JP6210007B2 - Prepreg, method for producing the same, and carbon fiber reinforced composite material - Google Patents

Prepreg, method for producing the same, and carbon fiber reinforced composite material Download PDF

Info

Publication number
JP6210007B2
JP6210007B2 JP2014063394A JP2014063394A JP6210007B2 JP 6210007 B2 JP6210007 B2 JP 6210007B2 JP 2014063394 A JP2014063394 A JP 2014063394A JP 2014063394 A JP2014063394 A JP 2014063394A JP 6210007 B2 JP6210007 B2 JP 6210007B2
Authority
JP
Japan
Prior art keywords
prepreg
carbon fiber
resin composition
thickness
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014063394A
Other languages
Japanese (ja)
Other versions
JP2015183164A (en
Inventor
智正 高部
智正 高部
大輔 小森
大輔 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014063394A priority Critical patent/JP6210007B2/en
Publication of JP2015183164A publication Critical patent/JP2015183164A/en
Application granted granted Critical
Publication of JP6210007B2 publication Critical patent/JP6210007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は優れた耐衝撃性、層間靭性、層間剪断強度を兼ね備えた炭素繊維強化複合材料を提供可能な、含浸性に優れたプリプレグおよびその製造方法、ならびに炭素繊維強化複合材料に関するものである。   The present invention relates to a prepreg excellent in impregnation property, a method for producing the same, and a carbon fiber reinforced composite material capable of providing a carbon fiber reinforced composite material having excellent impact resistance, interlayer toughness and interlayer shear strength.

炭素繊維強化複合材料は、高い比強度・比剛性を有するため、スポーツ用途、自動車、船舶、土木・建築材料といった様々な一般産業用途に利用されている他、特に軽量化を必要とする航空機の構造材料として注目されている。   Carbon fiber reinforced composite materials have high specific strength and specific rigidity, so they are used in various general industrial applications such as sports applications, automobiles, ships, civil engineering and building materials, and especially for aircraft that require weight reduction. It is attracting attention as a structural material.

炭素繊維強化複合材料は、その製造方法の一つに、強化繊維である炭素繊維とマトリックス樹脂を必須の構成要素とするプリプレグを用いる方法が一般的に知られている。プリプレグを用いる場合、それを成形してなる炭素繊維強化複合材料は、強化繊維の配列方向の物性とそれ以外の方向の物性に大きな差が存在する。例えば、落錘衝撃に対する抵抗性で示される耐衝撃性は、強化繊維とマトリックス樹脂との界面やマトリックス樹脂の特性等によって支配されるため、強化繊維の強度を向上させるのみでは、抜本的な改良に結びつかないことが知られている。特に、熱硬化性樹脂をマトリックス樹脂とする炭素繊維強化複合材料は、マトリックス樹脂の低い靭性を反映し、強化繊維の配列方向以外からの力に対し、破壊され易い性質を持っている。加えて、外部からの衝撃力などの外力がかかると、隣接する炭素繊維層同士の層間(以降単に「層間」と記すこともある)に応力が集中し、破壊され易い性質を持っている。従って、耐衝撃性の向上に加え、層間の剪断強度、靭性の向上も重要な課題となっている。   A carbon fiber reinforced composite material is generally known as one of its production methods by using a prepreg having carbon fibers that are reinforcing fibers and a matrix resin as essential components. When a prepreg is used, a carbon fiber reinforced composite material formed by molding the prepreg has a large difference in physical properties in the arrangement direction of the reinforcing fibers and physical properties in other directions. For example, the impact resistance indicated by resistance to falling weight impact is governed by the interface between the reinforcing fiber and the matrix resin, the characteristics of the matrix resin, etc., so it is a drastic improvement only by improving the strength of the reinforcing fiber. It is known that it does not lead to In particular, a carbon fiber reinforced composite material using a thermosetting resin as a matrix resin reflects the low toughness of the matrix resin and has a property of being easily broken by a force from other than the direction in which the reinforcing fibers are arranged. In addition, when an external force such as an impact force from the outside is applied, the stress is concentrated between the adjacent carbon fiber layers (hereinafter, sometimes simply referred to as “interlayer”), and is easily broken. Therefore, in addition to the improvement of impact resistance, the improvement of shear strength and toughness between layers is also an important issue.

以上の背景から、外部の多方向からの力に対応することができる複合材料物性を改良することを目的として、種々の技術が提案されている。   In view of the above background, various techniques have been proposed for the purpose of improving the physical properties of composite materials that can cope with external forces from multiple directions.

例えば、特許文献1にはプリプレグの表面領域に樹脂粒子を分散させた樹脂層を設けたプリプレグが提案されている。ナイロン等の熱可塑性樹脂からなる粒子をプリプレグの表面領域に分散させた樹脂層を設けたプリプレグを用いて、耐熱性の良好な高靭性複合材料を与える技術が提案されている。   For example, Patent Document 1 proposes a prepreg provided with a resin layer in which resin particles are dispersed in the surface region of the prepreg. There has been proposed a technique for providing a high-toughness composite material having good heat resistance using a prepreg provided with a resin layer in which particles made of a thermoplastic resin such as nylon are dispersed in the surface region of the prepreg.

更に、特許文献2にはエポキシ樹脂と所定の硬化剤とを含む樹脂組成物に、熱可塑性樹脂と、所定の平均粒子径を有する無機微粒子とを含む樹脂組成物をマトリックス樹脂として用いることにより、耐熱性、層間破壊靭性、耐衝撃性に優れた複合材料を与える技術が提案されている。   Furthermore, in Patent Document 2, a resin composition containing an epoxy resin and a predetermined curing agent is used as a matrix resin, and a resin composition containing a thermoplastic resin and inorganic fine particles having a predetermined average particle diameter is used as a matrix resin. A technique for providing a composite material having excellent heat resistance, interlaminar fracture toughness, and impact resistance has been proposed.

ここで、特許文献1および2では、シート状に引き揃えた炭素繊維の両面あるいは片面に当て圧力を加えることにより、シリコーン離型紙などの上に均一に塗工した樹脂フィルム付きの離型紙シート(以降、単に「樹脂フィルム」と記すこともある)の熱硬化性樹脂を含浸させて、プリプレグを作製する方法(以降、単に「1段含浸法」と記すこともある)が開示されている。粒子等を含んだ熱硬化性樹脂を炭素繊維に含浸させると、大多数の粒子等は、炭素繊維によって「ろ過」され、炭素繊維層に入り込むことが実質上妨げられる。従って、当該方法を用いればプリプレグの表面に形成される樹脂層に選択的に粒子等を配置できる。このように1段含浸法により得られたプリプレグを複数枚積層して得られた積層体を、例えばオートクレーブ等を用いて加熱・加圧して炭素繊維強化複合材料を成形すると、プリプレグの表面に形成される樹脂層が重なり合って、炭素繊維強化複合材料の層間の樹脂層として形成される。そのため1段含浸法は、炭素繊維強化複合材料の層間の樹脂層に、粒子等を存在させるために適した方法である。   Here, in Patent Documents 1 and 2, a release paper sheet with a resin film uniformly coated on a silicone release paper or the like by applying pressure to both surfaces or one surface of carbon fibers aligned in a sheet shape ( Hereinafter, a method for producing a prepreg by impregnating a thermosetting resin (sometimes simply referred to as “resin film”) (hereinafter, sometimes simply referred to as “one-stage impregnation method”) is disclosed. When carbon fibers are impregnated with a thermosetting resin containing particles and the like, the majority of the particles and the like are “filtered” by the carbon fibers and substantially prevented from entering the carbon fiber layer. Therefore, if this method is used, particles and the like can be selectively arranged on the resin layer formed on the surface of the prepreg. When a laminate obtained by laminating a plurality of prepregs obtained by the one-step impregnation method as described above is heated and pressurized using, for example, an autoclave or the like to form a carbon fiber reinforced composite material, it is formed on the surface of the prepreg. The formed resin layers are overlapped to form a resin layer between carbon fiber reinforced composite materials. Therefore, the one-stage impregnation method is a method suitable for causing particles or the like to exist in the resin layer between the layers of the carbon fiber reinforced composite material.

また、プリプレグの製造方法について特許文献1および2では、シート状に引き揃えた炭素繊維の両面あるいは片面に当て圧力を加えることにより、熱硬化性樹脂を含浸させて一次プリプレグを作製し、熱可塑性の粒子等を熱硬化性樹脂に含んだ別の熱硬化性樹脂を、樹脂フィルム(以降、単に「2次フィルム」と記すこともある)を用いてその両側、または片面貼着する方法(以降、単に「2段含浸法」と記すこともある)が開示されている。この方法で得られたプリプレグは、プリプレグの表面の樹脂層に、さらに最適に粒子等を配置することが可能となり、特許文献2の実施例8で説明されるように、1段含浸法を用いた場合と同様に、優れた層間靭性、耐衝撃性が得られることが明らかにされている。   In addition, in Patent Documents 1 and 2 regarding a method for producing a prepreg, a primary prepreg is produced by impregnating a thermosetting resin by applying pressure to both sides or one side of a carbon fiber aligned in a sheet shape, and thermoplasticity. A method in which another thermosetting resin containing the above particles in a thermosetting resin is attached to both sides or one side using a resin film (hereinafter, sometimes simply referred to as “secondary film”) (hereinafter referred to as “secondary film”). May be simply referred to as “two-stage impregnation method”). The prepreg obtained by this method can more optimally arrange particles and the like in the resin layer on the surface of the prepreg, and uses a one-stage impregnation method as described in Example 8 of Patent Document 2. It was clarified that excellent interlayer toughness and impact resistance can be obtained, as in

米国特許第5,028,478号明細書US Pat. No. 5,028,478 特開2009−242459号公報JP 2009-242459 A

本発明者らは、鋭意検討した結果、炭素繊維強化複合材料において、優れた耐衝撃性を得るためには、炭素繊維強化複合材料の層間の樹脂層に熱可塑性粒子を加えると共に、当該樹脂層の厚みを充分に確保し、その厚みの均一性を保持することで優れた層間靭性、強度を得ることが出来ることを明らかにした。さらに、適した大きさの粒子を層間の樹脂層に配合することで、層間の樹脂層の厚みを保持出来ることも明らかにした。   As a result of intensive studies, the present inventors have added thermoplastic particles to a resin layer between layers of a carbon fiber reinforced composite material in order to obtain excellent impact resistance in the carbon fiber reinforced composite material, and the resin layer. It was clarified that excellent interlaminar toughness and strength can be obtained by sufficiently securing the thickness and maintaining the uniformity of the thickness. Furthermore, it was clarified that the thickness of the resin layer between layers can be maintained by blending particles of suitable size into the resin layer between layers.

ここで、先行技術文献にて開示されている、1段含浸法または2段含浸法を用いて炭素繊維強化複合材料を得る場合の層間の樹脂層の厚みについて詳細に検討した結果を説明する。   Here, the result of having examined in detail about the thickness of the resin layer between layers in the case of obtaining a carbon fiber reinforced composite material using the 1 step | paragraph impregnation method or the 2 step | paragraph impregnation method currently disclosed by prior art literature is demonstrated.

まず、シート状に引き揃えた炭素繊維に所定の厚みの樹脂フィルムの熱硬化性樹脂組成物を含浸させると、炭素繊維層の表面に樹脂層が形成したプリプレグが得られる。当該樹脂層の厚みは、樹脂フィルム厚みに対して、熱硬化性樹脂組成物を炭素繊維に含浸させた分だけ小さくなる。ここで、プリプレグの取り扱い性の観点から、プリプレグの両面の特性を同等にするために、炭素繊維の両面から樹脂フィルムの熱硬化性樹脂組成物を含浸することが好ましい。   First, when carbon fibers arranged in a sheet are impregnated with a thermosetting resin composition of a resin film having a predetermined thickness, a prepreg having a resin layer formed on the surface of the carbon fiber layer is obtained. The thickness of the resin layer is smaller than the thickness of the resin film by the amount of impregnation of the carbon fiber with the thermosetting resin composition. Here, from the viewpoint of handleability of the prepreg, it is preferable to impregnate the thermosetting resin composition of the resin film from both sides of the carbon fiber in order to make the characteristics of both sides of the prepreg equal.

次に、得られたプリプレグを複数枚積層して積層体を得る。この際プリプレグ同士の層間の樹脂層は、前記樹脂層がプリプレグ同士で重なり合うため、前記樹脂層の厚みのおよそ2倍となる。   Next, a plurality of obtained prepregs are laminated to obtain a laminate. At this time, the resin layer between the prepregs is approximately twice the thickness of the resin layer because the resin layers overlap each other.

このように得られた該積層体を例えばオートクレーブ等を用いて加熱・加圧して炭素繊維強化複合材料を成形すると、成形の際の加圧や樹脂フロー等で層間が圧縮されるため、成形方法により多少の大小は有るものの、層間の樹脂層の厚みは、プリプレグの樹脂層の厚みの2倍ではなく、1.2〜1.8倍となることが判明した。   The layered product thus obtained is heated and pressurized using, for example, an autoclave to form a carbon fiber reinforced composite material, and the interlayer is compressed by the pressure applied during molding or the resin flow. However, the thickness of the resin layer between the layers was found to be 1.2 to 1.8 times, not twice the thickness of the prepreg resin layer.

従って、本発明者らは、層間の樹脂層の厚みを保持するためには、層間の樹脂層の厚みに適した粒径に制御した粒子等を、あらかじめ当該熱硬化性樹脂組成物に配合しておく必要があることを明らかにした。   Therefore, in order to maintain the thickness of the interlayer resin layer, the present inventors previously blended the thermosetting resin composition with particles or the like controlled to a particle size suitable for the thickness of the interlayer resin layer. Clarified that it is necessary to keep.

ここで、一般に樹脂フィルムを得るための樹脂フィルミング方法は、ラッカー樹脂やホットメルト樹脂をナイフエッジコーター方式やリバースロールコーター方式で塗工する、いわゆるクリアランス制御による塗工方式を採用している。   Here, a resin filming method for obtaining a resin film generally employs a so-called clearance control coating method in which a lacquer resin or a hot melt resin is coated by a knife edge coater method or a reverse roll coater method.

層間の樹脂厚みを保持するために2段含浸法を使用する場合、層間の厚みは比較的均一に保持されやすいが、含浸を2度繰り返すために生産性が優れているとは言えない問題がある。   When the two-stage impregnation method is used to maintain the resin thickness between layers, the thickness between layers is likely to be maintained relatively uniformly, but the impregnation is repeated twice, so it cannot be said that productivity is excellent. is there.

それに対して、1段含浸法を用いる場合、フィルミング工程通過性やフィルム品位は良好に維持出来、かつ加工性が2段含浸法に比べて大幅に向上するというメリットがある。しかしながら、1段含浸法は「ろ過」により粒子等をプリプレグの表面に選択的に配置するため、炭素繊維層内に粒子等の一部が入り込み、層間の樹脂層の厚みを充分に確保出来ない場合があり、そのような場合には、層間の樹脂層と炭素繊維層との界面(以降単に「界面」と記すこともある)が乱れ、層間靭性や層間剪断強度が極端に低下した。このような現象を防止する為、含浸圧力等を下げ過ぎると、炭素繊維層内への樹脂の含浸が不十分となる箇所が発生し、このようなプリプレグを成形して炭素繊維強化複合材料とした際に、当該箇所がボイドとなる問題がある。また粒子等の配合量を減らしたり、粒子等を小さくしすぎたりすると、層間の樹脂層の厚みを充分に確保できなくなるため、優れた層間靭性、強度を得ることが出来なくなる問題がある。   On the other hand, when the one-stage impregnation method is used, there are advantages that the filming process passability and the film quality can be maintained well and the workability is greatly improved as compared with the two-stage impregnation method. However, since the one-stage impregnation method selectively arranges particles and the like on the surface of the prepreg by “filtration”, a part of the particles and the like enter the carbon fiber layer, and the thickness of the resin layer between the layers cannot be secured sufficiently. In such a case, the interface between the resin layer and the carbon fiber layer between layers (hereinafter sometimes simply referred to as “interface”) is disturbed, and interlayer toughness and interlayer shear strength are extremely reduced. In order to prevent such a phenomenon, if the impregnation pressure or the like is lowered too much, a portion where the impregnation of the resin into the carbon fiber layer is insufficient occurs, and a carbon fiber reinforced composite material is formed by molding such a prepreg. When this occurs, there is a problem that the portion becomes a void. Further, if the blending amount of particles or the like is reduced, or if the particles or the like are made too small, the thickness of the resin layer between the layers cannot be secured sufficiently, and there is a problem that excellent interlayer toughness and strength cannot be obtained.

従って、1段含浸法において、優れた耐衝撃性を維持しながら、優れた含浸性、層間靭性、層間剪断強度を得ることは、必ずしも容易ではないが、前記いずれの特許文献においても、1段含浸法において、含浸性と界面がともに良好なプリプレグを得る方法について具体的な開示がなされておらず、耐衝撃性、層間靭性、層間剪断強度に優れたボイドの少ない炭素繊維強化複合材料を安定して得ることは困難であった。   Accordingly, in the one-stage impregnation method, it is not always easy to obtain excellent impregnation, interlaminar toughness, and interlaminar shear strength while maintaining excellent impact resistance. In the impregnation method, there is no specific disclosure about a method for obtaining a prepreg having both good impregnation and interface, and a stable carbon fiber reinforced composite material with excellent impact resistance, interlaminar toughness, and interlaminar shear strength is reduced. It was difficult to obtain.

すなわち、本発明の解決しようとする課題は、1段含浸法において、優れた耐衝撃性と層間靭性と層間剪断強度を兼ね備え、ボイドの少ない炭素繊維強化複合材料を提供可能な、含浸性と界面がともに良好なプリプレグおよびその製造方法を提供することにある。   That is, the problem to be solved by the present invention is to provide a carbon fiber reinforced composite material having excellent impact resistance, interlaminar toughness and interlaminar shear strength, and capable of providing a carbon fiber reinforced composite material with few voids in the one-stage impregnation method. Is to provide a good prepreg and a method for producing the same.

かかる課題を解決するための本発明は、以下の構成からなる。すなわち、以下の(1)、(2)の構成を有する熱硬化性樹脂組成物を、シート状に引き揃えた炭素繊維の両面から含浸させるプリプレグの製造方法であって、該プリプレグの樹脂含有率が20〜50質量%であり、含浸時の該熱硬化性樹脂組成物の粘度が0.1〜100Pa・sであることを特徴とするプリプレグの製造方法である。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、0.5A〜Aμmの体積平均粒径となるよう第1の粒子について乾式分級を行った第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
また、本発明の別の構成は、以下の(1)、(2)の構成を有する熱硬化性樹脂組成物を、シート状に引き揃えた炭素繊維の両面から含浸させるプリプレグの製造方法であって、該プリプレグの樹脂含有率が20〜50質量%であり、含浸時の該熱硬化性樹脂組成物の粘度が0.1〜100Pa・sであることを特徴とするプリプレグの製造方法である。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、0.5A〜Aμmの体積平均粒径である第1の粒子とは異なる材質の第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
The present invention for solving this problem has the following configuration. That is, a method for producing a prepreg in which a thermosetting resin composition having the following configurations (1) and (2) is impregnated from both sides of a carbon fiber aligned in a sheet shape, the resin content of the prepreg Is 20 to 50% by mass, and the viscosity of the thermosetting resin composition at the time of impregnation is 0.1 to 100 Pa · s.
Soluble in respect to the average value Aμm the thickness of the resin layer between (1) layer, a first particle element volume average particle diameter of a thermoplastic resin or less 0.5Eimyuemu (thermosetting resin composition the excluding) those containing 10 to 30 mass% with respect to the thermosetting resin composition.
(2) with respect to the average value Aμm the thickness of the resin layer between layers, the second particle child subjected to dry classification for the first particles so that the volume average particle diameter of 0.5A~eimyu m (heat 0.5-5 mass% is included with respect to this thermosetting resin composition except a thing soluble in a curable resin composition.
Another configuration of the present invention is a method for producing a prepreg in which a thermosetting resin composition having the following configurations (1) and (2) is impregnated from both sides of a carbon fiber aligned in a sheet shape. The resin content of the prepreg is 20 to 50% by mass, and the viscosity of the thermosetting resin composition at the time of impregnation is 0.1 to 100 Pa · s. .
(1) First particles made of a thermoplastic resin having a volume average particle size of 0.5 Aμm or less with respect to the average value Aμm of the thickness of the resin layer between layers (soluble in the thermosetting resin composition) 10 to 30% by mass with respect to the thermosetting resin composition.
(2) Second particles made of a material different from the first particles having a volume average particle diameter of 0.5 A to A μm with respect to the average value A μm of the resin layers between the layers (the thermosetting resin composition) 0.5 to 5% by mass with respect to the thermosetting resin composition.

また本発明は、以下の(1)、(2)の構成を有する熱硬化性樹脂組成物が、シート状に引き揃えられた炭素繊維の両面に含浸されてなるプリプレグであって、該プリプレグの樹脂含有率が20〜50質量%であり、ウォーターピックアップ法での含浸性が6.0質量%以下であり、かつ以下の方法により得られた層間の樹脂層の厚みの標準偏差CVμmおよび層間の樹脂層の厚みの平均値Aμmについて、CVが0.85Aμm以下であることを特徴とするプリプレグである。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5A〜Aμmである第1の粒子とは異なる材質の第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
Further, the present invention is a prepreg in which a thermosetting resin composition having the following configurations (1) and (2) is impregnated on both surfaces of a carbon fiber aligned in a sheet shape, The resin content is 20 to 50% by mass, the impregnation property by the water pickup method is 6.0% by mass or less, and the standard deviation CV μm of the interlayer resin layer thickness obtained by the following method and the interlayer The prepreg is characterized in that the CV is 0.85 Aµm or less with respect to the average value Aµm of the resin layer.
Soluble in respect to the average value Aμm the thickness of the resin layer between (1) layer, a first particle element volume average particle diameter of a thermoplastic resin or less 0.5Eimyuemu (thermosetting resin composition the excluding) those containing 10 to 30 mass% with respect to the thermosetting resin composition.
(2) with respect to the average value Aμm the thickness of the resin layer between layers, a second grain terminal of a material different from the first particles having a volume average particle diameter of Ru 0.5A~Aμm der (thermoset 0.5-5 mass% is contained with respect to this thermosetting resin composition except the thing soluble in a resin composition.

ここで、層間の樹脂層の厚みの平均値および標準偏差(CV)とは、プリプレグを[+45°/0°/−45°/90°]3s構成で、24プライ積層し、オートクレーブにて、昇温速度1.5℃/分で加熱し、当該プリプレグの標準硬化温度(通常180℃)で2時間、0.59MPaの圧力下、硬化させ得られた炭素繊維強化複合材料の断面を研磨した後、研磨した断面を500倍に拡大して検鏡し、+45°/0°の層間の樹脂層の厚みを、0.2mm間隔で、炭素繊維強化複合材料の幅方向に50点読み取り、読み取った値の平均値および標準偏差(CV)をとったものである。   Here, the average value and the standard deviation (CV) of the thickness of the resin layer between the layers are a prepreg of [+ 45 ° / 0 ° / −45 ° / 90 °] 3 s, 24 ply laminated, and in an autoclave, The carbon fiber reinforced composite material obtained by heating at a heating rate of 1.5 ° C./min and curing at a standard curing temperature of the prepreg (usually 180 ° C.) for 2 hours under a pressure of 0.59 MPa was polished. Then, the polished cross section was magnified 500 times and examined, and the thickness of the resin layer between the layers of + 45 ° / 0 ° was read at 50 points in the width direction of the carbon fiber reinforced composite material at intervals of 0.2 mm. The average value and the standard deviation (CV) are taken.

また、ウォーターピックアップ法での含浸性は、強化繊維の方向に対して、0°と90°を2辺として100mm×100mmに切断したプリプレグの質量W1をあらかじめ測定し、当該プリプレグの一辺をプリプレグの繊維方向を鉛直方向に配置し、端部から5mmの範囲(すなわち100mm×5mm)を、水に5分間浸漬し、得られたプリプレグの表面に付着した水分をウェス等でふき取った後の質量W2を求め、(W2−W1)から求められる水分増加量をW1で除して百分率で表した値である。   Further, the impregnation property by the water pickup method is to measure in advance the mass W1 of the prepreg cut into 100 mm × 100 mm with two sides of 0 ° and 90 ° with respect to the direction of the reinforcing fiber, and one side of the prepreg is Mass W2 after the fiber direction is arranged in the vertical direction, a range of 5 mm from the end (ie, 100 mm × 5 mm) is immersed in water for 5 minutes, and the water adhering to the surface of the obtained prepreg is wiped off with a waste cloth or the like. The amount of water increase obtained from (W2-W1) is divided by W1 and expressed as a percentage.

なお、標準偏差(CV)が小さいほど、良好な界面が形成されており、層間の厚みが均一であることを意味する。高い含浸性を得ようとすると、含浸時に炭素繊維の配列が乱れやすくなるため、炭素繊維強化複合材料とした時に、良好な界面が形成されず、層間の樹脂層の厚みの標準偏差(CV)が大きくなる傾向がある。   In addition, the smaller the standard deviation (CV), the better the interface is formed, which means that the thickness between the layers is uniform. When trying to obtain a high impregnation property, the alignment of the carbon fibers tends to be disturbed during the impregnation, so that when the carbon fiber reinforced composite material is formed, a good interface is not formed, and the standard deviation (CV) of the thickness of the resin layer between the layers Tend to be larger.

また、上記プリプレグを複数枚積層した後、加熱硬化して、ボイド率が1.0%以下である炭素繊維強化複合材料が提供される。   Moreover, after laminating | stacking several said prepreg, it heat-hardens and the carbon fiber reinforced composite material whose void ratio is 1.0% or less is provided.

本発明によれば、優れた耐衝撃性、層間靭性、層間剪断強度を兼ね備えたボイドの少ない炭素繊維強化複合材料を製造するために必要なプリプレグの製造方法、特に1段含浸法に好適なプリプレグの製造方法を提供でき、含浸性と界面の形状がともに良好なプリプレグが得られる。   According to the present invention, a method for producing a prepreg necessary for producing a carbon fiber reinforced composite material having excellent impact resistance, interlaminar toughness, and interlaminar shear strength and having few voids, particularly a prepreg suitable for a one-stage impregnation method. Thus, a prepreg having both good impregnation properties and interface shapes can be obtained.

プリプレグとは、強化繊維にマトリックス樹脂を含浸した成形中間基材であり、本発明においては、強化繊維として炭素繊維が用いられ、マトリックス樹脂として熱硬化性樹脂が用いられる。一般に、強化繊維にマトリックス樹脂を含浸させる際の含浸性は、含浸させる時間、圧力に比例して高くなり、マトリックス樹脂の粘度に反比例して低くなるダルシー則として知られている。本発明では、上記課題を解決するために、含浸性と良好な界面を両方維持するために必要なプリプレグの製造方法を鋭意検討した結果、熱硬化性樹脂の粘度および熱硬化性樹脂に配合する粒子等の粒径や配合量が、層間の樹脂層の厚みの維持と、良好な界面の形成に大きく寄与していることに想到し、本発明に到ったものである。   A prepreg is a molded intermediate base material in which a reinforcing fiber is impregnated with a matrix resin. In the present invention, carbon fiber is used as the reinforcing fiber, and a thermosetting resin is used as the matrix resin. In general, the impregnation property when impregnating a reinforcing resin with a matrix resin is known as Darcy's law, which increases in proportion to the impregnation time and pressure and decreases in inverse proportion to the viscosity of the matrix resin. In the present invention, in order to solve the above-mentioned problem, as a result of intensive studies on a method for producing a prepreg necessary for maintaining both the impregnation property and a good interface, the viscosity of the thermosetting resin and the thermosetting resin are blended. The inventors have conceived that the particle size and blending amount of particles and the like greatly contribute to the maintenance of the thickness of the resin layer between layers and the formation of a good interface, and thus the present invention has been achieved.

本発明のプリプレグは、樹脂含有率が20〜50質量%であることを必須とする。樹脂含有率を20質量%以上とすることで、熱硬化性樹脂の含浸不良を防ぐことが出来るため、当該プリプレグを炭素繊維強化複合材料とした際に、ボイドの発生を防ぐことが出来る。一方で、樹脂含有率が50質量%以下とすることで、炭素繊維強化複合材料とした際の繊維含有率低下による耐衝撃性、引張強度、圧縮強度の低下を防ぐことが出来る。   The prepreg of the present invention is required to have a resin content of 20 to 50% by mass. By setting the resin content to 20% by mass or more, poor impregnation of the thermosetting resin can be prevented, so that generation of voids can be prevented when the prepreg is made of a carbon fiber reinforced composite material. On the other hand, when the resin content is 50% by mass or less, it is possible to prevent a decrease in impact resistance, tensile strength, and compressive strength due to a decrease in fiber content when a carbon fiber reinforced composite material is obtained.

なお、ここでいうプリプレグの樹脂含有率は、100mm×100mmのプリプレグの質量をあらかじめ計量しておき、当該プリプレグの熱硬化性樹脂を、有機溶剤を用いて溶解除去し、150℃で1時間乾燥して得られた炭素繊維の質量からプリプレグの質量との差を取って求めた熱硬化性樹脂の質量を、プリプレグの質量で除して百分率で表した値である。   The resin content of the prepreg referred to here is that the mass of a 100 mm × 100 mm prepreg is measured in advance, the thermosetting resin of the prepreg is dissolved and removed using an organic solvent, and dried at 150 ° C. for 1 hour. The mass of the thermosetting resin obtained by taking the difference from the mass of the prepreg from the mass of the carbon fiber obtained as described above is divided by the mass of the prepreg and is expressed as a percentage.

優れた耐衝撃性を得るために、本発明のプリプレグは、第1の粒子として熱可塑性樹脂からなる粒子を含有することを必須とし、その配合量は、該熱硬化性樹脂組成物中に10〜30質量%である。熱可塑性樹脂からなる粒子が10質量%以上とすることで、十分な耐衝撃性が得られる。また30質量%以下とすることで、炭素繊維強化複合材料とした際の耐衝撃性や層間剪断強度の低下を防ぐことが出来る。   In order to obtain excellent impact resistance, the prepreg of the present invention must contain particles made of a thermoplastic resin as the first particles, and the blending amount thereof is 10% in the thermosetting resin composition. -30 mass%. Sufficient impact resistance can be obtained by setting the particles made of the thermoplastic resin to 10% by mass or more. Moreover, by setting it as 30 mass% or less, the fall of impact resistance at the time of setting it as a carbon fiber reinforced composite material and interlayer shear strength can be prevented.

また、当該熱可塑性樹脂からなる第1の粒子は、層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下であることを必須とする。第1の粒子は、上記の通り、熱硬化性樹脂組成物に対する配合量が10〜30質量%と後述の第2の粒子の配合量に比べて多いため、0.5Aμm以下とすることで、熱硬化性樹脂組成物を炭素繊維に含浸する際、炭素繊維層内に熱可塑性樹脂からなる粒子等の一部が入り込むことによる界面の乱れを防ぎ、炭素繊維強化複合材料とした際の層間靭性や層間剪断強度を高く保つことが出来る。   In addition, it is essential that the first particles made of the thermoplastic resin have a volume average particle diameter of 0.5 Aμm or less with respect to the average value Aμm of the resin layer thickness between the layers. As described above, the first particles have a blending amount of 10 to 30% by mass with respect to the thermosetting resin composition as compared with the blending amount of the second particles described later, and therefore, the first particle is 0.5 A μm or less. When impregnating carbon fiber with a thermosetting resin composition, interfacial toughness is prevented when a carbon fiber reinforced composite material is formed by preventing disturbance of the interface caused by part of particles such as thermoplastic resin entering the carbon fiber layer. And the interlaminar shear strength can be kept high.

なお、ここで言う熱可塑性樹脂からなる粒子の体積平均粒径は、市販の界面活性剤を添加した水溶液等に熱可塑性樹脂からなる粒子を分散させ、レーザ回折/散乱式粒度分布測定装置(例えばLA−920:HORIBA製など)を用いて測定を行うことで得られた粒度の積算頻度が50%となるときの粒径を読み取って求められるものである。   The volume average particle size of the particles made of the thermoplastic resin referred to here is a laser diffraction / scattering type particle size distribution measuring device (for example, a particle size distribution measuring device (for example, LA-920: manufactured by HORIBA, etc.) is obtained by reading the particle size when the cumulative frequency of the particle size obtained by measurement is 50%.

また、本発明のプリプレグに用いる第2の粒子は、層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5A〜Aμmであることを必須とする。   The second particles used in the prepreg of the present invention are required to have a volume average particle size of 0.5 A to A μm with respect to the average value A μm of the interlayer resin layers.

炭素繊維強化複合材料の層間の樹脂層の厚みに対して、適した大きさの粒子を配合することで、層間の樹脂層の厚みを保持することが可能となり、剪断エネルギー吸収量が高くなり、層間靭性が高くなる。また層間の粒子密度が相対的に小さくなり層間樹脂の剪断降伏応力が向上するため、層間剪断強度も高くなる。   By blending particles of an appropriate size with respect to the thickness of the resin layer between the layers of the carbon fiber reinforced composite material, it becomes possible to maintain the thickness of the resin layer between the layers, and the amount of shear energy absorption is increased. Interlayer toughness is increased. In addition, since the particle density between layers is relatively reduced and the shear yield stress of the interlayer resin is improved, the interlayer shear strength is also increased.

第2の粒子の体積平均粒径を0.5Aμm以上とすることで、層間の樹脂層の厚みを充分に保持出来るため、良好な層間靭性、層間剪断強度を得ることが出来る。また、体積平均粒径をAμm以下とすることで、フィルミング工程にて、粒子がコーターでのクリアランス間に引っかかり発生する、粒子のフィルミング工程の通過性の悪化や樹脂フィルム品位の悪化を防ぐことが出来るとともに、プリプレグ工程において粒子が炭素繊維層に入り込み界面が乱れを防ぎ、炭素繊維強化複合材料とした際の層間靭性や層間剪断強度を高く保つことが出来る。層間の樹脂層の厚みを充分に保持するためには、樹脂層の厚みの平均値Aμmに対して、第2の粒子の体積平均粒径を0.7A〜Aμmにすることが好ましく、炭素繊維強化複合材料とした際に、より良好な層間靭性、層間剪断強度を得ることが出来る。   By setting the volume average particle size of the second particles to 0.5 Aμm or more, the thickness of the resin layer between the layers can be sufficiently maintained, so that good interlayer toughness and interlayer shear strength can be obtained. In addition, by setting the volume average particle size to A μm or less, in the filming process, the particles are caught between the clearances in the coater, thereby preventing the deterioration of the passage of the particles in the filming process and the deterioration of the resin film quality. In addition, the interfacial toughness and interlaminar shear strength can be kept high when the carbon fiber reinforced composite material is obtained by preventing the particles from entering the carbon fiber layer and preventing the interface from being disturbed in the prepreg process. In order to sufficiently maintain the thickness of the resin layer between the layers, the volume average particle diameter of the second particles is preferably 0.7 A to A μm with respect to the average value A μm of the resin layer, When a reinforced composite material is used, better interlayer toughness and interlayer shear strength can be obtained.

なお、ここでいう第2の粒子の体積平均粒径は、市販の界面活性剤を添加した水溶液等に粒子を分散させ、レーザ回折/散乱式粒度分布測定装置(例えばLA−920:HORIBA製など)を用いて測定を行うことで得られた粒度の積算頻度が50%となるときの粒径を読み取って求められるものである。   The volume average particle size of the second particles mentioned here is determined by dispersing the particles in an aqueous solution or the like to which a commercially available surfactant is added, and using a laser diffraction / scattering type particle size distribution analyzer (for example, LA-920: manufactured by HORIBA, etc. ) To obtain the particle size when the cumulative frequency of the particle size obtained by measuring is 50%.

また、本発明で用いる第2の粒子は、該熱硬化性樹脂組成物中に0.5〜5質量%含まれていることを必須とする。0.5質量%以上とすることで、層間の樹脂層の厚みを充分に保持出来るため、炭素繊維強化複合材料とした際に、良好な層間靭性、層間剪断強度を得ることが出来る。一方で、5質量%以下とすることで、粒子を含む熱硬化性樹脂組成物を炭素繊維に含浸する際、炭素繊維層内に粒子の一部が入り込むことによる界面の乱れを防ぎ、炭素繊維強化複合材料とした際の層間靭性や層間剪断強度を高く保つことが出来る。また、粒子を熱硬化性樹脂組成物に配合しすぎると、耐衝撃性が悪化する懸念があるが、5質量%以下であれば、炭素繊維強化複合材料とした際の耐衝撃性が悪化することを防ぐことが出来る。   Moreover, it is essential that the second particles used in the present invention are contained in the thermosetting resin composition in an amount of 0.5 to 5% by mass. By setting the content to 0.5% by mass or more, the thickness of the resin layer between the layers can be sufficiently maintained. Therefore, when the carbon fiber reinforced composite material is used, good interlayer toughness and interlayer shear strength can be obtained. On the other hand, when the carbon fiber is impregnated with the thermosetting resin composition containing the particles, the disorder of the interface due to part of the particles entering the carbon fiber layer is prevented by setting the amount to 5% by mass or less. Interlayer toughness and interlaminar shear strength can be kept high when a reinforced composite material is used. Further, if the particles are added too much to the thermosetting resin composition, there is a concern that the impact resistance is deteriorated, but if it is 5% by mass or less, the impact resistance when the carbon fiber reinforced composite material is obtained deteriorates. Can be prevented.

また、界面と含浸性がともに良好なプリプレグを得るためには、熱硬化性樹脂組成物を炭素繊維に含浸させる際の粘度を適切に制御する必要がある。   In addition, in order to obtain a prepreg having both good interface and impregnation properties, it is necessary to appropriately control the viscosity when carbon fiber is impregnated with the thermosetting resin composition.

すなわち、本発明の製造方法で得られるプリプレグは、熱硬化性樹脂組成物の粘度が0.1〜100Pa・sとなるような条件の下で炭素繊維に含浸して製造される。   That is, the prepreg obtained by the production method of the present invention is produced by impregnating carbon fibers under conditions such that the viscosity of the thermosetting resin composition is 0.1 to 100 Pa · s.

熱硬化性樹脂組成物を含浸させる際、粘度を下げすぎると、炭素繊維が熱硬化性樹脂組成物によって流動し、界面が乱れるため、炭素繊維強化複合材料とした際に、層間靭性や層間剪断強度が低下する。ところが、粘度を0.1Pa・s以上とすることでこれを防ぐことが出来る。一方で、100Pa・s以下となるように炭素繊維に含浸させることで、含浸性の低下を防ぐことができるため、炭素繊維強化複合材料とした際にボイドの発生を抑制することが出来る。界面と含浸性がともに良好なプリプレグを得るためには、1〜10Pa・sであることが好ましい。   When impregnating the thermosetting resin composition, if the viscosity is too low, the carbon fibers will flow due to the thermosetting resin composition and the interface will be disturbed. The strength decreases. However, this can be prevented by setting the viscosity to 0.1 Pa · s or more. On the other hand, by impregnating the carbon fiber so as to be 100 Pa · s or less, it is possible to prevent the impregnation from being deteriorated. Therefore, when the carbon fiber reinforced composite material is used, generation of voids can be suppressed. In order to obtain a prepreg having good interface and impregnation properties, it is preferably 1 to 10 Pa · s.

なお、ここで言う熱硬化性樹脂組成物の粘度は、炭素繊維に含浸させる際の熱硬化性樹脂組成物の温度(T℃)を、熱電対等を用いてあらかじめ測っておき、熱硬化性樹脂組成物を動的粘弾性測定装置(例えば、レオメーターRDA2:レオメトリックス社製など)を用い、パラレルプレートを用い、50℃より昇温速度2℃/minで単純昇温し、歪み100%、周波数0.5Hz、プレート間隔 1mmで測定を行うことで得られる粘弾性曲線より、T℃での複素粘性率ηを読みとったものをいう。 The viscosity of the thermosetting resin composition referred to here is the temperature (T ° C.) of the thermosetting resin composition when impregnating the carbon fiber in advance using a thermocouple or the like, and the thermosetting resin. Using a dynamic viscoelasticity measuring device (for example, rheometer RDA2: manufactured by Rheometrics, Inc.), the composition was simply heated from 50 ° C. at a heating rate of 2 ° C./min, strain 100%, A complex viscosity η * at T ° C. is read from a viscoelastic curve obtained by measuring at a frequency of 0.5 Hz and a plate interval of 1 mm.

本発明のプリプレグは、ウォーターピックアップ法での含浸性が6.0質量%以下で、かつ樹脂層の厚みの標準偏差(CV)が、0.85Aμm以下のプリプレグである。かかるプリプレグは、上述のプリプレグの製造方法を用いることにより好適に製造される。   The prepreg of the present invention is a prepreg having an impregnation property by water pickup method of 6.0% by mass or less and a standard deviation (CV) of the resin layer thickness of 0.85 Aμm or less. Such a prepreg is preferably manufactured by using the above-described prepreg manufacturing method.

ウォーターピックアップ法での含浸性が6.0質量%以下であれば、プリプレグでの充分な含浸性が得られるため、ボイドの少ない炭素繊維強化複合材料を得ることが出来る。一方で、含浸性を上げようとすると、炭素繊維層内に粒子が入り込み界面が乱されるため、結果として樹脂層の厚みの標準偏差(CV)が大きくなるが、樹脂層の厚みの標準偏差(CV)が0.85Aμm以下であれば、良好な界面が得られるため、炭素繊維強化複合材料とした際に層間靭性や層間剪断強度の低下を防ぐことが出来る。好ましくは、0.60Aμm以下、さらに好ましくは0.40Aμm以下である。   If the impregnation property by the water pickup method is 6.0% by mass or less, sufficient impregnation property with the prepreg can be obtained, so that a carbon fiber reinforced composite material with few voids can be obtained. On the other hand, if the impregnation property is increased, particles enter the carbon fiber layer and the interface is disturbed, resulting in an increase in the standard deviation (CV) of the resin layer thickness, but the standard deviation of the resin layer thickness. If (CV) is 0.85 Aμm or less, a good interface can be obtained. Therefore, when a carbon fiber reinforced composite material is used, it is possible to prevent a decrease in interlayer toughness and interlayer shear strength. Preferably, it is 0.60 Aμm or less, more preferably 0.40 Aμm or less.

本発明のプリプレグに用いる熱硬化性樹脂組成物としては、耐熱性、力学特性および炭素繊維との接着性のバランスに優れているエポキシ樹脂が好ましく用いられ、特に、アミン類、フェノール類、炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂を用いることが好ましい。また、これらの熱硬化性樹脂は、加熱により自己硬化するものであっても良いし、硬化剤や硬化促進剤などを配合するものであっても良い。   As the thermosetting resin composition used for the prepreg of the present invention, an epoxy resin excellent in the balance of heat resistance, mechanical properties and adhesion to carbon fiber is preferably used, and in particular, amines, phenols, carbon It is preferable to use an epoxy resin whose precursor is a compound having a carbon double bond. In addition, these thermosetting resins may be self-curing by heating, or may be blended with a curing agent or a curing accelerator.

アミン類を前駆体とするエポキシ樹脂として、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物類、グリシジルアニリン類、キシレンジアミンのグリシジル化合物などが挙げられる。テトラグリシジルジアミノジフェニルメタン類は航空機構造材としての複合材料用樹脂として耐熱性に優れるため好ましい。   Examples of epoxy resins having amines as precursors include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine. Tetraglycidyldiaminodiphenylmethanes are preferable because they are excellent in heat resistance as a composite material resin for aircraft structural materials.

フェノール類を前駆体とするエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂が挙げられる。特に、2官能ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂は、高温側の粘度の低下率が比較的高いため、本発明でより好ましく用いることが出来る。   Examples of epoxy resins having phenols as precursors include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and resorcinol type epoxy resins. In particular, bifunctional bisphenol A type epoxy resins and bisphenol F type epoxy resins can be more preferably used in the present invention because the rate of decrease in viscosity on the high temperature side is relatively high.

炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂としては、多環式エポキシ樹脂等が挙げられる。   Examples of the epoxy resin using a compound having a carbon / carbon double bond as a precursor include polycyclic epoxy resins.

これらのエポキシ樹脂は、単独で用いても良いし、適宜配合して用いてもよい。グリシジルアミン型エポキシ樹脂と2官能グリシジルエーテル型エポキシ樹脂の組み合わせは、耐熱性、耐水性および作業性を併せ持つために特に好ましい。   These epoxy resins may be used singly or may be appropriately mixed and used. A combination of a glycidylamine type epoxy resin and a bifunctional glycidyl ether type epoxy resin is particularly preferable because it has both heat resistance, water resistance and workability.

本発明のプリプレグに用いる熱硬化性樹脂組成物の硬化剤としては、エポキシ基と反応し得る活性基を有する化合物であればこれを用いることができるが、芳香族アミン類、ジシアンジアミド、二塩基酸ジヒドラジドの単体または、混合系を挙げることができる。芳香族アミン類としては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミンなどが挙げられる。   As the curing agent of the thermosetting resin composition used in the prepreg of the present invention, any compound having an active group capable of reacting with an epoxy group can be used, and aromatic amines, dicyandiamide, dibasic acid can be used. Examples of the dihydrazide may be simple or mixed. Examples of aromatic amines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and metaxylenediamine.

これらの硬化剤は、単独で用いても良いし、適宜配合して用いてもよい。芳香族アミン類は、樹脂硬化物に耐熱性を付与することが出来るために特に好ましい。添加量は、エポキシ樹脂のエポキシ基と芳香族アミン類の活性水素の化学量論において対エポキシ0.7〜1.2等量となるように添加することが耐熱性付与の面から好ましい。   These curing agents may be used alone or may be appropriately blended and used. Aromatic amines are particularly preferred because they can impart heat resistance to the cured resin. The addition amount is preferably from the viewpoint of imparting heat resistance, so that the addition amount is 0.7 to 1.2 equivalent to the epoxy in the stoichiometry of the epoxy group of the epoxy resin and the active hydrogen of the aromatic amine.

本発明のプリプレグに用いる熱硬化性樹脂組成物には、ゴム粒子、エポキシ樹脂以外の熱硬化性樹脂、硬化促進剤、難燃剤、シランカップリング剤、マトリックス樹脂に可溶の熱可塑性樹脂を1種または2種以上含有させることが出来る。エポキシ樹脂組成物の粘度制御の面からは可溶性熱可塑性樹脂をより好ましく用いることが出来る。   The thermosetting resin composition used in the prepreg of the present invention contains 1 thermoplastic resin that is soluble in rubber particles, thermosetting resins other than epoxy resins, curing accelerators, flame retardants, silane coupling agents, and matrix resins. Species or two or more can be contained. From the viewpoint of controlling the viscosity of the epoxy resin composition, a soluble thermoplastic resin can be more preferably used.

ゴム粒子としては架橋ゴム粒子、及び架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が挙げられる。   Examples of the rubber particles include cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles.

エポキシ樹脂以外の熱硬化性樹脂としては、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが使用できる。   Examples of thermosetting resins other than epoxy resins include cyanate ester resins, bismaleimide resins, and benzoxazine resins.

可溶性熱可塑性樹脂とは、エポキシ樹脂を配合するときに、通常温度を常温より高く設定して混練処理した際に、エポキシ樹脂に対してマクロ的に均一に混合される熱可塑性樹脂を指し、常温に戻したときに微細な相に分離するもの、均一相を保つものを含み、具体的には、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリエーテルエーテルスルホン、ボリビニルホルマール、ポリメタクリル酸メチルなどが好ましく用いられる。   Soluble thermoplastic resin refers to a thermoplastic resin that is mixed macroscopically and uniformly with epoxy resin when kneading with normal temperature set higher than normal temperature when compounding epoxy resin. Including those that separate into fine phases when they are returned to, and those that maintain a uniform phase, specifically, polyethersulfone, polysulfone, polyimide, polyetherimide, polycarbonate, polyetherethersulfone, poly vinyl formal, poly Methyl methacrylate and the like are preferably used.

本発明のプリプレグに用いる熱硬化性樹脂組成物の必須成分である、熱可塑性樹脂からなる第1の粒子としては、アクリル系粒子やポリアミド系粒子、ポリイミド系粒子、ポリエーテルイミド系粒子が好ましく用いられる。なかでも、優れた靭性のため耐衝撃性を大きく向上できる、ポリアミドは最も好ましい。ポリアミドの中でも、ナイロン12、ナイロン11、ナイロン6、ナイロン6/12共重合体や特開平01−104624号公報の実施例1記載のエポキシ化合物にてセミIPN(高分子相互侵入網目構造)化されたナイロン(セミIPNナイロン)は、熱硬化性樹脂との接着強度が特に良好であることから、落錘衝撃後の炭素繊維強化複合材料の残存圧縮強度が高く、耐衝撃性の向上効果が高いため好ましい。   As the first particles made of a thermoplastic resin, which is an essential component of the thermosetting resin composition used in the prepreg of the present invention, acrylic particles, polyamide particles, polyimide particles, and polyetherimide particles are preferably used. It is done. Of these, polyamide is most preferred because it can greatly improve impact resistance due to excellent toughness. Among polyamides, semi-IPN (polymer interpenetrating network structure) is formed with nylon 12, nylon 11, nylon 6, nylon 6/12 copolymer or an epoxy compound described in Example 1 of JP-A-01-104624. Nylon (semi-IPN nylon) has particularly good adhesive strength with thermosetting resin, so the residual compressive strength of the carbon fiber reinforced composite material after falling weight impact is high, and the effect of improving impact resistance is high. Therefore, it is preferable.

本発明のプリプレグに用いる熱硬化性樹脂組成物の必須成分である第2の粒子は、ゴム粒子、熱可塑性粒子、無機粒子など、任意の粒子を用いることが出来るが、前記の熱可塑性樹脂からなる粒子と同じ材質のものを用いることで、耐衝撃性を高次元で維持出来るため、好ましく用いられる。また、フィルミング工程の通過性の悪化や樹脂フィルム品位の悪化を防ぐことができるため、球状の粒子が好ましく用いられる。   As the second particle, which is an essential component of the thermosetting resin composition used in the prepreg of the present invention, arbitrary particles such as rubber particles, thermoplastic particles, and inorganic particles can be used. By using the same material as the particles, the impact resistance can be maintained at a high level, so that it is preferably used. Moreover, since the deterioration of the permeability of a filming process and the deterioration of the resin film quality can be prevented, spherical particles are preferably used.

第2の粒子の材料としては、金属、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリエチレンジオキシチオフェン、カーボン、シリカ、チタニア、アルミナ、ジルコニア、三酸化タングステン、五酸化バナジウム、チタン酸バリウム、チタン酸カリウムなどが例示される。また、例えば、無機材料の核が導電性物質で被覆されてなる粒子や有機材料の核が導電性物質で被覆されてなる粒子などを用いても良い。   Materials for the second particles include metal, polyacetylene, polyaniline, polypyrrole, polythiophene, polyisothianaphthene, polyethylenedioxythiophene, carbon, silica, titania, alumina, zirconia, tungsten trioxide, vanadium pentoxide, barium titanate And potassium titanate. Further, for example, particles in which the core of an inorganic material is coated with a conductive substance, or particles in which the core of an organic material is coated with a conductive substance may be used.

所定の粒径の第2の粒子を得るために、必要に応じて乾式分級装置(例えば、TTPSセパレーター(ホソカワミクロン(株)製)等を用いて分級を行っても良い。   In order to obtain second particles having a predetermined particle diameter, classification may be performed using a dry classifier (for example, a TTPS separator (manufactured by Hosokawa Micron Corporation)) or the like as necessary.

また、本発明に用いる粒子は、通常の混合操作によって熱硬化性樹脂組成物に分散させることが出来る。   Moreover, the particles used in the present invention can be dispersed in the thermosetting resin composition by a normal mixing operation.

本発明のプリプレグは、シート状に引き揃えた炭素繊維の両面に当て圧力を加えることにより、シリコーン離型紙などの上に均一に塗工した樹脂フィルムの熱硬化性樹脂組成物を含浸させる方法を用いて、得ることが出来る。当該方法は粒子等を含んだ熱硬化性樹脂組成物を炭素繊維に含浸させる際に、樹脂粘度を適切に設定し、圧力等の含浸条件を適切に設定することによって大多数の粒子等は、炭素繊維によって「ろ過」され、炭素繊維層に入り込むことが実質上妨げられるため、プリプレグの表面に選択的に粒子等を配置することが出来るため、好適に用いることが出来る。   The prepreg of the present invention is a method of impregnating a thermosetting resin composition of a resin film uniformly coated on a silicone release paper or the like by applying pressure to both surfaces of carbon fibers aligned in a sheet form. And can be obtained. In this method, when carbon fiber is impregnated with a thermosetting resin composition containing particles and the like, by setting the resin viscosity appropriately and setting the impregnation conditions such as pressure appropriately, the majority of particles and the like are Since it is “filtered” by the carbon fiber and substantially impedes entering the carbon fiber layer, particles and the like can be selectively disposed on the surface of the prepreg, and therefore can be used preferably.

本発明のプリプレグは、それらを複数枚積層した後、オーブン中で加熱成形することで、炭素繊維強化複合材料を得ることが出来る。この際必要に応じて成形体外部を加圧して、内部を脱気、真空化しても良い。具体的に加圧・加熱を付与する方法としては、プレス成形法、オートクレーブ成形法、真空成形法、ラッピングテープ法および内圧成形法等が採用され、特にオートクレーブ成形法が好ましく用いられる。なお、プリプレグの標準硬化温度は、DSC(示差走査熱量測定)を用いて、熱硬化性樹脂組成物15.0mgを昇温速度10℃/分で加熱し、縦軸に熱流、横軸に温度をとった曲線から、熱流の減少が開始する変曲点と増加が終了する変曲点とを結ぶ基準線と、熱流の減少が開始する変曲点の熱流値と熱流の極小値(極小値が複数ある場合は最も低温側の極小値とする)の平均値に位置する曲線の線型近似直線との交点温度(T℃)を読み取り、T±30℃の範囲から決定することが出来る。本発明のプリプレグは、含浸に特に優れており、ボイドの少ない炭素繊維強化複合材料を得ることができる。 The prepreg of the present invention can obtain a carbon fiber reinforced composite material by laminating a plurality of them and then heat-molding them in an oven. At this time, if necessary, the outside of the molded body may be pressurized to deaerate and evacuate the inside. Specifically, a press molding method, an autoclave molding method, a vacuum molding method, a wrapping tape method, an internal pressure molding method, and the like are adopted as a method for applying pressure and heating, and an autoclave molding method is particularly preferably used. The standard curing temperature of the prepreg is 15.0 mg of thermosetting resin composition heated at a heating rate of 10 ° C./min using DSC (differential scanning calorimetry), the vertical axis represents the heat flow, and the horizontal axis represents the temperature. From the curve taken, the reference line connecting the inflection point at which the decrease in heat flow begins and the inflection point at which the increase ends, the heat flow value at the inflection point at which the decrease in heat flow begins, and the minimum value of the heat flow (minimum value) If there is a plurality of values, the temperature is the minimum value on the lowest temperature side) The intersection temperature (T 0 ° C) of the curve located at the average value of the curve is read and can be determined from the range of T 0 ± 30 ° C . The prepreg of the present invention is particularly excellent in impregnation, and a carbon fiber reinforced composite material with few voids can be obtained.

当該炭素繊維強化複合材料のボイド率は1.0%以下であることが好ましい。なお、ボイド率は、炭素繊維強化複合材料の研磨した横断面を倍率100倍に拡大して検鏡し、3mm×3mmを単位面積とする検鏡範囲において、炭素繊維層内のボイドの面積を測定し、これと単位面積との比をとって求められるものである。   The void ratio of the carbon fiber reinforced composite material is preferably 1.0% or less. Note that the void ratio is obtained by enlarging the polished cross section of the carbon fiber reinforced composite material at a magnification of 100 times, and examining the void area in the carbon fiber layer in the microscopic range having a unit area of 3 mm × 3 mm. It is obtained by measuring and taking the ratio of this to the unit area.

本発明で用いられる炭素繊維は、高い剛性を得るために少なくとも260GPaの引張弾性率を有する炭素繊維であることが好ましいが、良好な耐衝撃性を得るためには、440GPa以下の引張弾性率を有する炭素繊維であることが好ましい。かかる観点から、引張弾性率が280〜400GPaの範囲が剛性と耐衝撃性とを高い次元で両立可能なことから特に好ましい。   The carbon fiber used in the present invention is preferably a carbon fiber having a tensile elastic modulus of at least 260 GPa in order to obtain high rigidity, but in order to obtain good impact resistance, a tensile elastic modulus of 440 GPa or less is required. It is preferable that it is the carbon fiber which has. From this point of view, a tensile modulus of 280 to 400 GPa is particularly preferable because both rigidity and impact resistance can be achieved at a high level.

また、耐衝撃性の観点からは耐衝撃性に優れ、高い剛性および機械強度を有する複合材料が得られることから、引張強度が4.4〜6.5GPaであり、引張伸度が1 .7〜2.3%の高強度高伸度炭素繊維であることが好ましい。従って、高い剛性および耐衝撃性を両立する点から、引張弾性率が少なくとも280GPaであり、引張強度が少なくとも4 .4GPaであり 、引張伸度が少なくとも1 .7%であるという特性を兼ね備えた炭素繊維が最も適している。   From the viewpoint of impact resistance, a composite material having excellent impact resistance and high rigidity and mechanical strength can be obtained, so that the tensile strength is 4.4 to 6.5 GPa and the tensile elongation is 1. It is preferably 7 to 2.3% high strength and high elongation carbon fiber. Therefore, from the viewpoint of achieving both high rigidity and impact resistance, the tensile elastic modulus is at least 280 GPa and the tensile strength is at least 4. 4 GPa and a tensile elongation of at least 1. Carbon fiber having the characteristic of 7% is most suitable.

なお、引張弾性率、引張強度および引張伸度は、JIS R7601−1986に記載されるストランド引張試験により測定することができる。   The tensile modulus, tensile strength, and tensile elongation can be measured by a strand tensile test described in JIS R7601-1986.

本発明で得られる炭素繊維強化複合材料は、0°引張強度が2900MPa以上、0°圧縮強度が1400MPa以上、耐衝撃性が260MPa以上、層間靭性(Giic)が2700J/m以上、層間剪断強度が90MPa以上であることが好ましい。 The carbon fiber reinforced composite material obtained by the present invention has a 0 ° tensile strength of 2900 MPa or more, a 0 ° compressive strength of 1400 MPa or more, an impact resistance of 260 MPa or more, an interlayer toughness (Gic) of 2700 J / m 2 or more, and an interlayer shear strength. Is preferably 90 MPa or more.

なお、0°引張強度は、SACMA SRM 4R−94に記載される引張試験により測定することが出来る。また、0°圧縮強度は、SACMA SRM 1R−94に記載される圧縮試験により測定することが出来る。また、耐衝撃性は、SACMA SRM 2R−94に従い、サンプルの中心部に6.7J/mmの落錘衝撃を与えた後の、衝撃後圧縮試験により測定することが出来る。また、層間靭性(Giic)は、JIS K 7086−1993に記載される3点曲げ試験により測定することが出来る。また、層間剪断強度は、SACMA SRM 8R−94に記載される3点曲げ試験により測定することが出来る。   The 0 ° tensile strength can be measured by a tensile test described in SACMA SRM 4R-94. The 0 ° compression strength can be measured by a compression test described in SACMA SRM 1R-94. The impact resistance can be measured by a post-impact compression test after applying a drop weight impact of 6.7 J / mm to the center of the sample according to SACMA SRM 2R-94. Interlaminar toughness (Gic) can be measured by a three-point bending test described in JIS K 7086-1993. The interlaminar shear strength can be measured by a three-point bending test described in SACMA SRM 8R-94.

本発明の炭素繊維強化複合材料は、強度、剛性、耐衝撃性および導電性等に優れていることから航空宇宙用途、一般産業用途等に広く用いられる。より具体的には、航空宇宙用途では、主翼、尾翼、胴体材およびフロアビーム等の航空機一次構造部材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の航空機二次構造部材用途、ロケットモーターケースおよび人工衛星構造材用途等に好ましく用いられる。このような航空宇宙用途の中でも、特に耐衝撃性および耐雷性が必要な航空機一次構造材用途、特に胴体スキン、主翼スキン、および尾翼スキンにおいて、本発明による炭素繊維強化複合材料が特に好ましく用いられる。また、一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車の羽根、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、ICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途および補修補強材料等の土木・建築材料用途等に好ましく用いられる。これらの中でも、自動車外板、船舶外板、鉄道外板、風車の羽根、および、ICトレイやノートパソコンの筐体(ハウジング)において、本発明による炭素繊維強化複合材料が特に好ましく用いられる。   The carbon fiber reinforced composite material of the present invention is widely used in aerospace applications, general industrial applications and the like because it is excellent in strength, rigidity, impact resistance, conductivity and the like. More specifically, in aerospace applications, aircraft primary structural member applications such as main wing, tail wing, fuselage and floor beam, aircraft secondary structural member applications such as flaps, ailerons, cowls, fairings and interior materials, rocket motors, etc. It is preferably used for cases and satellite structure materials. Among such aerospace applications, the carbon fiber reinforced composite material according to the present invention is particularly preferably used in aircraft primary structure applications that require impact resistance and lightning resistance, particularly in fuselage skin, main wing skin, and tail wing skin. . In general industrial applications, structural materials for moving bodies such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcing bars, ICs It is preferably used for computer applications such as trays and notebook computer housings (housing) and civil engineering and building material applications such as repair and reinforcement materials. Among these, the carbon fiber reinforced composite material according to the present invention is particularly preferably used in automobile skins, ship skins, railway skins, windmill blades, and IC trays and notebook PC housings (housings).

以下、実施例により、本発明について、さらに具体的に説明する。各実施例のプリプレグを得るために、下記の原料を用いた。   Hereinafter, the present invention will be described in more detail with reference to examples. In order to obtain the prepreg of each Example, the following raw materials were used.

<熱硬化性樹脂>
・テトラグリシジルジアミノジフェニルメタン、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)
・ビスフェノールA型エポキシ樹脂、“jER(登録商標)”828(三菱化学(株)製)
・ポリエーテルスルホン、“スミカエクセル(登録商標)”PES5003P(住友化学(株)製)
・4,4’−ジアミノジフェニルスルホン(三井化学ファイン(株)製)。
<Thermosetting resin>
Tetraglycidyl diaminodiphenyl methane, “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.)
・ Bisphenol A type epoxy resin, “jER (registered trademark)” 828 (manufactured by Mitsubishi Chemical Corporation)
・ Polyethersulfone, “Sumika Excel (registered trademark)” PES5003P (manufactured by Sumitomo Chemical Co., Ltd.)
-4,4'-diaminodiphenyl sulfone (made by Mitsui Chemicals Fine Co., Ltd.).

<第1の粒子:熱可塑性樹脂粒子>
・下記の製造方法で得られたエポキシ変性ナイロン粒子
透明ポリアミド(商品名“グリルアミド(登録商標)”−TR55、エムザベルケ社製)90質量部、エポキシ樹脂(商品名“エピコート(登録商標)”828、油化シェル(株)社製)7.5質量部および硬化剤(商品名“トーマイド(登録商標)”#296、富士化成工業(株)社製)2.5質量部を、クロロホルム300質量部とメタノール100質量部の混合溶媒中に添加して均一溶液を得た。次に、得られた均一溶液を塗装用のスプレーガンを用いて霧状にして、良く撹拌して3000質量部のn−ヘキサンの液面に向かって吹き付けて溶質を析出させた。析出した固体を濾別し、n−ヘキサンで良く洗浄した後に、100℃の温度で24時間の真空乾燥を行い、真球状のエポキシ変性ナイロン粒子を得た。特記したもの以外は、体積平均粒径が13μmのエポキシ変性ナイロン粒子を用いた。
<First particles: thermoplastic resin particles>
Epoxy-modified nylon particles obtained by the following production method Transparent polyamide (trade name “Grillamide (registered trademark)”-TR55, manufactured by Mzavelke) 90 parts by mass, epoxy resin (trade name “Epicoat (registered trademark)” 828, 7.5 parts by mass of Yuka Shell Co., Ltd.) and 2.5 parts by mass of a curing agent (trade name “Tomide (registered trademark)” # 296, manufactured by Fuji Kasei Kogyo Co., Ltd.), 300 parts by mass of chloroform To a mixed solvent of 100 parts by mass of methanol to obtain a uniform solution. Next, the obtained uniform solution was atomized using a spray gun for coating, well stirred, and sprayed toward the liquid surface of 3000 parts by mass of n-hexane to precipitate a solute. The precipitated solid was separated by filtration and washed well with n-hexane, and then vacuum-dried at a temperature of 100 ° C. for 24 hours to obtain true spherical epoxy-modified nylon particles. Except as otherwise specified, epoxy-modified nylon particles having a volume average particle size of 13 μm were used.

<第2の粒子>
・第1の粒子と同一のエポキシ変性ナイロン粒子
・カーボン粒子“ベルパール(登録商標)”C−2000(エア・ウォーター(株)製)
所定の粒度の粒子を得るために、TTPSセパレーター(ホソカワミクロン(株)製)を用いて乾式分級を行った。
<Second particle>
・ Epoxy-modified nylon particles that are the same as the first particles ・ Carbon particles “Bellpearl (registered trademark)” C-2000 (manufactured by Air Water)
In order to obtain particles of a predetermined particle size, dry classification was performed using a TTPS separator (manufactured by Hosokawa Micron Corporation).

<炭素繊維>
特記以外は、“トレカ(登録商標)”T800SC−24K(繊維数24,000本、引張強度5.9GPa、引張弾性率290GPa、引張伸度2.0%、東レ(株)製)を使用した。
<Carbon fiber>
Unless otherwise specified, “Torayca (registered trademark)” T800SC-24K (24,000 fibers, tensile strength 5.9 GPa, tensile elastic modulus 290 GPa, tensile elongation 2.0%, manufactured by Toray Industries, Inc.) was used. .

次に、各実施例のプリプレグは下記のように製造した。   Next, the prepreg of each Example was manufactured as follows.

<樹脂フィルム>
表1に記載した熱硬化性樹脂組成物の原料をニーダーで混練後、混練して得られた熱硬化性樹脂組成物を、リバースロールコーター方式の樹脂コーティング装置を用いて、シリコーンを塗布した離型紙上に均一に塗工して、幅1mの樹脂フィルムとした。
<Resin film>
The thermosetting resin composition described in Table 1 was kneaded with a kneader and then kneaded, and the thermosetting resin composition obtained by kneading was applied with a reverse roll coater type resin coating apparatus. It was uniformly coated on the pattern paper to obtain a resin film having a width of 1 m.

<プリプレグ>
均一に引き揃えた炭素繊維の両面から得られた樹脂フィルムを挟み込み、プレスロールを用いて加熱、加圧して、炭素繊維に熱硬化性樹脂組成物が含浸したプリプレグを得た。含浸時の熱硬化性樹脂の粘度を調整するため、含浸温度の調整を行った。
<Prepreg>
The resin film obtained from both surfaces of the uniformly aligned carbon fiber was sandwiched and heated and pressurized using a press roll to obtain a prepreg in which the carbon fiber was impregnated with the thermosetting resin composition. In order to adjust the viscosity of the thermosetting resin during the impregnation, the impregnation temperature was adjusted.

なお、本実施例で、プリプレグの樹脂含有率、含浸時の熱硬化性樹脂組成物の粘度、導電性粒子の体積平均径、ウォーターピックアップ法での含浸性、樹脂層の厚みの平均値と標準偏差、炭素繊維強化複合材料のボイド率および炭素繊維強化複合材料の耐衝撃性、層間靭性(Giic)、層間剪断強度は、明細書中に記載した方法と同様の方法により求めた。   In this example, the resin content of the prepreg, the viscosity of the thermosetting resin composition at the time of impregnation, the volume average diameter of the conductive particles, the impregnation property by the water pickup method, and the average value and standard of the thickness of the resin layer The deviation, the void ratio of the carbon fiber reinforced composite material, the impact resistance, the interlaminar toughness (Gic), and the interlaminar shear strength of the carbon fiber reinforced composite material were determined by the same methods as described in the specification.

(実施例1)
熱硬化性樹脂組成物として、ELM434を50質量%、“jER(登録商標)”828を10質量%、4,4’−DDSを19質量%、PES5003Pを5質量%、第1の粒子としてエポキシ変性ナイロン粒子を15質量%、第2の粒子としてエポキシ変性ナイロン粒子を1.0質量%用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
Example 1
As thermosetting resin composition, ELM434 is 50% by mass, “jER (registered trademark)” 828 is 10% by mass, 4,4′-DDS is 19% by mass, PES5003P is 5% by mass, and epoxy is used as the first particle. 15% by mass of modified nylon particles and 1.0% by mass of epoxy-modified nylon particles were used as the second particles. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は2Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 2 Pa · s.

作製したプリプレグのウォーターピックアップは3.4質量%、樹脂層の厚みの平均値Aは44μm、樹脂層の厚みの標準偏差(CV)は0.36Aμmと、含浸性、脂層の厚み、界面はいずれも良好であった。   The water pickup of the prepared prepreg was 3.4% by mass, the average value A of the resin layer thickness was 44 μm, the standard deviation (CV) of the resin layer thickness was 0.36 Aμm, the impregnation property, the thickness of the oil layer, and the interface Both were good.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。耐衝撃性は318MPa、層間靭性は3180J/m、層間剪断強度は107MPaといずれも良好であった。なお、本実施例における炭素繊維強化複合材料の0°引張強度は3200MPa、0°引張弾性率は157GPa、0°圧縮強度は1700MPaであった。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. The impact resistance was 318 MPa, the interlayer toughness was 3180 J / m 2 , and the interlayer shear strength was 107 MPa. The carbon fiber reinforced composite material in this example had a 0 ° tensile strength of 3200 MPa, a 0 ° tensile elastic modulus of 157 GPa, and a 0 ° compressive strength of 1700 MPa.

(実施例2)
第2の粒子をC−2000に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Example 2)
Except having changed the 2nd particle into C-2000, the raw material similar to Example 1 was used for the thermosetting resin composition by the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は2Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 2 Pa · s.

作製したプリプレグのウォーターピックアップは3.6質量%、樹脂層の厚みの平均値Aは45μm、樹脂層の厚みの標準偏差(CV)は0.37Aμmと、含浸性、脂層の厚み、界面はいずれも良好であった。   The water pickup of the prepared prepreg was 3.6% by mass, the average value A of the resin layer thickness was 45 μm, the standard deviation (CV) of the resin layer thickness was 0.37 Aμm, the impregnation property, the thickness of the oil layer, and the interface Both were good.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。耐衝撃性は320MPa、層間靭性は3150J/m、層間剪断強度は105MPaといずれも良好であった。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. The impact resistance was 320 MPa, the interlayer toughness was 3150 J / m 2 , and the interlayer shear strength was 105 MPa.

(実施例3)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Example 3)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が20質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は4Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 20% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 4 Pa · s.

作製したプリプレグのウォーターピックアップは5.6質量%、樹脂層の厚みの平均値Aは37μm、樹脂層の厚みの標準偏差(CV)は0.76Aμmと、樹脂含有率が下がったため、含浸性、樹脂層の厚みの平均値は若干悪化し、含浸の際に粒子の一部が炭素繊維層内に入り込み、界面も若干悪化したものの、良好と言えるレベルであった。   The water pickup of the prepared prepreg was 5.6% by mass, the average value A of the resin layer thickness was 37 μm, and the standard deviation (CV) of the resin layer thickness was 0.76 Aμm. The average value of the thickness of the resin layer was slightly deteriorated, and at the time of impregnation, a part of the particles entered the carbon fiber layer and the interface was slightly deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.8%と悪化したものの、良好と言えるレベルであった。耐衝撃性は325MPaと良好であった。樹脂層の厚みの平均値および界面が若干悪化した影響で、層間靭性は2710J/m、層間剪断強度は93MPaといずれも若干悪化した。 Although the void ratio of the carbon fiber reinforced composite material produced by the above-described method using the prepreg deteriorated to 0.8%, it was a level that could be said to be good. The impact resistance was as good as 325 MPa. Due to the effect that the average thickness of the resin layer and the interface were slightly deteriorated, the interlaminar toughness was 2710 J / m 2 and the interlaminar shear strength was slightly deteriorated to 93 MPa.

(実施例4)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
Example 4
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が50質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は0.7Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 50% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during the impregnation was 0.7 Pa · s.

作製したプリプレグのウォーターピックアップは2.6質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは42μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.68Aμmと、含浸時の熱硬化性樹脂の粘度が低く、炭素繊維が熱硬化性樹脂組成物により流動したため、界面が若干悪化したものの、良好と言えるレベルであった。   The water pick-up of the prepared prepreg was 2.6% by mass, and the impregnation property was good. The average value A of the resin layer thickness was good at 42 μm, but the standard deviation (CV) of the resin layer thickness was 0.68 Aμm, the viscosity of the thermosetting resin at the time of impregnation was low, and the carbon fiber was thermoset. Although the interface was slightly deteriorated due to fluidization by the functional resin composition, it was a level that could be said to be good.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。樹脂含有率が高く、炭素繊維強化複合材料の繊維含有率が低下したため、耐衝撃性は270MPa、界面が若干悪化した影響で、層間靭性は2810J/m、層間剪断強度は97MPaといずれも若干悪化した。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. Since the resin content is high and the fiber content of the carbon fiber reinforced composite material is reduced, the impact resistance is 270 MPa, the interface is slightly deteriorated, the interlayer toughness is 2810 J / m 2 , and the interlayer shear strength is 97 MPa. It got worse.

(実施例5)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が19μmのものを用いた。
(Example 5)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. As the second particles, those having a volume average particle diameter of 19 μm were used.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は3Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during impregnation was 3 Pa · s.

作製したプリプレグのウォーターピックアップは2.8質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは33μmと、粒子が小さいため厚みが保持できなくなり、若干悪化したが、良好といえるレベルであった。樹脂層の厚みの標準偏差(CV)は0.39Aμmと良好であった。   The water pick-up of the produced prepreg was 2.8% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was 33 μm, and since the particles were small, the thickness could not be maintained and was slightly deteriorated, but it was a satisfactory level. The standard deviation (CV) of the resin layer thickness was as good as 0.39 Aμm.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は304MPaといずれも良好であった。樹脂層の厚みが若干悪化した影響で、層間靭性は2880J/m、層間剪断強度は95MPaといずれも若干悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 304 MPa. Due to the effect that the thickness of the resin layer was slightly deteriorated, the interlayer toughness was 2880 J / m 2 and the interlayer shear strength was 95 MPa, both of which were slightly deteriorated.

(実施例6)
ELM434を52質量%、PES5003Pを3質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Example 6)
Except for changing ELM434 to 52 mass% and PES5003P to 3 mass%, the same raw materials as in Example 1 were used in the thermosetting resin composition at the same blending ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は0.1Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during the impregnation was 0.1 Pa · s.

作製したプリプレグのウォーターピックアップは2.5質量%と、含浸性は良好であった。樹脂層の厚みの標準偏差(CV)は0.82Aμmと、含浸時の熱硬化性樹脂の粘度が低く、炭素繊維が熱硬化性樹脂組成物により流動したため、界面が悪化したものの、良好と言えるレベルであった。樹脂層の厚みの平均値Aは49μmと良好であったが、炭素繊維が熱硬化性樹脂組成物により流動し、界面が悪化した影響で見かけ上良好な値が得られた。   The water pick-up of the prepared prepreg was 2.5% by mass, and the impregnation property was good. The standard deviation (CV) of the thickness of the resin layer is 0.82 Aμm, which is good although the viscosity of the thermosetting resin at the time of impregnation is low and the carbon fibers have flowed by the thermosetting resin composition, the interface deteriorates. It was a level. The average value A of the thickness of the resin layer was as good as 49 μm, but an apparently good value was obtained due to the effect that the carbon fibers flowed by the thermosetting resin composition and the interface deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は297MPaといずれも良好であった。界面が若干悪化した影響で、層間靭性は2740J/m、層間剪断強度は94MPaといずれも若干悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 297 MPa. Due to the slight deterioration of the interface, the interlaminar toughness was 2740 J / m 2 and the interlaminar shear strength was 94 MPa.

(実施例7)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Example 7)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は91Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during the impregnation was 91 Pa · s.

作製したプリプレグのウォーターピックアップは5.8質量%と、含浸時の熱硬化性樹脂の粘度が高く、含浸性が悪化したものの、良好と言えるレベルであった。樹脂層の厚みの平均値Aは46μm、樹脂層の厚みの標準偏差(CV)は0.33Aμmと、良好であった。   The water pickup of the prepared prepreg was 5.8% by mass, and the thermosetting resin at the time of impregnation had a high viscosity, and although the impregnation property was deteriorated, it was a satisfactory level. The average value A of the resin layer thickness was 46 μm, and the standard deviation (CV) of the resin layer thickness was as good as 0.33 Aμm.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.9%と悪化したものの、良好といえるレベルであった。耐衝撃性は312MPa、層間靭性は3150J/m、層間剪断強度は105MPaといずれも良好であった。 Although the void ratio of the carbon fiber reinforced composite material produced by the above-described method using the prepreg deteriorated to 0.9%, it was a satisfactory level. The impact resistance was 312 MPa, the interlayer toughness was 3150 J / m 2 , and the interlayer shear strength was 105 MPa.

(実施例8)
ELM434を50.5質量%、第2の粒子としてエポキシ変性ナイロン粒子を0.5質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Example 8)
Except that ELM434 was changed to 50.5% by mass and the epoxy-modified nylon particles as the second particles were changed to 0.5% by mass, the same raw materials as in Example 1 were used for the thermosetting resin composition at the same mixing ratio. It was. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は1Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 1 Pa · s.

作製したプリプレグのウォーターピックアップは3.8質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは37μmと、第2の粒子の配合量が少ないため厚みが保持できなくなり、若干悪化したが、良好といえるレベルであった。樹脂層の厚みの標準偏差(CV)は0.38Aμmと良好であった。   The water pick-up of the produced prepreg was 3.8% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was 37 μm, and since the blending amount of the second particles was small, the thickness could not be maintained and was slightly deteriorated, but it was a satisfactory level. The standard deviation (CV) of the thickness of the resin layer was as good as 0.38 Aμm.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は306MPaといずれも良好であった。樹脂層の厚みが若干悪化した影響で、層間靭性は2920J/m、層間剪断強度は99MPaといずれも若干悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 306 MPa. Due to the effect that the thickness of the resin layer was slightly deteriorated, the interlayer toughness was 2920 J / m 2 and the interlayer shear strength was slightly deteriorated to 99 MPa.

(実施例9)
ELM434を48.5質量%、“jER(登録商標)”828を9質量%、4,4’−DDSを18質量%、第2の粒子としてエポキシ変性ナイロン粒子を4.5質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
Example 9
ELM434 was changed to 48.5% by mass, “jER®” 828 was changed to 9% by mass, 4,4′-DDS was changed to 18% by mass, and the epoxy-modified nylon particles as the second particles were changed to 4.5% by mass. Except for the above, the same raw materials as in Example 1 were used in the thermosetting resin composition at the same mixing ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は5Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 5 Pa · s.

作製したプリプレグのウォーターピックアップは4.0質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは47μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.74Aμmと、第2の粒子の配合量が多いため、含浸の際に粒子の一部が炭素繊維層内に入り込み、界面が若干悪化したものの、良好と言えるレベルであった。   The water pick-up of the prepared prepreg was 4.0% by mass, and the impregnation property was good. The average value A of the resin layer thickness was 47 μm, but the standard deviation (CV) of the resin layer thickness was 0.74 Aμm, which is a large amount of the second particles. A part of it entered the carbon fiber layer and the interface was slightly deteriorated, but it was a level that could be said to be good.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.2%、耐衝撃性は295MPaといずれも良好であった。界面が若干悪化した影響で、層間靭性は2780J/m、層間剪断強度は98MPaといずれも若干悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.2% and an impact resistance of 295 MPa. Due to the slight deterioration of the interface, the interlayer toughness was 2780 J / m 2 and the interlayer shear strength was 98 MPa.

(実施例10)
プリプレグに用いる炭素繊維として“トレカ(登録商標)”T300−12K(繊維数12,000本、引張強度3.5GPa、引張弾性率230GPa、引張伸度1.5%、東レ(株)製)を使用した。本実施例における炭素繊維強化複合材料の0°引張強度は1700MPa、0°引張弾性率は135GPa、0°圧縮強度は1600MPaであった。
(Example 10)
As a carbon fiber used for the prepreg, “Torayca (registered trademark)” T300-12K (12,000 fibers, tensile strength 3.5 GPa, tensile elastic modulus 230 GPa, tensile elongation 1.5%, manufactured by Toray Industries, Inc.) used. The carbon fiber reinforced composite material in this example had a 0 ° tensile strength of 1700 MPa, a 0 ° tensile elastic modulus of 135 GPa, and a 0 ° compressive strength of 1600 MPa.

実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。   The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は2Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 2 Pa · s.

作製したプリプレグのウォーターピックアップは3.6質量%、樹脂層の厚みの平均値Aは43μm、樹脂層の厚みの標準偏差(CV)は0.37Aμmと、含浸性、脂層の厚み、界面はいずれも良好であった。   The water pickup of the prepared prepreg was 3.6% by mass, the average value A of the resin layer thickness was 43 μm, the standard deviation (CV) of the resin layer thickness was 0.37 Aμm, the impregnation property, the thickness of the oil layer, and the interface Both were good.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。耐衝撃性は267MPaと若干悪化したものの、良好といえるレベルであった。層間靭性は3080J/m、層間剪断強度は102MPaといずれも良好であった。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. Although the impact resistance was slightly deteriorated to 267 MPa, it was a level that could be said to be good. The interlayer toughness was 3080 J / m 2 and the interlayer shear strength was 102 MPa, both of which were good.

Figure 0006210007
Figure 0006210007

(比較例1)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が13μmのものを用いた。
(Comparative Example 1)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. As the second particles, those having a volume average particle diameter of 13 μm were used.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が18質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は3Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 18% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during impregnation was 3 Pa · s.

作製したプリプレグのウォーターピックアップは6.8質量%と、樹脂層の厚みの平均値Aは32μm、樹脂層の厚みの標準偏差(CV)は0.91Aμmと、樹脂含有率が下がったため、含浸性、樹脂層の厚みの平均値が極端に悪化した。また、含浸の際に粒子の一部が炭素繊維層内に入り込み、界面も極端に悪化した。   The water pick-up of the prepared prepreg was 6.8% by mass, the average value A of the resin layer thickness was 32 μm, and the standard deviation (CV) of the resin layer thickness was 0.91 Aμm. The average value of the resin layer thickness was extremely deteriorated. In addition, some of the particles entered the carbon fiber layer during the impregnation, and the interface was extremely deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は1.4%と極端に悪化した。耐衝撃性は301MPaと良好であった。樹脂層の厚みの平均値および界面が悪化した影響で、層間靭性は2580J/m、層間剪断強度は84MPaといずれも極端に悪化した。 The void ratio of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was extremely deteriorated to 1.4%. The impact resistance was as good as 301 MPa. Due to the deterioration of the average thickness of the resin layer and the interface, the interlaminar toughness was 2580 J / m 2 and the interlaminar shear strength was 84 MPa.

(比較例2)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が13μmのものを用いた。
(Comparative Example 2)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. As the second particles, those having a volume average particle diameter of 13 μm were used.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が52質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は1Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 52% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 1 Pa · s.

作製したプリプレグのウォーターピックアップは2.8質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは51μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.80Aμmと、含浸時の樹脂量が多く、炭素繊維が熱硬化性樹脂組成物により流動したため、界面が若干悪化したものの、良好と言えるレベルであった。   The water pick-up of the produced prepreg was 2.8% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was as good as 51 μm, but the standard deviation (CV) of the thickness of the resin layer was 0.80 Aμm, the amount of resin at the time of impregnation was large, and the carbon fiber was a thermosetting resin composition. Therefore, although the interface was slightly deteriorated, it was a satisfactory level.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。樹脂含有率が多く、炭素繊維強化複合材料の繊維含有率が低下したため、耐衝撃性は257MPaと極端に悪化した。また、界面が若干悪化した影響で、層間靭性は2780J/m、層間剪断強度は94MPaといずれも若干悪化した。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. Since the resin content was high and the fiber content of the carbon fiber reinforced composite material was reduced, the impact resistance was extremely deteriorated to 257 MPa. Also, due to the effect of slightly worsening the interface, the interlaminar toughness was 2780 J / m 2 and the interlaminar shear strength was 94 MPa.

(比較例3)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第1の粒子は体積平均粒径が30μmのものを、第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 3)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The first particles had a volume average particle size of 30 μm, and the second particles had a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は3Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during impregnation was 3 Pa · s.

作製したプリプレグのウォーターピックアップは3.5質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは43μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.88Aμmと、第1の粒子が大きいため、含浸の際に粒子の一部が炭素繊維層内に入り込み、界面が極端に悪化した。   The water pick-up of the prepared prepreg was 3.5% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was as good as 43 μm, but the standard deviation (CV) of the thickness of the resin layer was 0.88 Aμm and the first particles were large. It entered the carbon fiber layer and the interface deteriorated extremely.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は295MPaと良好であったが、界面が極端に悪化した影響で、層間靭性は2580J/m、層間剪断強度は83MPaといずれも極端に悪化した。 Using the prepreg, the void ratio of the carbon fiber reinforced composite material produced by the above-described method was 0.0% and the impact resistance was 295 MPa, but the interface toughness was greatly deteriorated. 2580 J / m 2 , and the interlaminar shear strength was 83 MPa, both of which were extremely deteriorated.

(比較例4)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が15μmのものを用いた。
(Comparative Example 4)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. Second particles having a volume average particle diameter of 15 μm were used.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は2Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 2 Pa · s.

作製したプリプレグのウォーターピックアップは3.4質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは28μmと、第2の粒子が小さいため厚みが保持できなくなり、極端に悪化した。樹脂層の厚みの標準偏差(CV)は0.39Aμmと良好であった。   The water pick-up of the produced prepreg was 3.4% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was 28 μm, and since the second particles were small, the thickness could not be maintained and was extremely deteriorated. The standard deviation (CV) of the resin layer thickness was as good as 0.39 Aμm.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は301MPaといずれも良好であった。樹脂層の厚みが悪化した影響で、層間靭性は2690J/m、層間剪断強度は89MPaといずれも悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 301 MPa. Due to the deterioration of the thickness of the resin layer, the interlaminar toughness was 2690 J / m 2 and the interlaminar shear strength was 89 MPa.

(比較例5)
ELM434を51質量%、“jER(登録商標)”828を12質量%、PES5003Pを2質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 5)
Except that ELM434 was changed to 51% by mass, “jER (registered trademark)” 828 to 12% by mass, and PES5003P to 2% by mass, the same raw materials as in Example 1 were used in the thermosetting resin composition at the same mixing ratio. Using. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は0.06Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 0.06 Pa · s.

作製したプリプレグのウォーターピックアップは2.2質量%と、含浸性は良好であった。樹脂層の厚みの標準偏差(CV)は0.91Aμmと、含浸時の熱硬化性樹脂の粘度が低く、炭素繊維が熱硬化性樹脂組成物により流動したため、界面が極端に悪化した。樹脂層の厚みの平均値Aは59μmであったが、炭素繊維が熱硬化性樹脂組成物により流動し、界面が極端に悪化した影響で見かけ上良好な値が得られた。   The water pickup of the produced prepreg was 2.2% by mass, and the impregnation property was good. The standard deviation (CV) of the resin layer thickness was 0.91 Aμm, and the viscosity of the thermosetting resin at the time of impregnation was low, and the carbon fibers flowed by the thermosetting resin composition, so the interface was extremely deteriorated. Although the average value A of the thickness of the resin layer was 59 μm, an apparently good value was obtained due to the influence of the carbon fibers flowing through the thermosetting resin composition and the interface being extremely deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は295MPaといずれも良好であった。界面が極端に悪化した影響で、層間靭性は2100J/m、層間剪断強度は79MPaといずれも極端に悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 295 MPa. Due to the extremely deteriorated interface, the interlaminar toughness was 2100 J / m 2 and the interlaminar shear strength was 79 MPa, both of which were extremely deteriorated.

(比較例6)
実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 6)
The same raw material as Example 1 was used for the thermosetting resin composition with the same compounding ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は110Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during the impregnation was 110 Pa · s.

作製したプリプレグのウォーターピックアップは6.5質量%と、含浸時の熱硬化性樹脂の粘度が高く、含浸性が極端に悪化した。樹脂層の厚みの平均値Aは48μm、樹脂層の厚みの標準偏差(CV)は0.35Aμmといずれも良好であった。   The water pickup of the prepared prepreg was 6.5% by mass, and the viscosity of the thermosetting resin at the time of impregnation was high, and the impregnation property was extremely deteriorated. The average value A of the resin layer thickness was 48 μm, and the standard deviation (CV) of the resin layer thickness was 0.35 Aμm, both of which were favorable.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は1.3%と、極端に悪化した。耐衝撃性は308MPa、層間靭性は3090J/m、層間剪断強度は102MPaといずれも良好であった。 The void ratio of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was extremely deteriorated to 1.3%. The impact resistance was 308 MPa, the interlayer toughness was 3090 J / m 2 , and the interlayer shear strength was 102 MPa.

(比較例7)
ELM434を50.6質量%、第2の粒子としてエポキシ変性ナイロン粒子を0.3質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 7)
Except that ELM434 was changed to 50.6% by mass and epoxy modified nylon particles as the second particle were changed to 0.3% by mass, the same raw materials as in Example 1 were used for the thermosetting resin composition at the same mixing ratio. It was. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は1Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 1 Pa · s.

作製したプリプレグのウォーターピックアップは3.6質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは32μmと、第2の粒子の配合量が少ないため厚みが保持できなくなり、極端に悪化した。樹脂層の厚みの標準偏差(CV)は0.38Aμmと良好であった。   The water pick-up of the prepared prepreg was 3.6% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was 32 μm, and since the blending amount of the second particles was small, the thickness could not be maintained and was extremely deteriorated. The standard deviation (CV) of the thickness of the resin layer was as good as 0.38 Aμm.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%、耐衝撃性は285MPaといずれも良好であった。樹脂層の厚みが極端に悪化した影響で、層間靭性は2690J/m、層間剪断強度は87MPaといずれも極端に悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.0% and an impact resistance of 285 MPa. Due to the extremely deteriorated thickness of the resin layer, the interlaminar toughness was 2690 J / m 2 and the interlaminar shear strength was 87 MPa.

(比較例8)
ELM434を49質量%、“jER(登録商標)”828を8質量%、4,4’−DDSを17質量%、第2の粒子としてエポキシ変性ナイロン粒子を6.0質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 8)
Other than changing ELM434 to 49% by mass, “jER (registered trademark)” 828 to 8% by mass, 4,4′-DDS to 17% by mass, and epoxy modified nylon particles as the second particles to 6.0% by mass. The same raw materials as in Example 1 were used in the thermosetting resin composition at the same mixing ratio. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は4Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin at the time of impregnation was 4 Pa · s.

作製したプリプレグのウォーターピックアップは4.5質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは51μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.87Aμmと、第2の粒子の配合量が多いため、含浸の際に粒子の一部が炭素繊維層内に入り込み、界面が極端に悪化した。   The water pickup of the produced prepreg was 4.5% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was as good as 51 μm, but the standard deviation (CV) of the thickness of the resin layer was 0.87 Aμm, which is a large amount of the second particles. A part entered the carbon fiber layer, and the interface was extremely deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.3%、耐衝撃性は289MPaといずれも良好であった。界面が極端に悪化した影響で、層間靭性は2540J/m、層間剪断強度は85MPaといずれも極端に悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.3% and an impact resistance of 289 MPa, both of which were good. Due to the extreme deterioration of the interface, the interlaminar toughness was 2540 J / m 2 and the interlaminar shear strength was 85 MPa.

(比較例9)
ELM434を55質量%、“jER(登録商標)”828を12質量%、第1の粒子としてエポキシ変性ナイロン粒子を8質量%に変更した以外は、実施例1と同様の原料を同様の配合比で熱硬化性樹脂組成物に用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 9)
Except for changing ELM434 to 55% by mass, "jER (registered trademark)" 828 to 12% by mass, and using epoxy-modified nylon particles as the first particle to 8% by mass, the same raw material ratio as in Example 1 was used. And used as a thermosetting resin composition. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は3Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during impregnation was 3 Pa · s.

作製したプリプレグのウォーターピックアップは2.6質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは30μmと、エポキシ変性ナイロン粒子の配合量が少なく、極端に悪化した。樹脂層の厚みの標準偏差(CV)は0.43Aμmと、第1の粒子の配合量が少なく、含浸の際に粒子の一部が炭素繊維層内に入り込み易くなり、界面が若干悪化した。   The water pick-up of the prepared prepreg was 2.6% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was 30 μm, and the amount of the epoxy-modified nylon particles was small, which was extremely deteriorated. The standard deviation (CV) of the thickness of the resin layer was 0.43 Aμm, and the blending amount of the first particles was small. Part of the particles easily entered the carbon fiber layer during the impregnation, and the interface slightly deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.0%と良好であった。耐衝撃性は、エポキシ変性ナイロン粒子の配合量が少ないため、245MPaと極端に悪化した。樹脂層の厚みが極端に悪化し、かつ界面が若干悪化した影響で、層間靭性は2610J/m、層間剪断強度は89MPaといずれも極端に悪化した。 The void rate of the carbon fiber reinforced composite material produced by the above-described method using the prepreg was as good as 0.0%. The impact resistance was extremely deteriorated to 245 MPa because the amount of the epoxy-modified nylon particles was small. Due to the extremely deteriorated thickness of the resin layer and the slight deterioration of the interface, the interlayer toughness was 2610 J / m 2 and the interlayer shear strength was extremely deteriorated to 89 MPa.

(比較例10)
熱硬化性樹脂組成物として、ELM434を42質量%、“jER(登録商標)”828を8質量%、4,4’−DDSを15質量%、PES5003Pを2質量%、第1の粒子としてエポキシ変性ナイロン粒子を32質量%、第2の粒子としてエポキシ変性ナイロン粒子を1.0質量%用いた。第2の粒子は体積平均粒径が36μmのものを用いた。
(Comparative Example 10)
As a thermosetting resin composition, ELM434 is 42% by mass, “jER (registered trademark)” 828 is 8% by mass, 4,4′-DDS is 15% by mass, PES5003P is 2% by mass, and epoxy is used as the first particle. 32% by mass of the modified nylon particles and 1.0% by mass of the epoxy-modified nylon particles were used as the second particles. The second particles used have a volume average particle size of 36 μm.

当該熱硬化性樹脂組成物を用いて樹脂フィルム作製し、作製した樹脂フィルムを用いて樹脂含有率が33質量%のプリプレグを作製した。含浸時の熱硬化性樹脂の粘度は9Pa・sとした。   A resin film was produced using the thermosetting resin composition, and a prepreg having a resin content of 33% by mass was produced using the produced resin film. The viscosity of the thermosetting resin during the impregnation was 9 Pa · s.

作製したプリプレグのウォーターピックアップは4.8質量%と、含浸性は良好であった。樹脂層の厚みの平均値Aは45μmと良好であったが、樹脂層の厚みの標準偏差(CV)は0.78Aμmと、第1の粒子の配合量が多いため、含浸の際に第1の粒子が炭素繊維層内に入り込み、界面が若干悪化した。   The water pickup of the produced prepreg was 4.8% by mass, and the impregnation property was good. The average value A of the thickness of the resin layer was as good as 45 μm, but the standard deviation (CV) of the thickness of the resin layer was 0.78 Aμm, which is a large amount of the first particles. The particles entered the carbon fiber layer, and the interface slightly deteriorated.

当該プリプレグを用いて、前述の方法で作製した炭素繊維強化複合材料のボイド率は0.4%、耐衝撃性は288MPaといずれも良好であった。第1の粒子の配合量が多く、界面が若干悪化した影響で、層間靭性は2650J/m、層間剪断強度は84MPaといずれも極端に悪化した。 Using the prepreg, the carbon fiber reinforced composite material produced by the above-described method had a void ratio of 0.4% and an impact resistance of 288 MPa. Due to the large amount of the first particles and slight deterioration of the interface, the interlaminar toughness was 2650 J / m 2 and the interlaminar shear strength was 84 MPa, both of which were extremely deteriorated.

Figure 0006210007
Figure 0006210007

本発明のプリプレグは、優れた耐衝撃性と層間靭性と層間剪断強度とを兼ね備えた炭素繊維強化複合材料を得るために有用であり、航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途等に広く展開でき、有用である。   The prepreg of the present invention is useful for obtaining a carbon fiber reinforced composite material having excellent impact resistance, interlaminar toughness and interlaminar shear strength, and includes aircraft structural members, windmill blades, automobile outer plates and IC trays. It can be widely used for computer applications such as notebook PC housings (housings) and is useful.

Claims (10)

以下の(1)、(2)の構成を有する熱硬化性樹脂組成物を、シート状に引き揃えた炭素繊維の両面から含浸させるプリプレグの製造方法であって、該プリプレグの樹脂含有率が20〜50質量%であり、含浸時の該熱硬化性樹脂組成物の粘度が0.1〜100Pa・sであることを特徴とするプリプレグの製造方法。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、0.5A〜Aμmの体積平均粒径となるよう第1の粒子について乾式分級を行った第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
ここで、層間の樹脂層の厚みの平均値とは、プリプレグを[+45°/0°/−45°/90°]3s構成で、24プライ積層し、オートクレーブにて、昇温速度1.5℃/分で加熱し、当該プリプレグの標準硬化温度(通常180℃)で2時間、0.59MPaの圧力下、硬化させ得られた炭素繊維強化複合材料の断面を研磨した後、研磨した断面を500倍に拡大して検鏡し、+45°/0°の層間の樹脂層の厚みを、0.2mm間隔で、炭素繊維強化複合材料の幅方向に50点読み取り、読み取った値の平均値をとったものである。
A method for producing a prepreg in which a thermosetting resin composition having the following constitutions (1) and (2) is impregnated from both sides of a carbon fiber aligned in a sheet shape, wherein the resin content of the prepreg is 20 A method for producing a prepreg, wherein the thermosetting resin composition has a viscosity of 0.1 to 100 Pa · s when impregnated.
Soluble in respect to the average value Aμm the thickness of the resin layer between (1) layer, a first particle element volume average particle diameter of a thermoplastic resin or less 0.5Eimyuemu (thermosetting resin composition the excluding) those containing 10 to 30 mass% with respect to the thermosetting resin composition.
(2) with respect to the average value Aμm the thickness of the resin layer between layers, the second particle child subjected to dry classification for the first particles so that the volume average particle diameter of 0.5A~eimyu m (heat 0.5-5 mass% is included with respect to this thermosetting resin composition except a thing soluble in a curable resin composition.
Here, the average value of the thickness of the resin layer between the layers means that the prepreg is [+ 45 ° / 0 ° / −45 ° / 90 °] 3 s, 24 plies are laminated, and the temperature rise rate is 1.5 with an autoclave. After heating the cross section of the carbon fiber reinforced composite material obtained by heating at ℃ / min and curing at a standard curing temperature of the prepreg (usually 180 ° C.) for 2 hours under a pressure of 0.59 MPa, the polished cross section Magnification was magnified 500 times, and the thickness of the resin layer between + 45 ° / 0 ° was read at 50 points in the width direction of the carbon fiber reinforced composite material at intervals of 0.2 mm, and the average value of the read values was calculated. It is what I took.
以下の(1)、(2)の構成を有する熱硬化性樹脂組成物を、シート状に引き揃えた炭素繊維の両面から含浸させるプリプレグの製造方法であって、該プリプレグの樹脂含有率が20〜50質量%であり、含浸時の該熱硬化性樹脂組成物の粘度が0.1〜100Pa・sであることを特徴とするプリプレグの製造方法。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、0.5A〜Aμmの体積平均粒径である第1の粒子とは異なる材質の第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
ここで、層間の樹脂層の厚みの平均値とは、プリプレグを[+45°/0°/−45°/90°]3s構成で、24プライ積層し、オートクレーブにて、昇温速度1.5℃/分で加熱し、当該プリプレグの標準硬化温度(通常180℃)で2時間、0.59MPaの圧力下、硬化させ得られた炭素繊維強化複合材料の断面を研磨した後、研磨した断面を500倍に拡大して検鏡し、+45°/0°の層間の樹脂層の厚みを、0.2mm間隔で、炭素繊維強化複合材料の幅方向に50点読み取り、読み取った値の平均値をとったものである。
A method for producing a prepreg in which a thermosetting resin composition having the following constitutions (1) and (2) is impregnated from both sides of a carbon fiber aligned in a sheet shape, wherein the resin content of the prepreg is 20 A method for producing a prepreg, wherein the thermosetting resin composition has a viscosity of 0.1 to 100 Pa · s when impregnated.
Soluble in respect to the average value Aμm the thickness of the resin layer between (1) layer, a first particle element volume average particle diameter of a thermoplastic resin or less 0.5Eimyuemu (thermosetting resin composition the excluding) those containing 10 to 30 mass% with respect to the thermosetting resin composition.
(2) with respect to the average value Aμm the thickness of the resin layer between layers, a second grain terminal of a material different from the first particle Ru volume average particle diameter der of 0.5A~eimyu m (thermosetting 0.5-5% by mass with respect to the thermosetting resin composition ) .
Here, the average value of the thickness of the resin layer between the layers means that the prepreg is [+ 45 ° / 0 ° / −45 ° / 90 °] 3 s, 24 plies are laminated, and the temperature rise rate is 1.5 with an autoclave. After heating the cross section of the carbon fiber reinforced composite material obtained by heating at ℃ / min and curing at a standard curing temperature of the prepreg (usually 180 ° C.) for 2 hours under a pressure of 0.59 MPa, the polished cross section Magnification was magnified 500 times, and the thickness of the resin layer between + 45 ° / 0 ° was read at 50 points in the width direction of the carbon fiber reinforced composite material at intervals of 0.2 mm, and the average value of the read values was calculated. It is what I took.
第2の粒子の体積平均粒径が、0.7A〜Aμmである請求項1または2に記載のプリプレグの製造方法。 The method for producing a prepreg according to claim 1 or 2 , wherein the second particles have a volume average particle size of 0.7 A to A µm. 以下の(1)、(2)の構成を有する熱硬化性樹脂組成物が、シート状に引き揃えられた炭素繊維の両面に含浸されてなるプリプレグであって、該プリプレグの樹脂含有率が20〜50質量%であり、ウォーターピックアップ法での含浸性が6.0質量%以下であり、かつ明細書中で定義する層間の樹脂層の厚みの標準偏差CVμmおよび層間の樹脂層の厚みの平均値Aμmについて、CVが0.85Aμm以下であることを特徴とするプリプレグ。
(1)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5Aμm以下である熱可塑性樹脂からなる第1の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して10〜30質量%含む。
(2)層間の樹脂層の厚みの平均値Aμmに対して、体積平均粒径が0.5A〜Aμmである第1の粒子とは異なる材質の第2の粒子(該熱硬化性樹脂組成物に可溶のものを除く)を該熱硬化性樹脂組成物に対して0.5〜5質量%含む。
ここで、層間の樹脂層の厚みの平均値とは、プリプレグを[+45°/0°/−45°/90°]3s構成で、24プライ積層し、オートクレーブにて、昇温速度1.5℃/分で加熱し、当該プリプレグの標準硬化温度(通常180℃)で2時間、0.59MPaの圧力下、硬化させ得られた炭素繊維強化複合材料の断面を研磨した後、研磨した断面を500倍に拡大して検鏡し、+45°/0°の層間の樹脂層の厚みを、0.2mm間隔で、炭素繊維強化複合材料の幅方向に50点読み取り、読み取った値の平均値をとったものである。
A thermosetting resin composition having the following constitutions (1) and (2) is a prepreg impregnated on both surfaces of carbon fibers arranged in a sheet shape, and the resin content of the prepreg is 20 ˜50 mass%, impregnation by water pickup method is 6.0 mass% or less, and standard deviation CV μm of interlayer resin layer thickness defined in the specification and average of interlayer resin layer thickness A prepreg characterized by having a CV of 0.85 Aμm or less for a value Aμm.
Soluble in respect to the average value Aμm the thickness of the resin layer between (1) layer, a first particle element volume average particle diameter of a thermoplastic resin or less 0.5Eimyuemu (thermosetting resin composition the excluding) those containing 10 to 30 mass% with respect to the thermosetting resin composition.
(2) with respect to the average value Aμm the thickness of the resin layer between layers, a second grain terminal of a material different from the first particles having a volume average particle diameter of Ru 0.5A~Aμm der (thermoset 0.5-5 mass% is contained with respect to this thermosetting resin composition except the thing soluble in a resin composition.
Here, the average value of the thickness of the resin layer between the layers means that the prepreg is [+ 45 ° / 0 ° / −45 ° / 90 °] 3 s, 24 plies are laminated, and the temperature rise rate is 1.5 with an autoclave. After heating the cross section of the carbon fiber reinforced composite material obtained by heating at ℃ / min and curing at a standard curing temperature of the prepreg (usually 180 ° C.) for 2 hours under a pressure of 0.59 MPa, the polished cross section Magnification was magnified 500 times, and the thickness of the resin layer between + 45 ° / 0 ° was read at 50 points in the width direction of the carbon fiber reinforced composite material at intervals of 0.2 mm, and the average value of the read values was calculated. It is what I took.
第2の粒子の体積平均粒径が、0.7A〜Aμmである請求項4に記載のプリプレグ。 The prepreg according to claim 4 , wherein the volume average particle diameter of the second particles is 0.7 A to A μm. CVが0.60Aμm以下である請求項4または5に記載のプリプレグ。 The prepreg according to claim 4 or 5, wherein CV is 0.60 Aµm or less. 求項4〜6のいずれかに記載のプリプレグを複数枚積層し、加熱硬化してなる炭素繊維強化複合材料であって、該炭素繊維強化複合材料のボイド率が1.0%以下であることを特徴とする炭素繊維強化複合材料。 Laminating a plurality of prepregs according to any one of Motomeko 4-6, a-carbon fiber reinforced composite material formed by heat curing, with the void ratio of the carbon fiber-reinforced composite material is 1.0% or less A carbon fiber reinforced composite material characterized by being. SACMA SRM 2R−94により得られる耐衝撃性が260MPa以上である、請求項7に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to claim 7 , wherein the impact resistance obtained by SACMA SRM 2R-94 is 260 MPa or more. JIS K 7086−1993により得られる層間靭性が2700J/m以上である、請求項7または8に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to claim 7 or 8, wherein an interlayer toughness obtained by JIS K 7086-1993 is 2700 J / m 2 or more. SACMA SRM 8R−94により得られる層間剪断強度が90MPa以上である、請求項7〜9のいずれかに記載の炭素繊維強化複合材料。 The carbon fiber-reinforced composite material according to any one of claims 7 to 9 , wherein an interlayer shear strength obtained by SACMA SRM 8R-94 is 90 MPa or more.
JP2014063394A 2014-03-26 2014-03-26 Prepreg, method for producing the same, and carbon fiber reinforced composite material Active JP6210007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063394A JP6210007B2 (en) 2014-03-26 2014-03-26 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063394A JP6210007B2 (en) 2014-03-26 2014-03-26 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2015183164A JP2015183164A (en) 2015-10-22
JP6210007B2 true JP6210007B2 (en) 2017-10-11

Family

ID=54350074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063394A Active JP6210007B2 (en) 2014-03-26 2014-03-26 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6210007B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519492B2 (en) * 2016-01-29 2019-05-29 東レ株式会社 Prepreg and fiber reinforced composite materials
JP2018178089A (en) * 2017-04-03 2018-11-15 東レ株式会社 Cloth prepreg
EP3712202A4 (en) * 2017-11-14 2021-09-08 Toray Industries, Inc. Prepreg and fiber reinforced composite material
JP7332323B2 (en) * 2018-09-28 2023-08-23 株式会社槌屋 fiber reinforced adhesive sheet
US20220315762A1 (en) * 2019-05-23 2022-10-06 Toray Industries, Inc. Prepreg, laminate, and molding
CN112677602B (en) * 2019-10-17 2023-11-24 中国石油化工股份有限公司 Toughening material for prepreg, high-toughness composite material and preparation method thereof
CN115195216B (en) * 2022-07-13 2024-03-26 大连理工大学 Zinc oxide nanowire-loaded electrostatic spinning membrane interlayer reinforced and toughened continuous fiber reinforced resin matrix composite material and preparation method thereof
CN116039173B (en) * 2023-02-26 2023-12-29 西北工业大学 Carbon fiber powder reinforced carbon cloth-polyimide resin composite material and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131837B1 (en) * 1963-11-21 1976-09-09
JPH10166434A (en) * 1996-12-17 1998-06-23 Asahi Chem Ind Co Ltd Composite blow molded product and molding method
JP4969363B2 (en) * 2006-08-07 2012-07-04 東レ株式会社 Prepreg and carbon fiber reinforced composites
JP4890380B2 (en) * 2007-08-07 2012-03-07 トヨタ自動車株式会社 Multi-layer steel plate reinforcement
WO2011122631A1 (en) * 2010-03-30 2011-10-06 東レ株式会社 Prepreg, fiber-reinforced composite material, and method for producing prepreg
CN103429371B (en) * 2011-03-30 2016-04-20 东丽株式会社 The manufacture method of prepreg, fibre reinforced composites and fibre reinforced composites
JP5887963B2 (en) * 2012-01-31 2016-03-16 東レ株式会社 Prepreg and carbon fiber reinforced composites
JP2013173812A (en) * 2012-02-23 2013-09-05 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
US9796850B2 (en) * 2012-04-27 2017-10-24 Toray Industries, Inc. Polyarylene sulfide resin composition, manufacturing method of resin composition and molded product of resin composition
JP5516828B1 (en) * 2012-07-25 2014-06-11 東レ株式会社 Prepreg and carbon fiber reinforced composites

Also Published As

Publication number Publication date
JP2015183164A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6210007B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
RU2702556C2 (en) Composite materials with high specific electric conductivity in z-direction
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
TWI445757B (en) Epoxy resin composition for fiber reinforced composite material
WO2012124450A1 (en) Prepreg, method of manufacturing prepreg, and carbon fiber-reinforced composite material
JP5998935B2 (en) Prepreg and fiber reinforced composites
JP5469086B2 (en) Thermosetting resin composition and prepreg using the same
KR101741387B1 (en) Prepreg and fiber reinforced composite material
JP2011162619A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
EP1756206A2 (en) Self-adhesive prepreg
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
EP3341194B1 (en) Composite material and resin composition containing metastable particles
CN107108930B (en) Prepreg
JP6519492B2 (en) Prepreg and fiber reinforced composite materials
WO2018003694A1 (en) Prepreg and production method therefor
JP2019038939A (en) Prepreg and fiber-reinforced composite material
CN111295414A (en) Prepreg and fiber-reinforced composite material
JP2012211310A (en) Carbon fiber-reinforced composite material, prepreg, and method of manufacturing carbon fiber-reinforced composite material
JP2009242459A (en) Resin composition, prepreg, and method for manufacturing those
WO2021241734A1 (en) Epoxy resin composition, fiber-reinforced composite material, and method for producing same
JP2021512199A (en) Prepreg used to manufacture composite parts that can withstand high temperature and wet conditions
JP6213225B2 (en) Prepreg and fiber reinforced composites
WO2020008847A1 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method therefor
TWI815628B (en) Carbon fiber bundles, prepregs, fiber reinforced composites
WO2014002993A1 (en) Fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R151 Written notification of patent or utility model registration

Ref document number: 6210007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151