JP2011230398A - Method and equipment for manufacturing high pressure gas tank - Google Patents

Method and equipment for manufacturing high pressure gas tank Download PDF

Info

Publication number
JP2011230398A
JP2011230398A JP2010103486A JP2010103486A JP2011230398A JP 2011230398 A JP2011230398 A JP 2011230398A JP 2010103486 A JP2010103486 A JP 2010103486A JP 2010103486 A JP2010103486 A JP 2010103486A JP 2011230398 A JP2011230398 A JP 2011230398A
Authority
JP
Japan
Prior art keywords
liner
thermosetting
pressure
resin layer
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103486A
Other languages
Japanese (ja)
Inventor
Takeshi Hatta
健 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010103486A priority Critical patent/JP2011230398A/en
Publication of JP2011230398A publication Critical patent/JP2011230398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new manufacturing technique useful for maintaining the shape of a high pressure gas tank which has a fiber-reinforced resin layer formed on the outer circumference of a resin liner.SOLUTION: An intermediate product tank 12 has the fiber-reinforced resin layer 20 to which an epoxy resin before thermosetting is immersed, on the outer circumference of the liner 10 made of resin container. Upon the thermosetting of the epoxy resin of the fiber-reinforced resin layer 20, while changing the internal pressure of the liner 10 of the intermediate product tank 12 which is journaled by a tank journal shaft 112 to repeat a positive pressure and a negative pressure alternately and, at the same time, rotating and heating the intermediate product tank 12, the epoxy resin is subject to thermosetting.

Description

本発明は、高圧ガスタンクの製造方法と製造装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for a high-pressure gas tank.

近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、炭素繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で被覆するライナーとして、樹脂製容器を用いることが検討されている(例えば、特許文献1)。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, weight reduction of a high-pressure gas tank is required, and a resin container is used as a liner for covering with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). It has been studied to use (for example, Patent Document 1).

一般に、このような高圧ガスタンクは、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維強化樹脂層をライナー外周に形成する。こうした繊維強化樹脂層の形成に際しては、熱硬化性樹脂を含浸した繊維を樹脂製容器の外周に繰り返し巻き付けて繊維強化樹脂層とし、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させる。これにより、樹脂製容器のライナーを繊維強化樹脂層で被覆した高圧ガスタンクが製造される。   In general, such a high-pressure gas tank has a fiber reinforced resin layer impregnated with a thermosetting resin such as an epoxy resin formed on the outer periphery of the liner. When forming such a fiber reinforced resin layer, a fiber impregnated with a thermosetting resin is repeatedly wound around the outer periphery of a resin container to form a fiber reinforced resin layer, and then the thermosetting resin contained in the resin layer is thermally cured. . Thus, a high-pressure gas tank in which the liner of the resin container is covered with the fiber reinforced resin layer is manufactured.

特開2008−304038号公報JP 2008-304038 A

ところで、ライナー外周への上述した繊維強化樹脂層の形成に用いられる熱硬化性樹脂は、その熱硬化の間に与えられる熱により低粘度となった後に熱硬化し、この熱硬化を起こす際に接着剤として機能する。ライナーにあっては、樹脂製である都合上、熱硬化の間に熱収縮を起こす。このため、ライナー表面と繊維強化樹脂層の最下層との間には隙間が生じ、その隙間に入り込んだ熱硬化性樹脂は、ライナーと繊維強化樹脂層とを固着させる。こうした熱硬化性樹脂によるライナー固着がライナー外周において部分的に起きると、タンク使用期間においてその部分的なライナー固着部位の接着界面に応力の集中が起きやすくなる。ライナーは、軽量化のために樹脂製とされた上で薄肉とされることから、上記した部分的な応力集中によるライナーの変形が危惧されるに至った。   By the way, the thermosetting resin used for forming the above-described fiber reinforced resin layer on the outer periphery of the liner is thermoset after becoming low viscosity due to heat applied during the thermosetting, and this thermosetting occurs. Acts as an adhesive. In the liner, due to the fact that it is made of resin, heat shrinkage occurs during thermosetting. Therefore, a gap is generated between the liner surface and the lowermost layer of the fiber reinforced resin layer, and the thermosetting resin that has entered the gap fixes the liner and the fiber reinforced resin layer. When such liner fixing by the thermosetting resin partially occurs on the outer periphery of the liner, stress concentration tends to occur at the adhesive interface of the partial liner fixing part during the use period of the tank. Since the liner is made of resin for weight reduction and thin, the liner has been feared to be deformed due to the partial stress concentration described above.

本発明は、上述の課題を解決するためになされたものであり、熱硬化性樹脂の熱硬化を経て繊維強化樹脂層をライナー外周に形成した高圧ガスタンクの形状維持に有益な新たな製造手法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a new manufacturing method useful for maintaining the shape of a high-pressure gas tank in which a fiber-reinforced resin layer is formed on the outer periphery of a liner through thermosetting of a thermosetting resin. The purpose is to provide.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用1:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層の形成済みの前記ライナーを軸支し、該軸支したライナーの内圧を変化させつつ前記繊維強化樹脂層を熱硬化させる熱硬化工程とを備える
前記繊維強化樹脂層の形成済みの前記ライナーを軸支し、該軸支したライナーの内圧を
正圧と負圧の交互に切り換えつつ前記繊維強化樹脂層を熱硬化させる熱硬化工程とを備える
ことを要旨とする。
[Application 1: Manufacturing method of high-pressure gas tank]
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A thermosetting step of supporting the liner on which the fiber reinforced resin layer has been formed and thermosetting the fiber reinforced resin layer while changing an internal pressure of the supported liner. And a thermosetting step of thermosetting the fiber reinforced resin layer while alternately switching a positive pressure and a negative pressure of an inner pressure of the supported liner.

上記構成を備える高圧ガスタンクの製造方法では、樹脂性容器のライナー外周に繊維強化樹脂層を形成した後に、軸支したライナーの内圧(以下、ライナー内圧と称する)を変化させつつ、繊維強化樹脂層に含まれる熱硬化性樹脂を熱硬化させる。このため、熱硬化性樹脂を熱硬化の間において、ライナーは、ライナー内圧の変化により膨張と原型復帰、或いは収縮と原型復帰、もしくは、膨張と収縮を起こすことになるので、ライナー表面と繊維強化樹脂層の最下層との間の隙間は、ライナー表面において偏在し難くなる。しかも、この隙間に、熱硬化前で低粘度の熱硬化性樹脂が入り込んでも、その樹脂は、ライナーの膨張と収縮により押されたり戻されたりするので、部分的に留まり難くなる。この結果、熱硬化した熱硬化性樹脂によるライナー固着は、ライナー外周において部分的に起きる可能性は低くなり、ライナー外周においてほぼ均等化する。よって、上記構成を備える高圧ガスタンクの製造方法によれば、ライナーと繊維強化樹脂層の接着界面における応力集中を抑制でき、高圧ガスタンクの形状維持に寄与できる。   In the method for manufacturing a high-pressure gas tank having the above-described configuration, after forming a fiber reinforced resin layer on the outer periphery of the liner of the resinous container, the fiber reinforced resin layer is changed while changing the internal pressure of the supported liner (hereinafter referred to as liner internal pressure). The thermosetting resin contained in is thermally cured. For this reason, during the thermosetting of the thermosetting resin, the liner expands and returns to its original shape, or shrinks and returns to its original shape, or expands and contracts due to changes in the liner internal pressure. The gap between the lowermost layer of the resin layer is less likely to be unevenly distributed on the liner surface. In addition, even if a low-viscosity thermosetting resin enters the gap before thermosetting, the resin is pushed or returned by expansion and contraction of the liner, so that it is difficult to partially remain. As a result, the liner fixing by the thermosetting resin that has been thermoset is less likely to occur partially on the outer periphery of the liner, and is almost equalized on the outer periphery of the liner. Therefore, according to the method for manufacturing a high-pressure gas tank having the above-described configuration, it is possible to suppress stress concentration at the bonding interface between the liner and the fiber reinforced resin layer, and to contribute to maintaining the shape of the high-pressure gas tank.

ライナー内圧を変化させるに当たり、ライナー内圧を正圧と負圧の交互に切り換えつつ、繊維強化樹脂層に含まれる熱硬化性樹脂を熱硬化させるようにもできる。こうすれば、熱硬化性樹脂を熱硬化の間において、ライナーは、ライナー内圧の正圧と負圧の交互に切り換えにより膨張と収縮をより確実に繰り返すことになる。このため、ライナー表面と繊維強化樹脂層の最下層との間の隙間は、ライナー表面においてより一層、偏在し難くなると共に、この隙間に入り込んだ熱硬化前で低粘度の熱硬化性樹脂の、ライナーの膨張と収縮による押し戻しが顕著となることから、より一層、樹脂は部分的に留まり難くなる。よって、ライナー内圧変化をライナー内圧の正負圧の交互切換とすれば、熱硬化した熱硬化性樹脂によるライナー固着がライナー外周において部分的に起きる可能性はより低くなり、ライナーと繊維強化樹脂層の接着界面における応力集中を高い実効性で抑制でき、高圧ガスタンクの形状維持に有益である。   In changing the liner internal pressure, the thermosetting resin contained in the fiber reinforced resin layer can be thermoset while the liner internal pressure is alternately switched between positive pressure and negative pressure. If it carries out like this, during thermosetting of thermosetting resin, a liner will repeat expansion | swelling and shrinkage | contraction more reliably by switching alternately the positive pressure of a liner internal pressure, and a negative pressure. For this reason, the gap between the liner surface and the lowermost layer of the fiber reinforced resin layer becomes more unevenly distributed on the liner surface, and the low-viscosity thermosetting resin enters the gap before thermosetting, Since the pushback due to the expansion and contraction of the liner becomes remarkable, the resin is more difficult to stay partially. Therefore, if the change in the liner internal pressure is alternately switched between the positive and negative pressures of the liner internal pressure, the possibility that the liner fixing due to the thermosetting resin is partially caused on the outer periphery of the liner is lower. Stress concentration at the bonding interface can be suppressed with high effectiveness, which is beneficial for maintaining the shape of the high-pressure gas tank.

ライナー内圧の正負圧交互切換は、ライナーを軸支するシャフトを中空とした上で通気孔を外周に設け、その中空部にエアーの加圧吸引装置を装着することが簡便である。   The liner internal pressure can be switched between positive and negative pressure simply by making the shaft that supports the liner hollow, providing a vent hole on the outer periphery, and mounting an air pressure suction device in the hollow portion.

また、ライナー内圧の正負圧交互切換を行うに当たっては、前記繊維強化樹脂層の熱硬化の当初において前記ライナーの内圧を正圧とし、前記繊維強化樹脂層の熱硬化に伴い前記熱硬化性樹脂が低粘度となるタイミングで前記ライナーの内圧を正圧から負圧に切り換える。こうすれば、最初の負圧化の際におけるライナー収縮に伴い、ライナー表面と繊維強化樹脂層の最下層との間に隙間が確実に生じた上で、樹脂は、低粘度故に、その隙間により均一に行き渡り易くなる。そして、一旦負圧とした後は、樹脂の熱硬化の間において前記ライナーの内圧を正圧と負圧の交互に切り換えるようにできる。こうすれば、ライナー内圧の正負圧の交互切換によるライナーの膨張と収縮の交互繰り返しにより、隙間に入り込み済みの樹脂はより均一にライナー外周に行き渡ることになるので、熱硬化した熱硬化性樹脂によるライナー固着は、より均等化する。   In addition, when the liner internal pressure is alternately switched between positive and negative pressures, the inner pressure of the liner is set to a positive pressure at the beginning of the thermosetting of the fiber reinforced resin layer, and the thermosetting resin is accompanied by the thermosetting of the fiber reinforced resin layer. The inner pressure of the liner is switched from positive pressure to negative pressure at the timing when the viscosity becomes low. In this way, a gap is surely generated between the liner surface and the lowermost layer of the fiber reinforced resin layer as the liner contracts at the time of the first negative pressure, and the resin has a low viscosity. It becomes easy to spread uniformly. Once the negative pressure is set, the inner pressure of the liner can be alternately switched between the positive pressure and the negative pressure during the thermosetting of the resin. By doing this, the resin that has already entered the gap spreads more uniformly on the outer periphery of the liner by alternately repeating the expansion and contraction of the liner by alternately switching between the positive and negative pressures of the liner internal pressure. Liner sticking becomes more even.

本発明は、上述した高圧ガスタンクの製造方法としての構成の他、この製造方法によって製造された高圧ガスタンクや、高圧ガスタンクの製造装置の発明として構成することもできる。   The present invention can be configured as an invention of a high-pressure gas tank manufactured by this manufacturing method and a high-pressure gas tank manufacturing apparatus in addition to the above-described configuration as a high-pressure gas tank manufacturing method.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. 熱硬化の際のタンク軸支シャフト112を介したライナー内圧切換の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the liner internal pressure switching via the tank axial support shaft 112 in the case of thermosetting. 熱硬化炉100における中間生成品タンク12の保持の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the holding | maintenance of the intermediate product tank 12 in the thermosetting furnace 100. FIG. 熱硬化工程におけるライナー内圧の加減圧の様子を示す説明図である。It is explanatory drawing which shows the mode of the pressure increase / decrease of the liner internal pressure in a thermosetting process. 熱硬化工程におけるライナー内圧変化の変形例を示す説明図である。It is explanatory drawing which shows the modification of the liner internal pressure change in a thermosetting process.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、樹脂製容器をライナー10として用意する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, a resin container is prepared as a liner 10 as shown in FIG. In this embodiment, a resin container made of a nylon resin is used as the resin container. As the resin container, a resin container made of another resin may be used.

次に、図1(b)に示したように、ライナー10の外周部に、繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、ライナーの外周部に、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻き付けることにより、カーボン繊維層を形成する(図1(b−1))。その後、カーボン繊維層外周部に、さらに、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したガラス繊維を繰り返し巻き付けることにより、ガラス繊維層をカーボン繊維層の上に重ねて形成する(図1(b−2))。こうして重なったカーボン繊維層とガラス繊維層が、ライナー外周表面の繊維強化樹脂層20となり、樹脂層形成済みの中間生成品タンク12が得られる。ガラス繊維層はカーボン繊維層よりも耐衝撃性が強いため、高圧水素タンクの機械的強度を高くすることができる。エポキシ樹脂に代えて、ポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂を用いることもできる。   Next, as shown in FIG.1 (b), the fiber reinforced resin layer 20 is formed in the outer peripheral part of the liner 10 (fiber reinforced resin layer formation process). In this embodiment, as a fiber reinforced resin layer forming step, carbon fibers impregnated with an epoxy resin as a thermosetting resin are repeatedly wound around the outer periphery of a liner by a filament winding method (FW method). A layer is formed (FIG. 1B-1). Thereafter, the glass fiber layer is further wrapped around the carbon fiber layer by repeatedly winding glass fibers impregnated with an epoxy resin as a thermosetting resin on the outer periphery of the carbon fiber layer by a filament winding method (FW method). Overlapping is formed (FIG. 1B-2). The overlapped carbon fiber layer and glass fiber layer become the fiber reinforced resin layer 20 on the outer peripheral surface of the liner, and the intermediate product tank 12 having the resin layer formed thereon is obtained. Since the glass fiber layer has higher impact resistance than the carbon fiber layer, the mechanical strength of the high-pressure hydrogen tank can be increased. Instead of the epoxy resin, a thermosetting resin such as a polyester resin or a polyamide resin can be used.

上述した繊維強化樹脂層形成工程では、ライナー10の外周においてカーボン繊維の上にガラス繊維を重ねて巻き付けて、カーボン繊維層とガラス繊維層を形成するが、その際に、ガラス繊維層の表面には、過剰なエポキシ樹脂が浮き出す。この浮き出したエポキシ樹脂は、後述の熱硬化工程を経て繊維強化樹脂層の最外周部で熱硬化して樹脂熱硬化層(エポキシ樹脂硬化層)となる。そして、樹脂浮き出しの程度は、FW法により繊維巻き付けの条件、例えば、巻き取り速度や樹脂含浸の程度等によって定まり、通常は1〜2mmと想定され、この厚みで樹脂熱硬化層(エポキシ樹脂硬化層)が形成されることになる。ライナー10の外周表面の側では、図1(b)に示す繊維強化樹脂層形成工程において、カーボン繊維層が熱硬化前のエポキシ樹脂を含浸した状態でライナー外周表面にほぼ密着している。なお、本実施例では、カーボン繊維とこれに重なるガラス繊維とで繊維強化樹脂層20を形成したが、カーボン繊維での繊維強化樹脂層20の形成、ガラス繊維での繊維強化樹脂層20の形成とすることもできる。また、アラミド繊維での繊維強化樹脂層20の形成を行うようにすることもできる。   In the fiber reinforced resin layer forming step described above, the glass fiber is overlapped and wound around the carbon fiber at the outer periphery of the liner 10 to form the carbon fiber layer and the glass fiber layer. Excess epoxy resin will pop out. This raised epoxy resin is thermally cured at the outermost peripheral portion of the fiber reinforced resin layer through a thermosetting process described later to become a resin thermosetting layer (epoxy resin cured layer). The degree of the resin protrusion is determined by the fiber winding condition by the FW method, for example, the winding speed and the degree of resin impregnation, and is normally assumed to be 1 to 2 mm. With this thickness, the resin thermosetting layer (epoxy resin curing) Layer) will be formed. On the outer peripheral surface side of the liner 10, in the fiber reinforced resin layer forming step shown in FIG. 1B, the carbon fiber layer is almost in close contact with the liner outer peripheral surface in a state of being impregnated with the epoxy resin before thermosetting. In this embodiment, the fiber reinforced resin layer 20 is formed of carbon fibers and glass fibers overlapping with the carbon fibers. However, the fiber reinforced resin layer 20 is formed of carbon fibers, and the fiber reinforced resin layer 20 of glass fibers is formed. It can also be. Alternatively, the fiber reinforced resin layer 20 may be formed of aramid fibers.

繊維強化樹脂層20の形成に続いては、熱硬化を行う。図2は熱硬化の際のタンク軸支シャフト112を介したライナー内圧切換の様子を模式的に示す説明図、図3は熱硬化炉100における中間生成品タンク12の保持の様子を模式的に示す説明図である。熱硬化工程では、図1(c)と図3に示す熱硬化炉100を用いる。この熱硬化炉100は、架台110にタンク軸支シャフト112を回転可能に軸支する他、軸支済みのタンク軸支シャフト112の炉内上方に長尺状の放熱ヒーター114を備える。よって、熱硬化炉100は、中間生成品タンク12をタンク軸方向において均等に加熱する。また、熱硬化炉100は、タンク軸支シャフト112の図における右端において、タンク軸支シャフト112をチャック116を経てタンク回転機構118に連結する。   Subsequent to the formation of the fiber reinforced resin layer 20, thermosetting is performed. FIG. 2 is an explanatory view schematically showing how the liner internal pressure is switched via the tank pivot shaft 112 during thermosetting, and FIG. 3 is a schematic view showing how the intermediate product tank 12 is held in the thermosetting furnace 100. It is explanatory drawing shown. In the thermosetting process, the thermosetting furnace 100 shown in FIG. 1C and FIG. 3 is used. The thermosetting furnace 100 includes a tank heat-supporting shaft 112 rotatably supported on a gantry 110 and a long radiating heater 114 above the shaft-supported tank shaft support shaft 112 in the furnace. Therefore, the thermosetting furnace 100 heats the intermediate product tank 12 evenly in the tank axial direction. Further, the thermosetting furnace 100 connects the tank support shaft 112 to the tank rotation mechanism 118 via the chuck 116 at the right end of the tank support shaft 112 in the drawing.

熱硬化炉100は、炉外に配設される加減圧装置120を備え、当該装置からタンク軸支シャフト112まで加減圧系を有する。この加減圧系は、切換バルブ122と、タンク軸支シャフト112の流路カプラー124と、加減圧装置120で構成される。加減圧装置120は、加圧用配管127と減圧用配管129を切換バルブ122まで延ばし、切換バルブ122から流路カプラー124まではシャフト側流路125を備える。加減圧装置120は、加圧用配管127を経た加圧エアーの圧送と、減圧用配管129を経た減圧吸引とを交互に繰り返し、切換バルブ122は、加圧・減圧の繰り返しタイミングで、加圧用配管127と減圧用配管129を切り換える。なお、流路カプラー124は、気密にタンク軸支シャフト112に組み込まれており、回転する中空のタンク軸支シャフト112に対する加圧・減圧に寄与する。   The thermosetting furnace 100 includes a pressure increasing / decreasing device 120 disposed outside the furnace, and has a pressure increasing / decreasing system from the device to the tank shaft 112. This pressure increasing / decreasing system includes a switching valve 122, a flow path coupler 124 of the tank shaft 112, and a pressure increasing / decreasing device 120. The pressurizing / depressurizing device 120 extends the pressurizing pipe 127 and the depressurizing pipe 129 to the switching valve 122, and includes a shaft-side flow path 125 from the switching valve 122 to the flow path coupler 124. The pressurizing / depressurizing device 120 alternately repeats the feeding of pressurized air through the pressurizing pipe 127 and the vacuum suction through the depressurizing pipe 129. 127 and the decompression pipe 129 are switched. The flow path coupler 124 is hermetically incorporated in the tank pivot shaft 112 and contributes to pressurization / depressurization of the rotating hollow tank pivot shaft 112.

図2に示すように、タンク軸支シャフト112は、シャフト軸に沿って中空部113を備え、当該中空部をシャフト側流路125に連通させている。また、タンク軸支シャフト112は、中空部113とシャフト外部とを連通する通気孔115をシャフト回りに点在配置して備える。よって、加減圧装置120(図1(c)参照)が加圧エアーを圧送すると、切換バルブ122での流路切換を経て、加圧エアーが中間生成品タンク12の内部に吹き出される。これにより、中間生成品タンク12の最内部に位置するライナー10の内圧は高まり、ライナー内圧は加圧エアーの圧力程度まで正圧化となる。また、加減圧装置120(図1(c)参照)が減圧吸引を行うと、切換バルブ122での流路切換を経て、中間生成品タンク12の最内部に位置するライナー10の内部のエアーは吸引され、ライナー内圧は負圧となる。   As shown in FIG. 2, the tank pivot shaft 112 includes a hollow portion 113 along the shaft axis, and the hollow portion communicates with the shaft-side flow path 125. Further, the tank shaft 112 is provided with air holes 115 communicating with the hollow portion 113 and the outside of the shaft in a dotted manner around the shaft. Accordingly, when the pressurizing air is pumped by the pressurizing / depressurizing device 120 (see FIG. 1C), the pressurized air is blown out into the intermediate product tank 12 through the flow path switching by the switching valve 122. Thereby, the internal pressure of the liner 10 located in the innermost part of the intermediate product tank 12 is increased, and the liner internal pressure becomes a positive pressure up to the pressure of the pressurized air. Further, when the pressure increasing / decreasing device 120 (see FIG. 1C) performs vacuum suction, the air inside the liner 10 positioned at the innermost part of the intermediate product tank 12 is changed through the flow path switching by the switching valve 122. Suction is performed, and the liner internal pressure becomes negative.

図2および図3に示す上記の熱硬化炉100を用いた熱硬化工程では、熱硬化炉100への搬入に先だち、樹脂層形成済みの中間生成品タンク12にタンク軸支シャフト112を装着する。タンク軸支シャフト112は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、架台110に軸支される。この場合、タンク軸支シャフト112は、図示しないシール部材を介して、口金14において気密に中間生成品タンク12に装着される。こうして中間生成品タンク12を軸支した後、熱硬化炉100は、中間生成品タンク12を熱硬化工程に処する。この熱硬化工程では、タンク回転機構118により中間生成品タンク12をタンク軸支シャフト112ごと定速で回転させ、その回転を熱硬化工程の間に亘って維持する。タンク回転と同時に、或いは、定速回転となると、熱硬化炉100は、繊維強化樹脂層20の形成に用いた上記の熱硬化樹脂(例えば、エポキシ樹脂)の熱硬化に適う温度に炉内温度が維持されるよう、放熱ヒーター114を加熱制御する。これにより、中間生成品タンク12では、ライナー10の外周に形成された繊維強化樹脂層20における熱硬化樹脂の熱硬化が始まる。   In the thermosetting process using the above-described thermosetting furnace 100 shown in FIGS. 2 and 3, the tank shaft 112 is attached to the intermediate product tank 12 on which the resin layer has been formed prior to carrying into the thermosetting furnace 100. . The tank pivot shaft 112 is inserted into the caps 14 at both ends of the intermediate product tank 12 and is pivotally supported by the gantry 110 with the shaft extending from both ends of the tank. In this case, the tank shaft 112 is attached to the intermediate product tank 12 in an airtight manner at the base 14 via a seal member (not shown). After supporting the intermediate product tank 12 in this manner, the thermosetting furnace 100 processes the intermediate product tank 12 in a thermosetting process. In this thermosetting process, the intermediate product tank 12 is rotated at a constant speed together with the tank shaft 112 by the tank rotating mechanism 118, and the rotation is maintained during the thermosetting process. At the same time as the tank rotation or at a constant speed, the thermosetting furnace 100 is heated to a temperature suitable for the thermosetting of the thermosetting resin (for example, epoxy resin) used for forming the fiber reinforced resin layer 20. The heat dissipation heater 114 is controlled to be heated so as to be maintained. Thereby, in the intermediate product tank 12, thermosetting of the thermosetting resin in the fiber reinforced resin layer 20 formed on the outer periphery of the liner 10 starts.

熱硬化炉100は、上記したタンク回転とヒーター加熱を開始すると、このタンク回転とヒーター加熱とに加え、加減圧装置120によるライナー内圧の正圧・負圧の交互切換をも並行して実施する。図4は熱硬化工程におけるライナー内圧の加減圧の様子を示す説明図である。図示するように、加減圧装置120は、まず、加圧エアーの圧送(当初加圧エアー圧送)を行い、中間生成品タンク12におけるライナー10の内圧を正圧化する。これにより、ライナー内圧は、図4に示すように、正圧とする前の元圧から正圧に昇圧することになる。そして、所定時間経過後に、加減圧装置120は、加圧エアー圧送から減圧吸引に切り換え、中間生成品タンク12におけるライナー10の内圧を負圧化する。これにより、ライナー内圧は、図4に示すように、負圧とする前の正圧から元圧を下回って負圧に降圧することになる。   When the tank rotation and the heater heating are started, the thermosetting furnace 100 performs the switching between the positive pressure and the negative pressure of the liner inner pressure by the pressure increasing / decreasing device 120 in parallel in addition to the tank rotation and the heater heating. . FIG. 4 is an explanatory diagram showing how the liner internal pressure is increased and decreased in the thermosetting process. As shown in the figure, the pressurizing / depressurizing device 120 first feeds pressurized air (initially pressurized air feeding) to positively increase the internal pressure of the liner 10 in the intermediate product tank 12. Thereby, as shown in FIG. 4, the liner internal pressure is increased from the original pressure before the positive pressure to the positive pressure. Then, after a predetermined time has elapsed, the pressurizing / depressurizing device 120 switches from pressurized air pumping to vacuum suction, thereby reducing the internal pressure of the liner 10 in the intermediate product tank 12. As a result, as shown in FIG. 4, the liner internal pressure falls below the original pressure from the positive pressure before the negative pressure to the negative pressure.

この当初のライナー内圧の負圧化は、繊維強化樹脂層20における熱硬化樹脂が熱放射を受けて低粘度となるタイミングで実行される。この負圧化のタイミングは、繊維強化樹脂層20における熱硬化樹脂の性質や、ヒーター加熱量、ヒーターとの距離等を考慮して、予め実験的に、或いはシミュレーション演算を経て決定され、タンク回転とヒーター加熱を開始してから、繊維強化樹脂層20における熱硬化樹脂が熱放射を受けて低粘度となるまでの経過時間で規定される。   The initial negative pressure inside the liner is executed at a timing when the thermosetting resin in the fiber reinforced resin layer 20 receives heat radiation and becomes a low viscosity. The timing of the negative pressure is determined in advance experimentally or through simulation calculation in consideration of the properties of the thermosetting resin in the fiber reinforced resin layer 20, the amount of heater heating, the distance from the heater, etc. And the time elapsed from the start of the heater heating until the thermosetting resin in the fiber reinforced resin layer 20 receives heat radiation and becomes low viscosity.

上記した当初加圧エアー圧送によるライナー内圧の正圧化は、減圧吸引に切り換えられるまでの間に亘って維持され、ライナー10は、この圧力を受けて膨張する。一方、ライナー内圧の負圧化により、ライナー10は収縮する。その後、加減圧装置120は、図4に示すように、加圧エアー圧送と減圧吸引を熱硬化工程の間に亘って交互に繰り返し、その間で繊維強化樹脂層20のエポキシ樹脂の熱硬化が起きる。そして、この熱硬化後の冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。   The positive pressure inside the liner by the above-described initial pressurized air pumping is maintained until switching to vacuum suction, and the liner 10 expands in response to this pressure. On the other hand, the liner 10 contracts due to the negative pressure inside the liner. Thereafter, as shown in FIG. 4, the pressurizing / depressurizing device 120 alternately repeats the pressurized air pumping and the vacuum suction during the thermosetting process, and the thermosetting of the epoxy resin of the fiber reinforced resin layer 20 occurs between them. . And the high pressure hydrogen tank 30 which has the fiber reinforced resin layer 20 which impregnated the epoxy resin in the outer periphery of the liner 10 and was thermoset by passing through the cooling curing after this thermosetting is obtained.

以上説明したように、本実施例の製造方法では、繊維強化樹脂層20のエポキシ樹脂の熱硬化に際して、中間生成品タンク12を回転させつつ放熱するだけではなく、熱硬化のための放熱の際に、中間生成品タンク12の最内周のライナー10の内圧の正圧・負圧の交互繰り返しを図る。よって、次の利点がある。   As described above, in the manufacturing method of the present embodiment, when the epoxy resin of the fiber reinforced resin layer 20 is thermally cured, not only is the heat dissipated while rotating the intermediate product tank 12, but also the heat radiation for heat curing. In addition, positive and negative pressures of the innermost liner 10 of the intermediate product tank 12 are alternately repeated. Therefore, there are the following advantages.

エポキシ樹脂は、図1(c)に中間生成品タンク12の一部を破断して模式的に示すように、ライナー10の外周表面で繊維巻回が層状となった繊維強化樹脂層20の各層の繊維に含浸されて各層間にも浸み込む他、放熱を受けて低粘度となるために、熱収縮したライナー10の外周表面と繊維強化樹脂層20の最下層との間に生じた隙間にも入り込む。これらのエポキシ樹脂は、放熱ヒーター114からの放熱を受けて低粘度化を経て熱硬化するが、低粘度の状態にある間は元より熱硬化の間においても、ライナー10は、上記した内圧の正圧・負圧の交互繰り返しに伴う膨張・収縮を交互に繰り返すことになる。このため、ライナー10の外周表面と繊維強化樹脂層20の最下層との間の隙間は、ライナー表面においてより一層、偏在し難くなる。しかも、この隙間に熱硬化前で低粘度の熱硬化性樹脂が入り込んでも、その樹脂は、ライナー10の膨張と収縮による顕著な押し戻しを受けることになるので、その入り込んだ間隙に部分的に留まるようなことはなく、ライナー10の外周表面に沿って広がることになる。このため、熱硬化したエポキシ樹脂によるライナー10と繊維強化樹脂層20との固着は、ライナー外周において部分的に起きる難くなり、ライナー外周においてほぼ均等化する。この結果、本実施例の高圧ガスタンクの製造方法によれば、ライナー10と繊維強化樹脂層20の接着界面における応力集中を高い実効性で抑制でき、高圧水素タンク30の形状維持の実効性も高まる。   Each layer of the fiber reinforced resin layer 20 in which the fiber winding is layered on the outer peripheral surface of the liner 10 is schematically shown in FIG. In addition to being impregnated in the fibers and soaking into the respective layers, the gap formed between the outer peripheral surface of the thermally contracted liner 10 and the lowermost layer of the fiber reinforced resin layer 20 because it receives heat and becomes low viscosity. Get into. These epoxy resins receive heat from the heat radiating heater 114 and are thermally cured through low viscosity. However, the liner 10 has the above-described internal pressure even during the heat curing as well as during the low viscosity state. Expansion and contraction accompanying alternating repetition of positive pressure and negative pressure are repeated alternately. For this reason, the clearance gap between the outer peripheral surface of the liner 10 and the lowest layer of the fiber reinforced resin layer 20 becomes much less unevenly distributed on the liner surface. In addition, even if a low-viscosity thermosetting resin enters the gap before thermosetting, the resin is subjected to significant pushback due to the expansion and contraction of the liner 10, so that the resin partially remains in the entering gap. There is no such thing and it will spread along the outer peripheral surface of the liner 10. For this reason, the fixing between the liner 10 and the fiber reinforced resin layer 20 by the thermosetting epoxy resin is difficult to occur partially at the outer periphery of the liner, and is almost equalized at the outer periphery of the liner. As a result, according to the manufacturing method of the high-pressure gas tank of the present embodiment, stress concentration at the bonding interface between the liner 10 and the fiber reinforced resin layer 20 can be suppressed with high effectiveness, and the effectiveness of maintaining the shape of the high-pressure hydrogen tank 30 also increases. .

また、本実施例では、中間生成品タンク12の最内周のライナー10の内圧の正圧・負圧の交互繰り返しを行うに当たり、タンク軸支シャフト112を中空シャフトとした上で通気孔115を形成し、加減圧装置120による加圧エアー圧送と減圧吸引を交互に繰り返すだけに過ぎない。このため、ライナー10の膨張・収縮の繰り返しを容易且つ確実に起こすことができ、簡便である。   Further, in this embodiment, when alternately repeating the positive pressure and the negative pressure of the innermost liner 10 of the intermediate product tank 12, the tank shaft shaft 112 is a hollow shaft, and the vent hole 115 is formed. It is merely formed and the pressurized air pumping by the pressurizing / depressurizing device 120 and the vacuum suction are repeated alternately. For this reason, the expansion and contraction of the liner 10 can be easily and reliably caused, which is convenient.

また、本実施例では、ライナー10の内圧の正負圧交互切換を行うに当たり、繊維強化樹脂層20の熱硬化の当初において加圧エアー圧送を経てライナー10の内圧を正圧とし、繊維強化樹脂層20の熱硬化に伴いエポキシ樹脂が低粘度となるタイミングで減圧吸引に切り換えてライナー内圧を正圧から負圧に切り換える。このため、最初の負圧化の際におけるライナー収縮に伴い、ライナー10の外周表面と繊維強化樹脂層20の最下層との間に隙間が確実に生じた上で、エポキシ樹脂を、低粘度故に、その隙間により均一に行き渡らせることができる。その上で、一旦負圧とした後は、エポキシ樹脂の熱硬化の間において、加圧エアー圧送と減圧吸引の交互切換によるライナー内圧の正負圧の交互切換を図る。このため、ライナー内圧の正負圧の交互切換に伴うライナー10の膨張と収縮の交互繰り返しにより、隙間に入り込み済みのエポキシ樹脂をより均一にライナー10の外周表面に行き渡ることができるので、熱硬化したエポキシ樹脂によるライナー固着はより均等化し、ライナー10と繊維強化樹脂層20の接着界面における応力集中を高い実効性で抑制して、高圧水素タンク30の形状維持の実効性もより高まる。   Further, in this embodiment, when the internal pressure of the liner 10 is alternately switched between positive and negative pressures, the internal pressure of the liner 10 is changed to a positive pressure through pressurized air pumping at the beginning of thermosetting of the fiber reinforced resin layer 20, and the fiber reinforced resin layer. At the timing when the epoxy resin has a low viscosity as the thermosetting of 20 is performed, switching to vacuum suction is performed to switch the liner internal pressure from positive pressure to negative pressure. For this reason, with the liner shrinkage at the time of the first negative pressure, a gap is surely generated between the outer peripheral surface of the liner 10 and the lowermost layer of the fiber reinforced resin layer 20, and the epoxy resin is used because of its low viscosity. , The gap can be distributed uniformly. In addition, after the negative pressure is once set, the liner internal pressure is alternately switched between positive and negative pressure by alternately switching between the pressurized air pumping and the vacuum suction during the thermosetting of the epoxy resin. For this reason, the epoxy resin that has already entered the gap can be more evenly distributed to the outer peripheral surface of the liner 10 by the repeated repeated expansion and contraction of the liner 10 due to the alternating switching of the liner internal pressure between positive and negative pressures. The liner fixing by the epoxy resin is made more uniform, stress concentration at the bonding interface between the liner 10 and the fiber reinforced resin layer 20 is suppressed with high effectiveness, and the effectiveness of maintaining the shape of the high-pressure hydrogen tank 30 is further enhanced.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、繊維強化樹脂層20の熱硬化工程の間のライナー内圧変化を正圧・負圧の交互繰り返しとしたが、次のように変形することができる。図5は熱硬化工程におけるライナー内圧変化の変形例を示す説明図である。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above-described embodiment, the change in the liner internal pressure during the thermosetting process of the fiber reinforced resin layer 20 is alternately repeated between the positive pressure and the negative pressure, but can be modified as follows. FIG. 5 is an explanatory view showing a modified example of the liner internal pressure change in the thermosetting process.

図示するように、熱硬化工程において、ライナー内圧をその元圧から正圧に昇圧した後に、元圧に復帰させ、この正圧・元圧復帰を交互に繰り返すようにできる(図5(a)参照)。この逆に、ライナー内圧をその元圧から負圧に降圧した後に、元圧に復帰させ、この負圧・元圧復帰を交互に繰り返すようにできる(図5(b)参照)。このようにライナー内圧を変化させるには、図1(c)における切換バルブ122を炉外に設置し、正圧・元圧復帰の交互繰り返しとする場合には、減圧用配管129を省略し、加圧用配管127を介した加圧エアー圧送後に、切換バルブ122を解放側に制御して、ライナー内のエアーを大気放出すればよい。負圧・元圧復帰の交互繰り返しとする場合には、この逆に、加圧用配管127を省略し、減圧用配管129を介した減圧吸引後に、切換バルブ122を解放側に制御してライナー内に外気を導入すればよい。   As shown in the figure, in the thermosetting process, the pressure inside the liner is increased from its original pressure to a positive pressure, and then returned to the original pressure, and this positive pressure / original pressure return can be repeated alternately (FIG. 5A). reference). On the contrary, after the liner internal pressure is reduced from the original pressure to the negative pressure, the liner pressure is restored to the original pressure, and the negative pressure and the original pressure return can be alternately repeated (see FIG. 5B). In order to change the liner internal pressure in this way, the switching valve 122 in FIG. 1C is installed outside the furnace, and when the positive pressure and the original pressure return are alternately repeated, the pressure reducing pipe 129 is omitted, After the pressurized air is fed through the pressurizing pipe 127, the switching valve 122 is controlled to the release side to release the air in the liner to the atmosphere. In the case of alternately repeating the negative pressure / original pressure return, conversely, the pressurizing pipe 127 is omitted, and after the vacuum suction through the decompression pipe 129, the switching valve 122 is controlled to the release side to control the inside of the liner. What is necessary is just to introduce outside air.

また、中間生成品タンク12を、その両端の口金14において別々のタンク軸支シャフト112にて回転自在に軸支し、一方のタンク軸支シャフト112を回転付与のためにタンク回転機構118と接続し、他方の112については、これを従動回転するようにした上で、加減圧装置120からの加圧エアー圧送と減圧吸引用の中空シャフトとすることができる。   Further, the intermediate product tank 12 is pivotally supported by the separate tank pivot shafts 112 at the caps 14 at both ends thereof, and one tank pivot shaft 112 is connected to the tank rotation mechanism 118 for rotation. And about the other 112, after making this rotate by rotation, it can be set as the hollow shaft for pressurization air pressurization from the pressure-intensification apparatus 120, and pressure reduction suction.

また、高圧水素タンク30の製造工程の繊維強化樹脂層形成工程(図1(b))において、カーボン繊維とガラス繊維とをそれぞれフィラメント・ワインディング法によってライナー10に繰り返し巻き付けて繊維強化樹脂層20を形成するものとしたが、本発明は、これに限られない。この繊維強化樹脂層形成工程において、例えば、エポキシ樹脂等の熱硬化性樹脂を含浸させたスライバー繊維(糸)の代わりに、エポキシ樹脂等の熱硬化性樹脂を含浸させた織布をライナー10の外周に重ねて巻き付けるようにしてもよい。   Further, in the fiber reinforced resin layer forming step (FIG. 1B) in the manufacturing process of the high-pressure hydrogen tank 30, the carbon fiber and the glass fiber are repeatedly wound around the liner 10 by the filament winding method to form the fiber reinforced resin layer 20. Although formed, the present invention is not limited to this. In this fiber reinforced resin layer forming step, for example, a woven fabric impregnated with a thermosetting resin such as an epoxy resin is used instead of a sliver fiber (thread) impregnated with a thermosetting resin such as an epoxy resin. You may make it wind around the outer periphery.

上記実施例では、熱硬化性樹脂として、エポキシ樹脂を用いるものとしたが、他の熱硬化性樹脂を用いるものとしてもよい。   In the said Example, although the epoxy resin was used as a thermosetting resin, it is good also as what uses another thermosetting resin.

上記実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。   In the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 30, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used.

10…ライナー
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
30…高圧水素タンク
100…熱硬化炉
110…架台
112…タンク軸支シャフト
113…中空部
114…放熱ヒーター
115…通気孔
116…チャック
118…タンク回転機構
120…加減圧装置
122…切換バルブ
124…流路カプラー
125…シャフト側流路
127…加圧用配管
129…減圧用配管
DESCRIPTION OF SYMBOLS 10 ... Liner 12 ... Intermediate product tank 14 ... Base 20 ... Fiber reinforced resin layer 30 ... High pressure hydrogen tank 100 ... Thermosetting furnace 110 ... Base 112 ... Tank support shaft 113 ... Hollow part 114 ... Radiation heater 115 ... Vent hole 116 DESCRIPTION OF SYMBOLS ... Chuck 118 ... Tank rotating mechanism 120 ... Booster / decompressor 122 ... Switching valve 124 ... Flow path coupler 125 ... Shaft side flow path 127 ... Pressurizing pipe 129 ... Depressurizing pipe

Claims (4)

高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層の形成済みの前記ライナーを軸支し、該軸支したライナーの内圧を変化させつつ前記繊維強化樹脂層を熱硬化させる熱硬化工程とを備える
高圧ガスタンクの製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A method of manufacturing a high-pressure gas tank, comprising: a thermosetting step of supporting the liner on which the fiber reinforced resin layer has been formed and thermosetting the fiber reinforced resin layer while changing an internal pressure of the supported liner.
前記熱硬化工程は、前記ライナーの内圧を正圧と負圧の交互に切り換えつつ前記繊維強化樹脂層を熱硬化させる請求項1に記載の高圧ガスタンクの製造方法。   2. The method for producing a high-pressure gas tank according to claim 1, wherein in the thermosetting step, the fiber reinforced resin layer is thermoset while the internal pressure of the liner is alternately switched between a positive pressure and a negative pressure. 前記熱硬化工程は、前記繊維強化樹脂層の熱硬化の当初において前記ライナーの内圧を正圧とし、前記繊維強化樹脂層の熱硬化に伴い前記熱硬化性樹脂が低粘度となるタイミングで前記ライナーの内圧を正圧から負圧に切り換え、その後は前記ライナーの内圧を正圧と負圧の交互に切り換える請求項2に記載の高圧ガスタンクの製造方法。   In the thermosetting step, the inner pressure of the liner is set to a positive pressure at the beginning of thermosetting of the fiber reinforced resin layer, and the liner is at a timing when the thermosetting resin becomes low viscosity with thermosetting of the fiber reinforced resin layer. The method for producing a high-pressure gas tank according to claim 2, wherein the internal pressure of the liner is switched from positive pressure to negative pressure, and thereafter the internal pressure of the liner is alternately switched between positive pressure and negative pressure. 樹脂製容器をライナーとして該ライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記繊維強化樹脂層を外周に形成済みの前記ライナーを軸支した上で、該軸支したライナーの内圧を変化させるライナー軸支手段と、
該ライナー軸支手段に軸支された前記ライナーを加熱して、前記繊維強化樹脂層を熱硬化させる熱硬化手段とを備える
高圧ガスタンクの製造装置。
An apparatus used for manufacturing a high-pressure gas tank having a fiber reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of the liner with a resin container as a liner,
Liner support means for changing the internal pressure of the supported liner after supporting the liner on which the fiber-reinforced resin layer before thermosetting is formed on the outer periphery;
An apparatus for manufacturing a high-pressure gas tank, comprising: a thermosetting unit that heats the liner supported by the liner shaft supporting unit to thermally cure the fiber reinforced resin layer.
JP2010103486A 2010-04-28 2010-04-28 Method and equipment for manufacturing high pressure gas tank Pending JP2011230398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103486A JP2011230398A (en) 2010-04-28 2010-04-28 Method and equipment for manufacturing high pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103486A JP2011230398A (en) 2010-04-28 2010-04-28 Method and equipment for manufacturing high pressure gas tank

Publications (1)

Publication Number Publication Date
JP2011230398A true JP2011230398A (en) 2011-11-17

Family

ID=45320217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103486A Pending JP2011230398A (en) 2010-04-28 2010-04-28 Method and equipment for manufacturing high pressure gas tank

Country Status (1)

Country Link
JP (1) JP2011230398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017641A (en) * 2013-07-10 2015-01-29 トヨタ自動車株式会社 High pressure tank and method for manufacturing high pressure tank
KR101919829B1 (en) * 2016-05-02 2018-11-19 주식회사 엔케이 Composites curing apparatus and method of the high-pressure vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017641A (en) * 2013-07-10 2015-01-29 トヨタ自動車株式会社 High pressure tank and method for manufacturing high pressure tank
KR101919829B1 (en) * 2016-05-02 2018-11-19 주식회사 엔케이 Composites curing apparatus and method of the high-pressure vessel

Similar Documents

Publication Publication Date Title
JP5531040B2 (en) Manufacturing method of high-pressure gas tank
JP5468418B2 (en) High pressure tank manufacturing apparatus and manufacturing method
JP2012042032A (en) High pressure gas tank, its manufacturing method and manufacturing device
US20160339650A1 (en) Manufacturing method of tank and tank manufacturing apparatus
WO2012160640A1 (en) Method for manufacturing gas tank
JP2008286297A (en) High-pressure tank manufacturing method
JP2014113755A (en) Production method of composite container
US9868253B2 (en) Method of manufacturing tank, heat curing method and heat curing apparatus
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2015113864A (en) Composite container manufacturing system, and composite container manufacturing method
JP2011230398A (en) Method and equipment for manufacturing high pressure gas tank
JP2007313697A (en) Apparatus for opening fiber bundle, method for opening fiber bundle, and pressure vessel
JP2009012341A (en) Manufacturing method of frp molding and heater
CN111664348B (en) Method for manufacturing can
JP5257736B2 (en) Tank manufacturing method and tank manufacturing equipment
JP2017217787A (en) Manufacturing method of gas tank
JP5446033B2 (en) FRP tank manufacturing apparatus and manufacturing method
JP2010249147A (en) Frp tank and method for manufacturing the same
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP2020131658A (en) Pressure vessel
JP2011094644A (en) Method and device for manufacturing high-pressure gas tank
JP2017219181A (en) Manufacturing method of high-pressure tank
JP2018012235A (en) Method for producing tank
JP2008290308A (en) Method and apparatus for manufacturing fiber reinforced resin made container
JP2017172713A (en) Tank manufacturing method