JP6201570B2 - High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof - Google Patents

High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof Download PDF

Info

Publication number
JP6201570B2
JP6201570B2 JP2013198328A JP2013198328A JP6201570B2 JP 6201570 B2 JP6201570 B2 JP 6201570B2 JP 2013198328 A JP2013198328 A JP 2013198328A JP 2013198328 A JP2013198328 A JP 2013198328A JP 6201570 B2 JP6201570 B2 JP 6201570B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
bainite
workability
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013198328A
Other languages
Japanese (ja)
Other versions
JP2015063731A (en
Inventor
力 岡本
力 岡本
武 豊田
武 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013198328A priority Critical patent/JP6201570B2/en
Publication of JP2015063731A publication Critical patent/JP2015063731A/en
Application granted granted Critical
Publication of JP6201570B2 publication Critical patent/JP6201570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,主としてプレス加工される自動車用鋼板を対象とし,1.0〜6.0mm程度の板厚で,加工性と溶接特性に優れた高強度熱延鋼板及びその製造方法に関するものである。   [Technical Field] The present invention mainly relates to a pressed steel sheet for automobiles, and relates to a high-strength hot-rolled steel sheet having a thickness of about 1.0 to 6.0 mm and excellent workability and welding characteristics, and a method for producing the same. .

近年,自動車の燃費改善対策としての車体軽量化,部品の一体成形によるコストダウンのニーズが強まり,プレス成形性に優れた熱延高強度鋼板の開発が進められてきた。従来,加工用熱延鋼板としてはフェライト・マルテンサイト組織からなるDual Phase鋼板が知られている。以下、Dual Phase鋼をDP鋼ともいう。Dual Phase鋼板は,軟質なフェライト相と硬質なマルテンサイト相の複合組織で構成されており,著しく硬度の異なる両相の界面からボイドが発生して割れを生じるため穴拡げ性に劣る問題があり,足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。これに対し,特許文献1,特許文献2ではベイナイトを主体とした組織により穴拡げ性の優れた熱延鋼板の製造方法が提案されているが,この鋼板は伸び特性に劣ることから適用部品に制約があった。   In recent years, there has been a growing need for weight reduction as a measure to improve automobile fuel economy and cost reduction by integral molding of parts, and the development of hot-rolled high-strength steel sheets with excellent press formability has been promoted. Conventionally, as a hot-rolled steel sheet for processing, a dual-phase steel sheet having a ferrite / martensite structure is known. Hereinafter, Dual Phase steel is also referred to as DP steel. The dual phase steel sheet is composed of a composite structure of soft ferrite phase and hard martensite phase, and voids are generated from the interface between the two phases with significantly different hardness, causing cracks and poor hole expandability. , It is not suitable for applications that require high hole expansibility, such as suspension parts. On the other hand, Patent Document 1 and Patent Document 2 propose a method of manufacturing a hot-rolled steel sheet with excellent hole expansibility by a structure mainly composed of bainite. There were restrictions.

穴拡げ性と延性を両立する技術として特許文献3,特許文献4,特許文献5,特許文献6ではフェライトとベイナイトの混合組織による鋼板が提案されている。しかし、近年、自動車のさらなる軽量化指向,部品の複雑化等を背景に更に高い穴拡げ性が求められ、上記技術では対応しきれない高度な加工性,高強度化が要求されている。また、特許文献7では、第2相に焼戻しマルテンサイトを活用することで、穴拡げ性と延性および2次加工割れ性を高いレベルで満たす鋼板が提案されている。また、マルテンサイトの焼戻しによる軟化を利用した穴拡げ性の改善手法として、特許文献8では熱延後,連続焼鈍工程またはめっき工程でA1点以上の再加熱と徐冷により,一部のマルテンサイトを焼戻すことで加工性を向上させる技術について提案されている。更に、特許文献9、特許文献10では420〜650℃の中間温度にてマルテンサイトの焼戻しを行う技術が提案されている。しかしながら、これらの技術は鋼板に焼戻しという追加の処理が必要となり、コストが高くなる上、残マルテンサイトや十分に焼戻っていないマルテンサイトが溶接時にHAZ軟化を起こすために用途が限定されるものであった。   As a technique for achieving both hole expandability and ductility, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6 propose a steel plate having a mixed structure of ferrite and bainite. However, in recent years, higher hole expansibility has been demanded against the background of further weight reduction of automobiles, complicated parts, and the like, and there has been a demand for high workability and high strength that cannot be handled by the above technology. Further, Patent Document 7 proposes a steel sheet that satisfies a high level of hole expandability, ductility, and secondary work cracking property by utilizing tempered martensite for the second phase. In addition, as a technique for improving the hole expandability using softening by tempering of martensite, in Patent Document 8, after hot rolling, a part of martensite is obtained by reheating and gradual cooling at a point A1 or higher in a continuous annealing process or plating process. A technique for improving workability by tempering the steel has been proposed. Furthermore, Patent Document 9 and Patent Document 10 propose a technique for tempering martensite at an intermediate temperature of 420 to 650 ° C. However, these techniques require an additional process of tempering the steel sheet, which increases costs and limits the application of residual martensite and martensite that has not been tempered sufficiently to cause HAZ softening during welding. Met.

特開平4−88125号公報JP-A-4-88125 特開平3−180426号公報Japanese Patent Laid-Open No. 3-180426 特開平6−293910号公報JP-A-6-293910 特開2002−180188号公報JP 2002-180188 A 特開2002−180189号公報JP 2002-180189 A 特開2002−180190号公報JP 2002-180190 A 特開2005−146379号公報JP 2005-146379 A 特開2003−247045号公報Japanese Patent Laid-Open No. 2003-247045 特開平9−263883号公報JP-A-9-263883 特開平9−263884号公報JP-A-9-263484

本発明は上記した従来の問題点を解決するためになされたものであって,500N/mm2クラス以上の熱延鋼板とその製造方法に関するもので,加工性と溶接特性に優れた高強度熱延鋼板を提供しようとするものである。 The present invention has been made to solve the above-mentioned conventional problems, and relates to a hot rolled steel sheet of 500 N / mm 2 class or higher and a method for producing the same, and is a high strength heat excellent in workability and welding characteristics. It is intended to provide a rolled steel sheet.

これまで、DP鋼やフェライト、ベイナイト2相鋼において、各相の硬さやサイズ、相分率の最適化がすすめられ、多くの成果がみられている。本発明者らは,更に、複合組織における第2相の粒の配列に着目し検討を進めてきた。そのなかで、フェライト、ベイナイト2相鋼において加工に適したベイナイト粒の配列について鋭意検討を重ねた結果、ベイナイト粒によるフェライト粒の被覆率が高くなると、伸び−穴拡げ性のバランスが著しく改善する上、第2相がベイナイトであることで、DP鋼で課題となるマルテンサイト相の焼戻し起因のHAZ軟化が抑制でき、溶接特性が向上することを見出した。ここで、溶接特性とはHAZ軟化部での低応力での割れ発生を意味し、溶接部付きサンプルの引張における破断位置(母材破断、HAZ部破断、溶金部破断)により評価できる。また、被覆率とは、光学顕微鏡にて2D観察を行ったときに図1に示すようにフェライト粒界の内、ベイナイト粒によって占有されている部分の全フェライト粒界長さに対する比率を示す。すなわち、被覆率100%はフェライト/フェライト粒界は存在せず、フェライト粒が完全にベイナイト粒によって囲まれていることを意味する。このような配列による材質の改善理由は明らかではないが、ベイナイト連結性が高まることで変形に対する抵抗が高まり、強度が上昇すること、および、もともと、第2相をマルテンサイト相ほど硬くなく変形しやすいベイナイト相とすることで、DP鋼に比べボイド形成が起こりにくい上、粒内に比べランダムな原子配列をとるフェライト粒界の性質がベイナイト/フェライト界面のひずみ集中を緩和し、初期のボイドサイズが小さくなる、もしくは、ボイド発生の抑制効果があるため、この相乗強化により飛躍的に穴拡げ性が改善されると考えられる。   So far, in DP steel, ferrite, and bainite dual-phase steel, optimization of the hardness, size, and phase fraction of each phase has been promoted, and many results have been observed. The present inventors have further studied focusing on the arrangement of the second phase grains in the composite structure. Among them, as a result of intensive investigations on the arrangement of bainite grains suitable for processing in ferrite and bainite dual-phase steels, the balance of elongation-hole expansibility improves significantly when the coverage of ferrite grains by bainite grains increases. Furthermore, it has been found that the HAZ softening due to the tempering of the martensite phase, which is a problem in DP steel, can be suppressed and the welding characteristics are improved because the second phase is bainite. Here, the welding characteristics mean the occurrence of cracks at a low stress in the HAZ softened part, and can be evaluated by the breaking position (base material breakage, HAZ part breakage, molten metal part breakage) in tension of the sample with the welded part. Further, the coverage ratio indicates the ratio of the portion occupied by bainite grains to the total ferrite grain boundary length in the ferrite grain boundaries as shown in FIG. 1 when 2D observation is performed with an optical microscope. That is, a coverage of 100% means that there are no ferrite / ferrite grain boundaries and the ferrite grains are completely surrounded by bainite grains. The reason for the improvement of the material due to such an arrangement is not clear, but the resistance to deformation is increased by increasing the bainite connectivity, the strength is increased, and originally the second phase is not as hard as the martensite phase. By forming an easy bainite phase, void formation is unlikely to occur compared to DP steel, and the properties of ferrite grain boundaries that take a random atomic arrangement compared to the inside of the grains alleviate strain concentration at the bainite / ferrite interface, resulting in an initial void size. Is small, or has the effect of suppressing the generation of voids, and this synergistic strengthening is considered to dramatically improve the hole expandability.

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1) 質量%で、C:0.03%以上、0.35%以下、Si:0.01%以上、2.0%以下、Mn:0.3%以上、4.0%以下、P:0.001%以上、0.10%以下、S:0.0005%以上、0.05%以下、N:0.0005%以上、0.010%以下、Al:0.01%以上、2.0%以下を含有して、残部Fe及び不可避的不純物からなり、結晶組織が、面積分率でベイナイト相を10%超、フェライト相を20%超含有し、パーライト相が10%未満であり、ベイナイト粒によるフェライト粒の被覆率が30%超であり、ベイナイト粒の平均径が4μm未満であることを特徴とする加工性と溶接特性に優れた高強度熱延鋼板。ここで、ベイナイト粒によるフェライト粒の被覆率とは、全フェライト粒界長さを100としたとき、ベイナイト粒によって占有されているフェライト粒界部分の長さ比率を百分率で表示したものである。
(2) さらに、ベイナイト相の面積分率が60%未満であり、個々のベイナイト粒のアスペクト比が4以上のものが30%以下であることを特徴とする(1)に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(3) さらに、鋼中に質量%で、Cr:0.05%以上、3.0%以下,Mo:0.05%以上、1.0%以下、Ni:0.05%以上、3.0%以下,Cu:0.05%以上、3.0%以下,の1種又は2種以上を含有することを特徴とする(1)または(2)に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(4) さらに、鋼中に質量%で、Nb:0.005%以上、0.3%以下,Ti:0.005%以上、0.3%以下,V:0.01%以上、0.5%以下,の1種又は2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(5) さらに、鋼中に質量%で、B:0.0001%以上,0.1%以下を含有することを特徴とする(1)〜(4)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(6) さらに、鋼中に質量%で、Ca:0.0005%以上、0.01%以下,Mg:0.0005%以上、0.01%以下,Zr:0.0005%以上、0.01%以下,REM:0.0005%以上、0.01%以下,の1種または2種以上を含有することを特徴とする(1)〜(5)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(7) さらに、結晶組織において、ベイナイト粒の平均径が1μm超であることを特徴とする (1)〜(6)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(8) さらに、鋼板の表面に、Feを13%未満含有し、残部がZn,Alおよび不可避的不純物からなる溶融亜鉛めっき層を有することを特徴とする(1)〜(7)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
(9) 鋳造スラブを直接または一旦冷却した後1100℃以上に加熱し、仕上圧延開始温度を1000℃以上とし、仕上げ圧延で圧延を実施する最終スタンド前のスタンドの圧延率を20%超とし、最終スタンドでの圧延を、Ar3変態点以上で圧延率を10%超の圧延を行い、圧延終了2秒未満の後、少なくとも50℃以上の強制冷却を実施し、続けて、平均冷却速度25℃/s超にて800℃以下まで強制冷却し、800℃以下、600℃超の温度から4秒以上、10秒以下の自然放冷を設けた上、再度700℃以下、300℃超まで強制冷却を行うことを特徴とする(1)〜(8)のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板の製造方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.03% or more, 0.35% or less, Si: 0.01% or more, 2.0% or less, Mn: 0.3% or more, 4.0% or less, P : 0.001% or more, 0.10% or less, S: 0.0005% or more, 0.05% or less, N: 0.0005% or more, 0.010% or less, Al: 0.01% or more, 2 0.0% or less, consisting of the remainder Fe and inevitable impurities, and the crystal structure contains more than 10% bainite phase and more than 20% ferrite phase in area fraction, and less than 10% pearlite phase. , Ri coverage is more than 30% der of ferrite grains by bainite grains, high-strength hot-rolled steel sheet having an average diameter of bainite grains is excellent in workability and welding characteristics, characterized in der Rukoto less than 4 [mu] m. Here, the coverage of ferrite grains with bainite grains is the percentage ratio of the length of ferrite grain boundaries occupied by bainite grains, where the total ferrite grain boundary length is 100.
(2) Further, the workability according to (1), wherein the area fraction of the bainite phase is less than 60%, and the aspect ratio of each bainite grain is 4 or more and 30% or less. High-strength hot-rolled steel sheet with excellent welding characteristics.
(3) Further, in mass% in steel, Cr: 0.05% to 3.0%, Mo: 0.05% to 1.0%, Ni: 0.05% to 3. Excellent in workability and welding characteristics according to (1) or (2), characterized by containing one or more of 0% or less, Cu: 0.05% or more, 3.0% or less High strength hot rolled steel sheet.
(4) Further, in steel, by mass%, Nb: 0.005% or more, 0.3% or less, Ti: 0.005% or more, 0.3% or less, V: 0.01% or more, 0. The high-strength hot-rolled steel sheet having excellent workability and welding characteristics according to any one of (1) to (3), wherein the high-strength steel sheet contains one or more of 5% or less.
(5) Further, the workability according to any one of (1) to (4), characterized in that the steel contains B: 0.0001% or more and 0.1% or less in mass%. High strength hot rolled steel sheet with excellent welding characteristics.
(6) Further, in steel, by mass%, Ca: 0.0005% or more, 0.01% or less, Mg: 0.0005% or more, 0.01% or less, Zr: 0.0005% or more, 0. One or two or more of 01% or less, REM: 0.0005% or more, 0.01% or less, the workability described in any one of (1) to (5) High strength hot rolled steel sheet with excellent welding characteristics.
(7) Further, in the crystal structure, the average diameter of the bainite grains is more than 1 μm. The high-strength heat excellent in workability and welding characteristics according to any one of (1) to (6) Rolled steel sheet.
(8) Further, any one of (1) to (7), wherein the surface of the steel sheet has a hot dip galvanized layer containing Fe of less than 13%, the balance being Zn, Al and inevitable impurities. A high-strength hot-rolled steel sheet excellent in workability and welding characteristics described in item 1.
(9) The casting slab is directly or once cooled and then heated to 1100 ° C. or higher, the finish rolling start temperature is set to 1000 ° C. or higher, and the rolling ratio of the stand before the final stand for rolling by finish rolling is over 20%. Rolling at the final stand is performed at an Ar3 transformation point or higher and a rolling rate of more than 10%, and after less than 2 seconds from the end of rolling, forced cooling is performed at least 50 ° C., followed by an average cooling rate of 25 ° C. Forcibly cooled to 800 ° C or lower at over / s, and provided natural cooling for 4 seconds to 10 seconds from temperatures of 800 ° C or lower and 600 ° C or higher, and then forced cooling to 700 ° C or lower and higher than 300 ° C again. The method for producing a high-strength hot-rolled steel sheet having excellent workability and welding characteristics as described in any one of (1) to (8).

なお、本発明において、強制冷却とは「積極的にガスまたは液体、またはその混合物で冷却を行うこと」、自然放冷とは「積極的な冷却は行わない、一般に空冷という言葉で表現される現象」を意味する。   In the present invention, forced cooling is expressed as “actively cooling with gas or liquid, or a mixture thereof”, and spontaneous cooling is expressed as “no active cooling, generally air cooling”. Meaning "phenomenon".

本発明によれば,加工性と溶接特性に優れた高強度熱延鋼板を提供することができるので,高い加工を要し、溶接部を有する部品に適した高強度熱延鋼板である。また,本発明の高強度熱延鋼板は車体の軽量化,部品の一体成形化,加工工程の合理化が可能であり、燃費の向上,製造コストの低減を図ることができ、部品としても溶接特性に優れることから、工業的価値大なるものである。   According to the present invention, a high-strength hot-rolled steel sheet excellent in workability and welding characteristics can be provided, so that it is a high-strength hot-rolled steel sheet that requires high processing and is suitable for a part having a welded portion. The high-strength hot-rolled steel sheet according to the present invention can reduce the weight of the vehicle body, integrate the parts, and streamline the machining process, improve fuel consumption and reduce manufacturing costs. Therefore, the industrial value is great.

被覆率を説明するイメージ図Image diagram explaining coverage 引張強度に対する伸びに及ぼす本発明鋼の効果を示すグラフ。The graph which shows the effect of this invention steel on the elongation with respect to tensile strength. 引張強度に対する穴拡げ性に及ぼす本発明鋼の効果を示すグラフ。The graph which shows the effect of this invention steel on the hole expansibility with respect to tensile strength.

本発明は,フェライト、ベイナイト2相鋼におけるベイナイト粒の配列を制御することで伸びと穴拡げバランスの向上が得られるものであり、第2相をベイナイトとすることでHAZ軟化が抑制され溶接特性にも優れるものである。組織としては、ベイナイト粒をフェライト粒界に積極的に配列させ、これによりベイナイト粒によるフェライト粒の被覆率を高めたものである。製造方法としては、熱延の後段の圧延率を定めることでオーステナイトの再結晶を制御する方法がある。以下に本発明の個々の構成要件について詳細に説明する。   The present invention can improve the balance between elongation and hole expansion by controlling the arrangement of bainite grains in ferrite and bainite dual-phase steel. By using bainite as the second phase, HAZ softening is suppressed and welding properties are improved. It is also excellent. As a structure, bainite grains are positively arranged at ferrite grain boundaries, thereby increasing the coverage of ferrite grains by bainite grains. As a manufacturing method, there is a method of controlling recrystallization of austenite by determining a rolling rate at the latter stage of hot rolling. The individual constituent requirements of the present invention will be described in detail below.

まず、本発明の成分の限定理由について述べる。以下、特に断らない限り、%は質量%を意味する。   First, the reasons for limiting the components of the present invention will be described. Hereinafter, unless otherwise specified,% means mass%.

Cは,鋼の強化のために必要な元素であり、特にベイナイト相の強化に寄与する。強度確保の面で0.03%以上は必要である。一方で、鋼の加工性に影響を及ぼす元素であり,含有量が多くなると,加工性は劣化する。特に0.35%を超えるとベイナイトの強化能は飽和する上、穴拡げ性に有害な炭化物(パーライト,セメンタイト)が生成するので、0.35%以下とする。但し,特に高い穴拡げ性が要求される場合,0.15%以下とすることが望ましい。   C is an element necessary for strengthening steel, and particularly contributes to strengthening of the bainite phase. In terms of securing strength, 0.03% or more is necessary. On the other hand, it is an element that affects the workability of steel. As the content increases, the workability deteriorates. In particular, if it exceeds 0.35%, the strengthening ability of bainite is saturated, and carbides (pearlite, cementite) harmful to the hole expandability are generated, so the content is made 0.35% or less. However, when a particularly high hole expansibility is required, it is desirable to make it 0.15% or less.

Siは,フェライト生成元素であり、ランナウトテーブル(以下「ROT」ともいう。)冷却中のフェライト生成を促進させる上で欠かせない元素である。また、有害な炭化物の生成を抑え加工性の改善にも効果がある。これらの作用はAlによって代替えも可能であるが、Siは、更に、固溶強化により材料強度確保のためにも有効な元素である。以上から、0.01%以上の添加することが望ましく、特に0.1%以上のAlを添加しない場合は、0.3%以上の添加が望ましい。ただし、添加量が増加すると化成処理性が低下するほか,点溶接性も劣化するため2.0%を上限とする。   Si is a ferrite-forming element, and is an element indispensable for promoting ferrite formation during cooling of a run-out table (hereinafter also referred to as “ROT”). It also has the effect of suppressing the formation of harmful carbides and improving processability. Although these actions can be replaced by Al, Si is an element that is also effective for securing material strength by solid solution strengthening. From the above, it is desirable to add 0.01% or more, and particularly when 0.1% or more of Al is not added, addition of 0.3% or more is desirable. However, if the amount added is increased, the chemical conversion processability is lowered and the spot weldability is also deteriorated, so 2.0% is made the upper limit.

Alは前述のようにSiと同様,有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素である。特に,延性と化成処理性を両立するために必要な元素である。Alは,従来より脱酸に必要な元素であり,通常0.01〜0.07%程度添加してきた。本発明者らは,鋭意研究を重ねた結果,低Si系において、Alを多量に添加することにより延性を劣化させることなく,化成処理性を改善できることを見出した。しかし,添加量が増加すると延性向上の効果は飽和してしまうばかりか,化成処理性が低下するほか,点溶接性も劣化するため2.0%を上限し,特に化成処理の厳しい条件では,1.0%を上限とすることが望ましい。十分な脱酸のためには0.01%以上の添加が必要である。   As described above, Al is an element effective for suppressing the formation of harmful carbides and increasing the ferrite fraction and improving the elongation, similar to Si. In particular, it is an element necessary to achieve both ductility and chemical conversion treatment. Al is an element necessary for deoxidation, and has been usually added in an amount of about 0.01 to 0.07%. As a result of intensive studies, the present inventors have found that, in a low Si system, chemical conversion can be improved without degrading ductility by adding a large amount of Al. However, if the amount added is increased, the effect of improving ductility is saturated, and the chemical conversion treatment performance is deteriorated and the spot weldability is also deteriorated, so the upper limit is set to 2.0%. It is desirable that the upper limit is 1.0%. Addition of 0.01% or more is necessary for sufficient deoxidation.

Mnは,強度確保に必要な元素であり,最低0.3%の添加が必要である。しかし,多量に添加するとミクロ偏析,マクロ偏析が起こりやすくなり,これらは穴拡げ性を劣化させる。これより4.0%を上限とする。   Mn is an element necessary for ensuring the strength, and it is necessary to add at least 0.3%. However, if added in a large amount, microsegregation and macrosegregation are likely to occur, and these deteriorate the hole expandability. Therefore, the upper limit is 4.0%.

Pは鋼板の強度を上げる元素であり,Cuと同時添加により耐腐食性を向上する元素であるが,添加量が高いと溶接性,加工性,靭性の劣化を引き起こす元素である。これより,0.10%以下とする。特に耐食性が問題とならない場合,加工性を重視して0.03%以下が望ましい。Pを低減させるためにはコストがかかるため、脱Pコストの観点から下限を0.001%とする。   P is an element that increases the strength of the steel sheet, and is an element that improves the corrosion resistance when added simultaneously with Cu. However, if the addition amount is high, it is an element that causes deterioration of weldability, workability, and toughness. From this, it is 0.10% or less. Especially when corrosion resistance is not a problem, 0.03% or less is desirable with emphasis on workability. Since it takes cost to reduce P, the lower limit is made 0.001% from the viewpoint of removal P cost.

SはMnS等の硫化物を形成し,割れの起点となり,穴拡げ性を低減させる元素である。従って,0.05%以下とすることが必要である。但し,0.0005%未満に調整するためには脱硫コストが高くなるため,これを0.0005%以上とする。   S is an element that forms sulfides such as MnS, becomes a starting point of cracking, and reduces hole expansibility. Therefore, it is necessary to make it 0.05% or less. However, the desulfurization cost increases to adjust to less than 0.0005%, so this is made 0.0005% or more.

Nは,鋼板加工時にストレッチャーストレイン生成の原因となり、加工性を劣化させるほか、Ti,Nbが添加された場合には、(Ti,Nb)Nの生成によりTi,Nbの有効量を低減させる上、形成した窒化物は、伸び、穴拡げ性を低下させるため、少ない方が良い。上記の制約から0.010%以下とする。脱Nコストの観点から,下限を0.0005%以上とする。   N causes stretcher strain formation during steel plate processing and degrades workability, and when Ti and Nb are added, reduces the effective amount of Ti and Nb by generating (Ti, Nb) N. In addition, since the formed nitride reduces elongation and hole expansibility, it is preferable that the amount is less. Due to the above restrictions, the content is set to 0.010% or less. From the viewpoint of cost reduction, the lower limit is made 0.0005% or more.

さらに必要に応じて以下の元素を含有してもよい。   Furthermore, you may contain the following elements as needed.

Ti,Nb,Vは炭化物を形成し強度の増加に有効であり,硬度の均一化に寄与して穴拡げ性を改善する。これらの結果を有効に発揮させるためには1種または2種以上を添加する必要がある。このとき、Ti,Nbはともに少なくとも0.005%の添加が必要であり、Vは0.01%の添加が必要である。しかし,これらの添加が過度になると析出強化により延性が劣化するため,上限としてTi,Nbはともに0.3%以下とし、Vは0.5%とする。これらの元素は単独で添加しても効果があり,複合添加しても効果がある。   Ti, Nb, and V form carbides and are effective in increasing the strength, and contribute to uniform hardness and improve hole expansibility. In order to exhibit these results effectively, it is necessary to add one or more. At this time, at least 0.005% of Ti and Nb needs to be added, and 0.01% of V needs to be added. However, if these additions become excessive, the ductility deteriorates due to precipitation strengthening. Therefore, the upper limit is set to 0.3% or less for Ti and Nb, and V is set to 0.5%. These elements are effective even when added alone, and are effective even when added in combination.

Ca,Mg,Zr,REMは硫化物系の介在物の形状を制御し,穴拡げ性の向上に有効である。これを有効に発揮させるためには1種または2種以上を添加する必要がある。このとき、各々の元素は0.0005%以上添加する必要がある。一方,多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性,延性を損なう。これより各々の添加量の上限を0.01%とする。   Ca, Mg, Zr, and REM control the shape of sulfide inclusions and are effective in improving the hole expansibility. In order to exhibit this effectively, it is necessary to add 1 type (s) or 2 or more types. At this time, 0.0005% or more of each element needs to be added. On the other hand, if a large amount is added, the cleanliness of the steel is worsened and the hole expandability and ductility are impaired. Accordingly, the upper limit of each addition amount is set to 0.01%.

CuはPとの複合添加により耐腐食性を向上する元素である,この作用を得るためには0.05%以上添加することが望ましい。但し,多量の添加は焼き入れ性を増加させ延性が低下するため,上限を3.0%とする。   Cu is an element that improves the corrosion resistance when combined with P. To obtain this effect, it is desirable to add 0.05% or more. However, the addition of a large amount increases the hardenability and lowers the ductility, so the upper limit is made 3.0%.

NiはCuを添加したときの熱間割れを抑制するために必須元素である。この効果を得るためには0.05%以上添加することが望ましい。但し,多量の添加はCu同様,焼き入れ性を増加させ延性が低下するため,上限を3.0%とする。   Ni is an essential element for suppressing hot cracking when Cu is added. In order to obtain this effect, it is desirable to add 0.05% or more. However, a large amount of addition, like Cu, increases the hardenability and decreases the ductility, so the upper limit is made 3.0%.

Moはセメンタイトの生成を抑制し,穴拡げ性を向上させるのに有効な元素であり,この効果を得るためには,0.05%以上の添加が必要である。但し,Moも焼き入れ性を高める元素であるため過剰の添加では延性が低下するため,上限を1.0%とする。   Mo is an element effective for suppressing the formation of cementite and improving the hole expansibility. To obtain this effect, 0.05% or more must be added. However, since Mo is also an element that enhances hardenability, the ductility is lowered when excessively added, so the upper limit is made 1.0%.

CrもVと同様,炭化物を形成し強度確保に寄与する。この効果を得るためには0.05%以上の添加が必要である,但し,Crは焼き入れ性を高める元素であるため,多量の添加により伸びを低減させる。そこで,上限を3.0%とする。   Cr, like V, forms carbides and contributes to securing strength. In order to obtain this effect, addition of 0.05% or more is necessary. However, since Cr is an element improving the hardenability, elongation is reduced by adding a large amount. Therefore, the upper limit is set to 3.0%.

BはMnと同様、強度に寄与する元素である。この効果を得るためには0.0001%以上の添加が必要である。但し,Bも焼き入れ性を高める元素であるため,多量の添加により延性が低下するため,上限を0.1%とする。   B, like Mn, is an element that contributes to strength. To obtain this effect, 0.0001% or more must be added. However, since B is also an element improving the hardenability, the ductility is lowered by adding a large amount, so the upper limit is made 0.1%.

次に、本発明の鋼板の結晶組織について説明する。   Next, the crystal structure of the steel sheet of the present invention will be described.

一般に2相組織とすることで強度−加工性バランスが向上することが知られている。これは延性の軟質相の特徴を活かしつつ、硬質相をちりばめる事により、効率的に鋼の強化を図ることで達成される。本発明はフェライト相を主相(第1相)とする。第2相をベイナイト相とするとマルテンサイト相に比べると強度上昇代は小さくなり、強度−延性バランスではDP鋼に及ばない。一方で、ベイナイト相はマルテンサイト相に比べ変形能が高く、また、相の強度も低いことからボイドが生成しにくくなるため、強度−穴拡げ性バランスでは優れた鋼となりうる。このため、フェライト、ベイナイト2相鋼の相分率、サイズに関わる検討は多く行われていたものの、ベイナイト粒の分散状態(すなわち配列)を積極的に利用して材質改善の可能性を検討した例は少ない。本発明はこの配列を使って、相の強度の低いベイナイト相でもマルテンサイト相と同様に効率的に強度を上げることで強度−延性バランスを改善させ、加えて、ベイナイト相の長所である強度−穴拡げ性バランスを更に向上させるものである。   In general, it is known that the strength-workability balance is improved by using a two-phase structure. This is achieved by effectively strengthening the steel by stiffening the hard phase while utilizing the characteristics of the ductile soft phase. In the present invention, the ferrite phase is the main phase (first phase). When the second phase is a bainite phase, the amount of increase in strength is smaller than that of the martensite phase, and the strength-ductility balance does not reach that of DP steel. On the other hand, the bainite phase has a higher deformability than the martensite phase, and since the phase strength is low, voids are less likely to be formed, so that it can be a steel with an excellent balance of strength and hole expandability. For this reason, many studies on the phase fraction and size of ferrite and bainite duplex steels have been conducted, but the possibility of material improvement was investigated by actively utilizing the dispersion state (ie, arrangement) of bainite grains. There are few examples. The present invention uses this arrangement to improve the strength-ductility balance by effectively increasing the strength even in the bainite phase having a low phase strength in the same manner as the martensite phase, and in addition, the strength that is an advantage of the bainite phase- It further improves the hole expansion balance.

研究者らがこの点に着目して鋭意研究を重ねた結果,熱延後段の圧延で再結晶制御を行う手法で、従来とは異なる、ベイナイト粒の配列を作りこむことが可能であり、この配列によって、鋼板の伸び、穴拡げ性、溶接特性を従来のDP鋼、フェライト、ベイナイト2相鋼に比較して飛躍的に改善できる鋼板となることを見出した。なお、本発明において、フェライト、ベイナイト2相鋼と便宜上表記しているが、少量のパーライト、マルテンサイト、残留オーステナイトが存在していても効果が変わるものではない。   Researchers focused on this point and conducted extensive research. As a result, it is possible to create an array of bainite grains that is different from the conventional one by using a method of controlling recrystallization by rolling after hot rolling. It has been found that the steel sheet can dramatically improve the elongation, hole expansibility, and welding characteristics of the steel plate as compared with conventional DP steel, ferrite, and bainite duplex steel. In the present invention, it is expressed as ferrite and bainite duplex steel for convenience, but the effect does not change even if a small amount of pearlite, martensite and retained austenite are present.

ベイナイト相はフェライト相と複合組織を形成しても、高い穴拡げ性と溶接特性を保つことができる。本技術はこのベイナイト相の存在状態を制御することで更に伸び、穴拡げ性、溶接特性の改善を図るものであり、面積分率で10%超のベイナイト相を含有する必要がある。特に、高い強度−延性を望む場合は15%超含有することが望ましい。但し、ベイナイト相の増加により、伸びの低下が顕著になるので、ベイナイト面積分率の上限は60%未満とすると好ましい。特に、伸びの要求値が高い場合は50%未満が望ましい。組織の残部は伸び確保の観点からはフェライト相を含有する。フェライト相は高い方が良く、面積分率で20%超必要である。特に伸びの要求が厳しいものは40%超の含有が望ましい。また、パーライトは伸びの低下、穴拡げ性の低下が顕著であるため少ない方が良い。この劣化を最小限に抑えるためにはパーライト相の体積率は10%未満とする。また、本発明において、フェライト、ベイナイト、パーライトの他にマルテンサイト、残留オーステナイトを含有しても効果は変わるものではない。本発明は、フェライト相を主相とし、主相を取り囲む第2相としてのベイナイト相の存在態様を規定するものである。フェライト相が主相であることは、組織を構成する各相の平均粒径のうち、フェライト相の平均粒径が最大であることから認識することができる。フェライト相とベイナイト相の合計は面積分率で50%以上とすると好ましい。加工性を重視する場合、更に好ましくは80%以上とする。   Even if the bainite phase forms a composite structure with the ferrite phase, it can maintain high hole expansibility and welding characteristics. This technique is intended to further improve the elongation, hole expansibility, and welding characteristics by controlling the existence state of the bainite phase, and it is necessary to contain a bainite phase with an area fraction of more than 10%. In particular, when high strength-ductility is desired, it is desirable to contain more than 15%. However, an increase in the bainite phase causes a significant decrease in elongation, so the upper limit of the bainite area fraction is preferably less than 60%. In particular, when the required elongation value is high, less than 50% is desirable. The remainder of the structure contains a ferrite phase from the viewpoint of securing elongation. The ferrite phase should be high, and the area fraction needs to exceed 20%. In particular, it is desirable to contain more than 40% when the demand for elongation is severe. In addition, pearlite is preferable to be less because the decrease in elongation and the decrease in hole expansibility are remarkable. In order to minimize this deterioration, the volume fraction of the pearlite phase is less than 10%. In the present invention, the effect is not changed even if martensite and retained austenite are contained in addition to ferrite, bainite and pearlite. In the present invention, the presence of the bainite phase as the second phase surrounding the main phase is defined with the ferrite phase as the main phase. The fact that the ferrite phase is the main phase can be recognized from the fact that the average particle diameter of the ferrite phase is the largest among the average particle diameters of the phases constituting the structure. The total of the ferrite phase and the bainite phase is preferably 50% or more in terms of area fraction. When workability is important, it is more preferably 80% or more.

本発明において、最も重要な特徴のひとつがベイナイト粒の配列である。本発明においてベイナイト粒はフェライト粒を取り囲む形に配列する。この時、フェライト粒界の内、ベイナイト粒によって占有されている部分の全フェライト粒界長さに対する比率を被覆率と定義する(図1参照)。この被覆率が30%を超えるとベイナイト相の連結性が高まり効率的に強化が達成でき、伸びと穴拡げ性、溶接強度が向上する。但し、厳しい伸びフランジ加工や穴拡げ加工、曲げ加工に対しては、被覆率は50%以上となることが望ましい。   In the present invention, one of the most important features is the arrangement of bainite grains. In the present invention, the bainite grains are arranged so as to surround the ferrite grains. At this time, the ratio of the portion occupied by the bainite grains in the ferrite grain boundaries to the total ferrite grain boundary length is defined as the coverage (see FIG. 1). When this coverage exceeds 30%, the connectivity of the bainite phase is increased and the reinforcement can be achieved efficiently, and the elongation, hole expansibility and welding strength are improved. However, it is desirable that the coverage is 50% or more for severe stretch flange processing, hole expansion processing, and bending processing.

この配列において、加工性の観点からベイナイト粒はアスペクト比が小さい方が良い。アスペクト比の高い粒は1つの粒内で歪集中が起こりやすく、ベイナイト粒の割れが容易に起こり、穴拡げ性の低下の原因となる。これを抑制するためにはアスペクト比は4以上のものが30%以下であることが好適である。また、ベイナイト粒のサイズは小さい方が良い。これは、粗大ベイナイト粒は被覆率を高めるために相対的にベイナイト相分率が高くなり、効率的な強化の妨げとなり、伸びの低下を引き起こすためである。このため、ベイナイト粒の平均径は4μm未満であると好適である。特に穴拡げ加工の多い場合や厳しい成形を強いられる場合、3μm未満とすることが望ましい。一方で、ベイナイト粒径が小さすぎると、変形に対して、ベイナイト粒間の境界が切断されやすく、穴拡げ性、局部延性が低下する。これを抑制するため、ベイナイト粒の平均径は1μm超とする。本発明において、ベイナイト粒とは、例えばEBSPなどを用いて方位解析を行った際、15°以上の方位差のある境界によって囲まれたベイナイト相を指す。   In this arrangement, the aspect ratio of the bainite grains is preferably small from the viewpoint of workability. A grain having a high aspect ratio is likely to cause strain concentration in one grain, and the bainite grain is easily cracked, resulting in a decrease in hole expansibility. In order to suppress this, an aspect ratio of 4 or more is preferably 30% or less. In addition, the smaller the size of the bainite grains, the better. This is because coarse bainite grains have a relatively high bainite phase fraction in order to increase the coverage, which hinders efficient strengthening and causes a decrease in elongation. For this reason, the average diameter of the bainite grains is preferably less than 4 μm. In particular, when there are many hole expanding processes or when strict molding is forced, it is desirable to make it less than 3 μm. On the other hand, if the bainite particle size is too small, the boundary between bainite grains is easily cut against deformation, and the hole expandability and local ductility are reduced. In order to suppress this, the average diameter of the bainite grains is set to more than 1 μm. In the present invention, the bainite grain refers to a bainite phase surrounded by a boundary having an orientation difference of 15 ° or more when orientation analysis is performed using, for example, EBSP.

本発明において、組織分率の測定は精度が優れた測定方法であれば、方法は問わないが、例えば、各相の判定および分率の測定は次のように実施した。鋼板にナイタールエッチングを行い,熱延方向断面の1/4tの位置の組織を光学顕微鏡もしくはSEMにて観察し,各相を判定、画像解析装置等を用いて,各相の面積分率を測定する。   In the present invention, the measurement of the tissue fraction is not limited as long as it is a measurement method with excellent accuracy. For example, the determination of each phase and the measurement of the fraction were performed as follows. Nittal etching is performed on the steel sheet, and the structure at 1 / 4t of the cross section in the hot rolling direction is observed with an optical microscope or SEM, each phase is judged, and the area fraction of each phase is determined using an image analyzer or the like. taking measurement.

ベイナイトによる被覆率の測定は、板厚1/4tの位置で、ランダムに視野を選び、最低10視野、500個以上のフェライト粒に対して測定することによって定量化する必要がある。   The measurement of the coverage by bainite needs to be quantified by selecting a visual field at a position of a thickness of 1/4 t and measuring at least 10 visual fields and 500 or more ferrite grains.

次にめっき層について説明する。   Next, the plating layer will be described.

耐食性が望まれる場合、本鋼板の表面にFe,Zn、Alおよび不可避不純物からなる亜鉛めっき層を付与することができる。このとき、めっき密着性の観点からはFe量に限界があり、上限を13%未満とする。これを超えると、めっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。   When corrosion resistance is desired, a galvanized layer composed of Fe, Zn, Al, and inevitable impurities can be provided on the surface of the steel sheet. At this time, the amount of Fe is limited from the viewpoint of plating adhesion, and the upper limit is made less than 13%. Exceeding this will impair the adhesion of the plating layer itself, causing the plating layer to break or drop off during processing and adhere to the mold, causing defects during molding.

スポット溶接性や塗装性が望まれる場合には、合金化処理によってこれらの特性を高めることができる。具体的には溶融亜鉛メッキ浴に浸漬した後、合金化処理を施すことで、めっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。合金化処理後のFe量が7%未満ではスポット溶接性が不十分となる。   When spot weldability or paintability is desired, these characteristics can be enhanced by alloying treatment. Specifically, after immersion in a hot dip galvanizing bath, an alloying treatment is performed, whereby Fe is taken into the plating layer, and a high-strength hot dip galvanized steel sheet excellent in paintability and spot weldability can be obtained. . If the Fe content after alloying is less than 7%, spot weldability is insufficient.

また、合金化処理を行わない場合めっき層中のFe量が7%未満でも、合金化により得られるスポット溶接を除く効果である耐食性と成形性や穴拡げ性は良好である。このとき、Fe量は0%を含む。   Further, when the alloying treatment is not performed, even if the amount of Fe in the plating layer is less than 7%, the corrosion resistance, the formability and the hole expandability, which are the effects excluding spot welding obtained by alloying, are good. At this time, the amount of Fe includes 0%.

めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。 The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of single-sided adhesion from the viewpoint of corrosion resistance. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.

次に本発明の高強度熱延鋼板の製造方法について説明する。   Next, the manufacturing method of the high intensity | strength hot-rolled steel plate of this invention is demonstrated.

本発明の高強度熱延鋼板は、本発明の成分を有する鋳造スラブを直接または一旦冷却した後1100℃以上に加熱し、仕上げ圧延で圧延を実施する最終スタンド前のスタンドの圧延率を20%超とし、最終スタンドでの圧延を、Ar3変態点以上で圧延率を10%超の圧延を行い、圧延終了2秒未満の後、少なくとも50℃以上の強制冷却を実施し、続けて、平均冷却速度25℃/s超にて800℃以下まで強制冷却し、800℃以下、600℃超の温度から4秒以上、10秒以下の自然放冷を設けた上、再度700℃以下、300℃超まで強制冷却を行い、その温度で巻取り処理を行うことにより達成できる。   The high-strength hot-rolled steel sheet of the present invention directly or once cools the cast slab having the components of the present invention, and then heats it to 1100 ° C. or higher, and the rolling ratio of the stand before the final stand that performs rolling by finish rolling is 20%. The rolling at the final stand is over, the rolling rate is over 10% at the Ar3 transformation point or more, the forced cooling is performed at least 50 ° C. after less than 2 seconds, and then the average cooling is performed. It is forcibly cooled to 800 ° C. or lower at a rate of more than 25 ° C./s, and is provided with natural cooling for 4 to 10 seconds from a temperature of 800 ° C. or lower and 600 ° C. This can be achieved by forcibly cooling to a temperature and winding at that temperature.

鋳造スラブは熱延の前に、均質化や炭窒化物の溶解の必要がある。これを行う際、連続鋳造のスラブを高温のまま、または、再加熱を行ってもよい。高温に保持、または再加熱の温度が、1100℃未満では、均質化、溶解とも不十分となり、強度の低下や加工性の低下を起こす。一方で、1300℃を超えると、製造コスト、生産性が低下すること、また、初期のオーステナイト粒径が大きくなることで最終的に混粒になりやすくなる。そこで、1100℃以上とする必要があり、1300℃未満が望ましい。   Cast slabs need to be homogenized and carbonitride dissolved before hot rolling. When this is done, the continuously cast slab may be kept hot or reheated. If the temperature for maintaining at a high temperature or reheating is less than 1100 ° C., both homogenization and dissolution become insufficient, resulting in a reduction in strength and workability. On the other hand, when the temperature exceeds 1300 ° C., the production cost and productivity are lowered, and the initial austenite particle size is increased, so that it tends to be finally mixed. Therefore, it is necessary to set the temperature to 1100 ° C. or higher, and preferably less than 1300 ° C.

次に、仕上げ圧延終了温度はAr3以上とする。この温度を下回ると加工フェライトが残ることで伸びが著しく低下する。   Next, finish rolling finish temperature shall be Ar3 or more. Below this temperature, the processed ferrite remains and the elongation is significantly reduced.

最終スタンド前のスタンドでの圧延後、最終スタンドまでの間に再結晶率を高めることで被覆率を高めることができる。これを達成するためにはこのスタンド(最終スタンド前のスタンド)における圧延率は20%超とする。   The coverage can be increased by increasing the recrystallization rate after rolling on the stand before the final stand and before the final stand. In order to achieve this, the rolling rate in this stand (the stand before the final stand) is set to more than 20%.

最終スタンドの圧延率は10%超とする。この圧下率は高い方がベイナイト相の微細化に有効である。10%以下では部分再結晶により混粒組織となることで被覆率が低下する上、伸びが低下する。なお、本発明で最終スタンドの定義は2%以上の圧延を実施しているスタンドの内、最後に位置するスタンドを意味する。例えば、最後に位置していても、そのスタンドが水切り程度の軽圧下(2%未満)の圧延しかしない場合は、その手前のスタンドを最終スタンドとする。   The rolling rate of the final stand is over 10%. A higher rolling reduction is effective for refinement of the bainite phase. If it is 10% or less, the covering ratio is lowered due to a mixed grain structure by partial recrystallization, and the elongation is lowered. In addition, the definition of the last stand in this invention means the stand located last among the stands which are rolling 2% or more. For example, even if it is located at the end, if the stand is only rolled under light pressure (less than 2%) to the extent of draining, the stand before that is set as the final stand.

圧延後はしかるべく速やかに強制冷却を行う。加工終了から強制冷却開始までの間は粒成長が起こることで変態によって生成するフェライト粒、ベイナイト粒とも粗大になりやすい。また、強制冷却での急冷により、変態の駆動力のロスを抑えることができるため、フェライト粒が細かくなり、被覆率が高くなりやすい。この効果を得るためには、圧延後、2秒未満の間に強制冷却を開始し、少なくとも50℃以上の温度を低下させる。冷却開始までは短いほど良いが、冷却設備の配置の制約から現実的には0.05秒以上となる。このあと、熱間圧延設備の計測器帯通過時は自然放冷となるが、計測器帯通過後は続けて、平均冷却速度25℃/s超にて、800℃以下まで強制冷却する必要がある。強制冷却の冷却速度は25℃/s以下や停止温度が800℃を超えると変態の駆動力のロスが発生する。   Forced cooling is performed as soon as possible after rolling. Grain growth occurs from the end of processing to the start of forced cooling, and both ferrite grains and bainite grains generated by transformation tend to be coarse. Moreover, since the loss of the driving force for transformation can be suppressed by rapid cooling by forced cooling, the ferrite grains become fine and the coverage tends to be high. In order to obtain this effect, forced cooling is started within 2 seconds after rolling, and the temperature is lowered by at least 50 ° C. or more. The shorter the start of cooling, the better. However, in practice, it takes 0.05 seconds or more due to the restriction of the arrangement of the cooling equipment. After this, when passing through the measuring instrument zone of the hot rolling facility, it is naturally cooled, but after passing the measuring instrument zone, it is necessary to forcibly cool to 800 ° C. or less at an average cooling rate of more than 25 ° C./s. is there. If the cooling rate of forced cooling is 25 ° C./s or less or the stop temperature exceeds 800 ° C., loss of driving force for transformation occurs.

800℃以下まで強制冷却の後は、800℃以下、600℃超の領域にて、4秒以上、10秒以下の自然放冷を開始する。この間にフェライト生成が起こり、Cの拡散により、オーステナイトへのC濃化が起こる。このフェライトの生成により延性が向上する上、オーステナイトへ濃化したCはその後の強制冷却によりベイナイト相の強度に寄与するため、自然放冷は重要である。自然放冷開始温度が800℃を超えると、フェライト率が十分に取れなくなる上、粒が大きくなりすぎ、最終的なベイナイト粒も大きくなりやすい。自然放冷開始温度が600℃以下、または、自然放冷時間が4秒未満では所定のフェライト分率が得られず、ベイナイト率も高くなる。一方で自然放冷時間が10秒を超えるとパーライトの形成により、伸び、穴拡げ性が低下するうえ、ベイナイト率が低くなる。パーライトの形成を抑える観点では8秒以下とすることが望ましい。   After forced cooling to 800 ° C. or less, natural cooling is started for 4 seconds or more and 10 seconds or less in the region of 800 ° C. or less and over 600 ° C. Ferrite formation occurs during this time, and C concentration to austenite occurs due to C diffusion. The ductility is improved by the formation of this ferrite, and C concentrated to austenite contributes to the strength of the bainite phase by subsequent forced cooling, so that natural cooling is important. When the natural cooling start temperature exceeds 800 ° C., the ferrite rate cannot be sufficiently obtained, the grains become too large, and the final bainite grains tend to be large. When the natural cooling start temperature is 600 ° C. or less, or when the natural cooling time is less than 4 seconds, a predetermined ferrite fraction cannot be obtained, and the bainite ratio also increases. On the other hand, if the natural cooling time exceeds 10 seconds, the formation of pearlite lowers the elongation and hole expansibility, and the bainite ratio decreases. From the viewpoint of suppressing the formation of pearlite, it is desirable to set it to 8 seconds or less.

Cの濃化したオーステナイトをベイナイト変態させるためには自然放冷後に700℃以下、300℃超まで強制冷却し、巻き取る。このときの冷却速度は平均で10℃/s以上が望ましい。巻取温度が700℃を超えると巻取り中にパーライト相が生成し伸び、穴拡げ性が低下する。また、300℃以下ではマルテンサイトが生成し、穴拡げ性が低下する。   In order to transform the C-enriched austenite into bainite, it is naturally cooled and then forcedly cooled to 700 ° C. or lower and higher than 300 ° C. and wound up. The cooling rate at this time is desirably 10 ° C./s or more on average. When the coiling temperature exceeds 700 ° C., a pearlite phase is generated and stretched during the coiling, and the hole expandability is lowered. Further, at 300 ° C. or lower, martensite is generated, and the hole expandability is lowered.

本発明の方法においてさらに、自然放冷時間が5秒以上のとき、ベイナイト相の面積分率を60%以下とすることができる。また、仕上圧延開始温度を1000℃以上とすると仕上げ圧延の前段で繰り返し再結晶が起こり最終的なベイナイトの粒の平均径を4μm未満とすることができる。また、最終スタンドの圧延率が45%未満とすると平均径は1μm超と出来る。最終スタンド前のスタンドの圧延率を50%未満とするとベイナイト粒のアスペクト比が4以上のものが30%以下に出来る。   Furthermore, in the method of the present invention, when the natural cooling time is 5 seconds or more, the area fraction of the bainite phase can be 60% or less. Further, when the finish rolling start temperature is 1000 ° C. or higher, recrystallization occurs repeatedly before the finish rolling, and the final average bainite grain diameter can be made less than 4 μm. If the rolling rate of the final stand is less than 45%, the average diameter can be over 1 μm. If the rolling ratio of the stand before the final stand is less than 50%, the bainite grains having an aspect ratio of 4 or more can be made 30% or less.

この冷却後、鋼板は表層へのめっき付与を目的にめっき浴への浸漬をしても、その後、600℃以下の温度域での合金化処理を施しても本技術の効果が失われることはない。   After cooling, the effect of the present technology is lost even if the steel sheet is immersed in a plating bath for the purpose of providing plating to the surface layer, and then alloyed in a temperature range of 600 ° C. or lower. Absent.

次に本発明を実施例に基づいて説明する。   Next, this invention is demonstrated based on an Example.

表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。符号A〜Zが本発明に従った成分の鋼で符号a,dの鋼はCの添加量,bの鋼はMn,P添加量,cの鋼はNb添加量,eの鋼はSの添加量,fの鋼はN、Ti添加量、gはCaが本発明の範囲外である。表2以降における鋼符号は、例えば「A1」とあるのは、表1の鋼Aを用いた1番目の実施例であることを意味する。表1〜3において、本発明範囲から外れる数値・符号にアンダーラインを付している。   Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. Reference signs A to Z are steels of the components according to the present invention, steels a and d are addition amounts of C, steels b are addition amounts of Mn and P, steels c are addition amounts of Nb, steels e are S The amount of steel added is N, the amount of Ti added, and the amount of Ca is outside the scope of the present invention. For example, “A1” in the steel codes in Table 2 and later means that the steel code in Table 1 is the first example. In Tables 1 to 3, numerical values and symbols outside the scope of the present invention are underlined.

これらの鋼を表2、3に示す条件で熱間圧延、ROT冷却を行った。板厚は2.6〜3.2mmとし、この板はその後、酸洗し,0.5%のスキンパス圧延を行い、材質評価に供した。表2、3の「めっき」欄に「あり」と記載した材料については、全て請求項8のめっき特性を満たす溶融亜鉛めっき層を形成している。   These steels were hot-rolled and ROT-cooled under the conditions shown in Tables 2 and 3. The plate thickness was 2.6 to 3.2 mm, and the plate was then pickled, subjected to 0.5% skin pass rolling, and subjected to material evaluation. For the materials described as “Yes” in the “Plating” column of Tables 2 and 3, a hot-dip galvanized layer satisfying the plating characteristics of claim 8 is formed.

得られた鋼板の組織分率、および、ベイナイト粒によるフェライト粒の被覆率、ベイナイト粒の平均径、アスペクト比が4以上となるベイナイト粒の割合を表2、3に示す。なお、本発明鋼についてはいずれも、組織を構成する各相の平均粒径のうち、フェライト相の平均粒径が最大であり、フェライト相を主相とすることが確認できた。これによる、機械特性、溶接特性を表2、3と図2、3に示す。引っ張り試験はJIS Z2241、穴拡げ試験はJIS Z2256に準拠した。図2、3から明らかなように、伸び、穴拡げ性のいずれも、本発明鋼と比較鋼のそれぞれで、引張強度が高くなるほど特性値が低くなっている。そこで、伸びは「伸び下限=−0.0265×引張強度+41.5」、穴拡げ性は「穴拡げ性下限=−0.107×引張強度+180」を境界とし、これよりも高い数値は良好とし、これよりも低い数値は本発明外として表2、3に下線を付した。また、溶接特性はアーク溶接を施し、溶接部引張試験を実施したときに溶融金属部またはHAZ部で切れたものを不良「×」、母材で切れたものを良好「○」とした。   Tables 2 and 3 show the structure fraction of the obtained steel sheet, the ferrite grain coverage with bainite grains, the average diameter of bainite grains, and the proportion of bainite grains having an aspect ratio of 4 or more. In all of the steels of the present invention, the average particle diameter of the ferrite phase was the largest among the average particle diameters of the phases constituting the structure, and it was confirmed that the ferrite phase was the main phase. Tables 2 and 3 and FIGS. The tensile test conformed to JIS Z2241, and the hole expansion test conformed to JIS Z2256. As is apparent from FIGS. 2 and 3, the elongation and hole expansibility of the steel of the present invention and the comparative steel each have a lower characteristic value as the tensile strength increases. Therefore, the elongation is “elongation lower limit = −0.0265 × tensile strength + 41.5”, and the hole expandability is “hole expandability lower limit = −0.107 × tensile strength + 180” as a boundary. The numerical values lower than this are underlined in Tables 2 and 3 as outside the present invention. In addition, the welding characteristics were arc welding, and when the welded portion tensile test was performed, a piece cut at the molten metal portion or the HAZ portion was judged as “bad” and a piece cut at the base material was judged as “good”.

本発明の請求項1のみを満たすグループ(発明鋼2)は比較鋼に比べて優れた特性を示す。更に、本発明鋼の請求項1、請求項2、請求項7の全てを満たすグループ(発明鋼1)は、更に優れた加工特性を示す。一方で、本発明の範囲外の比較鋼は伸び、穴拡げ性、溶接特性において発明鋼に比べ劣位にある。すなわち、本発明規定を満たすもののみが、優れた加工性(伸び、穴拡げ性)と溶接特性を併せ持つことができることがわかる。   The group satisfying only claim 1 of the present invention (invention steel 2) exhibits excellent characteristics as compared with the comparative steel. Furthermore, the group (Invention Steel 1) satisfying all of Claims 1, 2, and 7 of the steel of the present invention shows further excellent processing characteristics. On the other hand, comparative steels outside the scope of the present invention are inferior to the inventive steels in terms of elongation, hole expansibility and welding characteristics. That is, it can be seen that only those satisfying the present invention can have both excellent workability (elongation and hole expandability) and welding characteristics.

Claims (9)

質量%で、
C :0.03%以上、0.35%以下、
Si:0.01%以上、2.0%以下、
Mn:0.3%以上、4.0%以下、
P :0.001%以上、0.10%以下、
S :0.0005%以上、0.05%以下、
N :0.0005%以上、0.010%以下、
Al:0.01%以上、2.0%以下、
を含有して、残部Fe及び不可避的不純物からなり、結晶組織が、面積分率でベイナイト相を10%超、フェライト相を20%超含有し、パーライト相が10%未満であり、ベイナイト粒によるフェライト粒の被覆率が30%超であり、ベイナイト粒の平均径が4μm未満であることを特徴とする加工性と溶接特性に優れた高強度熱延鋼板。
ここで、ベイナイト粒によるフェライト粒の被覆率とは、全フェライト粒界長さを100としたとき、ベイナイト粒によって占有されているフェライト粒界部分の長さ比率を百分率で表示したものである。
% By mass
C: 0.03% or more, 0.35% or less,
Si: 0.01% or more, 2.0% or less,
Mn: 0.3% or more and 4.0% or less,
P: 0.001% or more, 0.10% or less,
S: 0.0005% or more, 0.05% or less,
N: 0.0005% or more, 0.010% or less,
Al: 0.01% or more, 2.0% or less,
The balance is composed of Fe and inevitable impurities, and the crystal structure is more than 10% bainite phase and more than 20% ferrite phase by area fraction, and the pearlite phase is less than 10%. ferrite grains coverage Ri than 30% der, high-strength hot-rolled steel sheet having an average diameter of bainite grains is excellent in workability and welding characteristics, characterized in der Rukoto less than 4 [mu] m.
Here, the coverage of ferrite grains with bainite grains is the percentage ratio of the length of ferrite grain boundaries occupied by bainite grains, where the total ferrite grain boundary length is 100.
さらに、ベイナイト相の面積分率が60%未満であり、個々のベイナイト粒のアスペクト比が4以上のものが30%以下であることを特徴とする請求項1に記載の加工性と溶接特性に優れた高強度熱延鋼板。   Furthermore, the workability and welding characteristics according to claim 1, wherein the area fraction of the bainite phase is less than 60%, and the aspect ratio of individual bainite grains is 4 or more and 30% or less. Excellent high-strength hot-rolled steel sheet. さらに、鋼中に質量%で
Cr:0.05%以上、3.0%以下,
Mo:0.05%以上、1.0%以下
Ni:0.05%以上、3.0%以下,
Cu:0.05%以上、3.0%以下,
の1種又は2種以上を含有することを特徴とする請求項1または2に記載の加工性と溶接特性に優れた高強度熱延鋼板。
Furthermore, Cr: 0.05% or more and 3.0% or less in mass% in steel,
Mo: 0.05% or more, 1.0% or less Ni: 0.05% or more, 3.0% or less,
Cu: 0.05% or more, 3.0% or less,
The high-strength hot-rolled steel sheet excellent in workability and welding characteristics according to claim 1 or 2, characterized by containing one or more of the following.
さらに、鋼中に質量%で、
Nb:0.005%以上、0.3%以下,
Ti:0.005%以上、0.3%以下,
V :0.01%以上、0.5%以下,
の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
Furthermore, in steel,
Nb: 0.005% or more, 0.3% or less,
Ti: 0.005% or more, 0.3% or less,
V: 0.01% or more, 0.5% or less,
The high-strength hot-rolled steel sheet excellent in workability and welding characteristics according to any one of claims 1 to 3, characterized by containing one or more of the following.
さらに、鋼中に質量%で、
B:0.0001%以上,0.1%以下を含有することを特徴とする請求項1〜4のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
Furthermore, in steel,
B: The high-strength hot-rolled steel sheet excellent in workability and welding characteristics according to any one of claims 1 to 4, characterized by containing 0.0001% or more and 0.1% or less.
さらに、鋼中に質量%で、
Ca:0.0005%以上、0.01%以下,
Mg:0.0005%以上、0.01%以下,
Zr:0.0005%以上、0.01%以下,
REM:0.0005%以上、0.01%以下,
の1種または2種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
Furthermore, in steel,
Ca: 0.0005% or more, 0.01% or less,
Mg: 0.0005% or more, 0.01% or less,
Zr: 0.0005% or more, 0.01% or less,
REM: 0.0005% or more, 0.01% or less,
The high-strength hot-rolled steel sheet excellent in workability and welding characteristics according to any one of claims 1 to 5, characterized by containing one or more of the following.
さらに、結晶組織において、
ベイナイト粒の平均径が1μm超であることを特徴とする 請求項1〜6のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。
Furthermore, in the crystal structure,
The high-strength hot-rolled steel sheet having excellent workability and welding characteristics according to any one of claims 1 to 6, wherein an average diameter of bainite grains is more than 1 µm.
さらに、鋼板の表面に、Feを13%未満含有し、残部がZn,Alおよび不可避的不純物からなる溶融亜鉛めっき層を有することを特徴とする請求項1〜7のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板。   Furthermore, it has less than 13% of Fe on the surface of a steel plate, and the remainder has a hot dip galvanized layer which consists of Zn, Al, and an unavoidable impurity, The any one of Claims 1-7 characterized by the above-mentioned. High-strength hot-rolled steel sheet with excellent workability and welding characteristics. 鋳造スラブを直接または一旦冷却した後1100℃以上に加熱し、仕上圧延開始温度を1000℃以上とし、仕上げ圧延で圧延を実施する最終スタンド前のスタンドの圧延率を20%超とし、最終スタンドでの圧延を、Ar3変態点以上で圧延率を10%超の圧延を行い、圧延終了2秒未満の後、少なくとも50℃以上の強制冷却を実施し、続けて、平均冷却速度25℃/s超にて800℃以下まで強制冷却し、800℃以下、600℃超の温度から4秒以上、10秒以下の自然放冷を設けた上、再度700℃以下、300℃超まで強制冷却を行うことを特徴とする請求項1〜8のいずれか1項に記載の加工性と溶接特性に優れた高強度熱延鋼板の製造方法。 The cast slab is directly or once cooled and then heated to 1100 ° C or higher, the finishing rolling start temperature is set to 1000 ° C or higher, the rolling ratio of the stand before the final stand for rolling by finish rolling is over 20%, and the final stand The rolling is performed at an Ar3 transformation point or more and a rolling rate of more than 10%, and after less than 2 seconds from the end of rolling, forced cooling of at least 50 ° C. is performed, followed by an average cooling rate of over 25 ° C./s. Forcibly cool down to 800 ° C or lower, provide natural cooling for 4 seconds to 10 seconds from a temperature of 800 ° C or lower and over 600 ° C, and then perform forced cooling again to 700 ° C or lower and higher than 300 ° C. The method for producing a high-strength hot-rolled steel sheet having excellent workability and welding characteristics according to any one of claims 1 to 8.
JP2013198328A 2013-09-25 2013-09-25 High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof Active JP6201570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198328A JP6201570B2 (en) 2013-09-25 2013-09-25 High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198328A JP6201570B2 (en) 2013-09-25 2013-09-25 High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015063731A JP2015063731A (en) 2015-04-09
JP6201570B2 true JP6201570B2 (en) 2017-09-27

Family

ID=52831862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198328A Active JP6201570B2 (en) 2013-09-25 2013-09-25 High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6201570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443555B2 (en) 2016-03-25 2018-12-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101977474B1 (en) * 2017-08-09 2019-05-10 주식회사 포스코 Plated steel sheet having excellent surface quality, strength and ductility
JPWO2022269742A1 (en) * 2021-06-22 2022-12-29

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179346A (en) * 1991-12-31 1993-07-20 Sumitomo Metal Ind Ltd Production of hot rolled steel sheet having high notch fatigue strength
JPH06240356A (en) * 1993-02-10 1994-08-30 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel plate excellent in workability
FR2748033B1 (en) * 1996-04-26 1998-05-22 Lorraine Laminage PROCESS FOR PRODUCING A STRIP OF VERY HIGH STRENGTH HOT-ROLLED STEEL FOR USE IN FORMING AND IN PARTICULAR FOR STAMPING
JP4180909B2 (en) * 2002-12-26 2008-11-12 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same
JP4888255B2 (en) * 2007-06-29 2012-02-29 住友金属工業株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5252128B2 (en) * 2010-05-27 2013-07-31 新日鐵住金株式会社 Steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015063731A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6354909B2 (en) High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof
JP6179675B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP6260087B2 (en) High-strength hot-rolled steel sheet with excellent workability and fatigue characteristics and method for producing the same
US10711333B2 (en) High-strength steel sheet and method for manufacturing same
CN109642288B (en) High-strength steel sheet and method for producing same
JP6179674B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP5018934B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
US10954578B2 (en) High-strength steel sheet and method for manufacturing same
JP5018935B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR102143834B1 (en) Steel sheet, coated steel sheet, and mehtods for manufacturing same
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP6201571B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility, elongation and welding characteristics and method for producing the same
JP4460343B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP5672421B1 (en) High strength hot rolled steel sheet and method for producing the same
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP2011168876A (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method of manufacturing the same
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
KR102177591B1 (en) High-strength steel sheet and its manufacturing method
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6201570B2 (en) High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
KR20120121810A (en) High strength steel sheet and method of manufacturing the steel sheet
JP2018003115A (en) High strength steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350