JP6202673B2 - load cell - Google Patents

load cell Download PDF

Info

Publication number
JP6202673B2
JP6202673B2 JP2013216094A JP2013216094A JP6202673B2 JP 6202673 B2 JP6202673 B2 JP 6202673B2 JP 2013216094 A JP2013216094 A JP 2013216094A JP 2013216094 A JP2013216094 A JP 2013216094A JP 6202673 B2 JP6202673 B2 JP 6202673B2
Authority
JP
Japan
Prior art keywords
hole
load
slit
plate
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013216094A
Other languages
Japanese (ja)
Other versions
JP2015078902A (en
Inventor
及川 雅司
雅司 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2013216094A priority Critical patent/JP6202673B2/en
Publication of JP2015078902A publication Critical patent/JP2015078902A/en
Application granted granted Critical
Publication of JP6202673B2 publication Critical patent/JP6202673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

この発明は、プレートの平行な2つの受圧面に荷重を受け、その荷重による両受圧面間の変位を計測する荷重計及び前記プレートに関する。   The present invention relates to a load meter that receives a load on two parallel pressure-receiving surfaces of a plate and measures a displacement between both pressure-receiving surfaces due to the load, and the plate.

例えば、斜面安定や構造物の安定支持等のために行われるグランドアンカー工法では、地中のアンカー体に一端を固定したPCストランド等の緊張材に張力を付与した状態で、その他端側に斜面安定用のプレートや構造物等を固定している。このとき、前記緊張材の施工中の張力変動の計測や施工後の長期的な張力監視のために、その他端側固定部に荷重計が設置される(特許文献1段落0031、図8参照)。また、吊り構造物のケーブルにも、張力計測のための荷重計が設置される。その荷重計として、静電容量型荷重計が検討されている。   For example, in the ground anchor method for stabilizing the slope and supporting the structure stably, the tension is applied to the tension material such as a PC strand with one end fixed to the underground anchor body, and the slope is formed on the other end side. Stabilizing plates and structures are fixed. At this time, a load meter is installed on the other end-side fixing portion for measurement of tension fluctuation during construction of the tendon and long-term tension monitoring after construction (see Patent Document 1, paragraph 0031, FIG. 8). . A load meter for measuring tension is also installed on the cable of the suspended structure. As the load cell, a capacitive load cell has been studied.

その静電容量型荷重計の一例として、荷重を受ける円環状プレートの2つの平行な受圧面の間(以下、「両受圧面の間」を適宜に「上下間」という。)に円形孔を形成し、この円形孔の内周面に対の電極を対向して設けたものがある。この静電容量型荷重計は、前記プレートの両受圧面に荷重を受けると、その荷重によるプレートの上下間の変位(厚み変形)による前記電極間の距離変化に伴う静電容量変化を検出し、その検出値に基づき前記荷重を測定する(特許文献1段落0009、図9参照)。すなわち、この荷重計は、プレート円形孔の上下方向の変位でもってそのプレートの受圧面への荷重を計測する。 As an example of the capacitance type load cell, a circular hole is formed between two parallel pressure receiving surfaces of an annular plate that receives a load (hereinafter, “between both pressure receiving surfaces” is appropriately referred to as “upper and lower”). In some cases, a pair of electrodes are provided facing each other on the inner peripheral surface of the circular hole. When this load cell receives a load on both pressure receiving surfaces of the plate, it detects a change in capacitance due to a change in the distance between the electrodes due to a displacement (thickness deformation) between the upper and lower sides of the plate due to the load. Then, the load is measured based on the detected value (see Patent Document 1, paragraph 0009, FIG. 9). That is, this load meter measures the load on the pressure receiving surface of the plate by the vertical displacement of the plate circular hole.

特開2009−53095号公報JP 2009-53095 A

このような荷重計用プレートにおいて、図5を参照して説明すると、上下の受圧面1、2に荷重Pがかかると、その柱状をなす円形孔hは上下方向(Z方向)が縮小し、前後方向(X方向)及び左右方向(Y方向)が拡大する。
このとき、円形孔hの軸心c方向において、その周壁の内周側(in)及び外周側(out)は一方面(図5に於いて前後面)が開放されているのに対し、中央部(mid)は両側が充実のため、剛性が高い。このため、Y方向の変位(変形)において、前記内周側及び外周側と中央部とのバラツキが大きくなっている。このバラツキは円形孔h内周面の軸心cほぼ全長に亘る変位(変形)度合いでプレートへの荷重を測定する場合の精度の低下を招くこととなる。特に、静電容量型は円形孔h内周面の軸心cほぼ全長の静電容量変化でもって荷重を計測するからその測定精度の低下を招く。
In such a load meter plate, with reference to FIG. 5, when a load P is applied to the upper and lower pressure receiving surfaces 1 and 2, the columnar circular hole h is reduced in the vertical direction (Z direction), The front-rear direction (X direction) and the left-right direction (Y direction) are enlarged.
At this time, while the axis c 1 direction of the circular hole h, the inner peripheral side of the peripheral wall (in) and the outer (out) one surface (front and rear surfaces In FIG. 5) is opened, The middle part (mid) has high rigidity because both sides are complete. For this reason, in the displacement (deformation) in the Y direction, the inner peripheral side, the outer peripheral side, and the central portion have large variations. This variation and thus deteriorating the accuracy when measuring the load on the plate displacement (deformation) degree over the axis c 1 substantially the entire length in the circular hole h circumference. In particular, capacitance type leads to a decrease in the measurement accuracy because measuring the load with a capacitance change of the axis c 1 substantially the entire length in the circular hole h circumference.

また、プレートが円環状の場合、Y方向の肉厚が内側から外側に向かって(X方向外側に向かって)、徐々に厚くなっており(剛性が高くなっており)、これによっても、Y方向の内周側、中央部及び外周側の変位は均一ではない(バラツク)。
これらのY方向の変位はZ方向の変位に影響するため(Y方向の拘束がZ方向の剛性にも影響するため)、Z方向の変位の計測、すなわち、プレート円形孔の中心上下方向の変位測定による受圧面1、2への荷重測定の精度低下の原因ともなる。
Further, when the plate is annular, the thickness in the Y direction is gradually increased from the inner side to the outer side (outward in the X direction) (the rigidity is increased). The displacement on the inner peripheral side, the central part and the outer peripheral side in the direction is not uniform (variation).
Since these displacements in the Y direction affect the displacement in the Z direction (because the constraint in the Y direction also affects the rigidity in the Z direction), measurement of the displacement in the Z direction, that is, the displacement in the vertical direction of the center of the plate circular hole This also causes a decrease in the accuracy of the load measurement on the pressure receiving surfaces 1 and 2 due to the measurement.

この発明は、以上の実状の下、荷重を受ける平行な2つの受圧面間に形成された透孔の変形でもって前記荷重Pを計測する荷重計の精度を向上させることを課題とする。   This invention makes it a subject to improve the precision of the load meter which measures the said load P by the deformation | transformation of the through-hole formed between two parallel pressure-receiving surfaces which receive a load under the above actual condition.

上記課題を達成するため、この発明は、荷重を受ける平行な2つの受圧面を有するプレートと、そのプレートに形成されて前記受圧面の直交軸方向の断面円形又は断面正多角形の透孔と、その透孔内に設けられて透孔の変位を測定する変位計の測定子とを有する荷重計の、前記プレートであって、前記透孔の周りに沿うスリットを形成した構成を採用する。 In order to achieve the above object, the present invention includes a plate having two parallel pressure receiving surfaces that receive a load, and a through hole formed in the plate and having a circular cross section or a regular polygonal cross section in the direction of the orthogonal axis of the pressure receiving surface. A configuration of the plate of a load cell provided in the through-hole and having a displacement gauge measuring element for measuring the displacement of the through-hole, in which slits are formed around the through-hole, is adopted.

この発明は、以上のように構成し、スリットによって切り離されたプレートの透孔側部分の変位(撓み)によって荷重を検出するようにしたので、その荷重が前記透孔側部分の変位として現れ、その荷重を適切に測定し得る。   Since the present invention is configured as described above, and the load is detected by the displacement (deflection) of the through hole side portion of the plate separated by the slit, the load appears as the displacement of the through hole side portion, The load can be measured appropriately.

この発明に係る荷重計の一つである静電容量型荷重計の一実施形態の一部分割部分斜視図である。It is a partially divided partial perspective view of one embodiment of a capacitance type load cell which is one of the load cells according to the present invention. 同実施形態の部分正面図である。It is a partial front view of the embodiment. 荷重と変形量の関係図であり、(a)はZ方向の関係図、(b)はY方向の関係図である。It is a relationship figure of load and amount of deformation, (a) is a relation figure of Z direction, and (b) is a relation figure of Y direction. 他の各実施例の概略部分正面図である。It is a general | schematic partial front view of each other Example. 荷重の作用説明図である。It is action | operation explanatory drawing of a load.

この発明の実施形態の荷重計は、荷重を受ける平行な2つの受圧面を有するプレートと、そのプレートに形成されて前記受圧面の直交軸方向の断面円形又は断面正多角形の透孔と、その透孔内に設けられて透孔の変位を測定する変位計とを有する構成において、前記透孔の周りに沿うスリットを形成する。
このように構成すれば、スリットによって、透孔周囲のプレート壁の一部(前記スリットによって切り離されたプレートの透孔側部分)がプレートの他の部分と上下で連結され、同他部が切り離されたパイプ状となる。パイプは、その断面の上下から力を受けると(荷重Pを受けると)、その軸心方向全長及び全周囲全長に亘って均等にかつ容易に撓む。このため、パイプ部分の変位でもってその荷重を測定すれば、その測定精度は高いものとなる。
なお、パイプ状の壁を形成すれば、上記作用効果を発揮するため、透孔内に、パイプを挿入してそのパイプの上下を透孔内面に溶接等によって固定すれば、パイプと透孔内面との間にスリットが形成される。このため、この発明は、そのようなパイプを挿入固定した場合も含むものとする。
A load cell according to an embodiment of the present invention includes a plate having two pressure receiving surfaces in parallel to receive a load, and a through-hole formed in the plate and having a circular cross section or a regular polygonal cross section in the orthogonal axis direction of the pressure receiving surface, In a configuration having a displacement meter provided in the through hole and measuring the displacement of the through hole, a slit is formed along the periphery of the through hole.
If comprised in this way, a part of plate wall around a through-hole (the through-hole side part of the plate cut | disconnected by the said slit) will be connected with the other part of the plate up and down, and the other part will cut off by the slit. It becomes a pipe shape. When receiving a force from above and below its cross section (when receiving a load P), the pipe bends evenly and easily over its entire length in the axial direction and the entire circumference. For this reason, if the load is measured by the displacement of the pipe portion, the measurement accuracy becomes high.
If a pipe-like wall is formed, the above-mentioned effects are exhibited. Therefore, if a pipe is inserted into the through hole and the upper and lower sides of the pipe are fixed to the inner surface of the through hole by welding or the like, the pipe and the inner surface of the through hole are provided. A slit is formed between the two. For this reason, this invention includes the case where such a pipe is inserted and fixed.

従来、荷重によるプレートの受圧間の変位がミクロン単位又はナノ単位の場合、温度変化による変位(撓み)が前記荷重による変位に対して大きいことによってその荷重による変位が計測し難くかった。しかし、上記のように、パイプ部分の変位でもってその荷重を測定することにより測定精度が高いものとなれば、前記温度変化による変位はパイプ状としたことによって予測できるとともに荷重による変位も大きくなるため、その温度変化による予測した変位を考慮すれば、荷重による変位を正確に計測し得る。すなわち、従来、「温度感受性(温度変化による変位)」>「荷重による変位」であったのに対し、「温度感受性」<「荷重による変位」としての特性を得られるものとなる。さらに、前記透孔の軸心方向の内周側、中央部、外周側においてその変位特性が揃う(均一となる)ため、繰り返し荷重による出力(測定値)の安定性も高まる。   Conventionally, when the displacement between the pressures received by the plate due to the load is in units of microns or nanometers, it is difficult to measure the displacement due to the load because the displacement (deflection) due to the temperature change is larger than the displacement due to the load. However, as described above, if the measurement accuracy is high by measuring the load with the displacement of the pipe portion, the displacement due to the temperature change can be predicted by the pipe shape and the displacement due to the load also increases. Therefore, the displacement due to the load can be accurately measured in consideration of the predicted displacement due to the temperature change. In other words, the conventional characteristic is “temperature sensitivity (displacement due to temperature change)”> “displacement due to load”, whereas “temperature sensitivity” <“displacement due to load” can be obtained. Furthermore, since the displacement characteristics are uniform (uniform) on the inner circumferential side, the central portion, and the outer circumferential side of the through hole in the axial center direction, the stability of the output (measured value) due to repeated loads is also increased.

前記プレートは、上下に受圧面を有するものであれば、その平面視形状は任意であるが、円形等の環状部材が好ましい。円形であれば、両受圧面への荷重をその軸心周りに均等に受け得るからである。   As long as the said plate has a pressure receiving surface up and down, the planar view shape is arbitrary, but circular members, such as a circle, are preferable. This is because the load on both pressure receiving surfaces can be evenly received around the axis if the shape is circular.

前記断面正多角形の透孔は、その対称軸が前記受圧面の直交軸方向となることが好ましい。このようになっていると、透孔の左右においてその変位が対称となって、透孔全体の変位が均一となるからである。この点から、透孔は断面円形が最も好ましい。また、その透孔の数及びプレート周方向間隔は、プレートの変位(撓み)特性を考慮して適宜に決定すれば良いが、プレートの平面視において、その軸心に対して左右及び上下に対称となるように位置することが好ましく、間隔は等間隔が好ましい。   The through hole having a regular polygonal cross section preferably has an axis of symmetry that is perpendicular to the pressure receiving surface. This is because the displacement is symmetrical between the left and right sides of the through hole, and the displacement of the entire through hole is uniform. In this respect, the through hole is most preferably circular in cross section. The number of the through holes and the circumferential distance of the plate may be appropriately determined in consideration of the displacement (deflection) characteristics of the plate, but in the plan view of the plate, it is symmetrical left and right and up and down with respect to the axis. It is preferable that they are positioned so that the distance between them is equal.

前記パイプ状部分は透孔の左右の一方のみでもその透孔の変位を少なからず容易にする。このため、スリットは透孔の左右の一方のみでも良いが、透孔の軸心に対して左右対称に形成(左右に形成)すれば、パイプ状部分がその透孔のほぼ全周に形成されることとなるため、透孔の変位もより円滑になる。このとき、スリットは、透孔の軸心に対して上下対称とすることが好ましい。パイプ状部分が全周つながったパイプ状により近づき、上下左右が対称のパイプ状となってその周囲の厚み方向の変位が均一となるからである。
また、前記スリットは、前記透孔の周りに沿って同一幅となっていることが好ましい。スリット幅が均一であると、前記透孔周囲のプレート壁に対するプレートの他の部分の形状変化も少なく、プレートの受圧面間の変位(撓み)にムラが生じ難いからである。なお、幅を異ならせる場合に比べれば、同一幅の方が、ドリルやワイヤによる形成も容易である(図2、図4参照)。
The pipe-like portion facilitates the displacement of the through-holes by not only the left and right sides of the through-holes. For this reason, the slit may be only one of the left and right sides of the through-hole, but if it is formed symmetrically with respect to the axial center of the through-hole (formed on the left and right), the pipe-shaped part is formed on almost the entire circumference of the through-hole. Therefore, the displacement of the through hole becomes smoother. At this time, it is preferable that the slit is vertically symmetric with respect to the axial center of the through hole. This is because the pipe-shaped portion approaches the pipe shape that is connected to the entire circumference, and the upper, lower, left, and right sides become symmetrical pipe shapes, and the displacement in the thickness direction around the pipe portions becomes uniform.
Moreover, it is preferable that the said slit becomes the same width along the circumference | surroundings of the said through-hole. This is because when the slit width is uniform, there is little change in the shape of the other part of the plate with respect to the plate wall around the through hole, and unevenness in the displacement (deflection) between the pressure receiving surfaces of the plate hardly occurs. In addition, compared with the case where a width | variety is varied, formation with a drill and a wire is easier for the same width (refer FIG. 2, FIG. 4).

さらに、前記スリットの前記透孔の周りに沿う面(内側面)は、全長に亘ってその透孔の内周面に対して同一の間隔となって、パイプ状部分を全長に亘って同一厚とすることが好ましい。このようにすると、荷重によるパイプ状部分の変位が全長に亘り均一となり、その均一化によって荷重検出精度も向上するからである。   Furthermore, the surface (inner side surface) along the circumference of the through hole of the slit has the same interval with respect to the inner peripheral surface of the through hole over the entire length, and the pipe-shaped portion has the same thickness over the entire length. It is preferable that This is because the displacement of the pipe-like portion due to the load becomes uniform over the entire length, and the load detection accuracy is improved by the uniformization.

なお、静電容量型荷重計は、非接触のセンサ(測定子)で検出するので、プレートが圧縮力を受けた状態で、故障懸念のあるセンサ部を交換可能であることが特徴であり、このため、透孔の変形が全周に亘って均一であると、透孔の加工精度、材料の不均一による孔変形のバラツキを抑制し、故障懸念のあるセンサを取り外し、その取り外した透孔に別の透孔で校正したセンサを再現性良く設置が可能となる。   In addition, since the capacitance type load cell is detected by a non-contact sensor (measuring element), it is characterized in that the sensor part having a fear of failure can be replaced while the plate receives a compressive force. For this reason, if the deformation of the through hole is uniform over the entire circumference, the variation in the hole deformation due to the processing accuracy of the through hole and the non-uniformity of the material is suppressed, and the sensor having a fear of failure is removed. In addition, a sensor calibrated with another through hole can be installed with good reproducibility.

前記各構成のプレートは、その透孔内に種々のその孔の変位計の測定子を組み込めば、両受圧面への荷重を測定する荷重計とすることができる。
その変位計には、従来の周知のものを採用すれば良く、例えば、電気抵抗歪みセンサ、レーザ式変位センサ、静電容量センサ等を使用し得る。その静電容量センサの場合、例えば、前記透孔内周面に設けた一の電極と、その電極に間隙を設けた他の電極とからなり、その両電極間の静電容量変化でもって前記両受圧面間の変位を測定する構成等を採用する。
The plate of each configuration can be a load meter that measures the load on both pressure receiving surfaces by incorporating various measuring elements of displacement gauges of the holes into the through holes.
As the displacement meter, a conventionally known one may be employed, and for example, an electric resistance strain sensor, a laser displacement sensor, a capacitance sensor, or the like can be used. In the case of the capacitance sensor, for example, it is composed of one electrode provided on the inner peripheral surface of the through hole and another electrode having a gap in the electrode, and the capacitance change between both electrodes A configuration for measuring the displacement between both pressure receiving surfaces is adopted.

この発明に係る静電容量型荷重計の一実施例を図1、図2に示し、この静電容量型荷重計Gは、前記グランドアンカー工法における緊張材の他端側固定部に設置される。
この荷重計Gは、ステンレス鋼(例えば、SUS630)からなるほぼ円環状プレート10と、そのプレート10に組み込まれる静電容量検出用プローブ(測定子)20とからなる。
1 and 2 show an embodiment of a capacitive load meter according to the present invention, and this capacitive load meter G is installed at the other end side fixing portion of the tension material in the ground anchor method. .
The load meter G includes a substantially annular plate 10 made of stainless steel (for example, SUS630) and a capacitance detection probe (measuring element) 20 incorporated in the plate 10.

そのプレート10の内外径や厚みは測定対象に応じて適宜に設定すれば良いが、例えば、外径:128mm、内径:65mm,厚さ:38mmとし、上下に受圧面11、12を有する。また、プレート10の周囲に、60度の等間隔で直径:20mmの円形孔13を形成し、各円形孔13はその軸心cがプレート10の径方向となってその内外周面に開口している。この円形孔13によってプレート10の厚み方向の剛性を弱めて両受圧面11、12への荷重によって厚み方向に変形し(撓み)易くなっている。この円形孔13の数及び直径は、その変形特性を考慮して、適宜に決定すれば良い。 The inner and outer diameters and thicknesses of the plate 10 may be set as appropriate according to the object to be measured. For example, the outer diameter is 128 mm, the inner diameter is 65 mm, and the thickness is 38 mm. Further, the periphery of the plate 10, 60 degrees equally spaced in diameter: 20mm circular hole 13 is formed in each circular hole 13 opening on its inner peripheral surface is the axis c 1 is the radial direction of the plate 10 doing. The circular holes 13 weaken the rigidity in the thickness direction of the plate 10 and are easily deformed (bent) in the thickness direction by the load on the pressure receiving surfaces 11 and 12. The number and diameter of the circular holes 13 may be appropriately determined in consideration of the deformation characteristics.

静電容量検出用プローブ20は全ての円形孔13に設けることができるが、図1において左右対称に設けることが好ましい。この実施例では、4個のプローブ20を左右対称に設けた。 The capacitance detection probes 20 can be provided in all the circular holes 13, but are preferably provided symmetrically in FIG. In this embodiment, four probes 20 are provided symmetrically.

各円形孔13の周りに、この発明の特徴であるスリット14が形成されている。このスリット14は、前記プローブ20を組み込む円形孔13には必ず形成する。すなわち、プローブ20を組み込まない円形孔13にはスリット14を設ける必要はない。
スリット14は円形孔13と同心の円弧状をしてプレート10の内外周面に開口しており(図1参照)、その内周面は直径:25mmの円周上に位置し、その径方向の幅t:0.3mmとなっている。また、その弧状部分16bの中心角度θは120度である。幅tは下記パイプ状部分16bを形成し得れば任意であるが、パイプ状部分16bの変位(撓み)特性を考慮して適宜に設定する。
スリット14は、例えば、その両端に3mm径の孔15を形成し、その両孔15、15間をワイヤーカットによって形成したが、他の手段、例えば、ドリル等によって形成し得る。
Around each circular hole 13, a slit 14 which is a feature of the present invention is formed. This slit 14 is necessarily formed in the circular hole 13 into which the probe 20 is incorporated. That is, it is not necessary to provide the slit 14 in the circular hole 13 in which the probe 20 is not incorporated.
The slit 14 has an arc shape concentric with the circular hole 13 and opens on the inner and outer peripheral surfaces of the plate 10 (see FIG. 1). The inner peripheral surface is located on the circumference of a diameter of 25 mm, and its radial direction. Width t: 0.3 mm. Further, the central angle θ of the arc-shaped portion 16b is 120 degrees. The width t is arbitrary as long as the following pipe-shaped portion 16b can be formed, but is appropriately set in consideration of the displacement (deflection) characteristics of the pipe-shaped portion 16b.
For example, the slit 14 is formed with a hole 15 having a diameter of 3 mm at both ends and a space between the holes 15 and 15 is formed by wire cutting, but may be formed by other means such as a drill.

このように円形孔13の周りにその内周に沿ってスリット14が形成されると、スリット14によって、円形孔13周囲のプレート壁がプレート10の他の部分16aと上下で連結され、他が切り離された弧状部分16bがパイプ状となる。このパイプ状部分16bは、上下から力を受けると(荷重を受けると)、その軸心c方向全長に亘って均等にかつ容易に撓むとともに上下方向に容易に撓む。このため、パイプ状部分16bの変位でもってその荷重を測定する場合、スリット14が無い場合に比べて圧縮力による変位量が大きくなり、感度が良くなる。 When the slit 14 is formed around the circular hole 13 along the inner periphery in this way, the plate wall around the circular hole 13 is connected to the other portion 16a of the plate 10 in the vertical direction by the slit 14, and the other is The separated arc-shaped portion 16b becomes a pipe shape. The pipe-shaped portion 16b receives a force from above and below (when under load), readily flex in the vertical direction uniformly and easily with bent along its axis c 1 direction length. For this reason, when measuring the load with the displacement of the pipe-like portion 16b, the amount of displacement due to the compressive force is larger than that without the slit 14, and the sensitivity is improved.

このようなスリット14を形成したプレート10において、上下の受圧面11、12に荷重をかけて、円形孔13の軸心内周側(in)、同中央部(mid)、同外周側(out)の上下間(Z方向)及び左右間(Y方向)の径変化を応力解析により求めた。その荷重(横軸:kN)と変形量(縦軸:nm)の関係を図3に示す。また、前記プレート10において、スリット14を形成しないものにおいても同様な解析を行い、その結果を図3に示し、同図において、(a)はZ方向、(b)はY方向のそれぞれ関係図である。   In the plate 10 in which such slits 14 are formed, a load is applied to the upper and lower pressure receiving surfaces 11, 12, and the inner peripheral side (in), the central part (mid), and the outer peripheral side (out) of the circular hole 13. ) Between the top and bottom (Z direction) and between the left and right (Y direction) was determined by stress analysis. The relationship between the load (horizontal axis: kN) and the amount of deformation (vertical axis: nm) is shown in FIG. Further, the same analysis is performed for the plate 10 in which the slit 14 is not formed, and the result is shown in FIG. 3, in which (a) is a Z direction and (b) is a relationship diagram in the Y direction. It is.

この解析結果から、スリット14を形成すれば、パイプ状部分16bの内周側、中央部、外周側における変位量の差が小さくなるとともに、Z方向の変位量が大きくなる一方、Y方向の変位量が小さくなっていることが理解できる。このことから、スリット14を形成すれば、パイプ状部分16bが容易に変形して、荷重Pに対する感度及び精度が向上することが理解できる。   From this analysis result, if the slit 14 is formed, the difference in displacement amount between the inner peripheral side, the central portion, and the outer peripheral side of the pipe-shaped portion 16b is reduced and the displacement amount in the Z direction is increased, while the displacement in the Y direction is increased. You can see that the amount is getting smaller. From this, it can be understood that if the slit 14 is formed, the pipe-like portion 16b is easily deformed and the sensitivity and accuracy with respect to the load P are improved.

以上の試験結果に基づき、図1に示すように、円形孔13に静電容量検出用プローブ20を設けて静電容量型荷重計Gを得る。そのプローブ20は、特許文献1記載のものでも良いが、図1に示すものとすることができる。このプローブ20は、プレート10と同一材からなる円筒体21の表面に絶縁層を介して銀ペースト等の金属からなる一方の電極を形成し、その両端部にOリング24等のシール材を嵌め、そのシール材間に窒素ガス等を封入して防錆を行い、後端に取付片25を固定したものである。プレート10と円筒体21を同一材で構成すれば、温度変化による測定誤差を極力抑えることができる。   Based on the above test results, a capacitance type load meter G is obtained by providing a capacitance detection probe 20 in the circular hole 13 as shown in FIG. The probe 20 may be the one described in Patent Document 1, but can be the one shown in FIG. The probe 20 has one electrode made of a metal such as silver paste formed on the surface of a cylindrical body 21 made of the same material as the plate 10 with an insulating layer interposed therebetween, and a sealing material such as an O-ring 24 is fitted to both ends thereof. Further, nitrogen gas or the like is sealed between the sealing materials to prevent rust, and the mounting piece 25 is fixed to the rear end. If the plate 10 and the cylindrical body 21 are made of the same material, measurement errors due to temperature changes can be minimized.

取付片25は、その上端部にねじ26を通し、そのねじ26をねじ孔26aにねじ込むことによってプレート10に固定し、取付片25の下端部の孔27をプレート10のピン28に上下左右に動き得るように嵌める(バカ孔27にピン28を嵌める)。このとき、円形孔13と円筒体21の軸心は一致させる。この取付態様は、プレート10が上下方向の荷重Pを受けても、プローブ20にはその荷重が殆ど加わらないため、ねじ26を弛めることによって、負荷状態においてもブローブ20を取り替えることができる。
なお、このプローブ20の取付態様は、スリット14を設けない、例えば、特許文献1の取付態様等においても採用でき、また、そのプローブは、静電容量型以外でも良い。
The mounting piece 25 is fixed to the plate 10 by passing a screw 26 through its upper end and screwing the screw 26 into the screw hole 26a, and the hole 27 at the lower end of the mounting piece 25 is vertically and horizontally moved to the pin 28 of the plate 10. It fits so that it can move (it fits pin 28 in fool hole 27). At this time, the axial centers of the circular hole 13 and the cylindrical body 21 are matched. In this attachment mode, even when the plate 10 receives the load P in the vertical direction, the probe 20 hardly receives the load. Therefore, the probe 20 can be replaced even in a loaded state by loosening the screw 26.
In addition, the attachment aspect of this probe 20 can be employ | adopted also in the attachment aspect of patent document 1, etc. which do not provide the slit 14, For example, the probe may be other than an electrostatic capacitance type.

円形孔13の内面には、従来と同様に、前記プローブ20に形成された一の電極に対向するように他の電極を形成する。この他の電極は、円形孔13の内面を研磨して形成しても良いが、プローブ20に形成された電極と同様に、金属ペーストを塗布して形成しても良い。
このように、パイプ状部分16bの内面とプローブ20外面に対向する対の電極が位置することによって、プレート10の受圧面11、12に荷重がかかると、円形孔13外周のパイプ状部分16bが上下左右方向に変形(変位)し、前記両電極間の静電容量が変化する。その変化を、従来と同様に、リード線29等を介して電気的に外部のIC等からなる検出器に導き、その検出器において、静電容量変化測定値を、前もって測定したプレート10への荷重と静電容量の変形量の関係を示すデータベースとの比較によって測定(算出)する。
Another electrode is formed on the inner surface of the circular hole 13 so as to face the one electrode formed on the probe 20 as in the prior art. The other electrode may be formed by polishing the inner surface of the circular hole 13, but may be formed by applying a metal paste in the same manner as the electrode formed on the probe 20.
As described above, when the pair of electrodes facing the inner surface of the pipe-shaped portion 16b and the outer surface of the probe 20 are positioned, when a load is applied to the pressure receiving surfaces 11 and 12 of the plate 10, the pipe-shaped portion 16b on the outer periphery of the circular hole 13 is Deformation (displacement) in the vertical and horizontal directions changes the capacitance between the electrodes. In the same way as in the prior art, the change is electrically led to a detector composed of an external IC or the like via a lead wire 29 or the like, and the capacitance change measurement value is applied to the plate 10 measured in advance. Measurement (calculation) is performed by comparison with a database indicating the relationship between the load and the deformation amount of the capacitance.

この実施例において、スリット14の長さ(角度θ)、同幅t等は、実験などによって適宜に決定する。スリット14の形状は、この発明の作用効果を発揮し得る限りにおいて任意であり、例えば、弧状ではなく、上下方向の直線状としても良く(図4(c)参照)、円形孔13の軸心cに対して上下対称であったり(同図(a)〜(d)参照)、その幅も変化したりしても良い(同図(a)、(b)参照)。さらに、左右のスリット14のどちらか一方のみとしたり(同図(d)参照)、左右が対称で上下を非対称としたり(同図(e)参照)、上下が対称で左右を非対称としたりとすることができる。また、円形孔13の内周面とスリット14の内周面の間隙は上下方向で異なっても良い(同図(b)、同(c)参照)。
いずれの態様においても、プローブ20の電極はパイプ状部分16bに対向させる。
In this embodiment, the length (angle θ), the same width t, etc. of the slit 14 are appropriately determined by experiments or the like. The shape of the slit 14 is arbitrary as long as the effects of the present invention can be exhibited. For example, the slit 14 may be a straight line in the vertical direction instead of an arc shape (see FIG. 4C). It may be vertically symmetric with respect to c 1 (see (a) to (d) in the same figure), or its width may change (see (a) and (b) in the same figure). Further, only one of the left and right slits 14 is used (see (d) in the figure), the left and right are symmetrical and the top and bottom are asymmetric (see (e) in the same figure), the top and bottom are symmetrical and the left and right are asymmetric can do. Further, the gap between the inner peripheral surface of the circular hole 13 and the inner peripheral surface of the slit 14 may be different in the vertical direction (see FIGS. 2B and 2C).
In either embodiment, the electrode of the probe 20 is opposed to the pipe-shaped portion 16b.

前記実施例は、グランドアンカー工法における緊張材の他端側固定部に設置されるものであったが、この発明の荷重計は、他の種々の態様における荷重を測定する場所に採用し得ることは勿論である。
また、この発明は、受圧面を有するプレートにおいて、その受圧面への荷重をプレート内に形成したパイプ状部分16bの変位として捉え、その変位の測定でもって前記荷重を測定し得るものであるため、そのパイプ状部分16bの変位を捉え得る変位計であれば、静電容量型センサに限らず、他の変位計、例えば、電気抵抗歪みセンサ、レーザ式変位センサ等を採用できる。
Although the said Example was installed in the other end side fixing | fixed part of the tension material in a grand anchor construction method, the load meter of this invention can be employ | adopted as a place which measures the load in another various aspect. Of course.
Further, according to the present invention, in a plate having a pressure receiving surface, a load on the pressure receiving surface can be regarded as a displacement of the pipe-like portion 16b formed in the plate, and the load can be measured by measuring the displacement. As long as the displacement meter can capture the displacement of the pipe-like portion 16b, other displacement meters such as an electric resistance strain sensor, a laser displacement sensor, and the like can be employed without being limited to the capacitive sensor.

このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Thus, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 プレート
11 、12 受圧面
13 円形孔
14 スリット
15 孔
16a 連結部分
16b パイプ状部分
20 静電容量検出用プローブ
21 静電容量検出用プローブの円筒体
24 円筒体に嵌めるOリング
25 円筒体取付片
26 プローブ取付ねじ
26a ねじ孔
27 孔
28 ピン
DESCRIPTION OF SYMBOLS 10 Plate 11, 12 Pressure-receiving surface 13 Circular hole 14 Slit 15 Hole 16a Connection part 16b Pipe-shaped part 20 Capacitance detection probe 21 Capacitance detection probe cylinder 24 O-ring 25 fitted to a cylinder body Cylinder attachment piece 26 Probe mounting screw 26a Screw hole 27 Hole 28 Pin

Claims (7)

上下方向の荷重を受ける平行な2つの受圧面を上下に有する環状のプレートと、
前記環状のプレートを径方向に貫通する断面円形又は断面正多角形の透孔と、
前記透孔内に設けられ、その透孔の内周面の一の電極と、その一の電極に間隙をおいて対向する他の電極との間の静電容量変化を検出する静電容量検出用プローブと、を有する荷重計であって、
前記透孔の周りに沿うスリットを、そのスリットによって切り離されたプレートの透孔側部分と、その透孔側部分に対してスリットを挟んで対向する部分とがそれぞれ前記荷重を受けるように形成した荷重計
An annular plate having two parallel pressure receiving surface for receiving the load in the vertical direction up and down,
Cross-sectional circular or regular polygonal through- holes that penetrate the annular plate in the radial direction ;
Provided in said through hole, and the one electrode of the inner peripheral surface of the through hole, the electrostatic capacitance detection for detecting a change in capacitance between the other electrode facing at a gap on one of the electrodes thereof A load meter having a probe ,
A slit along the periphery of the through hole is formed so that a through hole side portion of the plate cut by the slit and a portion facing the through hole side portion across the slit receive the load, respectively . Load cell .
前記スリットは、前記透孔の軸心に対して上下左右に対称であり、かつ、そのスリットの前記透孔の周りに沿う面は、全長に亘ってその透孔の内周面に対して同一の間隔となっている請求項1に記載の荷重計The slit is vertically and horizontally symmetrical with respect to the axial center of the through-hole, and the surface along the periphery of the through-hole of the slit is the same as the inner peripheral surface of the through-hole over the entire length. The load cell according to claim 1, which has an interval of 前記スリットは、透孔の軸心に対して上下対称である請求項1に記載の荷重計The load meter according to claim 1, wherein the slit is vertically symmetric with respect to the axis of the through hole. 前記スリットは、透孔の軸心に対して左右対称である請求項1又は請求項3に記載の荷重計The load meter according to claim 1, wherein the slit is symmetrical with respect to the axis of the through hole. 前記スリットの前記透孔の周りに沿う面は、全長に亘ってその透孔の内周面に対して同一の間隔となっている請求項1、請求項3又は請求項4に記載の荷重計5. The load cell according to claim 1, wherein the surface along the periphery of the through hole of the slit has the same distance from the inner peripheral surface of the through hole over the entire length. . 前記スリットは、前記透孔の周りに沿って同一幅となっている請求項1〜請求項5の何れか一項に記載の荷重計The load meter according to claim 1, wherein the slit has the same width along the periphery of the through hole. 前記プレートの環状中心軸周りに、前記透孔が等間隔で設けられた請求項1〜請求項6の何れか一項に記載の荷重計 Wherein around annular central axis of the plate, a load meter according to any one of claims 1 to 6, wherein the through holes are provided at equal intervals.
JP2013216094A 2013-10-17 2013-10-17 load cell Active JP6202673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216094A JP6202673B2 (en) 2013-10-17 2013-10-17 load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216094A JP6202673B2 (en) 2013-10-17 2013-10-17 load cell

Publications (2)

Publication Number Publication Date
JP2015078902A JP2015078902A (en) 2015-04-23
JP6202673B2 true JP6202673B2 (en) 2017-09-27

Family

ID=53010435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216094A Active JP6202673B2 (en) 2013-10-17 2013-10-17 load cell

Country Status (1)

Country Link
JP (1) JP6202673B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933921A (en) * 1958-09-30 1960-04-26 Baldwin Lima Hamilton Corp Materials testing machine
JPS5149070A (en) * 1974-10-24 1976-04-27 Tokyo Shibaura Electric Co SEIDENYORYOMARUGATAROODOSERUSOCHI
JPH0668460B2 (en) * 1987-08-17 1994-08-31 ジェイアールスリー インコーポレイティッド Force-moment sensor unit
JPH0652209B2 (en) * 1988-01-25 1994-07-06 ニッタ株式会社 Multi-axis force sensor
JP5061387B2 (en) * 2007-08-28 2012-10-31 国立大学法人京都大学 Electrode probe and capacitance load cell using the same

Also Published As

Publication number Publication date
JP2015078902A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
KR102313908B1 (en) Method of manufacturing a pressure sensor
US8161828B1 (en) Load cell for monitoring torsion and having over load protection
US8869633B2 (en) Bearing device having a sensor for measuring the vertical bearing force of a rotating shaft
US9791332B2 (en) Rod-shaped force transducer with improved deformation behavior
US20110259110A1 (en) Device for Measuring Strain in a Component
CN107503386A (en) Anchor rod body holds the detection means and detection method of load
KR102234300B1 (en) Rod-shaped force transducer with simplified adjustment
CN106932277A (en) Based on interface ultrasonic reflections rate pressure relation curve method for building up and bracket loading test platform that fillet plane contact is theoretical
CN102506688B (en) Resistance strain thickness measuring device and measurement method thereof
CN104567635B (en) A kind of device of quick detection grip of testing machine axiality
CN108613764A (en) A kind of primary structure member and the strain transducer with the primary structure member
US20150233777A1 (en) Strain transmitter
JP6202673B2 (en) load cell
JPS634654B2 (en)
JP5061387B2 (en) Electrode probe and capacitance load cell using the same
CN100405033C (en) Strain type force sensor for multiple components
WO2014036010A1 (en) Shear displacement extensometer
CN103419165A (en) High-precision torque wrench and checkout, installation and detection method thereof
CN103353365A (en) Point-contact pin-type force sensor
CN103822755B (en) A kind of tension generating means for stress measurement system calibration
CN202329535U (en) Distributed high-accuracy long-gauge-length carbon fiber strain testing device
KR20100132851A (en) Notch displacement gauge calibrator and calibrating system using the same
CN2881576Y (en) Multicomponent force sensor
CN218098102U (en) Clamp force measurer
CN214667349U (en) Dynamic response real-time monitoring device for metal structure equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R150 Certificate of patent or registration of utility model

Ref document number: 6202673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250