JP6206904B2 - Cementless artificial joint - Google Patents

Cementless artificial joint Download PDF

Info

Publication number
JP6206904B2
JP6206904B2 JP2013107351A JP2013107351A JP6206904B2 JP 6206904 B2 JP6206904 B2 JP 6206904B2 JP 2013107351 A JP2013107351 A JP 2013107351A JP 2013107351 A JP2013107351 A JP 2013107351A JP 6206904 B2 JP6206904 B2 JP 6206904B2
Authority
JP
Japan
Prior art keywords
bone
skeleton
stem
artificial joint
cementless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013107351A
Other languages
Japanese (ja)
Other versions
JP2014226265A (en
Inventor
茂章 森山
茂章 森山
圭児 柳瀬
圭児 柳瀬
西村 直之
直之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka University
Teijin Nakashima Medical Co Ltd
Original Assignee
Fukuoka University
Teijin Nakashima Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka University, Teijin Nakashima Medical Co Ltd filed Critical Fukuoka University
Priority to JP2013107351A priority Critical patent/JP6206904B2/en
Publication of JP2014226265A publication Critical patent/JP2014226265A/en
Application granted granted Critical
Publication of JP6206904B2 publication Critical patent/JP6206904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

本発明は、骨に形成された孔内に挿入され、ボーンイングロースにより骨との結合力を発生させるようにしたセメントレス型人工関節に関する。   The present invention relates to a cementless artificial joint which is inserted into a hole formed in a bone and generates a binding force with bone by bone in-growth.

股関節は、骨盤と大腿骨との間に骨頭と呼ばれるボールジョイント状の骨で接続されている構造を持ち、このために歩行や直立などの人間の基本的な行動が可能となっている。股関節疾患は、これら骨頭や骨盤にある骨頭の受け皿に何らかの障害が発生し、その機能が破綻するものである。人工股関節は、これらの障害を除去し、人間の基本的な行動を復活させるための治療器具の1つである。人工股関節は、主として骨盤に固定されるソケットと、これと協働するヘッドと、ヘッドを大腿骨側に固定するステムとからなる。   The hip joint has a structure in which a ball joint-like bone called a head of bone is connected between the pelvis and the femur, which enables basic human actions such as walking and standing upright. In hip joint diseases, some sort of damage occurs in the receptacles of the bone heads in these bone heads and pelvis, and their functions are broken. A hip prosthesis is one of the therapeutic instruments that removes these obstacles and restores basic human behavior. The artificial hip joint mainly includes a socket that is fixed to the pelvis, a head that cooperates with the socket, and a stem that fixes the head to the femur.

人工股関節は、主としてセメントタイプとセメントレスタイプとの2つに分かれる。セメントタイプは、いわゆるPMMA(ポリメタクリル酸)などのポリマーを用いて人工股関節ステムを固定するものである。セメントレスタイプは、主として人間の骨再生能力を生かして、ソケットやステムなどに骨を誘導する表面処理や構造などを施すことで骨と融合させ、セメントなどを使用せずに固定する手法である。   Artificial hip joints are mainly divided into two types, cement type and cementless type. The cement type uses a polymer such as so-called PMMA (polymethacrylic acid) to fix the artificial hip joint stem. The cementless type is a technique that fuses with bone by applying surface treatment or structure that induces bone to sockets, stems, etc. mainly by utilizing human bone regeneration ability and fixing without using cement etc. .

これまでに人工股関節の構成部材の1つであるステムは、主として金属材料で構成されてきた。構成材料は、チタン合金(Ti−6Al−4V)、CoCrMo合金やSUS316Lなどである。また、近年では、例えば特許文献1に記載のようにPEEK(ポリエーテルエーテルケトン)樹脂および炭素繊維材料を用いたステムなども考案されている。これらのステムには、局所的にかかる応力を分散する機構などが設けられている。   So far, a stem, which is one of the constituent members of an artificial hip joint, has been mainly made of a metal material. The constituent material is titanium alloy (Ti-6Al-4V), CoCrMo alloy, SUS316L, or the like. In recent years, for example, as described in Patent Document 1, a stem using a PEEK (polyether ether ketone) resin and a carbon fiber material has been devised. These stems are provided with a mechanism for locally dispersing the stress.

特開2007−144011号公報JP 2007-144011 A

金属材料で構成されたステムは、その材料の特性から人体の骨と比較して弾性率が高い。例えば金属材料の場合、弾性率は110GMPa(チタン合金)、210GPa(CoCr合金)である。また、最近開発されているPEEKは10GPa程度である。これに対して、人骨(皮質骨)は10〜30GPaである。このため、人工関節に置換した場合、元生体とは大幅に異なる材料が生体内に入ってゆくことになる。   A stem made of a metal material has a higher elastic modulus than a human bone due to the characteristics of the material. For example, in the case of a metal material, the elastic modulus is 110 GPa (titanium alloy) and 210 GPa (CoCr alloy). Recently developed PEEK is about 10 GPa. On the other hand, human bone (cortical bone) is 10 to 30 GPa. For this reason, when the artificial joint is replaced, a material significantly different from the original living body enters the living body.

このことは元来異物である人工関節において、さらに力学的な特性が大きく異なる材料を人体中に存在させることになり、治療後の骨の再生に対して、意図した部分でのボーンイングロースを起こすことが難しく、またストレスシールディングなどを発生する原因となりかねない。   This means that the artificial joint, which is originally a foreign body, has a material with significantly different mechanical properties in the human body. It is difficult to wake up and may cause stress shielding.

そこで、本発明においては、骨と同様の力学特性を有するセメントレス型人工関節を提供することを目的とする。   Accordingly, an object of the present invention is to provide a cementless artificial joint having the same mechanical characteristics as bone.

本発明のセメントレス型人工関節は、骨に形成された孔内に挿入され、ボーンイングロースにより骨との結合力を発生させるようにしたセメントレス型人工関節において、多孔体構造を有し、骨と結合する金属製の骨格部と、骨格部の一部を表面に露出させた状態で骨格部が埋め込まれる熱可塑性樹脂製の樹脂部とからなる。   The cementless artificial joint of the present invention is a cementless artificial joint that is inserted into a hole formed in a bone and generates a binding force with bone by bone in-growth, and has a porous structure, It consists of a metal skeleton part that is bonded to the bone and a thermoplastic resin part in which the skeleton part is embedded with a part of the skeleton part exposed on the surface.

本発明のセメントレス型人工関節では、骨格部が多孔体構造を有する金属製であるため、人体の骨と比較して弾性率が高いが、この骨格部が熱可塑性樹脂製の樹脂部に埋め込まれており、この樹脂部を構成する熱可塑性樹脂が常温では弾性率が人体の骨と同程度であるため、人工関節全体として見た場合に弾性率が上昇し、人体の骨と同程度の弾性率を実現できる。また、骨と結合する金属製の骨格部の一部が熱可塑性樹脂製の樹脂部の表面に露出しているため、この露出した金属部分がボーンイングロースを発生させ、骨と結合して一体化する。   In the cementless artificial joint according to the present invention, since the skeleton part is made of metal having a porous structure, the elastic modulus is higher than that of a human bone, but this skeleton part is embedded in a resin part made of a thermoplastic resin. Since the thermoplastic resin constituting this resin part has an elastic modulus similar to that of a human bone at room temperature, the elastic modulus increases when viewed as an artificial joint as a whole, and is comparable to that of a human bone. Elastic modulus can be realized. In addition, since a part of the metal skeleton part that is bonded to the bone is exposed on the surface of the thermoplastic resin part, the exposed metal part generates bone ingrowth and is combined with the bone to be integrated. Turn into.

ここで、骨格部は、力学的異方性を持つ多孔体構造を有することが望ましい。これにより、特定の方向に対する人工関節の弾性率を変化させることが可能となる。   Here, the skeleton part preferably has a porous structure having mechanical anisotropy. Thereby, it becomes possible to change the elastic modulus of the artificial joint with respect to a specific direction.

また、骨格部の多孔体構造領域の気孔率は30%〜70%であることが望ましく、より望ましくは50%〜70%である。骨格部の多孔体構造領域の気孔率が30%〜70%であると、人工関節全体の弾性率を人体の骨と同程度に調整しつつ、一部が熱可塑性樹脂製の樹脂部の表面に露出した際に骨と接触してボーンイングロースを発生させるのに最適である。なお、気孔率が30%未満の場合には、ボーンイングロースの発生が少なくなり、成長しにくくなる可能性がある。一方、70%超の場合には、骨格部の多孔体構造領域の機械的な強度を保てなくなる可能性がある。   Further, the porosity of the porous body structure region of the skeleton is preferably 30% to 70%, and more preferably 50% to 70%. When the porosity of the porous structure region of the skeleton is 30% to 70%, the surface of the resin part made of thermoplastic resin is partially adjusted while adjusting the elastic modulus of the entire artificial joint to the same level as that of the human bone It is ideal for generating bone in contact with bone when exposed to water. In addition, when the porosity is less than 30%, the generation of bone inrose is reduced and it may be difficult to grow. On the other hand, if it exceeds 70%, there is a possibility that the mechanical strength of the porous structure region of the skeleton part cannot be maintained.

(1)多孔体構造を有し、骨と結合する金属製の骨格部と、骨格部の一部を表面に露出させた状態で骨格部が埋め込まれる熱可塑性樹脂製の樹脂部とからなるセメントレス型人工関節によれば、骨内に埋入された際に人工関節に掛かる応力に対して、必要とされる強度および弾性率を容易に実現することが可能となり、かつ金属製の骨格部の一部が熱可塑性樹脂製の樹脂部の表面に露出して、この露出した金属部分がボーンイングロースを発生させ、骨と結合して一体化するので、セメントレス型人工関節を実現することが可能となる。 (1) Cement which has a porous structure and is made of a metal skeleton part bonded to bone and a resin part made of a thermoplastic resin in which the skeleton part is embedded with a part of the skeleton part exposed on the surface. According to the loess-type artificial joint, it is possible to easily realize the required strength and elastic modulus against the stress applied to the artificial joint when it is embedded in the bone, and the metal skeleton part. A part of the resin is exposed on the surface of the resin part made of thermoplastic resin, and this exposed metal part generates bone ingrowth and is united with the bone, so that a cementless artificial joint can be realized. Is possible.

(2)骨格部が力学的異方性を持つ多孔体構造を有することにより、特定の方向に対する人工関節の弾性率を変化させて、埋入する骨と同様の特性を持つ人工関節を実現できる。 (2) Since the skeleton has a porous structure with mechanical anisotropy, it is possible to realize an artificial joint having the same characteristics as the bone to be implanted by changing the elastic modulus of the artificial joint in a specific direction. .

本発明の実施の形態におけるセメントレス型人工股関節用ステムの斜視図である。1 is a perspective view of a cementless artificial hip joint stem in an embodiment of the present invention. FIG. 図1のセメントレス型人工股関節用ステムの右側面図である。FIG. 2 is a right side view of the cementless artificial hip joint stem of FIG. 1. 図1のセメントレス型人工股関節用ステムの縦断面図である。FIG. 2 is a longitudinal sectional view of the cementless artificial hip joint stem of FIG. 1. 図2のA−A断面図である。It is AA sectional drawing of FIG. 気孔率の測定例を示す説明図である。It is explanatory drawing which shows the example of a measurement of porosity. 気孔率の測定例を示す説明図である。It is explanatory drawing which shows the example of a measurement of porosity.

以下、本発明のセメントレス型人工関節について、その一実施形態としてのセメントレス型人工股関節用ステムを例に、図面を参照して説明する。図1は本発明の実施の形態におけるセメントレス型人工股関節用ステムの斜視図、図2は右側面図、図3は縦断面図、図4は図2のA−A断面図である。   Hereinafter, a cementless artificial joint according to the present invention will be described with reference to the drawings, taking as an example a cementless artificial hip joint stem as an embodiment thereof. 1 is a perspective view of a stem for a cementless artificial hip joint according to an embodiment of the present invention, FIG. 2 is a right side view, FIG. 3 is a longitudinal sectional view, and FIG. 4 is a sectional view taken along line AA in FIG.

図1から図4に示すように、本発明の実施の形態におけるセメントレス型人工股関節用ステム(以下、単に「ステム」という。)1は、主に、骨盤に固定されるソケット(図示せず。)と、これと協働するヘッド11と共に人工股関節を構成する人工股関節用ステムであり、ヘッド11を大腿骨12側に固定するものである。ステム1は、大転子を避けて大腿骨12の骨端領域から骨幹領域に向けて人工関節手術用ラスプにより形成した窄孔13に挿入される。   As shown in FIGS. 1 to 4, a cementless artificial hip joint stem (hereinafter simply referred to as “stem”) 1 according to an embodiment of the present invention is mainly a socket (not shown) fixed to the pelvis. )), And a head 11 for cooperating with the head 11, which constitutes an artificial hip joint, which fixes the head 11 to the femur 12 side. The stem 1 is inserted into a stenosis hole 13 formed by an artificial joint surgical rasp from the epiphyseal region of the femur 12 toward the diaphysis region while avoiding the greater trochanter.

ステム1は、純チタンやチタン合金(例えば、Ti−6Al−4V)などの骨の誘導能を持ち、骨と結合する金属製の骨格部2と、骨格部2の一部を表面に露出させた状態で骨格部2が埋め込まれるPEEK(ポリエーテルエーテルケトン)樹脂などの熱可塑性樹脂製の樹脂部3とからなり、ヘッド11からの荷重を導入するためのネック部4、ネック部4を支え荷重を大腿骨12に伝達するボディ部5、ステム1の挿入を助け、姿勢を保持するためのレグ部6とを有する。   The stem 1 has a bone inductive ability such as pure titanium or titanium alloy (for example, Ti-6Al-4V), and exposes a part of the skeleton part 2 made of metal and a skeleton part 2 that is bonded to the bone to the surface. The neck portion 4 for introducing a load from the head 11 and the neck portion 4 are supported by the resin portion 3 made of a thermoplastic resin such as PEEK (polyetheretherketone) resin in which the skeleton portion 2 is embedded in the state where the head portion 11 is embedded. It has a body part 5 for transmitting a load to the femur 12, and a leg part 6 for assisting the insertion of the stem 1 and maintaining the posture.

骨格部2は、ネック部4を除くボディ部5およびレグ部6においては、少なくとも一部に力学的異方性(マクロヘテロ構造)を持つ多孔体構造を有している。骨格部2の多孔体構造領域の気孔率は任意に設定することが可能であるが、本実施形態においては望ましい範囲である30%〜70%としている。気孔率の範囲は、より望ましくは40%〜50%である。なお、本実施形態における気孔率とは、骨格部2の任意の断面において、多孔体構造領域のうち気孔領域が占める面積の割合をいう。   The skeleton part 2 has a porous structure having mechanical anisotropy (macroheterostructure) in at least a part of the body part 5 and the leg part 6 excluding the neck part 4. The porosity of the porous structure region of the skeleton part 2 can be arbitrarily set, but in the present embodiment, the porosity is 30% to 70%, which is a desirable range. The range of the porosity is more preferably 40% to 50%. In addition, the porosity in this embodiment means the ratio of the area which a pore area | region occupies among the arbitrary cross sections of the frame | skeleton part 2 among porous body structure areas.

図5および図6は気孔率の測定例を示している。図5に示す例では、骨格部2の多孔体構造領域の任意の縦断面写真から単位格子形状を抽出、二値化し、金属領域が占めるピクセル数から気孔率を算出している。また、図6に示す例では、骨格部2の任意の横断面写真から多孔体構造領域を抽出、二値化し、金属領域が占めるピクセル数から気孔率を算出している。   5 and 6 show examples of measuring the porosity. In the example shown in FIG. 5, the unit cell shape is extracted and binarized from an arbitrary vertical cross-sectional photograph of the porous structure region of the skeleton part 2, and the porosity is calculated from the number of pixels occupied by the metal region. In the example shown in FIG. 6, the porous structure region is extracted from an arbitrary cross-sectional photograph of the skeleton part 2 and binarized, and the porosity is calculated from the number of pixels occupied by the metal region.

また、本実施形態においては、図3に示すように骨格部2のボディ部5およびレッグ部6の部分はトラス構造状となっており、さらにボディ部5の部分は網状のケージにより覆われた構造を有している。このような骨格部2は、マトリックス材料の中に電子ビーム造形することにより得ることが可能である。   Further, in the present embodiment, as shown in FIG. 3, the body portion 5 and the leg portion 6 of the skeleton portion 2 have a truss structure, and the body portion 5 is covered with a mesh cage. It has a structure. Such a skeleton 2 can be obtained by forming an electron beam in a matrix material.

樹脂部3の熱可塑性樹脂は、骨格部2のうちネック部4を除くボディ部5およびレグ部6を覆っているが、ボディ部5においては骨格部2の一部を表面に露出させた状態で覆っている。また、樹脂部3の熱可塑性樹脂は、骨格部2の多孔体構造を形成している孔部2aの内部にも充填されている。   The thermoplastic resin of the resin part 3 covers the body part 5 and the leg part 6 excluding the neck part 4 in the skeleton part 2, but in the body part 5, a part of the skeleton part 2 is exposed on the surface. Covered with. Further, the thermoplastic resin of the resin part 3 is also filled in the hole 2 a forming the porous structure of the skeleton part 2.

このように、本実施形態においては、骨格部2のうちボディ部5の一部を樹脂部3の表面に露出しているため、この骨格部2の金属が大腿骨12と接触することでボーンイングロースにより結合力を発生し、大腿骨12と結合して一体化する。なお、本実施形態においては、レグ部6は大腿骨12との間に隙間が形成された状態で装着されるため、骨格部2の金属は露出させていないが、一部露出させる構成とすることも可能である。   Thus, in this embodiment, since a part of the body part 5 of the skeleton part 2 is exposed on the surface of the resin part 3, the bone of the skeleton part 2 comes into contact with the femur 12. A binding force is generated by ingrose, and is combined with the femur 12 to be integrated. In the present embodiment, since the leg portion 6 is mounted with a gap formed between the leg portion 6 and the thighbone 12, the metal of the skeleton portion 2 is not exposed, but is configured to be partially exposed. It is also possible.

上記構成のステム1では、骨格部2が多孔体構造を有する金属製であるため、大腿骨12と比較して弾性率が高いが、この骨格部2が熱可塑性樹脂製の樹脂部3に埋め込まれており、この樹脂部3を構成する熱可塑性樹脂が常温では弾性率が大腿骨12と同程度であるため、ステム1全体として見た場合に弾性率が上昇し、大腿骨12と同程度の弾性率を実現できる。そのため、このステム1では、大腿骨12内に埋入された際にステム1に掛かる応力に対して、必要とされる強度および弾性率を容易に実現することが可能となっており、大腿骨12と同様の力学特性を有する人工股関節を実現可能である。   In the stem 1 having the above configuration, the skeleton 2 is made of metal having a porous structure, and thus has a higher elastic modulus than the femur 12, but the skeleton 2 is embedded in the resin portion 3 made of thermoplastic resin. Since the thermoplastic resin constituting the resin portion 3 has the same elastic modulus as that of the femur 12 at room temperature, the elastic modulus increases when viewed as the whole stem 1 and is the same as that of the femur 12. The elastic modulus can be realized. Therefore, in this stem 1, it is possible to easily realize the required strength and elastic modulus against the stress applied to the stem 1 when it is embedded in the femur 12. Thus, an artificial hip joint having the same mechanical characteristics as that of No. 12 can be realized.

特に、本実施形態におけるステム1では、骨格部2が力学的異方性を持つ多孔体構造を有することにより、ステム1の変形の際に特定の方向に対する変形抵抗となり、その特定方向に対して見かけ上弾性率が上昇する。したがって、このステム1では、自在に弾性率を変化させて、埋入する大腿骨12と同様の特性を持つステムを実現できる。また、本実施形態においては、骨格部2の多孔体構造領域の気孔率を30%〜70%として、ステム1全体の弾性率を大腿骨12と同程度に調整しつつ、一部が熱可塑性樹脂製の樹脂部3の表面に露出した際に大腿骨12と接触してボーンイングロースを発生させるのに最適となるようにしている。   In particular, in the stem 1 according to the present embodiment, the skeleton 2 has a porous structure having mechanical anisotropy, so that when the stem 1 is deformed, deformation resistance in a specific direction occurs. Apparent elastic modulus increases. Therefore, in this stem 1, a stem having the same characteristics as the femur 12 to be embedded can be realized by freely changing the elastic modulus. In the present embodiment, the porosity of the porous structure region of the skeleton 2 is set to 30% to 70%, and the elasticity of the entire stem 1 is adjusted to the same level as that of the femur 12 while a part thereof is thermoplastic. When exposed on the surface of the resin part 3 made of resin, it is optimal to generate bone inrose by contacting the femur 12.

また、前述のようにステム1は、金属製の骨格部2の一部が熱可塑性樹脂製の樹脂部3の表面に露出して、この露出した金属部分がボーンイングロースを発生させ、骨と結合して一体化するので、セメントレス型人工関節用ステムとして機能する。すなわち、本実施形態におけるステム1は、生体および骨に対して機械的にも生物的にも安全な人工股関節用ステムとなる。なお、本実施形態においては、人工股関節を例にとって説明したが、股関節に限らず、同様に他の部位の関節にも適用可能である。   Further, as described above, the stem 1 has a part of the metal skeleton 2 exposed on the surface of the resin part 3 made of thermoplastic resin, and the exposed metal part generates bone inrose, Since they are combined and integrated, they function as a stem for cementless artificial joints. That is, the stem 1 in the present embodiment is an artificial hip joint stem that is mechanically and biologically safe with respect to a living body and bone. In the present embodiment, an artificial hip joint has been described as an example. However, the present invention is not limited to a hip joint, and can be applied to joints in other parts as well.

本発明のセメントレス型人工関節は、骨に形成された孔内に挿入され、ボーンイングロースにより骨との結合力を発生させるようにしたセメントレス型人工関節として有用である。   The cementless artificial joint of the present invention is useful as a cementless artificial joint that is inserted into a hole formed in a bone and generates a binding force with bone by bone in-gulose.

1 セメントレス型人工股関節用ステム
2 骨格部
2a 孔部
3 樹脂部
4 ネック部
5 ボディ部
6 レグ部
11 ヘッド
12 大腿骨
13 窄孔
DESCRIPTION OF SYMBOLS 1 Cementless type artificial hip joint stem 2 Skeletal part 2a Hole part 3 Resin part 4 Neck part 5 Body part 6 Leg part 11 Head 12 Femur 13 Stenosis hole

Claims (3)

骨に形成された孔内に挿入され、ボーンイングロースにより前記骨との結合力を発生させるようにしたセメントレス型人工関節において、
多孔体構造を有し、前記骨と結合する金属製の骨格部と、
前記骨格部の一部を表面に露出させた状態で前記骨格部が埋め込まれるPEEK樹脂製の樹脂部と
からなるセメントレス型人工関節。
In a cementless artificial joint inserted into a hole formed in a bone and generating a binding force with the bone by bone ingrowth,
A metal skeleton having a porous structure and bonded to the bone;
A cementless artificial joint comprising a resin part made of PEEK resin in which the skeleton part is embedded with a part of the skeleton part exposed on the surface.
前記骨格部は、力学的異方性を持つ多孔体構造を有する請求項1記載のセメントレス型人工関節。   The cementless artificial joint according to claim 1, wherein the skeleton has a porous structure having mechanical anisotropy. 前記骨格部の前記多孔体構造領域の気孔率が30%〜70%である請求項1または2に記載のセメントレス型人工関節。   The cementless artificial joint according to claim 1 or 2, wherein the porosity of the porous structure region of the skeleton is 30% to 70%.
JP2013107351A 2013-05-21 2013-05-21 Cementless artificial joint Expired - Fee Related JP6206904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107351A JP6206904B2 (en) 2013-05-21 2013-05-21 Cementless artificial joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107351A JP6206904B2 (en) 2013-05-21 2013-05-21 Cementless artificial joint

Publications (2)

Publication Number Publication Date
JP2014226265A JP2014226265A (en) 2014-12-08
JP6206904B2 true JP6206904B2 (en) 2017-10-04

Family

ID=52126660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107351A Expired - Fee Related JP6206904B2 (en) 2013-05-21 2013-05-21 Cementless artificial joint

Country Status (1)

Country Link
JP (1) JP6206904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677225A1 (en) 2017-08-28 2020-07-08 Nantoh. Co., Ltd Stem, femoral component, and artificial hip joint
WO2019124389A1 (en) * 2017-12-19 2019-06-27 株式会社リケン Piston ring for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116734A1 (en) * 2005-11-18 2007-05-24 Akash Akash Porous, load-bearing, ceramic or metal implant
US7850717B2 (en) * 2006-03-01 2010-12-14 Warsaw Orthopedic, Inc. Bone anchors having two or more portions exhibiting different performance characteristics and method of forming the same
JP5687622B2 (en) * 2008-08-29 2015-03-18 スメド−ティーエイ/ティーディー・エルエルシー Orthopedic implant
JP2010220926A (en) * 2009-03-25 2010-10-07 Tohoku Univ Composite material for living body, and manufacturing method therefor
IT1398443B1 (en) * 2010-02-26 2013-02-22 Lima Lto S P A Ora Limacorporate Spa INTEGRATED PROSTHETIC ELEMENT

Also Published As

Publication number Publication date
JP2014226265A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP7375129B2 (en) Medical equipment
US20160256279A1 (en) Patient-Specific Implant for Bone Defects and Methods for Designing and Fabricating Such Implants
CN101909548B (en) An expandable intervertebral implant and associated method of manufacturing the same
US20170071747A1 (en) A method for producing a customised orthopaedic implant
CN110870812B (en) Device for repairing phalangeal joints, prosthetic metatarsophalangeal joint device and method for manufacturing a device for repairing phalangeal joints
JP2019150657A (en) Knee joint device and method
CN105326583A (en) Ilium defect reconstructive prosthesis
US20180271658A1 (en) Renovated titanium mesh
Van Cleynenbreugel et al. Trabecular bone scaffolding using a biomimetic approach
JP6206904B2 (en) Cementless artificial joint
Dong et al. Preclinical strength checking for artificial pelvic prosthesis under multi-activities-a case study
CN205019202U (en) Damaged filler of bone
Moideen et al. Finite element analysis of bone‐prosthesis interface micromotion for cementless talar component fixation through critical loading conditions
CN105997309B (en) A kind of bionical anti-dislocation goat lumbar vertebrae junctional complex
Kumaresan et al. Biomechanical analysis of implantation of polyamide/hydroxyapatite shifted architecture porous scaffold in an injured femur bone
JP6138280B2 (en) Artificial hip joint stem and artificial hip joint including the same
CN208081343U (en) A kind of knee joint tibial component
CN208511256U (en) Bone prosthesis
CN105105883A (en) Improved artificial knee joint femoral prosthesis with porous film and preparation method thereof
Abd Manap et al. Comparative analysis of TiNbHA with existing materials for hip implant using finite element method
CN204909735U (en) Modified area thin porous layer's artificial knee joint femoral prosthesis
Eldesouky et al. Design and prototyping of a novel low stiffness cementless hip stem
CN204909736U (en) Artificial knee joint femoral prosthesis of coarse thin layer in modified area
CN204909737U (en) Modified area thin porous layer's artificial knee joint femoral prosthesis
KR20200083730A (en) Implants With Multi Porous Structure And Manufacturing Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6206904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees