JP6215678B2 - Composite container manufacturing system and composite container manufacturing method - Google Patents

Composite container manufacturing system and composite container manufacturing method Download PDF

Info

Publication number
JP6215678B2
JP6215678B2 JP2013254394A JP2013254394A JP6215678B2 JP 6215678 B2 JP6215678 B2 JP 6215678B2 JP 2013254394 A JP2013254394 A JP 2013254394A JP 2013254394 A JP2013254394 A JP 2013254394A JP 6215678 B2 JP6215678 B2 JP 6215678B2
Authority
JP
Japan
Prior art keywords
temperature
heating
container
composite container
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254394A
Other languages
Japanese (ja)
Other versions
JP2015113864A (en
Inventor
愛 蓑田
愛 蓑田
順二 岡崎
順二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013254394A priority Critical patent/JP6215678B2/en
Publication of JP2015113864A publication Critical patent/JP2015113864A/en
Application granted granted Critical
Publication of JP6215678B2 publication Critical patent/JP6215678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • B29C2035/046Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames dried air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/041Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/049Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using steam or damp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、複合容器の製造システム、及び複合容器の製造方法に関する。   The present invention relates to a composite container manufacturing system and a composite container manufacturing method.

従来、例えば特許文献1に記載されているように、強化層を備えた複合容器を製造する製造方法が知られている。このような製造方法では、熱硬化性樹脂が含浸された繊維束を金属製ライナに巻き付けて容器中間体を形成し、この容器中間体を加熱炉で加熱して繊維束の熱硬化性樹脂を硬化させている。   Conventionally, as described in Patent Document 1, for example, a manufacturing method for manufacturing a composite container provided with a reinforcing layer is known. In such a manufacturing method, a fiber bundle impregnated with a thermosetting resin is wound around a metal liner to form a container intermediate, and the container intermediate is heated in a heating furnace to form a thermosetting resin for the fiber bundle. It is cured.

特開2008−286297号公報JP 2008-286297 A

ところで、上述したような従来技術においては、加熱炉で容器中間体を加熱する際、熱硬化性樹脂が自己発熱し、容器中間体の温度が一時的に高くなる過昇温現象が生じる。この場合、強化層の厚みが厚いので、過昇温現象が起きている時に温度ムラが生じ、均一に硬化できないという問題がある。その結果、樹脂の熱膨張の差や、繊維の歪み等により容器の強度が低下する恐れがある。   By the way, in the prior art as described above, when the container intermediate is heated in the heating furnace, the thermosetting resin self-heats, and an excessive temperature rise phenomenon occurs in which the temperature of the container intermediate is temporarily increased. In this case, since the thickness of the reinforcing layer is thick, there is a problem that temperature unevenness occurs when an excessive temperature rise phenomenon occurs, and it cannot be uniformly cured. As a result, the strength of the container may decrease due to the difference in thermal expansion of the resin, the distortion of the fibers, or the like.

本発明は、このような課題を解決するためになされたものであり、複合容器の強度を向上することができる複合容器の製造システム及び複合容器の製造方法を提供することを課題とする。   This invention is made | formed in order to solve such a subject, and makes it a subject to provide the manufacturing method of the composite container which can improve the intensity | strength of a composite container, and the manufacturing method of a composite container.

上記課題を解決するため、本発明に係る複合容器の製造システムは、強化層を備えた複合容器を製造する複合容器の製造システムであって、熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を加熱し、繊維束の熱硬化性樹脂を硬化させる硬化手段を備え、硬化手段は容器中間体を外側から加熱する第1加熱手段と、容器中間体を内側から加熱する第2加熱手段と、を備え、第2加熱手段は少なくとも過昇温現象が起きている時に、第1加熱手段より高い設定温度で中間体の内側を加熱し、第2加熱手段は、容器中間体の内部空間に設けられているIn order to solve the above problems, a composite container manufacturing system according to the present invention is a composite container manufacturing system that manufactures a composite container having a reinforcing layer, and a fiber bundle impregnated with a thermosetting resin is a liner. The container intermediate body formed by being wound around the outer surface side is heated to include a curing means for curing the thermosetting resin of the fiber bundle, and the curing means includes a first heating means for heating the container intermediate body from the outside, and a container intermediate A second heating means for heating the body from the inside, and the second heating means heats the inside of the intermediate body at a set temperature higher than that of the first heating means when at least an excessive temperature rise phenomenon occurs , The heating means is provided in the internal space of the container intermediate .

また、本発明に係る複合容器の製造方法は、強化層を備えた複合容器を製造する複合容器の製造方法であって、熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を硬化炉で加熱することにより、繊維束の熱硬化性樹脂を硬化させる硬化工程を含み、硬化工程は、少なくとも過昇温現象が起きている時に、容器中間体を外側から加熱する温度より高い設定温度で容器中間体を当該容器中間体の内部空間から加熱する内部加熱工程を含む。 The method for manufacturing a composite container according to the present invention is a method for manufacturing a composite container having a reinforcing layer, in which a fiber bundle impregnated with a thermosetting resin is wound around the outer surface side of the liner. A curing step of curing the thermosetting resin of the fiber bundle by heating the container intermediate formed in a curing furnace, and the curing step is performed at least when an excessive temperature rise phenomenon occurs. An internal heating step of heating the container intermediate from the internal space of the container intermediate at a set temperature higher than the temperature of heating from the outside;

これらの本発明では、容器中間体を加熱して樹脂を硬化させるに際して、少なくとも過昇温現象が起きている時に内側に熱を与えることによって、強化層の厚み方向における温度差(温度ムラ)を低減し、熱硬化性樹脂をより均等に硬化させることができる。これにより、熱硬化性樹脂の収縮量の差による繊維束の歪みの抑制が可能となり、複合容器の強度を向上することができる。   In these inventions, when the container intermediate is heated to cure the resin, at least when an excessive temperature rise phenomenon occurs, heat is applied to the inside to thereby reduce the temperature difference (temperature unevenness) in the thickness direction of the reinforcing layer. And the thermosetting resin can be cured more evenly. Thereby, the distortion of the fiber bundle due to the difference in shrinkage amount of the thermosetting resin can be suppressed, and the strength of the composite container can be improved.

また、過昇温現象が起きる前において、第2加熱手段の設定温度が第1加熱手段の設定温度より低い、又は第2加熱手段による加熱を行わなくてもよい。過昇温現象が起きる前は、過昇温現象が起きている時ほど強化層内の温度差が大きくないので、より低い温度で容器中間体の内側を加熱するか、又は内側を加熱しないことにより、複合容器の強度を向上させながら、消費エネルギーを低減することができる。   Further, before the overheating phenomenon occurs, the set temperature of the second heating means is lower than the set temperature of the first heating means, or the heating by the second heating means may not be performed. Before the overheating phenomenon occurs, the temperature difference in the reinforcing layer is not as great as when the overheating phenomenon occurs, so either heat the inside of the container intermediate at a lower temperature or do not heat the inside. Thus, energy consumption can be reduced while improving the strength of the composite container.

また、第1加熱手段の加熱により前記熱硬化性樹脂の温度が上昇する温度上昇部において、第2加熱手段により前記中間体を加熱してもよい。これにより、熱硬化性樹脂の温度ムラを更になくし、均一な温度分布にすることができ、複合容器の強度を向上させることができる。   Further, the intermediate may be heated by the second heating means in a temperature increasing portion where the temperature of the thermosetting resin is increased by the heating of the first heating means. Thereby, the temperature nonuniformity of the thermosetting resin can be further eliminated, a uniform temperature distribution can be obtained, and the strength of the composite container can be improved.

本発明によれば、複合容器の強度を向上することが可能となる。   According to the present invention, the strength of the composite container can be improved.

本発明実施形態に係る複合容器を示す一部断面図である。It is a partial cross section figure which shows the composite container which concerns on this invention embodiment. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 本発明実施形態の複合容器の製造システムを示す概略構成図である。It is a schematic block diagram which shows the manufacturing system of the composite container of embodiment of this invention. 本発明実施形態の複合容器の製造方法における容器中間体の断面模式図である。It is a cross-sectional schematic diagram of the container intermediate body in the manufacturing method of the composite container of this embodiment. 本発明実施形態の一例の複合容器の表面、金属製ライナ及び加熱炉の温度状況を示すグラフである。It is a graph which shows the temperature condition of the surface of the composite container of an example of this invention embodiment, metal liners, and a heating furnace. 本発明実施形態の一例の複合容器の表面、金属製ライナ及び加熱炉の温度状況を示すグラフである。It is a graph which shows the temperature condition of the surface of the composite container of an example of this invention embodiment, metal liners, and a heating furnace. 従来技術における複合容器の断面模式図である。It is a cross-sectional schematic diagram of the composite container in a prior art. 従来技術における複合容器の表面、金属製ライナ及び加熱炉の温度状況を示すグラフである。It is a graph which shows the temperature condition of the surface of the composite container in a prior art, a metal liner, and a heating furnace.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]

図1は、第1実施形態に係る製造方法により製造される複合容器を示す一部断面図であり、図2は、図1のII−II線に沿った断面図である。図1及び図2に示すように、複合容器1は、水素や天然ガス等の燃料ガスを高圧で貯蔵するための容器である。この複合容器1は、例えば、全長が2〜4m、直径が400〜600mm程度に設定され、使用時には、20〜90MPa程度の圧力に耐えることが可能とされている。複合容器1は、その用途が限定されるものではなく、種々の用途で用いることができる。また、複合容器1は、据置き型として用いられてもよく、移動体に搭載されて用いられてもよい。   FIG. 1 is a partial cross-sectional view showing a composite container manufactured by the manufacturing method according to the first embodiment, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG. As shown in FIGS. 1 and 2, the composite container 1 is a container for storing a fuel gas such as hydrogen or natural gas at a high pressure. For example, the composite container 1 has a total length of 2 to 4 m and a diameter of about 400 to 600 mm, and can withstand a pressure of about 20 to 90 MPa when used. The use of the composite container 1 is not limited and can be used for various purposes. In addition, the composite container 1 may be used as a stationary type or may be used by being mounted on a moving body.

図1に示されたように、この複合容器1は、円筒状の金属製ライナ2と、金属製ライナ2の外周側を覆うように設けられた強化層(繊維強化プラスチック層)3と、を備えている。金属製ライナ2の両端部2aはドーム状に形成されており、当該両端部2aの先端には、軸方向に突出するように口金4が取り付けられている。ここでの口金4における取付け高さ(突出高さ)は、強化層3の厚みと同等とされているが、それ以上であってもよく、口金4が強化層3から出っ張る高さとされてもよい。   As shown in FIG. 1, the composite container 1 includes a cylindrical metal liner 2 and a reinforcing layer (fiber reinforced plastic layer) 3 provided so as to cover the outer peripheral side of the metal liner 2. I have. Both end portions 2a of the metal liner 2 are formed in a dome shape, and a base 4 is attached to the tip ends of the both end portions 2a so as to protrude in the axial direction. Here, the mounting height (projection height) of the base 4 is equal to the thickness of the reinforcing layer 3, but it may be more than that, or even if the base 4 protrudes from the reinforcing layer 3. Good.

金属製ライナ2は、例えば、アルミニウム合金製や鋼鉄製等からなるパイプ形状や板形状をスピニング加工等にて容器形状に形成したものに、口金4の形状を形成したものである。   The metal liner 2 is formed by forming the shape of the base 4 into a pipe shape or plate shape made of, for example, an aluminum alloy or steel and formed into a container shape by spinning or the like.

強化層3は、金属製ライナ2の外周側に熱硬化性樹脂が含浸された繊維束10を巻き付け、当該繊維束10を加熱炉で加熱し硬化させることによって形成される。熱硬化性樹脂の種類としては、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、エポキシ樹脂、メラミン樹脂又はアリル樹脂等が挙げられるが、これらに限定されるものではなく、加熱することで硬化できる樹脂なら全て用いることができる。   The reinforcing layer 3 is formed by winding a fiber bundle 10 impregnated with a thermosetting resin around the outer periphery of the metal liner 2 and heating and curing the fiber bundle 10 in a heating furnace. Types of thermosetting resins include phenolic resin, urea resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, bismaleimide resin, polyimide resin, polyurethane resin, diallyl phthalate resin, epoxy resin, melamine resin or allyl resin However, it is not limited to these, and any resin that can be cured by heating can be used.

また、繊維束10としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、スチール繊維、ザイロン繊維又はビニロン繊維等を用いることができ、ここでは、高強度で高弾性率且つ軽量な炭素繊維を用いている。また、本実施形態の繊維束10の繊維数(フィラメント)は、特に制限されるものではないが、1000〜50000フィラメント、好ましくは3000〜30000フィラメントの範囲とされ、ここでは、24000フィラメントとされている。   Further, as the fiber bundle 10, for example, carbon fiber, glass fiber, aramid fiber, boron fiber, polyethylene fiber, steel fiber, Zylon fiber, or vinylon fiber can be used. Lightweight carbon fiber is used. In addition, the number of fibers (filament) of the fiber bundle 10 of the present embodiment is not particularly limited, but is in the range of 1000 to 50000 filaments, preferably 3000 to 30000 filaments, and here, 24,000 filaments. Yes.

以上のように構成された複合容器1を製造する場合、まず、金属製ライナ2の外周側に熱硬化性樹脂が含浸された繊維束10を巻き付けることにより、金属製ライナ2の外周側に複数層の繊維束層を形成し、これにより、容器中間体1a(図3参照)を形成する。   When the composite container 1 configured as described above is manufactured, first, a plurality of fiber bundles 10 impregnated with a thermosetting resin are wound around the outer periphery side of the metal liner 2, so that a plurality of them are wound around the outer periphery side of the metal liner 2. A fiber bundle layer is formed, thereby forming the container intermediate 1a (see FIG. 3).

なお、容器中間体1aとは、製造過程における複合容器1を意図しており、ここでは、繊維束10の熱硬化性樹脂が熱硬化する前の状態のものを意図している(以下、同じ)。また、巻付け工程における巻付け方法は特に限定されないが、例えば、FW(フィラメントワインディング)法を採用することができる。FW法としては、予め熱硬化性樹脂が含浸された繊維束(トウプリプレグ)を用意し、これを金属製ライナ2に巻き付けて成形する方法(いわゆるDry法)や、繊維束を熱硬化性樹脂に含浸させながら供給し、これを金属製ライナ2に巻き付けて成形する方法(いわゆるWet法)が挙げられる。   The container intermediate 1a is intended to be the composite container 1 in the manufacturing process, and here, is intended to be a state before the thermosetting resin of the fiber bundle 10 is thermally cured (hereinafter the same). ). Further, the winding method in the winding step is not particularly limited, but for example, an FW (filament winding) method can be adopted. As the FW method, a fiber bundle (tow prepreg) impregnated with a thermosetting resin in advance is prepared, and this is wound around a metal liner 2 (so-called Dry method), or the fiber bundle is thermoset resin. For example, a method (so-called wet method) in which the metal liner 2 is supplied while being impregnated and wound around a metal liner 2 is formed.

そして、繊維束10を巻き付けた後、容器中間体1aを硬化装置30(図3参照)で加熱することにより繊維束10の熱硬化性樹脂を硬化させる。ここで、図3を参照して、本実施形態について詳説する。   And after winding the fiber bundle 10, the thermosetting resin of the fiber bundle 10 is hardened by heating the container intermediate body 1a with the hardening apparatus 30 (refer FIG. 3). Here, the present embodiment will be described in detail with reference to FIG.

図3は、図1の複合容器の製造システムを示す概略構成図である。図3に示すように、本実施形態の製造システム100Aは、上記複合容器1を製造するものである。製造システム100Aは、ライナ2に繊維束10を巻き付けることで容器中間体1aを形成する巻付け装置(不図示)と、容器中間体1aを加熱して繊維束10の熱硬化性樹脂を硬化させる硬化装置(硬化手段)30と、を少なくとも備えている。硬化装置30は、容器中間体1aを外側から加熱する加熱炉20と、容器中間体1aを内側から加熱する内側加熱装置40と、硬化装置30の動作を制御するコントローラ50Aと、を少なくとも備えている。   FIG. 3 is a schematic configuration diagram showing the composite container manufacturing system of FIG. As shown in FIG. 3, the manufacturing system 100 </ b> A of the present embodiment manufactures the composite container 1. 100A of manufacturing systems wind the fiber bundle 10 around the liner 2, the winding apparatus (not shown) which forms the container intermediate body 1a, the container intermediate body 1a is heated, and the thermosetting resin of the fiber bundle 10 is hardened. A curing device (curing means) 30. The curing device 30 includes at least a heating furnace 20 that heats the container intermediate 1a from the outside, an inner heating device 40 that heats the container intermediate 1a from the inside, and a controller 50A that controls the operation of the curing device 30. Yes.

加熱炉20は、繊維束10が金属製ライナ2(図1参照)の外面側に巻き付けられて形成された容器中間体1aを収容して加熱し、繊維束10の熱硬化性樹脂を硬化させる。この加熱炉20の内部には、加熱炉20の熱源としてのヒータ21(第1加熱手段)が設けられている。ヒータ21は、コントローラ50Aに接続されている。これにより、ヒータ21の動作がコントローラ50Aで制御されて、加熱炉の設定温度TOUTが制御される。 The heating furnace 20 accommodates and heats the container intermediate 1a formed by winding the fiber bundle 10 around the outer surface of the metal liner 2 (see FIG. 1), and cures the thermosetting resin of the fiber bundle 10. . Inside the heating furnace 20, a heater 21 (first heating means) as a heat source of the heating furnace 20 is provided. The heater 21 is connected to the controller 50A. Thereby, the operation of the heater 21 is controlled by the controller 50A, and the set temperature T OUT of the heating furnace is controlled.

ヒータ21は、容器中間体1aの外側に配置されており、容器中間体1aを外側から加熱することができる。図3に示す形態では、ヒータ21は、加熱炉20内の設置場所に設置された容器中間体1aを外周側から取り囲むように、容器中間体1aから離間した位置に配置されている。ヒータ21は強化層3の外周側を全周にわたって完全に覆っていてもよいが覆っていなくてもよい。また、ヒータ21の個数は一つであってもよく、複数であってもよい。また、ヒータ21が複数の場合は分割(容器中間体1aの周方向に分割されてもよく、軸方向に分割されてもよい)されてヒータ21間に間隔が設けられていてもよく、複数のヒータ21の大きさ及び形状が均一であってもよく、不均一であってもよい。   The heater 21 is disposed outside the container intermediate body 1a, and can heat the container intermediate body 1a from the outside. In the form shown in FIG. 3, the heater 21 is disposed at a position separated from the container intermediate 1 a so as to surround the container intermediate 1 a installed at the installation location in the heating furnace 20 from the outer peripheral side. The heater 21 may completely cover the outer peripheral side of the reinforcing layer 3 over the entire periphery, but it may not be covered. Further, the number of heaters 21 may be one or plural. Moreover, when there are a plurality of heaters 21, the heaters 21 may be divided (may be divided in the circumferential direction of the container intermediate body 1 a or may be divided in the axial direction), and intervals may be provided between the heaters 21. The size and shape of the heater 21 may be uniform or non-uniform.

内側加熱装置40は、容器中間体1aの内部に設けられて容器中間体1aを内側から加熱する内部ヒータ(第2加熱手段)42と、内部ヒータ42及びコントローラ50A同士を接続する連絡線41と、を備える。コントローラ50Aは、加熱炉20の外側から連絡線41を介して、容器中間体1aを内側から加熱する設定温度TINを制御することができる。内側加熱装置40の内部ヒータ42は、容器中間体1aの内部に一方の口金4(図1参照)から挿し込まれ、容器中間体1aを内側から加熱するように配置される。例えば、容器中間体1aの中心軸上に、一つの内部ヒータ42が配置されていてもよい。また、内部ヒータ42の個数は一つであってもよく、複数であってもよい。また、ヒータ42が複数の場合は分割(容器中間体1aの周方向に分割されてもよく、軸方向に分割されてもよい)されてヒータ42間に間隔が設けられていてもよく、複数のヒータ42の大きさ及び形状が均一であってもよく、不均一であってもよい。これにより、内側加熱装置40は、図4のように、容器中間体1aを内側から加熱できる。その結果、容器中間体1aの厚さ方向における温度差(温度ムラ)を低減し、容器中間体1aの容器強度を向上させる。 The inner heating device 40 is provided inside the container intermediate body 1a and has an internal heater (second heating means) 42 that heats the container intermediate body 1a from the inside, and a communication line 41 that connects the internal heater 42 and the controller 50A to each other. . The controller 50 </ b> A can control the set temperature TIN that heats the container intermediate body 1 a from the inside through the communication line 41 from the outside of the heating furnace 20. The inner heater 42 of the inner heating device 40 is inserted into the container intermediate body 1a from one base 4 (see FIG. 1) and arranged to heat the container intermediate body 1a from the inner side. For example, one internal heater 42 may be disposed on the central axis of the container intermediate body 1a. Further, the number of internal heaters 42 may be one or plural. Further, when there are a plurality of heaters 42, the heaters 42 may be divided (may be divided in the circumferential direction of the container intermediate body 1a or may be divided in the axial direction), and a space may be provided between the heaters 42. The size and shape of the heater 42 may be uniform or non-uniform. Thereby, the inner side heating apparatus 40 can heat the container intermediate body 1a from an inner side like FIG. As a result, the temperature difference (temperature unevenness) in the thickness direction of the container intermediate 1a is reduced, and the container strength of the container intermediate 1a is improved.

また、本実施形態では、第1加熱手段として、加熱炉内に設けられ、且つ容器中間体1aの外側に設けられたヒータを使っているが、そのような構成に特に限定されず、容器中間体1aを外側から加熱できるものであれば、どのような構成を採用してもよい。例えば、熱風による加熱などを採用してもよい。   In the present embodiment, a heater provided in the heating furnace and provided outside the container intermediate body 1a is used as the first heating means. Any configuration may be adopted as long as the body 1a can be heated from the outside. For example, heating with hot air may be employed.

また、本実施形態では、第2加熱手段として、容器中間体1aの内部に設けられた内部ヒータを使っているが、そのような構成に特に限定されず、容器中間体1aを内側から加熱できる装置であれば、どのような構成を採用してもよい。例えば、加熱媒体を容器中間体1aの内側に通過させることによって内部加熱を行ってもよい。なお、容器中間体1aの内側に直接加熱媒体を通過させてもよいし、配管を容器中間体1a内に配置して当該配管に加熱媒体を通過させてもよい。加熱媒体としては、例えば、熱水、スチーム、熱風、その他加熱された固体・液体・気体を採用してよい。   Moreover, in this embodiment, although the internal heater provided in the inside of the container intermediate body 1a is used as a 2nd heating means, it is not specifically limited to such a structure, The container intermediate body 1a can be heated from an inner side. Any configuration may be adopted as long as it is an apparatus. For example, the internal heating may be performed by passing the heating medium inside the container intermediate body 1a. The heating medium may be passed directly inside the container intermediate 1a, or the piping may be arranged in the container intermediate 1a and the heating medium may be passed through the piping. As the heating medium, for example, hot water, steam, hot air, or other heated solid / liquid / gas may be employed.

ここで、本実施形態に係る製造システム100Aの硬化装置30の設定温度について、従来技術における問題点と共に説明する。加熱炉20で容器中間体1aを加熱する際には、繊維束10における熱硬化性樹脂の熱硬化反応が発熱反応であることから、熱硬化性樹脂が自己発熱し、その温度が加熱炉20の設定温度TOUTより上昇するという過昇温現象が生じる。具体的に、過昇温現象とは、図8のように、容器中間体1aの温度が加熱炉20の加熱温度より局所的に高くなることを指す。この場合、図7のように、容器中間体1aの外周面から放熱可能な外層部、及び容器中間体1aの内周面から放熱可能な内層部に比して、熱硬化性樹脂の発熱により熱のこもりやすい中間層部が先に高温となる(図7の左側の模式図では、色を付した中間層部が高温となっている)。特に、容器中間体1aの内周側には強化層3よりも放熱性の高いライナ2が配置されている。これにより、強化層3の内層部は、中間層部及び外層部に比して温度が低くなり、強化層3の厚み方向において温度ムラが生じる。従って、中間層部のゲル化が内層部、外層部よりも先に進み、中間層部の硬化収縮や各層の樹脂の熱膨張量の差が生じ、これにより内層部に歪みやうねりが発生する。その結果、容器の強度低下を引き起こされる。 Here, the set temperature of the curing device 30 of the manufacturing system 100A according to the present embodiment will be described together with the problems in the prior art. When the container intermediate body 1a is heated in the heating furnace 20, the thermosetting resin in the fiber bundle 10 is an exothermic reaction, so that the thermosetting resin self-heats, and the temperature is the heating furnace 20. It occurs excessive temperature rise phenomenon that rise than the set temperature T OUT. Specifically, the excessive temperature rise phenomenon means that the temperature of the container intermediate 1a is locally higher than the heating temperature of the heating furnace 20, as shown in FIG. In this case, as shown in FIG. 7, compared with the outer layer part that can radiate heat from the outer peripheral surface of the container intermediate body 1a and the inner layer part that can radiate heat from the inner peripheral surface of the container intermediate body 1a, The intermediate layer portion, which is likely to accumulate heat, has a high temperature first (in the schematic diagram on the left side of FIG. 7, the colored intermediate layer portion has a high temperature). In particular, a liner 2 having higher heat dissipation than the reinforcing layer 3 is disposed on the inner peripheral side of the container intermediate body 1a. Thereby, the temperature of the inner layer portion of the reinforcing layer 3 is lower than that of the intermediate layer portion and the outer layer portion, and temperature unevenness occurs in the thickness direction of the reinforcing layer 3. Accordingly, the gelation of the intermediate layer portion proceeds before the inner layer portion and the outer layer portion, causing a curing shrinkage of the intermediate layer portion and a difference in the amount of thermal expansion of the resin of each layer, thereby causing distortion and undulation in the inner layer portion. . As a result, the strength of the container is reduced.

それに対し、本実施形態の製造システム100Aによる複合容器1の製造方法では、内側加熱装置40は、少なくとも過昇温現象が起きている時に、加熱炉20のヒータ21より高い設定温度TINで容器中間体1aの内側を加熱する。すなわち、本実施形態に係る製造方法において、容器中間体1aを加熱することにより熱硬化性樹脂を硬化させる硬化工程は、容器中間体1aを外側から加熱する外部加熱工程と、少なくとも過昇温現象が起きている時に、容器中間体1aを外側から加熱する温度より高い設定温度で容器中間体1aを内側から加熱する内部加熱工程と、を含んでいる。 In contrast, in the manufacturing method of the composite container 1 by the manufacturing system 100A of this embodiment, the inner heating device 40, when at least excessive temperature rise phenomenon has occurred, the container higher than the heater 21 of the heating furnace 20 set temperature T IN The inside of the intermediate 1a is heated. That is, in the manufacturing method according to the present embodiment, the curing step of curing the thermosetting resin by heating the container intermediate body 1a includes an external heating step of heating the container intermediate body 1a from the outside, and at least an excessive temperature rise phenomenon. An internal heating step of heating the container intermediate 1a from the inside at a set temperature higher than the temperature at which the container intermediate 1a is heated from the outside.

具体的には、図5のように、硬化装置30は、加熱炉20のみにより容器中間体1aを外側から加熱する。加熱炉20の設定温度TOUTは最終硬化温度T3より低い中間硬化温度T1に設定され保持される。これにより、容器中間体1aの繊維束10の温度が立ち上がった後(図5のグラフのうち、温度が立ち上がる部分を「温度上昇部E1」と称する)に、中間硬化温度T1と略同一の温度で一定となるように保持され(図5のグラフのうち、温度が一定で保持されている部分を「中間温度保持部E2」と称する)、その結果、容器中間体1aの熱硬化性樹脂が中間硬化される。なお、温度上昇部E1及び中間温度保持部E2(すなわち過昇温現象が起きる前の時間帯)では、内側加熱装置40は、OFFに設定されており、加熱を行わない状態となっている。中間硬化温度T1は、最低中間硬化温度T0以上で最高中間硬化温度未満に設定されている。最低中間硬化温度T0とは、繊維束10の熱硬化性樹脂が硬化可能な最低温度である。最高中間硬化温度は、その温度で保持して硬化させた場合に生じた過昇温現象のピークTmaxが許容最高温度(許容温度)T4に達すると推定される温度である。また、許容最高温度T4は、容器中間体1aについて容器性能に悪影響が及ばない温度範囲の最高温度である。許容最高温度T4は、特に、金属製ライナ2の材料の耐熱性等に応じて定まる温度である。 Specifically, as shown in FIG. 5, the curing device 30 heats the container intermediate 1 a from the outside only by the heating furnace 20. The set temperature T OUT of the heating furnace 20 is set and maintained at an intermediate curing temperature T1 lower than the final curing temperature T3. Thereby, after the temperature of the fiber bundle 10 of the container intermediate body 1a rises (the portion where the temperature rises in the graph of FIG. 5 is referred to as “temperature rise portion E1”), the temperature is substantially the same as the intermediate curing temperature T1. (The portion of the graph of FIG. 5 where the temperature is held constant is referred to as “intermediate temperature holding portion E2”), and as a result, the thermosetting resin of the container intermediate 1a is Intermediate cured. In addition, in the temperature rise part E1 and the intermediate temperature holding part E2 (that is, the time zone before the excessive temperature rise phenomenon occurs), the inner heating device 40 is set to OFF and is in a state in which heating is not performed. The intermediate curing temperature T1 is set to be equal to or higher than the lowest intermediate curing temperature T0 and lower than the highest intermediate curing temperature. The lowest intermediate curing temperature T0 is the lowest temperature at which the thermosetting resin of the fiber bundle 10 can be cured. The maximum intermediate curing temperature is a temperature at which the peak Tmax of the excessive temperature rise phenomenon that occurs when cured while being held at that temperature reaches the allowable maximum temperature (allowable temperature) T4. The allowable maximum temperature T4 is a maximum temperature in a temperature range that does not adversely affect the container performance of the container intermediate 1a. The allowable maximum temperature T4 is a temperature determined according to the heat resistance of the material of the metal liner 2 and the like.

続いて、容器中間体1aの繊維束10の温度が中間温度保持部E2における温度より高くなり、過昇温現象が始まる。その際、内側加熱装置40は、加熱炉20の設定温度TOUTより高い設定温度TINで容器中間体1aを内側から加熱する(図5のグラフのうち、過昇温現象が起きている部分を「過昇温現象発生部E3」と称する)。過昇温現象発生部E3における設定温度TINを温度T5と称する。本実施形態では、内側加熱装置40は、過昇温現象の開始のタイミングで温度T5での加熱を開始し、過昇温現象の終了のタイミングで温度T5での加熱を終了している。これによって、内側加熱装置40は、過昇温現象が起きている時のみに、加熱炉20の設定温度TOUTである中間硬化温度T1より高い設定温度TINである温度T5にて、容器中間体1aを内側から加熱している。ここで、「過昇温現象が起きている時」とは、加熱炉20の設定温度TOUTを所定の硬化温度(ここでは中間硬化温度T1)に保持しているときに、容器中間体1aの繊維束10の温度が、設定温度TOUTを所定の硬化温度で保持しているとき(ここでは中間温度保持部E2)における温度よりも高くなっている時である。容器中間体1aの繊維束10の温度が、中間温度保持部E2での温度から立ち上がった時点が、過昇温現象の開始点に対応する。また、容器中間体1aの繊維束10の温度が、中間温度保持部E2での温度まで戻った時点が、過昇温現象の終止点に対応する。ただし、容器中間体1aの繊維束10の温度が中間温度保持部E2での温度まで戻る前に、最終硬化へ向けて設定温度TOUTを上昇させてもよく、この場合は、当該上昇の開始点が、過昇温現象の終止点に対応する。 Subsequently, the temperature of the fiber bundle 10 of the container intermediate body 1a becomes higher than the temperature in the intermediate temperature holding part E2, and the overheating phenomenon starts. In that case, the inner side heating apparatus 40 heats the container intermediate body 1a from the inner side at a set temperature T IN higher than the set temperature T OUT of the heating furnace 20 (a portion where an excessive temperature rise phenomenon occurs in the graph of FIG. 5). Is referred to as “overheating phenomenon occurrence portion E3”). The set temperature T IN in excessive temperature rise behavior generation unit E3 is referred to as temperature T5. In the present embodiment, the inner heating device 40 starts heating at the temperature T5 at the start timing of the excessive temperature increase phenomenon, and ends the heating at the temperature T5 at the end timing of the excessive temperature increase phenomenon. Thereby, the inner heating device 40, only when the excessive temperature rise phenomenon is happening at the set temperature T OUT is higher than the intermediate curing temperature T1 is the set temperature T IN is a temperature T5 of the heating furnace 20, the container intermediate The body 1a is heated from the inside. Here, “when the excessive temperature rise phenomenon occurs” means that the container intermediate 1a is maintained when the set temperature T OUT of the heating furnace 20 is maintained at a predetermined curing temperature (in this case, the intermediate curing temperature T1). This is when the temperature of the fiber bundle 10 is higher than the temperature at which the set temperature T OUT is held at the predetermined curing temperature (here, the intermediate temperature holding portion E2). The time when the temperature of the fiber bundle 10 of the container intermediate body 1a rises from the temperature at the intermediate temperature holding portion E2 corresponds to the start point of the excessive temperature rise phenomenon. Moreover, the time when the temperature of the fiber bundle 10 of the container intermediate body 1a returns to the temperature at the intermediate temperature holding portion E2 corresponds to the end point of the excessive temperature rise phenomenon. However, the set temperature T OUT may be increased toward the final curing before the temperature of the fiber bundle 10 of the container intermediate body 1a returns to the temperature at the intermediate temperature holding unit E2, and in this case, the start of the increase The point corresponds to the end point of the overheating phenomenon.

なお、過昇温現象の開始点と終止点は、図示されない温度センサによって容器中間体1aの温度を測定することで検出してもよいし、実験に基づいて予めデータとして把握しておき、当該データに基づいて検出してもよい。例えば、容器中間体1aのサイズ、材料等の製造条件が同じであれば、通常、過昇温現象の開始点は同程度になり易い。したがって、製造条件の設定の際に温度センサを用い、容器中間体1aの温度変化に基づいて過昇温現象の開始点及び終止点を調べてコントローラ50Aにデータとして記憶させる。そして、コントローラ50Aは、記憶したデータに基づいて過昇温現象の開始点及び終止点を把握し、内側加熱装置40による加熱の開始及び停止のタイミングを決定してもよい。   The start point and end point of the overheating phenomenon may be detected by measuring the temperature of the container intermediate 1a with a temperature sensor (not shown). You may detect based on data. For example, if the manufacturing conditions such as the size and material of the container intermediate 1a are the same, usually the starting point of the overheating phenomenon tends to be the same. Therefore, a temperature sensor is used when setting the manufacturing conditions, and the start point and end point of the excessive temperature rise phenomenon are examined based on the temperature change of the container intermediate 1a and stored as data in the controller 50A. Then, the controller 50A may grasp the start point and the end point of the overheating phenomenon based on the stored data, and determine the start and stop timing of heating by the inner heating device 40.

なお、設定温度TINを加熱炉20の設定温度TOUTよりも高い温度T5とすることによる加熱は、少なくとも過昇温現象の開始点から過昇温現象の終止点までの何れかのタイミングでおこなわれていればよい。例えば、過昇温現象の開始点より後に設定温度TINを温度T5に設定してもよく、過昇温現象の終止点より前に設定温度TINを温度T5とすることによる加熱を終了してもよい。例えば、過昇温現象のピークTmax以前の時間帯にのみ、設定温度TINを温度T5とすることによる加熱を行ってよく、過昇温現象のピークTmax以降の時間帯にのみ、設定温度TINを温度T5とすることによる加熱を行ってよく、過昇温現象のピークTmaxを含む一部の時間帯にのみ、設定温度TINを温度T5とすることによる加熱を行ってよい。また、設定温度TINを温度T5とすることによる加熱は図5に示すように連続的に行われてもよいが、断続的に行われてもよい。すなわち、過昇温現象発生部E3において、一度設定温度TINを温度T5に設定した後、一度温度を設定温度TOUTよりも低くし(設定温度TINを低く設定してもよいし、内側加熱装置40自体をOFFとしてもよい)、再び温度T5に設定してもよい(これを複数回繰り返してもよい)。ただし、設定温度TINを温度T5で加熱する合計時間は、強化層3内の温度ムラを低減できる程度の長さを確保される必要があり、例えば、過昇温現象が起きている時間は、20〜120分程度であり、それに対して設定温度TINを温度T5で加熱する合計時間は、最低でも10〜20分程度確保される。 The heating by setting the set temperature T IN to a temperature T5 that is higher than the set temperature T OUT of the heating furnace 20 is at least at any timing from the start point of the excessive temperature increase phenomenon to the end point of the excessive temperature increase phenomenon. It only has to be done. For example, may be the set temperature T IN after the start point of the excessive temperature rise behavior is set to temperature T5, the set temperature T IN before the end point of the excessive temperature rise phenomenon exit heating due to the temperature T5 May be. For example, heating may be performed by setting the set temperature TIN to the temperature T5 only during a time period before the peak Tmax of the overheating phenomenon, and the setting temperature T is set only during a time period after the peak Tmax of the overheating phenomenon. well by heating the iN due to temperature T5, only the time zone of the part including the peak Tmax of excessive temperature rise phenomenon may perform heating due to the setting temperature T iN temperature T5. Further, the heating by setting the set temperature TIN to the temperature T5 may be performed continuously as shown in FIG. 5, or may be performed intermittently. That is, in the excessive temperature rise phenomenon generation unit E3, once the set temperature T IN is set to the temperature T5, the temperature is once set lower than the set temperature T OUT (the set temperature T IN may be set lower, The heating device 40 itself may be turned off), or the temperature T5 may be set again (this may be repeated a plurality of times). However, the total time for heating the set temperature TIN at the temperature T5 needs to be long enough to reduce the temperature unevenness in the reinforcing layer 3, for example, the time during which the excessive temperature rise phenomenon occurs On the other hand, the total time for heating the set temperature TIN at the temperature T5 is secured at least about 10 to 20 minutes.

ここで、過昇温現象が起きている間に内側加熱装置40による加熱が実行されれば、どのタイミングで内側加熱装置40による加熱が行われてもよい。例えば、図5の例に係る製造方法では、内側加熱装置40により加熱する開始点を、過昇温現象が生じる開始点としているが、内側加熱装置40は、加熱炉20による加熱の開始以降、且つ過昇温現象が開始する前の何れかの時点から加熱を開始してもよい。例えば、図6のように、過昇温現象が起きる前において、内側加熱装置40による加熱を開始してよい。図6に示す例では、内側加熱装置40は、加熱炉20と同時に設定温度TINを温度T5に設定して加熱を開始している。ただし、内側加熱装置40は、加熱炉20の加熱が開始された後であって、過昇温現象の開始点より前の何れのタイミングで加熱を開始してもよい。図6では、内側加熱装置40は、温度上昇部E1において、容器中間体1aを加熱している。温度上昇部E1において、内側加熱装置40は、一定温度にて加熱しているが、強化層3の温度上昇に沿って徐々に設定温度を上昇させるように加熱してもよい。なお、過昇温現象の開始点より前のタイミングにおいては、過昇温現象が起きている時よりも低い設定温度TINで加熱してよく、内側加熱装置40の設定温度TINは温度T5(設定温度TOUTより高い温度)より低い温度に設定されてよい。なお、内側加熱装置40による加熱は、図5において、過昇温現象が終わる終止点で終止されているが、過昇温現象の終始点より後に終止されてもよい。 Here, the heating by the inner heating device 40 may be performed at any timing as long as the heating by the inner heating device 40 is performed while the excessive temperature rise phenomenon occurs. For example, in the manufacturing method according to the example of FIG. 5, the starting point of heating by the inner heating device 40 is a starting point at which an excessive temperature rise phenomenon occurs. In addition, heating may be started from any time before the overheating phenomenon starts. For example, as shown in FIG. 6, heating by the inner heating device 40 may be started before the overheating phenomenon occurs. In the example shown in FIG. 6, the inner heating device 40 sets the set temperature TIN to the temperature T5 and starts heating simultaneously with the heating furnace 20. However, the inner side heating device 40 may start heating at any timing after the heating of the heating furnace 20 is started and before the start point of the excessive temperature rise phenomenon. In FIG. 6, the inner side heating apparatus 40 is heating the container intermediate body 1a in the temperature rise part E1. In the temperature increase part E1, the inner heating device 40 is heated at a constant temperature, but may be heated so as to gradually increase the set temperature along with the temperature increase of the reinforcing layer 3. In the timing before the start point of the excessive temperature rise phenomenon may be heated at a low temperature setting T IN than when the excessive temperature rise phenomenon is happening, it sets the inner heating device 40 a temperature T IN temperature T5 The temperature may be set lower than (a temperature higher than the set temperature T OUT ). In addition, in FIG. 5, the heating by the inner side heating device 40 is stopped at the end point where the overheating phenomenon ends, but may be stopped after the end point of the overheating phenomenon.

過昇温現象発生部E3における内側加熱装置40の設定温度TINである温度T5は、どのように設定されてもよいが、強化層3の厚み方向における温度を均一にするために、内層温度が中間層温度より低くなるように設定されてよい。このような温度T5は、予め実験等によって設定されてよい。また、温度T5は、内層温度が中間層温度より低く表面温度より高くなるように設定されてよい。また、温度T5は、内層温度が表面温度以下となるように設定されてよい。なお、温度T5は、内層温度が中間層温度以上となるように設定されてもよいが、容器中間体1aの容器性能に悪影響が及ばないようにする観点から、少なくとも許容最高温度T4より低いことが好ましい。なお、図5に示す例では、温度T5は一定温度に保持されているが、時間の経過に合わせて変化させてもよい。 Temperature T5 is a set temperature T IN of the inner heating device 40 in overheat phenomenon generating unit E3, how it may be set, but in order to equalize the temperature in the thickness direction of the reinforcing layer 3, the inner layer temperature May be set to be lower than the intermediate layer temperature. Such a temperature T5 may be set in advance by experiments or the like. The temperature T5 may be set so that the inner layer temperature is lower than the intermediate layer temperature and higher than the surface temperature. Further, the temperature T5 may be set so that the inner layer temperature is equal to or lower than the surface temperature. The temperature T5 may be set such that the inner layer temperature is equal to or higher than the intermediate layer temperature, but is at least lower than the allowable maximum temperature T4 from the viewpoint of not adversely affecting the container performance of the container intermediate 1a. Is preferred. In the example shown in FIG. 5, the temperature T5 is held at a constant temperature, but may be changed with the passage of time.

次に、過昇温現象が終わった後、加熱炉20の設定温度TOUTは、容器中間体1aを最終硬化させるための最終硬化温度T3に設定され一定時間保持される。これにより、容器中間体1aの繊維束10の温度が立ち上がった後(温度5のグラフのうち、温度が立ち上がる部分を「温度上昇部E4」と称する)に、最終硬化温度T3と略同一の温度で一定となるように保持され(図5のグラフのうち、温度が一定で保持されている部分を「最終硬化温度保持部E5」と称する)、その結果、容器中間体1aの熱硬化性樹脂が最終硬化される。続いて、加熱炉20が停止され、加熱工程が終了される。図5(及び後述の図6)では、加熱工程の終了時について省略しているが、加熱炉20の停止に伴い、加熱炉の設定温度TOUT及び容器中間体1aの温度はそれぞれ一定の温度降下率で降下するものとなる。 Next, after the overheating phenomenon is finished, the set temperature T OUT of the heating furnace 20 is set to the final curing temperature T3 for final curing of the container intermediate body 1a and is held for a certain time. Thereby, after the temperature of the fiber bundle 10 of the container intermediate body 1a has risen (the temperature rising portion in the graph of temperature 5 is referred to as “temperature rising portion E4”), the temperature is substantially the same as the final curing temperature T3. (The portion of the graph of FIG. 5 where the temperature is held constant is referred to as “final curing temperature holding portion E5”), and as a result, the thermosetting resin of the container intermediate 1a Is finally cured. Subsequently, the heating furnace 20 is stopped and the heating process is ended. In FIG. 5 (and FIG. 6 to be described later), the end of the heating process is omitted, but as the heating furnace 20 is stopped, the set temperature T OUT of the heating furnace and the temperature of the container intermediate 1a are respectively constant temperatures. It will descend at a descent rate.

次に、本実施形態に係る複合容器1の製造システム100A及びその製造方法の作用・効果について説明する。   Next, the operation and effect of the manufacturing system 100A for the composite container 1 and the manufacturing method thereof according to the present embodiment will be described.

例えば、図8に示す従来技術のように、容器中間体1aを内側から加熱しない場合は、過昇温現象が起きている時における内層温度は、中間層温度及び表面温度に比して低くなる。すなわち、中間層温度及び表面温度と、内層温度との間に温度差が生じるため、図7の右側の模式図のように、内層部に繊維束10の歪やうねりが発生する。一方、本実施形態によれば、容器中間体1aを硬化装置30で加熱して熱硬化性樹脂を硬化させるに際して、過昇温現象が起きる時に、内側加熱装置40により容器中間体1aを内側から加熱する。これにより、図5及び図6に示すように、(図8の場合に比して)内層温度が高くなることで、容器中間体1aの強化層3の厚み方向における温度差(温度ムラ)が低減される。従って、図4の左側の模式図に示すように強化層3の厚み方向における温度分布の均一性を高め、熱硬化性樹脂をより均等に硬化させることができる。これにより、図4の右側の模式図に示すように、硬化性樹脂の収縮量の差による繊維束の歪みやうねりを抑制できる。その結果、複合容器1の強度を向上することができる。   For example, when the container intermediate body 1a is not heated from the inside as in the prior art shown in FIG. 8, the inner layer temperature when the overheating phenomenon occurs is lower than the intermediate layer temperature and the surface temperature. . That is, since a temperature difference is generated between the intermediate layer temperature, the surface temperature, and the inner layer temperature, distortion and undulation of the fiber bundle 10 occur in the inner layer portion as shown in the schematic diagram on the right side of FIG. On the other hand, according to the present embodiment, when the container intermediate body 1a is heated by the curing device 30 and the thermosetting resin is cured, the container intermediate body 1a is moved from the inner side by the inner heating device 40 when an excessive temperature rise phenomenon occurs. Heat. Thereby, as shown in FIG.5 and FIG.6, the temperature difference (temperature nonuniformity) in the thickness direction of the reinforcement | strengthening layer 3 of the container intermediate body 1a becomes high because inner layer temperature becomes high (as compared with the case of FIG. 8). Reduced. Therefore, as shown in the schematic diagram on the left side of FIG. 4, the uniformity of the temperature distribution in the thickness direction of the reinforcing layer 3 can be improved, and the thermosetting resin can be cured more uniformly. Thereby, as shown in the schematic diagram on the right side of FIG. 4, distortion and undulation of the fiber bundle due to the difference in shrinkage amount of the curable resin can be suppressed. As a result, the strength of the composite container 1 can be improved.

また、本実施形態においては、過昇温現象が生じる前(及び後)において、過昇温現象が起きている時より低い設定温度TINで加熱するか、又は内側加熱装置40による加熱を行わなくてもよい。過昇温現象が起きる前(及び後)は、過昇温現象が起きている時ほど強化層3の内部の温度差が大きくないので、より低い温度で容器中間体1aの内側を加熱するか、又は内側を加熱しないことにより、複合容器1の強度を向上させながら、消費エネルギーを低減することができる。 In the present embodiment, performed before the excessive temperature rise phenomenon occurs (and after), or heated at a low temperature setting T IN than when the excessive temperature rise phenomenon is happening, or heating by inner heating device 40 It does not have to be. Before (and after) the excessive temperature increase phenomenon occurs, the temperature difference inside the reinforcing layer 3 is not as great as when the excessive temperature increase phenomenon occurs, so is the inside of the container intermediate 1a heated at a lower temperature? Alternatively, by not heating the inside, it is possible to reduce energy consumption while improving the strength of the composite container 1.

また、加熱炉20による外側加熱において、容器中間体1aの温度が加熱温度に沿って上昇する温度上昇部E1がある。この温度上昇部E1に対応する時期において、内側加熱装置40により容器中間体1aを内側から加熱してもよい。例えば図5に示すように温度上昇部E1で内側加熱装置40による加熱を行わない場合は、内層温度が中間温度保持部E2に対応する温度にまで達するタイミングが、中間層温度及び表面温度に比して遅れ、それに伴って内層部で過昇温現象が開始されるタイミングも遅れる可能性がある(ただし、理解を容易とするため、図5では過昇温現象開始のタイミングは内層部〜外層部で略同一として示している)。一方、図6に示すように、温度上昇部E1においても内側加熱装置40で加熱することで、内層温度が中間温度保持部E2に対応する温度にまで達するタイミングの遅れを低減させ、それに伴って内層部で過昇温現象が開始されるタイミングの遅れも低減させることができる。これにより、強化層3の熱硬化性樹脂における温度ムラを更になくし、より均一な温度分布にすることができ、複合容器1の強度を向上させることができる。   Further, in the outside heating by the heating furnace 20, there is a temperature increasing portion E1 where the temperature of the container intermediate 1a increases along the heating temperature. The container intermediate body 1a may be heated from the inner side by the inner heating device 40 at a time corresponding to the temperature increasing portion E1. For example, as shown in FIG. 5, when heating by the inner heating device 40 is not performed in the temperature increasing portion E1, the timing at which the inner layer temperature reaches the temperature corresponding to the intermediate temperature holding portion E2 is compared with the intermediate layer temperature and the surface temperature. Therefore, there is a possibility that the timing at which the overheating phenomenon is started in the inner layer portion is also delayed (however, in order to facilitate understanding, the timing of the overheating phenomenon in FIG. 5 is the inner layer portion to the outer layer). Are shown as approximately the same). On the other hand, as shown in FIG. 6, the temperature riser E1 is also heated by the inner heating device 40, thereby reducing the delay in the timing at which the inner layer temperature reaches the temperature corresponding to the intermediate temperature holding unit E2. It is also possible to reduce the delay of the timing at which the overheating phenomenon starts in the inner layer portion. Thereby, the temperature unevenness in the thermosetting resin of the reinforcing layer 3 can be further eliminated, a more uniform temperature distribution can be obtained, and the strength of the composite container 1 can be improved.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not restricted to the said embodiment, You may change in the range which does not change the summary described in each claim.

また、加熱炉20の設定温度TOUTについて、本実施形態の製造方法では中間硬化温度段階と最終硬化温度段階に分けているが、直接高い最終硬化温度に設定してもよい。これにより、熱硬化性樹脂の硬化を促進し、熱硬化性樹脂の硬化完了までにかかる製造時間を短縮可能となる。 Further, although the set temperature T OUT of the heating furnace 20 is divided into an intermediate curing temperature stage and a final curing temperature stage in the manufacturing method of the present embodiment, it may be set directly to a high final curing temperature. Thereby, hardening of a thermosetting resin is accelerated | stimulated and it becomes possible to shorten the manufacturing time taken to complete hardening of a thermosetting resin.

1…複合容器、1a…容器中間体、2…金属製ライナ、3…強化層、10…繊維束、20…加熱炉、21…ヒータ(第1加熱手段)、30…硬化装置、40…内側加熱装置、42…内部ヒータ(第2加熱手段)、T4…許容最高温度(許容温度)   DESCRIPTION OF SYMBOLS 1 ... Composite container, 1a ... Container intermediate body, 2 ... Metal liner, 3 ... Reinforcement layer, 10 ... Fiber bundle, 20 ... Heating furnace, 21 ... Heater (1st heating means), 30 ... Curing apparatus, 40 ... Inside Heating device, 42 ... internal heater (second heating means), T4 ... allowable maximum temperature (allowable temperature)

Claims (2)

強化層を備えた複合容器を製造する複合容器の製造システムであって、
熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を加熱し、前記繊維束の前記熱硬化性樹脂を硬化させる硬化手段を備え、
前記硬化手段は、
前記容器中間体を外側から加熱する第1加熱手段と、
前記容器中間体を内側から加熱する第2加熱手段と、を備え、
前記第2加熱手段は、少なくとも過昇温現象が起きている時に、前記第1加熱手段より高い設定温度で前記容器中間体の内側を加熱し、
過昇温現象が起きる前において、前記第2加熱手段は、過昇温現象が起きている時よりも低い設定温度で加熱し、又は前記第2加熱手段による加熱を行わない、複合容器の製造システム。
A composite container manufacturing system for manufacturing a composite container having a reinforcing layer,
A heating unit that heats a container intermediate formed by winding a fiber bundle impregnated with a thermosetting resin around an outer surface of a liner, and curing means for curing the thermosetting resin of the fiber bundle;
The curing means is
First heating means for heating the container intermediate from the outside;
A second heating means for heating the container intermediate from the inside,
The second heating means heats the inside of the container intermediate at a set temperature higher than that of the first heating means when at least an excessive temperature rise phenomenon occurs,
Before the overheating phenomenon occurs, the second heating means is heated at a set temperature lower than when the overheating phenomenon occurs, or the composite container is not heated by the second heating means. system.
前記第1加熱手段の加熱により前記熱硬化性樹脂の温度が上昇する温度上昇部において、前記第2加熱手段により前記容器中間体を加熱する、請求項1に記載の複合容器の製造システム。 2. The composite container manufacturing system according to claim 1 , wherein the intermediate container is heated by the second heating unit in a temperature increasing portion where the temperature of the thermosetting resin is increased by the heating of the first heating unit.
JP2013254394A 2013-12-09 2013-12-09 Composite container manufacturing system and composite container manufacturing method Active JP6215678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254394A JP6215678B2 (en) 2013-12-09 2013-12-09 Composite container manufacturing system and composite container manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254394A JP6215678B2 (en) 2013-12-09 2013-12-09 Composite container manufacturing system and composite container manufacturing method

Publications (2)

Publication Number Publication Date
JP2015113864A JP2015113864A (en) 2015-06-22
JP6215678B2 true JP6215678B2 (en) 2017-10-18

Family

ID=53527871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254394A Active JP6215678B2 (en) 2013-12-09 2013-12-09 Composite container manufacturing system and composite container manufacturing method

Country Status (1)

Country Link
JP (1) JP6215678B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827697B2 (en) * 2014-08-29 2017-11-28 The Boeing Company Systems and methods for curing complex fiber-reinforced composite structures
JP6540558B2 (en) * 2016-03-08 2019-07-10 トヨタ自動車株式会社 Tank manufacturing method
KR101919829B1 (en) * 2016-05-02 2018-11-19 주식회사 엔케이 Composites curing apparatus and method of the high-pressure vessel
JP2020034125A (en) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 Tank manufacturing method
JP7059963B2 (en) * 2019-02-13 2022-04-26 株式会社豊田自動織機 Pressure vessel manufacturing method and pressure vessel manufacturing equipment
CN111233297A (en) * 2020-03-09 2020-06-05 李惠芝 Temperature difference type heating treatment system and heating method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527737B1 (en) * 2003-03-25 2004-05-17 サムテック株式会社 High-pressure tank using high-rigidity fiber and method for manufacturing the same
FR2893622B1 (en) * 2005-11-24 2007-12-21 Commissariat Energie Atomique CAPROLACTAM-BASED COMPOSITION, METHOD OF MANUFACTURING SEALING ELEMENT, AND TANK
JP2008286297A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp High-pressure tank manufacturing method
JP2012148521A (en) * 2011-01-20 2012-08-09 Toyota Motor Corp Method and apparatus for manufacturing tank
JP5630614B2 (en) * 2011-01-21 2014-11-26 トヨタ自動車株式会社 Gas tank manufacturing method

Also Published As

Publication number Publication date
JP2015113864A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6215678B2 (en) Composite container manufacturing system and composite container manufacturing method
JP6262734B2 (en) Method for manufacturing a reinforcing member made of fiber-reinforced plastic and reinforcing member manufactured according to this method
KR20160142234A (en) Manufacturing method of tank
JP5468418B2 (en) High pressure tank manufacturing apparatus and manufacturing method
JP6099039B2 (en) Manufacturing method of composite container
CA2836867C (en) Method of manufacturing gas tank
JP6240841B2 (en) Composite container manufacturing system and composite container manufacturing method
US9868253B2 (en) Method of manufacturing tank, heat curing method and heat curing apparatus
WO2020166265A1 (en) Pressure vessel production method and pressure vessel production device
JP2009012341A (en) Manufacturing method of frp molding and heater
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP6152337B2 (en) Composite container manufacturing method and composite container manufacturing system
JP7088086B2 (en) How to make a tank
US20180274855A1 (en) Tank production shaft
JP5877807B2 (en) Composite container manufacturing method and composite container manufacturing system
JP5877808B2 (en) Composite container manufacturing method and composite container manufacturing system
JP2018012235A (en) Method for producing tank
JP6540558B2 (en) Tank manufacturing method
JP6228827B2 (en) Composite container manufacturing method and composite container manufacturing apparatus
US11027480B2 (en) Method for manufacturing high-pressure tank
JP2020122514A (en) Manufacturing method of high pressure tank
JP2011230398A (en) Method and equipment for manufacturing high pressure gas tank
JPH0147761B2 (en)
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2008143087A (en) Fiber reinforced composite material molding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R150 Certificate of patent or registration of utility model

Ref document number: 6215678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250