に応じて他の添加剤を押出機で溶融混練し、所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、発泡性スチレン系樹脂粒子中の炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする発泡性スチレン系樹脂粒子の製造方法が挙げられる。
That is, as the first manufacturing method,
4 to 10 parts by weight of a foaming agent composed of a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, and a brominated flame retardant with respect to 100 parts by weight of a styrene resin 0.5 to 6 parts by weight, if necessary, 0.02 to 1.0 part by weight of the radical generator, 0.1 to 10 parts by weight of the heat stabilizer with respect to 100 parts by weight of the brominated flame retardant, Furthermore, if necessary, other additives are melt-kneaded with an extruder, cooled to a predetermined temperature, then extruded through a die having small holes into a cutter chamber filled with pressurized circulating water, and immediately after extrusion. A method for producing foamable styrene resin particles by cutting with a rotary cutter and cooling and solidifying with pressurized circulating water, wherein the hydrocarbon having 4 carbon atoms and 5 carbon atoms in the expandable styrene resin particles are provided. Hydrocarbon content ratio of 2/98 to 20/8 Include the production method of expandable styrene resin particles, characterized in that it.

第1の製造方法における、押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機にスチレン系樹脂および各種化合物を供給してから溶融混錬終了までの押出機内滞留時間が7分以下であることが好ましい。   In the first production method, the temperature of the resin in the melt kneading part of the extruder is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a styrene resin and various compounds to an extruder until the end of melt-kneading is 7 minutes or less.

樹脂温度が250℃より高い場合、および/または、融混錬終了までの押出機内滞留時間が7分より長い場合には、臭素系難燃剤の分解が起こる場合があり、所望の難燃性が得られなかったり、所望の難燃性を付与する為に過剰に添加しなければならないことになる。一方、樹脂温度が160℃より低い場合は、押出機の負荷が大きくなって押出が不安定になったり、添加する材料の分散性が悪化したりする場合がある。加えて、溶融混錬後、直ぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子がいびつになる場合がある。得られる発泡性樹脂粒子の形状が良好でない場合には、成形性を悪化させる原因にもなる。   When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until melting and kneading is longer than 7 minutes, the brominated flame retardant may be decomposed, and the desired flame retardancy is obtained. It cannot be obtained or must be added in excess to impart the desired flame retardancy. On the other hand, when the resin temperature is lower than 160 ° C., the load on the extruder becomes large and the extrusion may become unstable, or the dispersibility of the material to be added may deteriorate. In addition, if the resin is extruded through a die immediately after melting and kneading, the shearing strain and elongation strain of the molten resin increase, and the resulting resin particles may become distorted. When the shape of the obtained expandable resin particles is not good, it may cause deterioration of moldability.

ここで、押出機の溶融混練部とは、単軸あるいは二軸スクリューを有する押出機一つから構成される場合はフィード部以降から押出機先端までを意味し、タンデム押出機のような場合は 第一押出機のフィード部以降から第二押出機先端までを意味する。   Here, the melt kneading part of the extruder means from the feed part to the tip of the extruder when it is composed of one extruder having a single screw or a twin screw, and in the case of a tandem extruder. It means from the feed section of the first extruder to the tip of the second extruder.

押出機中にてスチレン系樹脂中に発泡剤、輻射伝熱抑制剤および、臭素系難燃剤、必要に応じて、熱安定剤、造核剤などのその他添加剤が溶解あるいは均一分散され、適切な温度まで冷却された溶融混練物は、複数の小孔を有するダイから、加圧された冷却水中に押し出される。   In the extruder, the foaming agent, radiant heat transfer inhibitor, brominated flame retardant, and other additives such as heat stabilizer and nucleating agent are dissolved or uniformly dispersed in the styrene resin as appropriate. The melt-kneaded product cooled to a certain temperature is extruded into pressurized cooling water from a die having a plurality of small holes.

本発明で用いられるダイは特に限定されないが、例えば、直径0.3mm〜2.0mm、好ましくは0.4mm〜1.0mmの小孔を有するものが挙げられる。   The die used in the present invention is not particularly limited, and examples thereof include those having a small hole with a diameter of 0.3 mm to 2.0 mm, preferably 0.4 mm to 1.0 mm.

第1の製造方法において、ダイより押し出される直前の溶融混練物の温度は、発泡剤を含まない状態での熱可塑性樹脂のガラス転移温度+40℃〜100℃、より好ましくは、ガラス転移温度+50℃〜70℃まで冷却されることが好ましい。
ダイより押し出される直前の溶融混練物の温度がガラス転移温度+40℃よりも低い場合は、吐出樹脂の粘度が高すぎて、小孔で詰まってしまい、実質小孔開口率の低下のために得られる樹脂粒が変形する場合がある。一方で、ダイより押し出される直前の溶融混練物の温度がガラス転移温度+100℃よりも高い場合は、吐出樹脂が完全に固化されず、発泡してしまう場合や、吐出樹脂の粘度が低すぎて、安定的に加圧冷却水中に吐出できず、実質小孔開口率が低下する場合がある。
In the first production method, the temperature of the melt-kneaded product immediately before being extruded from the die is the glass transition temperature of the thermoplastic resin in a state not containing the foaming agent + 40 ° C. to 100 ° C., more preferably the glass transition temperature + 50 ° C. It is preferable to cool to -70 degreeC.
If the temperature of the melt-kneaded product immediately before being extruded from the die is lower than the glass transition temperature + 40 ° C., the viscosity of the discharged resin is too high and clogged with small holes, which is obtained due to a decrease in the substantially small hole opening ratio. The resin particles that are produced may be deformed. On the other hand, when the temperature of the melt-kneaded product immediately before being extruded from the die is higher than the glass transition temperature + 100 ° C., the discharge resin is not completely solidified and foams, or the viscosity of the discharge resin is too low. In some cases, it cannot be stably discharged into the pressurized cooling water, and the substantial aperture ratio of the small holes may decrease.

第1の製造方法における循環加圧冷却水に押出された樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイリップに接触する回転カッターで切断されて小球化され、加圧循環冷却水中を発泡することなく、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。   The cutting device that cuts the resin extruded into the circulating pressurized cooling water in the first manufacturing method is not particularly limited. For example, the cutting device is cut by a rotary cutter that contacts the die lip to be spheroidized, and pressurized circulating cooling is performed. Examples include a device that is transported to a centrifugal dehydrator and dewatered and collected without foaming the water.

第2の発泡性スチレン系樹脂粒子の製造方法としては、
スチレン系樹脂100重量部に対して、輻射伝熱抑制剤を1〜6重量部、臭素系難燃剤を0.5〜6重量部、必要に応じて、ラジカル発生剤を0.02〜1.0重量部、熱安定剤を臭素系難燃剤100重量部に対して0.1〜10重量部、さらには必要に応じて、他の添加剤を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、
該スチレン系樹脂粒子を水中に懸濁させると共に、炭素数4の炭化水素および炭素数5の炭化水素からなる発泡剤を4〜10重量部含有させる量を供給して、発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする発泡性スチレン系樹脂粒子の製造方法が挙げられる。
As a production method of the second expandable styrene resin particles,
1 to 6 parts by weight of radiation heat transfer inhibitor, 0.5 to 6 parts by weight of brominated flame retardant, and 0.02 to 1. 0 parts by weight, 0.1 to 10 parts by weight of heat stabilizer with respect to 100 parts by weight of brominated flame retardant, and if necessary, other additives are melt-kneaded with an extruder and a die having small holes After obtaining the styrenic resin particles by cutting with a cutter after extrusion through,
Expandable styrene resin particles by suspending the styrene resin particles in water and supplying 4 to 10 parts by weight of a foaming agent comprising a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms A manufacturing method for obtaining
A method for producing expandable styrene resin particles, wherein the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable styrene resin particles is 2/98 to 20/80. It is done.

第2の製造方法で用いられる押出機としては、前記の製造法で記載したものと同様のものを用いることができる。   As an extruder used by the 2nd manufacturing method, the thing similar to what was described by the said manufacturing method can be used.

第2の製造方法における押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機に材料を供給してから溶融混錬終了までの押出機内滞留時間が7分以下であることが好ましい。   The temperature of the resin in the melt kneading part of the extruder in the second production method is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a material to an extruder until the end of melt-kneading is 7 minutes or less.

樹脂温度が250℃より高い場合、および/または、融混錬終了までの押出機内滞留時間が7分より長い場合は、第1の製造方法の説明で記載したものと同様の問題が発生し得る。一方、樹脂温度が160℃より低い場合は、第1の製造方法の説明で記載したものと同様の問題に加えて、溶融混錬後すぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子がいびつになったり、発泡剤含浸工程で粒子の膠着や扁平度合いが大きくなって工程が不安定になったり、工程が長期化して生産性を著しく低下させる場合もある。   When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until the end of melt-kneading is longer than 7 minutes, the same problem as described in the explanation of the first production method may occur. . On the other hand, when the resin temperature is lower than 160 ° C., in addition to the same problem as described in the explanation of the first production method, when the resin is extruded through a die immediately after melt kneading, the shear strain and elongation of the molten resin Since the strain increases, the resulting resin particles become distorted, the degree of particle sticking and flattening increases during the foaming agent impregnation process, the process becomes unstable, and the process is prolonged and productivity is significantly reduced. In some cases.

以上のようにして得られた発泡性スチレン系樹脂粒子は、従来公知の予備発泡工程、例えば、加熱水蒸気によって10〜110倍に発泡させる工程を経て、一定時間養生させた後、型内成形して、例えば、10〜110倍に発泡させた発泡成形体を得ることができる。   The expandable styrenic resin particles obtained as described above are cured in a mold for a certain period of time through a conventionally known preliminary foaming process, for example, a process of foaming 10 to 110 times with heated steam. Thus, for example, it is possible to obtain a foamed molded product foamed 10 to 110 times.

本発明のスチレン系樹脂発泡成形体の密度は、断熱性と難燃性の両立の点から、5〜50kg/mが好ましく、8〜40kg/mがより好ましい。 The density of the styrene resin foam molded article of the present invention is preferably 5 to 50 kg / m 3 and more preferably 8 to 40 kg / m 3 from the viewpoint of achieving both heat insulation and flame retardancy.

本発明のスチレン系樹脂発泡成形体における平均セル径は、断熱性の点から、0.02〜1.50mmが好ましく、0.05〜0.50mmがより好ましい。   The average cell diameter in the styrenic resin foam molded article of the present invention is preferably 0.02 to 1.50 mm, more preferably 0.05 to 0.50 mm from the viewpoint of heat insulation.

以下に、実施例および比較例を挙げて、本発明を具体的に説明するが、これらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but is not limited thereto.

尚、実施例における測定方法および評価方法は、以下のとおりである。   In addition, the measuring method and evaluation method in an Example are as follows.

(1)発泡性スチレン系樹脂中の炭素数4の発泡剤と炭素数5の発泡剤の含有比率
得られた発泡性スチレン系樹脂粒子約1gをジクロロメタン20mlに溶解し、内部標準液(シクロペンタノール)0.005gを加えた後、ガスクロマトグラフ(GC)を用いて、以下の条件による測定を行い、各発泡剤の含有量を求め、炭素数4の発泡剤と炭素数5の発泡剤の含有比率を算出した。
装置:(株)島津製作所製 GC−14B
カラム:GLサイエンス製 Dinonyl Phthalate 25% 3.0m×3.0mmID
カラム温度:40℃
キャリアガス:He
検出:FID
試料注入量:1μL
分析時間:60分
(1) Content ratio of the foaming agent having 4 carbon atoms and the foaming agent having 5 carbon atoms in the expandable styrenic resin About 1 g of the obtained expandable styrenic resin particles was dissolved in 20 ml of dichloromethane, and an internal standard solution (cyclopen (Tanol) After adding 0.005 g, the gas chromatograph (GC) is used for measurement under the following conditions to determine the content of each foaming agent. The content ratio was calculated.
Device: GC-14B manufactured by Shimadzu Corporation
Column: GL Sciences Dinonyl Phthalate 25% 3.0m x 3.0mmID
Column temperature: 40 ° C
Carrier gas: He
Detection: FID
Sample injection volume: 1 μL
Analysis time: 60 minutes

(2)熟成期間評価
得られた発泡性スチレン系樹脂粒子を、製造1時間後に、予備発泡機[大開工業株式会社製、BHP−300]を用い、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡スチレン系樹脂粒子を得た。
得られた発泡スチレン系樹脂粒子を以下の基準で目視にて評価した。
○:収縮がなく、概ね球形の発泡スチレン系樹脂粒子が得られた。
×:収縮が発生し、歪な形の発泡スチレン系樹脂粒子が得られた。
(2) Aging period evaluation The obtained expandable styrenic resin particles were introduced into the preliminary foaming machine after 1 hour of production using a preliminary foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300]. To obtain foamed styrene resin particles.
The obtained expanded styrene resin particles were visually evaluated according to the following criteria.
○: There was no shrinkage, and substantially spherical expanded styrene resin particles were obtained.
X: Shrinkage occurred, and distorted foamed styrene resin particles were obtained.

(3)発泡スチレン系樹脂粒子の発泡倍率
得られた発泡スチレン系樹脂粒子を、容積が2000mlになるようにメスシリンダーに入れて重量を測定し、体積と重量から下記の式により求めた。
発泡倍率=2000(ml)/発泡粒子の重量(g)
(3) Foaming ratio of expanded styrene resin particles The obtained expanded styrene resin particles were placed in a graduated cylinder so that the volume was 2000 ml, and the weight was measured.
Expansion ratio = 2000 (ml) / weight of expanded particles (g)

(4)成形性評価
実施例および比較例に示した条件で型内成形を行い、得られた発泡成形体に関して、以下の基準で目視にて評価した。
○:ヒケ、メルト、収縮等なく、成形体表面の発泡粒子間隙が少なく平滑で、
成形体を割った時の破断面において材破する融着ビーズが8割以上である
発泡成形体が得られた。
×:ヒケ、メルト、収縮等が発生し、成形体表面の発泡粒子間隙が大きく、
成形体を割った時の破断面において材破する融着ビーズが8割未満である
発泡成形体が得られた。
(4) Moldability evaluation In-mold molding was performed under the conditions shown in Examples and Comparative Examples, and the obtained foamed molded articles were visually evaluated according to the following criteria.
○: There is no sink, melt, shrinkage, etc., there is little gap between the foam particles on the surface of the molded body, and it is smooth.
A foamed molded article having 80% or more of fused beads to break the material on the fracture surface when the molded article was broken was obtained.
X: Sink, melt, shrinkage, etc. occur, and the foam particle gap on the surface of the molded body is large.
A foamed molded product having less than 80% of fused beads that break the material on the fracture surface when the molded product was broken was obtained.

(5)スチレン系樹脂発泡成形体の熱伝導率
得られた発泡成形体から、長さ200mm×幅200mm×厚み25mmの平板を切り出したサンプルを、50℃温度下にて48時間静置した後、さらに、23℃温度下にて24時間静置した後、熱伝導率測定装置[英弘精機(株)製、HC−072]を用いて、平均温度23℃にて熱伝導率を測定した。
(5) Thermal conductivity of styrene-based resin foam molded body After leaving a sample obtained by cutting a flat plate having a length of 200 mm, a width of 200 mm and a thickness of 25 mm from the obtained foamed molded body at a temperature of 50 ° C. for 48 hours. Furthermore, after leaving still at 23 degreeC temperature for 24 hours, the heat conductivity was measured at the average temperature of 23 degreeC using the heat conductivity measuring apparatus [The Hidehiro Seiki Co., Ltd. product, HC-072].

(6)スチレン系樹脂発泡成形体の難燃性の評価方法
(自己消火性)
得られた発泡成形体に対して、60℃温度下にて48時間静置した後、さらに23℃温度下にて24時間静置した後、JIS A9511(発泡プラスチック保温材)測定方法Aに準じた評価を行った。
○:消火時間が3秒以内。
×:消火時間が3秒を超える、或いは、消火しなかった。
(最低酸素指数[LOI])
得られた発泡成形体に対して、60℃温度下にて48時間静置した後、さらに23℃温度下にて24時間静置した後、JIS K7201に準じて、最低酸素指数を測定した。
(6) Evaluation method of flame retardancy of styrene resin foam molding (self-extinguishing)
The obtained foamed molded product was allowed to stand for 48 hours at a temperature of 60 ° C., and further allowed to stand for 24 hours at a temperature of 23 ° C. Then, in accordance with JIS A9511 (foamed plastic heat insulating material) measuring method A Was evaluated.
○: Fire extinguishing time is within 3 seconds.
X: Fire extinguishing time exceeded 3 seconds, or did not extinguish.
(Minimum oxygen index [LOI])
The obtained foamed molded article was allowed to stand at 60 ° C. for 48 hours, and further allowed to stand at 23 ° C. for 24 hours, and then the minimum oxygen index was measured according to JIS K7201.

以下に、実施例および比較例で用いた原材料を示す。
(スチレン系樹脂)
(A1)ポリスチレンホモポリマー[PSジャパン(株)製、G9401]
(A2)ポリスチレンホモポリマー[PSジャパン(株)製、680]
(炭素数4の発泡剤)
(B1)ノルマルブタン[三井化学(株)製]
(B2)イソブタン [三井化学(株)製]
(B3)ノルマルブタン/イソブタン=70/30の混合物 [三井化学(株)製、工業用脱臭ブタン]
(炭素数5の発泡剤)
(C1)ノルマルペンタン[和光純薬工業(株)製、試薬品]
(C2)イソペンタン[和光純薬工業(株)製、試薬品]
(輻射伝熱抑制剤)
(D1)グラファイト[(株)丸豊鋳材製作所製、鱗状黒鉛SGP−40B]
(D2)二酸化チタン[堺化学工業(株)製、R−7E]
(臭素系難燃剤)
(E1)2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン [第一工業製薬(株)製、SR−130:1%重量減少温度=231℃、臭素含有量=66重量%]
(E2)臭素化スチレン・ブタジエン共重合体 [Chemtura社製 Emerald3000:1%重量減少温度=243℃、臭素含有量=65重量%]
(熱安定剤)
(F1)テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン
(F2)ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト[Chemtura社製、Ultranox626]
(F3)クレゾールノボラック型エポキシ樹脂[アラルダイト、ECN−1280]
(ラジカル発生剤)
(G1)2,3−ジメチル−2,3−ジフェニルブタン[日本油脂(株)製、ノフマーBC]
(G2)ポリ−1,4−イソプロピルベンゼン[United Initiators社製、CCPIB]
(臭素系難燃剤と熱安定剤との混合物)
(H1)臭素系難燃剤(E1)100重量部に対して、熱安定剤として(F1)3重量部および(F2)2重量部を混合した。
The raw materials used in the examples and comparative examples are shown below.
(Styrene resin)
(A1) Polystyrene homopolymer [PS940, G9401]
(A2) Polystyrene homopolymer [PS Japan Co., Ltd., 680]
(Foaming agent with 4 carbon atoms)
(B1) Normal butane [Mitsui Chemicals, Inc.]
(B2) Isobutane [Mitsui Chemicals, Inc.]
(B3) Normal butane / isobutane = 70/30 mixture [Mitsui Chemicals, Industrial Deodorized Butane]
(Foaming agent with 5 carbon atoms)
(C1) Normal pentane [Wako Pure Chemical Industries, Ltd., reagent product]
(C2) Isopentane [Wako Pure Chemical Industries, Ltd., reagent product]
(Radiation heat transfer inhibitor)
(D1) Graphite [manufactured by Maruho Castings Co., Ltd., scale-like graphite SGP-40B]
(D2) Titanium dioxide [manufactured by Sakai Chemical Industry Co., Ltd., R-7E]
(Brominated flame retardant)
(E1) 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane [Daiichi Kogyo Seiyaku Co., Ltd., SR-130: 1% weight reduction Temperature = 231 ° C., bromine content = 66 wt%]
(E2) Brominated styrene / butadiene copolymer [Emerald 3000 by Chemtura: 1% weight loss temperature = 243 ° C., bromine content = 65% by weight]
(Heat stabilizer)
(F1) Tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane (F2) Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite [manufactured by Chemtura, Ultranox 626]
(F3) Cresol novolac type epoxy resin [Araldite, ECN-1280]
(Radical generator)
(G1) 2,3-dimethyl-2,3-diphenylbutane [manufactured by NOF Corporation, NOFMER BC]
(G2) Poly-1,4-isopropylbenzene [manufactured by United Initiators, CCPIB]
(A mixture of brominated flame retardant and heat stabilizer)
(H1) 3 parts by weight of (F1) and 2 parts by weight of (F2) were mixed as heat stabilizers with respect to 100 parts by weight of the brominated flame retardant (E1).

(H2)臭素系難燃剤(E2)100重量部に対して、熱安定剤として(F3)10重量部および(F2)5重量部を混合した。   (F2) 10 parts by weight and (F2) 5 parts by weight were mixed with 100 parts by weight of (H2) brominated flame retardant (E2) as a heat stabilizer.

(その他)
(I1)タルク[林化成(株)製、タルカンパウダーPK−S]
(臭素系難燃剤と熱安定剤との混合物のマスターバッチ)
(J1)二軸押出機に、ポリスチレンホモポリマー(A2)100重量部を供給して溶融混練した後、押出機途中より臭素系難燃剤と熱安定剤との混合物(1)を73重量部供給して、さらに溶融混練した。押出機先端に取り付けられた***を有するダイスを通して、吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチを得た。
このとき押出機の設定温度は170℃で実施した。マスターバッチ中の臭素系難燃剤含有量は40重量%であった。
(J2)二軸押出機に、ポリスチレンホモポリマー(A2)100重量部を供給して溶融混練した後、押出機途中より臭素系難燃剤と熱安定剤との混合物(2)を100重量部供給して、さらに溶融混練した。押出機先端に取り付けられた***を有するダイスを通して、吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチを得た。
このとき押出機の設定温度は170℃で実施した。マスターバッチ中の臭素系難燃剤含有量は43重量%であった。
(輻射伝熱抑制剤のマスターバッチ)
(K1)バンバリーミキサーに、ポリスチレンホモポリマー(A2)100重量部、輻射伝熱抑制剤(D1)67重量部を投入して設定温度220℃にて10分間溶融混練した後、ルーダーに供給して先端に取り付けられた***を有するダイスを通して吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
マスターバッチ中の輻射伝熱抑制剤含有量は40重量%であった。
(Other)
(I1) Talc [manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S]
(Masterbatch of mixture of brominated flame retardant and heat stabilizer)
(J1) After supplying 100 parts by weight of polystyrene homopolymer (A2) to a twin-screw extruder and melt-kneading, 73 parts by weight of a mixture ( H1 ) of a brominated flame retardant and a heat stabilizer from the middle of the extruder The mixture was further melt-kneaded. The strand-shaped resin extruded at a discharge rate of 300 kg / hr is cooled and solidified in a water bath at 20 ° C. through a die having a small hole attached to the tip of the extruder, and then cut to obtain a brominated flame retardant and a thermal stabilizer. A master batch of the mixture was obtained.
At this time, the set temperature of the extruder was 170 ° C. The brominated flame retardant content in the masterbatch was 40% by weight.
(J2) After supplying 100 parts by weight of polystyrene homopolymer (A2) to a twin-screw extruder and melt-kneading, 100 parts by weight of a mixture ( H 2) of a brominated flame retardant and a heat stabilizer from the middle of the extruder The mixture was further melt-kneaded. The strand-shaped resin extruded at a discharge rate of 300 kg / hr is cooled and solidified in a water bath at 20 ° C. through a die having a small hole attached to the tip of the extruder, and then cut to obtain a brominated flame retardant and a thermal stabilizer. A master batch of the mixture was obtained.
At this time, the set temperature of the extruder was 170 ° C. The brominated flame retardant content in the masterbatch was 43% by weight.
(Master batch of radiant heat transfer inhibitor)
(K1) A Banbury mixer was charged with 100 parts by weight of a polystyrene homopolymer (A2) and 67 parts by weight of a radiation heat transfer inhibitor (D1), melted and kneaded at a set temperature of 220 ° C. for 10 minutes, and then supplied to a ruder. The strand-shaped resin extruded at a discharge rate of 300 kg / hr through a die having a small hole attached to the tip was cooled and solidified in a 20 ° C. water bath, and then cut to obtain a master batch.
The radiant heat transfer inhibitor content in the masterbatch was 40% by weight.

(実施例1)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A1)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(H1)を3重量部、輻射伝熱抑制剤(D1)2重量部、タルク(I1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
得られた樹脂組成物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ供給し、口径65mm押出機の設定温度220℃にて溶融混練した。口径65mm押出機(第一押出機)の途中から、スチレン系樹脂100重量部に対して、工業用脱臭ブタン(B3)2重量部と混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]6重量部を圧入した。その後、230℃に設定された継続管を通じて、口径90mm押出機(第二押出機)に供給した。
口径90mm押出機(第二押出機)にて樹脂温度を167℃まで溶融樹脂を冷却した後、275℃に設定した第2押出機の先端に取り付けられた直径0.7mm、ランド長3.0mmの小孔を40個有するダイリップから、吐出量50kg/時間で、温度60℃および0.9MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイリップに接触する10枚の刃を有する回転カッターを用いて、2500rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子を得た。このとき第一押出機内滞留時間4分であった。
得られた発泡性スチレン系樹脂粒子100重量部に対してステアリン酸亜鉛0.08重量部をドライブレンドした後、50メッシュのナイロン製網袋に入れ、25℃で保管した。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、発泡性スチレン系樹脂粒子を予備発泡機[大開工業株式会社製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡倍率68倍の発泡スチレン系樹脂粒子を得た。
別途、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関しても、同様の操作を行い、発泡倍率67倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、発泡スチロール用成形機[ダイセン工業株式会社製、KR−57]に取り付けた型内成形用金型(長さ450mm×幅300mm×厚み50mm)内に充填して、0.06MPaの水蒸気を導入し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
Example 1
[Production of expandable styrene resin particles]
3 parts by weight of a mixture (H1) of a brominated flame retardant and a heat stabilizer, 2 parts by weight of a radiation heat transfer inhibitor (D1), 0.2% of talc (I1) with respect to 100 parts by weight of the styrene resin (A1) Part by weight was put into a blender and blended for 10 minutes to obtain a resin composition.
The obtained resin composition is supplied to a tandem type two-stage extruder in which a single screw extruder (first extruder) having a diameter of 65 mm and a single screw extruder (second extruder) having a diameter of 90 mm are connected in series. Melt kneading was performed at a set temperature of 220 ° C. in a 65 mm extruder. From the middle of a 65 mm diameter extruder (first extruder), 2 parts by weight of industrial deodorized butane (B3) and mixed pentane [normal pentane (C1) 80% and isopentane (C2) with respect to 100 parts by weight of styrene resin 20% mixture] 6 parts by weight were injected. Then, it supplied to the 90-mm-diameter extruder (2nd extruder) through the continuation pipe | tube set to 230 degreeC.
After cooling the molten resin to 167 ° C. with a 90 mm diameter extruder (second extruder), the diameter is 0.7 mm and the land length is 3.0 mm attached to the tip of the second extruder set at 275 ° C. A die lip having 40 small holes was extruded into pressurized circulating water at a temperature of 60 ° C. and 0.9 MPa at a discharge rate of 50 kg / hour. The extruded molten resin is cut and pulverized at 2500 rpm using a rotary cutter having 10 blades in contact with the die lip, and transferred to a centrifugal dehydrator to obtain expandable styrene resin particles. It was. At this time, the residence time in the first extruder was 4 minutes.
After dry blending 0.08 part by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable styrenic resin particles, it was put in a 50 mesh nylon net bag and stored at 25 ° C.
[Production of expanded styrene resin particles]
One hour after producing the expandable styrene resin particles, the expandable styrene resin particles are put into a pre-foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300], and 0.08 MPa of water vapor is supplied to the pre-foaming machine. The foam was introduced and foamed to obtain expanded styrene resin particles having an expansion ratio of 68 times.
Separately, the same operation was performed on the expandable styrene resin particles stored for 2 months after the production to obtain expanded styrene resin particles having an expansion ratio of 67 times.
[Production of foamed molded product]
The obtained expanded styrenic resin particles are filled into an in-mold molding die (length 450 mm × width 300 mm × thickness 50 mm) attached to a polystyrene molding machine [Daisen Kogyo Co., Ltd., KR-57]. Then, 0.06 MPa of water vapor was introduced to obtain a rectangular parallelepiped styrenic foam molded article.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例2)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A2)89.87重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(J1)を7.13重量部、輻射伝熱抑制剤マスターバッチ(K1)10重量部、タルク(I1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た以外は、実施例1と同様の操作により、発泡性スチレン系樹脂粒子を得、ステアリン酸亜鉛をドライブレンドした後、50メッシュのナイロン製網袋に入れ25℃で保管した。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
別途、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関しても、同様の操作を行い、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
(Example 2)
[Production of expandable styrene resin particles]
7.13 parts by weight of a master batch (J1) of a mixture of a brominated flame retardant and a heat stabilizer, and radiant heat transfer inhibitor master batch (K1) 10 with respect to 89.87 parts by weight of the styrene resin (A2) In the same manner as in Example 1, except that 0.2 parts by weight of talc (I1) was put into a blender and blended for 10 minutes to obtain a resin composition, expandable styrene resin particles were obtained. After the zinc stearate was dry blended, it was placed in a 50 mesh nylon net bag and stored at 25 ° C.
[Production of expanded styrene resin particles]
One hour after producing expandable styrene resin particles, the same operation as in Example 1 was performed to obtain expanded styrene resin particles having an expansion ratio of 70 times.
Separately, the same operation was performed on the expandable styrene resin particles stored for 2 months after the production to obtain expanded styrene resin particles having an expansion ratio of 70 times.
[Production of foamed molded product]
The obtained expanded styrene resin particles were subjected to the same operation as in Example 1 to obtain a rectangular parallelepiped styrene expanded molded article having a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例3)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A2)90.55重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(1)5.95重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、タルク(1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
得られた樹脂組成物を、口径90mm単軸押出機に供給して、押出機内で溶融混錬し、押出機先端に取り付けられた直径1.4mmの***が140個設けられたダイスを通して、吐出量335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターでスチレン系樹脂粒子を得た。
このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。
[発泡性スチレン系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られたスチレン系樹脂粒子100重量部に対して、脱イオン水200重量部、リン酸三カルシウム1重量部、ドデシルベンゼンスルホン酸ナトリウム0.03重量部、塩化ナトリウム4重量部を投入し、オートクレーブを密閉した。その後、1時間で105℃まで加温した後、発泡剤として工業用脱臭ブタン(B3)2重量部を5分間かけてオートクレーブ内に添加し、次いで、混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]6重量部を25分間かけてオートクレーブ内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。
次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し、塩酸で酸洗後、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。
得られた発泡性スチレン系樹脂粒子100重量部に対して、ステアリン酸亜鉛0.08重量部をドライブレンドした後、50メッシュのナイロン製網袋に入れ25℃で保管した。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
別途、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関しても、同様の操作を行い、発泡倍率71倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 3)
[Production of styrene resin particles]
Master batch ( J1 ) 5.95 parts by weight of a mixture of brominated flame retardant and heat stabilizer, radiation heat transfer inhibitor masterbatch ( K1 ) with respect to 90.55 parts by weight of styrene resin (A2) 10 parts by weight and 0.2 parts by weight of talc ( I 1) were put into a blender and blended for 10 minutes to obtain a resin composition.
The obtained resin composition is supplied to a single-screw extruder having a diameter of 90 mm, melted and kneaded in the extruder, and discharged through a die having 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at an amount of 335 kg / hour was cooled and solidified in a 20 ° C. water bath, and then styrene resin particles were obtained with a strand cutter.
At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.
[Production of expandable styrene resin particles]
In an autoclave with a stirrer of 6 L in volume, with respect to 100 parts by weight of the obtained styrene resin particles, 200 parts by weight of deionized water, 1 part by weight of tricalcium phosphate, 0.03 part by weight of sodium dodecylbenzenesulfonate, 4 parts by weight of sodium chloride was added, and the autoclave was sealed. Then, after heating to 105 ° C. over 1 hour, 2 parts by weight of industrial deodorized butane (B3) was added to the autoclave over 5 minutes, and then mixed pentane [normal pentane (C1) 80% and 6% by weight of a mixture of isopentane (C2) 20%] was added to the autoclave over 25 minutes, heated to 115 ° C. over 10 minutes, and held there for 4 hours.
Next, it is cooled to room temperature, and the resin particles impregnated with the blowing agent are taken out from the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifuge, and the moisture adhering to the surface of the resin particles with an air dryer. Drying was performed to obtain expandable styrene resin particles.
After dry blending 0.08 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable styrene resin particles, they were put in a 50 mesh nylon net bag and stored at 25 ° C.
[Production of expanded styrene resin particles]
One hour after producing expandable styrene resin particles, the same operation as in Example 1 was performed to obtain expanded styrene resin particles having an expansion ratio of 70 times.
Separately, the same operation was performed on the expandable styrene resin particles stored for 2 months after the production to obtain expanded styrene resin particles having an expansion ratio of 71 times.
[Production of foamed molded product]
The obtained expanded styrene resin particles were subjected to the same operation as in Example 1 to obtain a rectangular parallelepiped styrene expanded molded article having a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例4)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部にして、発泡剤として工業用脱臭ブタン(B3)1.4重量部を5分かけて添加し、次いで、混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]6.6重量部を25分かけて添加した以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 4)
In [Preparation of Expanded Styrene Resin Particles], 100 parts by weight of styrene resin particles were added, and 1.4 parts by weight of industrial deodorized butane (B3) was added as a foaming agent over 5 minutes, and then mixed pentane [normal] Mixture of 80% pentane (C1) and 20% isopentane (C2)] Except for the addition of 6.6 parts by weight over 25 minutes, the same procedure as in Reference Example 3 was carried out. Resin particles and a foam-molded article were prepared to obtain a styrenic foam-molded article having a beautiful rectangular parallelepiped shape.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例5)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤として工業用脱臭ブタン(B3)0.8重量部を5分かけて添加し、次いで混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]7.2重量部を25分かけて添加した以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 5)
In [Preparation of Expanded Styrenic Resin Particles], 0.8 parts by weight of industrial deodorized butane (B3) is added as a foaming agent to 100 parts by weight of styrene resin particles over 5 minutes, and then mixed pentane [normal Mixture of 80% pentane (C1) and 20% isopentane (C2)] Except that 7.2 parts by weight were added over 25 minutes, the same procedure as in Reference Example 3 was carried out to obtain expandable styrene resin particles and expanded styrene resin. Resin particles and a foam-molded article were prepared to obtain a styrenic foam-molded article having a beautiful rectangular parallelepiped shape.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例6)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤として工業用脱臭ブタン(B3)1.13重量部を5分かけて添加し、次いで混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]3.37重量部を25分かけて添加した以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 6)
In [Preparation of Expanded Styrenic Resin Particles], 1.13 parts by weight of industrial deodorized butane (B3) was added as a foaming agent to 100 parts by weight of styrene resin particles over 5 minutes, and then mixed pentane [normal] Mixture of 80% pentane (C1) and 20% isopentane (C2)] By the same procedure as in Reference Example 3, except that 3.37 parts by weight were added over 25 minutes, expandable styrene resin particles, expanded styrene resin Resin particles and a foam-molded article were prepared to obtain a styrenic foam-molded article having a beautiful rectangular parallelepiped shape.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例7)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤として混合ブタン[ノルマルブタン(B1)50%とイソブタン(B2)の混合物]2重量部を5分かけて添加し、次いでイソペンタン(C2)6重量部を25分かけて添加したこと以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 7)
In [Preparation of Expanded Styrenic Resin Particles], 2 parts by weight of 2 parts by weight of mixed butane [mixture of 50% normal butane (B1) and isobutane (B2)] as a foaming agent is added to 100 parts by weight of the styrene resin particles over 5 minutes. In the same manner as in Reference Example 3, except that 6 parts by weight of isopentane (C2) was added over 25 minutes, expandable styrene-based resin particles, expanded styrene-based resin particles, and foamed molded articles were produced. Thus, a rectangular parallelepiped styrenic foamed molded article was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例8)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤としてイソブタン(B2)2重量部を5分かけて添加し、次いでノルマルペンタン(C1)6重量部を25分かけて添加したこと以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 8)
In [Preparation of Expanded Styrenic Resin Particles], 2 parts by weight of isobutane (B2) is added as a foaming agent to 100 parts by weight of styrene resin particles over 5 minutes, and then 6 parts by weight of normal pentane (C1) is added. Except that it was added over 25 minutes, expandable styrene resin particles, expanded styrene resin particles, and foamed molded articles were produced in the same manner as in Reference Example 3, and the appearance of a cuboid styrene foam molded article with a beautiful appearance was obtained. Got.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例9)
[発泡性スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(H1)を3重量部、輻射伝熱抑制剤(D1)2重量部、輻射伝熱抑制剤(D2)2重量部、タルク(I1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た以外は、実施例1と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
Example 9
In [Production of Expandable Styrenic Resin Particles], 3 parts by weight of a mixture (H1) of a brominated flame retardant and a thermal stabilizer (100 parts by weight of styrene resin (A 2 )), a radiation heat transfer inhibitor ( D1) 2 parts by weight, radiation heat transfer inhibitor (D2) 2 parts by weight, talc (I1) 0.2 parts by weight were charged into a blender and blended for 10 minutes to obtain a resin composition. By the same operation as in Example 1, expandable styrene resin particles, expanded styrene resin particles, and a foam molded article were produced, and a rectangular solid styrene foam molded article having a beautiful appearance was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例10)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)90.93重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(2)6.07重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、タルク(1)0.2重量部を用いて樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 10)
In [Production of Styrenic Resin Particles], master batch ( J2 ) 6.07 parts by weight of a mixture of a brominated flame retardant and a thermal stabilizer, 90.93 parts by weight of styrene resin (A2), radiation the heat transfer inhibiting agent master batch (K 1) 10 parts by weight, except that to obtain a resin composition using a talc (I 1) 0.2 part by weight, in the same manner as in reference example 3, styrene resin particles, Expandable styrene-based resin particles, expanded styrene-based resin particles, and a foam-molded product were produced to obtain a rectangular parallelepiped-shaped styrene-based foam-molded product.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例11)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)92.55重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(1)2.5重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、ラジカル発生剤(G1)0.05重量部、タルク(1)0.2重量部を用いて樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 11)
In [Preparation of Styrenic Resin Particles], 2.5 parts by weight of a master batch ( J1 ) of a mixture of a brominated flame retardant and a thermal stabilizer with respect to 92.55 parts by weight of the styrene resin (A2), radiation Reference Example , except that 10 parts by weight of heat transfer inhibitor master batch ( K1 ), 0.05 parts by weight of radical generator (G1) and 0.2 parts by weight of talc ( I1 ) were used. In the same manner as in No. 3, styrene resin particles, expandable styrene resin particles, expanded styrene resin particles, and a foam molded article were produced, and a rectangular solid styrene foam molded article having a beautiful appearance was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

参考例12)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)92.48重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(2)3重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、ラジカル発生剤(G2)0.02重量部、タルク(1)0.2重量部を用いて
樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表1に示した。
( Reference Example 12)
In [Production of Styrenic Resin Particles], 3 parts by weight of a master batch ( J2 ) of a mixture of a brominated flame retardant and a heat stabilizer, 92.48 parts by weight of styrene resin (A2), radiant heat transfer Reference Example 3 except that the resin composition was obtained using 10 parts by weight of the inhibitor masterbatch ( K1 ), 0.02 parts by weight of the radical generator (G2), and 0.2 parts by weight of talc ( I1 ). By the same operation, styrene resin particles, expandable styrene resin particles, expanded styrene resin particles, and a foam molded article were produced, and a rectangular solid styrene foam molded article having a beautiful appearance was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

Figure 0006216506
Figure 0006216506

(比較例1)
[発泡性スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)100重量部に対して、発泡剤として混合ペンタン(ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物)8重量部を用いて樹脂組成物を得た以外は、実施例2と同様の操作により、発泡性スチレン系樹脂粒子を得た。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡粒子を得た。
得られた発泡スチレン系樹脂粒子の表面には、収縮シワが多数あり、いびつな形状の発泡スチレン系樹脂粒子であった。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、スチレン系発泡成形体を得たが、大きく収縮し、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
これに対して、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関して、実施例1と同様の操作により発泡粒子を得たところ、シワのない球形の発泡スチレン系樹脂粒子であり、さらに、実施例1と同様の操作により発泡成形体を得たところ、外観美麗な直方体状のスチレン系発泡成形体であった。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 1)
In [Preparation of Expandable Styrene Resin Particles], 8 parts of mixed pentane (mixture of 80% normal pentane (C1) and 20% isopentane (C2)) as a foaming agent with respect to 100 parts by weight of styrene resin (A 2 ) 8 Expandable styrene resin particles were obtained by the same operation as in Example 2 except that the resin composition was obtained using parts by weight.
[Production of expanded styrene resin particles]
One hour after producing expandable styrene-based resin particles, expanded particles were obtained by the same operation as in Example 1.
The surface of the obtained expanded styrene resin particles had many shrinkage wrinkles, and the expanded styrene resin particles had an irregular shape.
[Production of foamed molded product]
The obtained expanded styrene resin particles were obtained in the same manner as in Example 1 to obtain a styrene expanded molded product. However, the expanded styrene resin particles were greatly shrunk and a rectangular parallelepiped styrenic expanded molded product was not obtained.
On the other hand, regarding the expandable styrene resin particles stored for 2 months after the production, the expanded particles were obtained by the same operation as in Example 1, and they were spherical expanded styrene resin particles without wrinkles. When a foamed molded product was obtained by the same operation as in Example 1, it was a cuboid styrenic foamed molded product with a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 2.

(比較例2)
[発泡性スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、発泡剤として工業用脱臭ブタン(B3)8重量部を用いた以外は、実施例と同様の操作により、発泡性スチレン系樹脂粒子を得た。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡させたところ、発泡倍率71倍の発泡スチレン系樹脂粒子が得られた。
これに対して、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関しても、同様の操作を行ったが、発泡剤の散逸が早いため、発泡倍率34倍と低くなっており、使用可能期間が短い結果となった。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 2)
In [Production of Expandable Styrene Resin Particles], the same as Example 2 except that 8 parts by weight of industrial deodorized butane (B3) was used as a foaming agent with respect to 100 parts by weight of styrene resin (A2). By the operation, expandable styrene resin particles were obtained.
[Production of expanded styrene resin particles]
One hour after producing the expandable styrene resin particles, foaming was performed by the same operation as in Example 1. As a result, expanded styrene resin particles having an expansion ratio of 71 times were obtained.
On the other hand, the same operation was performed on the expandable styrene resin particles stored for 2 months after the preparation, but the foaming agent dissipated quickly, so the expansion ratio was as low as 34 times. The result was short.
[Production of foamed molded product]
The obtained expanded styrene resin particles were subjected to the same operation as in Example 1 to obtain a rectangular parallelepiped styrene expanded molded article having a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 2.

(比較例3)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤として工業用脱臭ブタン(B3)0.4重量部を2分間かけて添加し、次いで混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]8.6重量部を30分間かけて添加したこと以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子を得た。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡粒子を得た。
得られた発泡スチレン系樹脂粒子の表面には、収縮シワが多数あり、いびつな形状の発泡スチレン系樹脂粒子であった。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、スチレン系発泡成形体を得たが、大きく収縮し、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
これに対して、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関して、実施例1と同様の操作により発泡粒子を得たところ、シワのない球形の発泡スチレン系樹脂粒子であり、さらに、実施例1と同様の操作により発泡成形体を得たところ、外観美麗な直方体状のスチレン系発泡成形体であった。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 3)
In [Production of Expanded Styrenic Resin Particles], 0.4 part by weight of industrial deodorized butane (B3) was added as a foaming agent over 2 minutes to 100 parts by weight of styrene resin particles, and then mixed pentane [normal Mixture of 80% pentane (C1) and 20% isopentane (C2)] Expandable styrene resin particles were obtained in the same manner as in Reference Example 3 except that 8.6 parts by weight were added over 30 minutes. .
[Production of expanded styrene resin particles]
One hour after producing expandable styrene-based resin particles, expanded particles were obtained by the same operation as in Example 1.
The surface of the obtained expanded styrene resin particles had many shrinkage wrinkles, and the expanded styrene resin particles had an irregular shape.
[Production of foamed molded product]
The obtained expanded styrene resin particles were obtained in the same manner as in Example 1 to obtain a styrene expanded molded product. However, the expanded styrene resin particles were greatly shrunk and a rectangular parallelepiped styrenic expanded molded product was not obtained.
On the other hand, regarding the expandable styrene resin particles stored for 2 months after the production, the expanded particles were obtained by the same operation as in Example 1, and they were spherical expanded styrene resin particles without wrinkles. When a foamed molded product was obtained by the same operation as in Example 1, it was a cuboid styrenic foamed molded product with a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 2.

(比較例4)
[発泡スチレン系樹脂粒子の作製]において、スチレン系樹脂粒子100重量部に対して、発泡剤として工業用脱臭ブタン(B3)3重量部を10分間かけて添加し、次いで混合ペンタン[ノルマルペンタン(C1)80%とイソペンタン(C2)20%の混合物]5重量部を20分間かけて添加したこと以外は、参考例3と同様の操作により、発泡性スチレン系樹脂粒子を得た。
[発泡スチレン系樹脂粒子の作製]
発泡性スチレン系樹脂粒子を作製してから1時間後に、実施例1と同様の操作により、発泡させたところ、発泡倍率70倍の発泡スチレン系樹脂粒子が得られた。
これに対して、作製後2ヶ月保管した発泡性スチレン系樹脂粒子に関しても、同様の操作を行ったが、炭素数4の発泡剤含有比率が本発明の規定外であるため、発泡剤の散逸が早くなることで発泡倍率48倍と低くなっており、使用可能期間が短い結果となった。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、実施例1と同様の操作により、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 4)
In [Production of Expanded Styrenic Resin Particles], 3 parts by weight of industrial deodorized butane (B3) is added as a foaming agent to 100 parts by weight of styrene resin particles over 10 minutes, and then mixed pentane [normal pentane ( C1) Mixture of 80% and isopentane (C2) 20%] Expandable styrene resin particles were obtained in the same manner as in Reference Example 3 except that 5 parts by weight were added over 20 minutes.
[Production of expanded styrene resin particles]
One hour after producing the expandable styrene resin particles, foaming was performed by the same operation as in Example 1. As a result, expanded styrene resin particles with an expansion ratio of 70 times were obtained.
On the other hand, although the same operation was performed on the expandable styrene resin particles stored for 2 months after the production, the content of the foaming agent having 4 carbon atoms is outside the scope of the present invention. The foaming ratio was as low as 48 times due to the earlier and the usable period was shorter.
[Production of foamed molded product]
The obtained expanded styrene resin particles were subjected to the same operation as in Example 1 to obtain a rectangular parallelepiped styrene expanded molded article having a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 2.

(比較例5)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)96.55重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(1)5.95重量部、タルク(1)0.2重量部を用いて樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤を添加していない為、実施例と比較して熱伝導率が高いことが判る。
(Comparative Example 5)
In [Preparation of Styrenic Resin Particles], a master batch ( J1 ) of 5.95 parts by weight of a mixture of a brominated flame retardant and a thermal stabilizer, talc with respect to 96.55 parts by weight of the styrene resin (A2) ( I 1) Styrenic resin particles, expandable styrene resin particles, expanded styrene resin particles, expanded molding, by the same operation as in Reference Example 3 except that a resin composition was obtained using 0.2 parts by weight. A styrene foam-molded body having a beautiful rectangular parallelepiped shape was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since no radiation heat transfer inhibitor is added, it can be seen that the thermal conductivity is higher than in the examples.

(比較例6)
[発泡性スチレン系樹脂粒子の作製]においてスチレン系樹脂(A)100重量部に対して、臭素系難燃剤(E1)を0.3重量部、輻射伝熱抑制剤(D1)4重量部、タルク(I1)0.2重量部を用いて樹脂組成物を得た以外は、実施例1と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。臭素系難燃剤の添加量が本発明の規定外であるため、十分な難燃性が得られなかった。
(Comparative Example 6)
In [Production of Expandable Styrene Resin Particles], 0.3 parts by weight of brominated flame retardant (E1) and 4 parts by weight of radiant heat transfer inhibitor (D1) with respect to 100 parts by weight of styrene resin (A 2 ) Except that the resin composition was obtained using 0.2 parts by weight of talc (I1), expandable styrene resin particles, expanded styrene resin particles, and expanded molded articles were prepared in the same manner as in Example 1. As a result, a rectangular parallelepiped styrenic foamed molded article was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since the amount of brominated flame retardant added is outside the scope of the present invention, sufficient flame retardancy could not be obtained.

(比較例7)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)96.55重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(2)16.16重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、タルク(1)0.2重量部を用いて樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を得た。
しかし、メルトや変色が起こり、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 7)
In [Production of Styrenic Resin Particles], 16.16 parts by weight of a master batch ( J2 ) of a mixture of a brominated flame retardant and a heat stabilizer, 96.55 parts by weight of styrene resin (A2), radiation the heat transfer inhibiting agent master batch (K 1) 10 parts by weight, except that to obtain a resin composition using a talc (I 1) 0.2 part by weight, in the same manner as in reference example 3, styrene resin particles, Expandable styrene-based resin particles, expanded styrene-based resin particles, and foamed molded articles were obtained.
However, melt and discoloration occurred, and a cuboid styrene foam molded article having a beautiful appearance could not be obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2.

(比較例8)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)90.55重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(1)5.95重量部、輻射伝熱抑制剤マスターバッチ(1)10重量部、ラジカル発生剤(G1)1.5重量部、タルク(1)0.2重量部を用いて樹脂組成物を得た以外は、参考例3と同様の操作により、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子を得た。
しかし、スチレン系樹脂の劣化が著しいため、収縮シワが多く外観美麗な発泡スチレン系樹脂粒子は得られなかった。また、メルトや変色が起こり、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
得られた発泡成形体の評価結果を、表2に示した。
(Comparative Example 8)
In [Preparation of Styrenic Resin Particles], 5.95 parts by weight of a master batch ( J1 ) of a mixture of a brominated flame retardant and a heat stabilizer with respect to 90.55 parts by weight of styrene resin (A2), radiation Reference Example , except that 10 parts by weight of heat transfer inhibitor master batch ( K1 ), 1.5 parts by weight of radical generator (G1), and 0.2 parts by weight of talc ( I1 ) were used. In the same manner as in No. 3, styrene resin particles, expandable styrene resin particles, and expanded styrene resin particles were obtained.
However, since the deterioration of the styrene resin was remarkable, expanded styrene resin particles having many shrinkage wrinkles and a beautiful appearance could not be obtained. Moreover, melt and discoloration occurred, and a cuboid styrene foam molded article having a beautiful appearance could not be obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2.

Figure 0006216506
Figure 0006216506

Claims (8)

スチレン系樹脂100重量部に対して、輻射抑制剤2〜6重量部、臭素系難燃剤1〜5重量部および、炭素数4の炭化水素と炭素数5の炭化水素からなる発泡剤4〜10重量部を押出機で溶融混練し、押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることを特徴とする、発泡性スチレン系樹脂粒子の製造方法。
2 to 6 parts by weight of a radiation inhibitor, 1 to 5 parts by weight of a brominated flame retardant, and 4 to 10 foaming agents comprising a hydrocarbon having 4 carbon atoms and a hydrocarbon having 5 carbon atoms with respect to 100 parts by weight of the styrene resin. Part by weight is melt kneaded with an extruder, extruded into a cutter chamber filled with pressurized circulating water through a die with a small hole attached to the tip of the extruder, cut by a rotary cutter immediately after extrusion, and pressurized circulation A method for producing foamed styrene resin particles by cooling and solidifying with water,
The method for producing expandable styrene resin particles, wherein the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable styrene resin particles is 2/98 to 20/80.
さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部含有することを特徴とする、請求項1に記載の発泡性スチレン系樹脂粒子の製造方法。   Furthermore, 0.1-10 weight part of heat stabilizers are contained with respect to 100 weight part of brominated flame retardants, The manufacturing method of the expandable styrene-type resin particle of Claim 1 characterized by the above-mentioned. 輻射抑制剤が、グラファイト、グラフェン、活性炭、カーボンブラック、酸化チタンよりなる群から選ばれる少なくとも1種であることを特徴とする、請求項1または2に記載の発泡性スチレン系樹脂粒子の製造方法。   The method for producing expandable styrene resin particles according to claim 1 or 2, wherein the radiation inhibitor is at least one selected from the group consisting of graphite, graphene, activated carbon, carbon black, and titanium oxide. . 臭素系難燃剤が、臭素化ビスフェノール系化合物、臭素化スチレン−ブタジエン共重合体よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれか1項記載の発泡性スチレン系樹脂粒子の製造方法。   The brominated flame retardant is at least one selected from the group consisting of brominated bisphenol compounds and brominated styrene-butadiene copolymers. A method for producing styrene resin particles. 炭素数4の炭化水素が、ノルマルブタン、イソブタンよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜4のいずれか1項記載の発泡性スチレン系樹脂粒子の製造方法。   The method for producing expandable styrene resin particles according to any one of claims 1 to 4, wherein the hydrocarbon having 4 carbon atoms is at least one selected from the group consisting of normal butane and isobutane. 炭素数5の炭化水素がノルマルペンタン、イソペンタンよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜5のいずれか1項記載の発泡性スチレン系樹脂粒子の製造方法。   The method for producing expandable styrene resin particles according to any one of claims 1 to 5, wherein the hydrocarbon having 5 carbon atoms is at least one selected from the group consisting of normal pentane and isopentane. 熱安定剤がヒンダードアミン系化合物、リン系化合物、エポキシ化合物、またはこれらの混合物であることを特徴とする請求項2に記載の発泡性スチレン系樹脂粒子の製造方法。   The method for producing expandable styrene resin particles according to claim 2, wherein the heat stabilizer is a hindered amine compound, a phosphorus compound, an epoxy compound, or a mixture thereof. 請求項1〜7のいずれか1項に記載の発泡性スチレン系樹脂粒子の製造方法によって発泡性スチレン系樹脂粒子を製造する工程と、得られた発泡性スチレン系樹脂粒子を、加熱して予備発泡させて予備発泡粒子を得る工程と、該予備発泡粒子を成形キャビティ内に充填して型内発泡成形する工程とを有することを特徴とする、スチレン系樹脂発泡成形体の製造方法。 A step of producing expandable styrene resin particles by the method for producing expandable styrene resin particles according to any one of claims 1 to 7, and heating the obtained expandable styrene resin particles to prepare A method for producing a styrene-based resin foam molded article, comprising the steps of obtaining pre-foamed particles by foaming and filling the pre-foamed particles into a molding cavity and foam-molding in a mold.
JP2012274069A 2012-12-14 2012-12-14 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article Active JP6216506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274069A JP6216506B2 (en) 2012-12-14 2012-12-14 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274069A JP6216506B2 (en) 2012-12-14 2012-12-14 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Publications (2)

Publication Number Publication Date
JP2014118474A JP2014118474A (en) 2014-06-30
JP6216506B2 true JP6216506B2 (en) 2017-10-18

Family

ID=51173611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274069A Active JP6216506B2 (en) 2012-12-14 2012-12-14 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Country Status (1)

Country Link
JP (1) JP6216506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108026311A (en) * 2015-09-09 2018-05-11 株式会社钟化 Foamable styrene system resin particles, the pre-expanded particles of phenylethylene resin series, the manufacture method of phenylethylene resin series foam molding and foaminess resin particle
EP3778741A4 (en) * 2018-04-11 2021-05-19 Kaneka Corporation Expandable thermoplastic resin particles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133150B2 (en) * 2013-07-04 2017-05-24 株式会社ジェイエスピー Method for producing polystyrene resin foam using flame retardant melt kneaded material
JP5950056B2 (en) * 2013-11-14 2016-07-13 株式会社カネカ Styrenic resin extruded foam and method for producing the same
JP6405781B2 (en) * 2014-08-08 2018-10-17 株式会社ジェイエスピー Expandable styrene resin particles and method for producing the same
MA41342A (en) * 2015-01-14 2017-11-21 Synthos Sa PROCESS FOR THE PRODUCTION OF EXPANDABLE AROMATIC VINYL POLYMER GRANULATES WITH REDUCED THERMAL CONDUCTIVITY
KR20170108043A (en) 2015-01-14 2017-09-26 신도스 에스.에이. Use of perovskite-structured minerals in vinyl aromatic polymer foams
MA41344B1 (en) 2015-01-14 2019-01-31 Synthos Sa Combination of silica and graphite and its use to reduce the thermal conductivity of a vinyl aromatic polymer foam
JP6937292B2 (en) 2016-03-29 2021-09-22 株式会社カネカ Method for manufacturing foam composite molding, in-mold foam molding unit, foam composite molding, and mold for foam composite molding
EP3437819B1 (en) 2016-03-29 2022-09-21 Kaneka Corporation Foamed composite molding and method for manufacturing foamed composite molding
JP6688658B2 (en) * 2016-03-31 2020-04-28 株式会社カネカ Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article
JP2018100380A (en) * 2016-12-21 2018-06-28 積水化成品工業株式会社 Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
CN110099588B (en) 2016-12-21 2021-09-17 株式会社钟化 In-mold foamed molded body unit and method for producing in-mold foamed molded body unit
JP6854669B2 (en) * 2017-03-01 2021-04-07 株式会社カネカ Effervescent polystyrene resin particles, pre-expanded particles, molded article
EP3594276A4 (en) * 2017-03-07 2020-11-04 Kaneka Corporation Styrenic resin extruded foam and method for producing same
WO2018173835A1 (en) 2017-03-23 2018-09-27 株式会社カネカ Vehicle seat core material, die for molding vehicle seat core material, and method for manufacturing vehicle seat core material
JP7144955B2 (en) * 2018-03-28 2022-09-30 株式会社カネカ Method for producing styrenic resin composition and expandable styrenic resin particles
JP7194535B2 (en) * 2018-08-31 2022-12-22 株式会社カネカ Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP7227466B2 (en) * 2019-01-16 2023-02-22 株式会社ジェイエスピー Expandable styrene resin particles and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935440B2 (en) * 2003-01-10 2007-06-20 積水化成品工業株式会社 Recycling method of styrene resin
JP4316305B2 (en) * 2003-06-13 2009-08-19 株式会社ジェイエスピー Method for producing styrene resin foam containing graphite powder
JP4271999B2 (en) * 2003-06-20 2009-06-03 株式会社ジェイエスピー Styrenic resin foam containing aluminum powder
DE102004028768A1 (en) * 2004-06-16 2005-12-29 Basf Ag Styrene polymer particle foams with reduced thermal conductivity
JP4774293B2 (en) * 2005-12-21 2011-09-14 積水化成品工業株式会社 Styrenic resin expandable particles, production method thereof, and in-mold foam-molded product
JP5750221B2 (en) * 2009-10-27 2015-07-15 積水化成品工業株式会社 Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108026311A (en) * 2015-09-09 2018-05-11 株式会社钟化 Foamable styrene system resin particles, the pre-expanded particles of phenylethylene resin series, the manufacture method of phenylethylene resin series foam molding and foaminess resin particle
US11015033B2 (en) 2015-09-09 2021-05-25 Kaneka Corporation Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles
EP3778741A4 (en) * 2018-04-11 2021-05-19 Kaneka Corporation Expandable thermoplastic resin particles

Also Published As

Publication number Publication date
JP2014118474A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6068920B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
US11091599B2 (en) Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their preparation and expanded articles obtained therefrom
MX2011006635A (en) Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their production and expanded articles obtained therefrom.
KR20120107114A (en) Flame-protected polymer foams
US11015033B2 (en) Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles
JP6306643B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP2023063388A (en) Styrenic resin composition, and method for producing foamable styrenic resin particle
JP7175642B2 (en) Method for producing expandable styrene resin particles
JP7144955B2 (en) Method for producing styrenic resin composition and expandable styrenic resin particles
JP6609653B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
KR101099027B1 (en) Method for producing expandable polystyrene beads which have excellent flammable capability
JP6971743B2 (en) Method for manufacturing foamable styrene resin particles
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
JP6854669B2 (en) Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP6854672B2 (en) A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.
JP6688658B2 (en) Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP5909903B2 (en) Method for producing flame retardant foamable styrene resin particles
JP6961440B2 (en) Foamable polystyrene resin particles and manufacturing method
JP6135791B2 (en) Method for producing flame retardant foamable styrene resin particles
JP2017222772A (en) Method for producing expandable styrene-based resin particles
JP2018090707A (en) Foamable polystyrene-based resin particle and method for producing the same
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6216506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250