JP6201307B2 - Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy - Google Patents

Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy Download PDF

Info

Publication number
JP6201307B2
JP6201307B2 JP2012268800A JP2012268800A JP6201307B2 JP 6201307 B2 JP6201307 B2 JP 6201307B2 JP 2012268800 A JP2012268800 A JP 2012268800A JP 2012268800 A JP2012268800 A JP 2012268800A JP 6201307 B2 JP6201307 B2 JP 6201307B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
rare earth
phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012268800A
Other languages
Japanese (ja)
Other versions
JP2013199703A (en
Inventor
学 金本
金本  学
奥田 大輔
大輔 奥田
児玉 充浩
充浩 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2012268800A priority Critical patent/JP6201307B2/en
Priority to CN201310045698.4A priority patent/CN103259003B/en
Priority to EP13154884.4A priority patent/EP2628812A1/en
Priority to US13/766,033 priority patent/US20130213532A1/en
Publication of JP2013199703A publication Critical patent/JP2013199703A/en
Application granted granted Critical
Publication of JP6201307B2 publication Critical patent/JP6201307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、耐食性に優れた水素吸蔵合金、それを用いてなる電極及びニッケル水素蓄電池、並びに、当該水素吸蔵合金の製造方法に関するものである。   The present invention relates to a hydrogen storage alloy having excellent corrosion resistance, an electrode and a nickel-metal hydride storage battery using the same, and a method for producing the hydrogen storage alloy.

水素吸蔵合金は、水素を安全かつ容易に貯蔵でき、クリーンなエネルギー源として期待される材料であり、エネルギーの新しい貯蔵・変換材料として注目されている。   The hydrogen storage alloy is a material that can be stored safely and easily and is expected as a clean energy source, and has attracted attention as a new energy storage and conversion material.

このような水素吸蔵合金の応用分野は、水素の貯蔵・輸送、熱の貯蔵・輸送、熱−機械エネルギーの変換、水素の分離・精製、水素同位体の分離、ニッケル水素蓄電池、合成化学における触媒、温度センサー等の多岐にわたるが、このうち負極活物質として水素吸蔵合金を用いるニッケル水素蓄電池は、小型、軽量高出力等の利点を有することより、需要が拡大している。   Applications of such hydrogen storage alloys include hydrogen storage / transport, heat storage / transport, thermal-mechanical energy conversion, hydrogen separation / purification, hydrogen isotope separation, nickel-metal hydride storage batteries, catalysts in synthetic chemistry However, nickel-metal hydride storage batteries using a hydrogen storage alloy as a negative electrode active material are in increasing demand because they have advantages such as small size, light weight and high output.

ニッケル水素蓄電池の負極活物質としては、従来、希土類元素及びNiを主たる構成元素とするAB型合金が用いられてきたが、このような水素吸蔵合金は、高温雰囲気下で電池を保存したり、充放電を繰り返したりすると、腐食しやすく、腐食により希土類の水酸化物等が表面に生成し、その形態が変化するという問題を有する。 As a negative electrode active material of a nickel metal hydride storage battery, an AB 5 type alloy containing rare earth elements and Ni as main constituent elements has been used conventionally. Such hydrogen storage alloys can store batteries in a high temperature atmosphere. When charging / discharging is repeated, it tends to corrode, and a rare earth hydroxide or the like is generated on the surface due to the corrosion, resulting in a change in its form.

このため、ニッケル水素蓄電池の長寿命化を図るためには、水素吸蔵合金の耐食性を向上させることが重要である。水素吸蔵合金の耐食性を向上させる方法としては、負極にY(イットリウム)を含有させることが提案されている(特許文献1、2参照)。しかしながら、これらの方法では、水素吸蔵合金の耐食性を充分に向上させることができなかった。   For this reason, it is important to improve the corrosion resistance of the hydrogen storage alloy in order to extend the life of the nickel metal hydride storage battery. As a method for improving the corrosion resistance of the hydrogen storage alloy, it has been proposed to contain Y (yttrium) in the negative electrode (see Patent Documents 1 and 2). However, these methods have not been able to sufficiently improve the corrosion resistance of the hydrogen storage alloy.

特開平6−215765号公報JP-A-6-215765 特開2001−307721号公報JP 2001-307721 A

そこで本発明は、上記現状に鑑み、耐食性に優れた水素吸蔵合金、それを用いてなる電極及びニッケル水素蓄電池、並びに、当該水素吸蔵合金の製造方法を提供すべく図ったものである。   In view of the above, the present invention has been made to provide a hydrogen storage alloy having excellent corrosion resistance, an electrode and a nickel-metal hydride storage battery using the same, and a method for producing the hydrogen storage alloy.

本発明者は、Yを水素吸蔵合金中に均一に分布させるのではなく、偏析させることにより、YがLaやNiと安定な化合物を形成するのを妨げることを見出した。すると、アルカリ溶液中で水酸化イットリウム(Y(OH))の被膜が形成されやすくなり、水素吸蔵合金の耐食性を飛躍的に向上させることに成功した。一般的に合金において偏析は、性能の低下につながると考えられ、好ましくないものとされている。本発明はこのような新規な知見に基づき完成されたものである。 The present inventor has found that Y is prevented from forming a stable compound with La or Ni by segregating rather than uniformly distributing Y in the hydrogen storage alloy. Then, it became easy to form a film of yttrium hydroxide (Y (OH) 3 ) in the alkaline solution, and succeeded in dramatically improving the corrosion resistance of the hydrogen storage alloy. In general, segregation in an alloy is considered to lead to a decrease in performance, and is not preferable. The present invention has been completed based on such novel findings.

すなわち本発明に係る水素吸蔵合金は、La、Ni、及び、Y又は重希土類元素を含有する少なくとも二つの相を有する水素吸蔵合金であって、第一の相が、一般式R1R2NiCoR3(式中、R1はLa、並びに、Yと重希土類元素とを除く希土類元素、Mg、Ca及びZrからなる群より選ばれる少なくとも1種の元素であり、R2はY及び重希土類元素からなる群より選ばれる少なくとも1種の元素であり、R3はMn、Al、Zn、Fe、Cu及びSiからなる群より選ばれる少なくとも1種の元素であり、a、b、c、d及びeは、0<b<0.3、a+b=1、5.15<c+d+e<5.45、0≦d≦1、かつ、0≦e≦1を満たす数値である。)で表される組成を有し、第二の相が、Y又は重希土類元素の濃度が前記第一の相より高く、Niの濃度が前記第一の相の0.02倍以下であり、前記第一の相中に分散していることを特徴とする。ここで、重希土類元素(Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)は、イオン半径、原子半径がYに近く、また、反応次数がYとほぼ同じであることより、Yと同様な効果が得られると考えられる。 That is, the hydrogen storage alloy according to the present invention is a hydrogen storage alloy having at least two phases containing La, Ni, and Y or a heavy rare earth element, and the first phase has the general formula R1 a R2 b Ni c Co d R3 e (wherein R1 is La and at least one element selected from the group consisting of rare earth elements excluding Y and heavy rare earth elements, Mg, Ca and Zr, and R2 is Y and heavy R3 is at least one element selected from the group consisting of rare earth elements, R3 is at least one element selected from the group consisting of Mn, Al, Zn, Fe, Cu and Si, and a, b, c, d And e are numerical values satisfying 0 <b <0.3, a + b = 1, 5.15 <c + d + e <5.45, 0 ≦ d ≦ 1, and 0 ≦ e ≦ 1. And the second phase is Y or heavy rare earth element The elemental concentration is higher than that of the first phase, the concentration of Ni is 0.02 times or less that of the first phase, and is dispersed in the first phase. Here, heavy rare earth elements (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) have an ionic radius and an atomic radius close to Y, and the reaction order is almost the same as Y. It is considered that the same effect can be obtained.

前記水素吸蔵合金は、R1が、La及びCeであり、R3が、Mn及び/又はAlであり、c、d及びeが、5.20<c+d+e<5.45、かつ、0≦d≦0.45であることが好ましい。   In the hydrogen storage alloy, R1 is La and Ce, R3 is Mn and / or Al, c, d and e are 5.20 <c + d + e <5.45, and 0 ≦ d ≦ 0. .45 is preferred.

本発明に係る水素吸蔵合金を含有する電極や、当該電極を負極として備えているニッケル水素蓄電池もまた、本発明の一つである。   An electrode containing the hydrogen storage alloy according to the present invention and a nickel metal hydride storage battery including the electrode as a negative electrode are also one aspect of the present invention.

また、本発明に係る水素吸蔵合金の製造方法もまた、本発明の一つである。すなわち本発明に係る水素吸蔵合金の製造方法は、原料金属を高周波誘導溶解法を用いてY又は重希土類元素の融点温度未満で溶融し、合金化する工程と、得られた溶融合金を冷却する工程と、冷却された合金を900〜1080℃で熱処理する工程と、を備えていることを特徴とする。   Moreover, the manufacturing method of the hydrogen storage alloy which concerns on this invention is also one of this invention. That is, in the method for producing a hydrogen storage alloy according to the present invention, the raw metal is melted at a temperature lower than the melting point of Y or heavy rare earth element using a high frequency induction melting method and alloyed, and the obtained molten alloy is cooled And a step of heat-treating the cooled alloy at 900 to 1080 ° C.

本発明は、上述した構成よりなるので、水素吸蔵合金の耐食性を飛躍的に向上することができ、長寿命なニッケル水素蓄電池を得ることができる。   Since this invention consists of the structure mentioned above, the corrosion resistance of a hydrogen storage alloy can be improved dramatically and a long-life nickel-metal hydride storage battery can be obtained.

本発明に係る水素吸蔵合金の切断面における母相と偏析相とを模式的に示した図。The figure which showed typically the parent phase and the segregation phase in the cut surface of the hydrogen storage alloy which concerns on this invention. EPMA装置により撮像された実施例1の水素吸蔵合金インゴットの切断面を示す写真。The photograph which shows the cut surface of the hydrogen storage alloy ingot of Example 1 imaged with the EPMA apparatus.

以下に本発明を詳述する。   The present invention is described in detail below.

本発明に係る水素吸蔵合金は、La、Ni、及び、Y又は重希土類元素を含有する少なくとも二つの相を有する水素吸蔵合金であって、Y又は重希土類元素の濃度が母相(第一の相)より高く、Niの濃度が母相の0.02倍以下である偏析相(第二の相)が該母相中に分散しているAB型の水素吸蔵合金である。前記偏析相の有無は、EPMA(Electron Probe Micro Analyzer)を用いて分析することができる。なお、図1は、水素吸蔵合金の切断面における母相と偏析相とを模式的に示したものである。なお、本発明で偏析相(第二の相)を有するとは、EPMAの分析において合金中の成分元素の割合が母相(第一の相)とは異なるものをいい、その偏析相(第二の相)はAB型(CaCu型)以外のものであることをいう。 The hydrogen storage alloy according to the present invention is a hydrogen storage alloy having at least two phases containing La, Ni, and Y or heavy rare earth elements, wherein the concentration of Y or heavy rare earth elements is the parent phase (first higher than the phase) segregation phase (secondary phase concentration of Ni is less than 0.02 times the mother phase) is AB 5 type hydrogen storage alloy is dispersed in the mother phase. The presence or absence of the segregation phase can be analyzed using EPMA (Electron Probe Micro Analyzer). FIG. 1 schematically shows a matrix phase and a segregation phase on the cut surface of the hydrogen storage alloy. In the present invention, having a segregation phase (second phase) means that the ratio of component elements in the alloy is different from the parent phase (first phase) in the analysis of EPMA. The “second phase” means other than AB type 5 (CaCu type 5 ).

水素吸蔵合金が腐食すると、希土類の水酸化物等が表面に生成し、形態が変化するので、サイクル試験前後の水素吸蔵合金粉末の比表面積を測定して、これを水素吸蔵合金の腐食量を測る指標とすることができる。本発明者らが、サイクル試験前後の水素吸蔵合金粉末の比表面積を測定したところ、Yが偏析した水素吸蔵合金は均質化された水素吸蔵合金と比較して比表面積値が小さく、耐食性が増していることがわかった。これはYが偏析している水素吸蔵合金がアルカリ溶液である電解液に接触すると、偏析したYが優先的に溶出し、速やかに合金表面に水酸化イットリウムの不動態被膜を形成するためであると考えられる。一方、Yが均一分布している水素吸蔵合金では、YがLaやNi、とりわけNiと安定した合金を形成するので、水酸化イットリウムの不動態被膜が形成されにくいと考えられる。また、このようなYの挙動は、イオン半径、原子半径がYに近く、また、反応次数がYとほぼ同じである重希土類元素(Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)にも当てはまると考えられる。   When the hydrogen storage alloy corrodes, rare earth hydroxides and the like are formed on the surface and the shape changes. Therefore, the specific surface area of the hydrogen storage alloy powder before and after the cycle test is measured, and this is used to determine the corrosion amount of the hydrogen storage alloy. It can be an index to measure. When the inventors measured the specific surface area of the hydrogen storage alloy powder before and after the cycle test, the hydrogen storage alloy with segregated Y had a smaller specific surface area value and increased corrosion resistance compared to the homogenized hydrogen storage alloy. I found out. This is because when the hydrogen storage alloy in which Y is segregated comes into contact with the electrolyte solution which is an alkaline solution, the segregated Y preferentially elutes, and a passive film of yttrium hydroxide is quickly formed on the alloy surface. it is conceivable that. On the other hand, in a hydrogen storage alloy in which Y is evenly distributed, Y forms a stable alloy with La and Ni, especially Ni, so it is considered that a passive film of yttrium hydroxide is difficult to form. Further, such a behavior of Y is such that the ionic radius and the atomic radius are close to Y, and the heavy rare earth elements (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, whose reaction order is substantially the same as Y. ).

前記偏析相におけるY又は重希土類元素の濃度は、前記母相におけるY又は重希土類元素の濃度の2倍以上であることが好ましく、より好ましくは4〜100倍である。   The concentration of Y or heavy rare earth element in the segregation phase is preferably at least twice the concentration of Y or heavy rare earth element in the parent phase, more preferably 4 to 100 times.

前記偏析相の割合は、0.05〜2%であることが好ましく、より好ましくは0.1〜1%である。偏析相の割合が0.05〜2%であれば、効果的に合金表面に不動態被膜を形成することができ、偏析相の割合が0.1〜1%であれば、より顕著に合金表面に不動態被膜を形成することができ、水素吸蔵合金の腐食を抑えることができる。なお、偏析相の割合とは、前記合金のインゴット又は粒子の概中心を含む断面の所定領域内における母相の面積に対する偏析相の面積の割合を意味する。   The ratio of the segregation phase is preferably 0.05 to 2%, more preferably 0.1 to 1%. If the ratio of the segregation phase is 0.05 to 2%, a passive film can be effectively formed on the alloy surface. If the ratio of the segregation phase is 0.1 to 1%, the alloy is more prominent. A passive film can be formed on the surface, and corrosion of the hydrogen storage alloy can be suppressed. The ratio of the segregation phase means the ratio of the area of the segregation phase to the area of the parent phase in a predetermined region of the cross section including the approximate center of the ingot or particle of the alloy.

前記偏析相の大きさは、1μm以上であることが好ましく、より好ましくは5μm以上である。偏析相の大きさが1μm以上であれば、効果的に合金表面に不動態被膜を形成することができ、偏析相の大きさが5μm以上であれば、より顕著に合金表面に不動態被膜を形成することができ、水素吸蔵合金の腐食を抑えることができる。なお、偏析相の大きさとは、偏析相の長辺と短辺とを測りその平均値を算出したものである。   The size of the segregation phase is preferably 1 μm or more, more preferably 5 μm or more. If the size of the segregation phase is 1 μm or more, a passive film can be effectively formed on the alloy surface. If the size of the segregation phase is 5 μm or more, the passive film is more prominently formed on the alloy surface. It can form and can suppress corrosion of a hydrogen storage alloy. In addition, the magnitude | size of a segregation phase measures the long side and short side of a segregation phase, and calculates the average value.

本発明に係る水素吸蔵合金の母相は、一般式R1R2NiCoR3(式中、R1はLa、並びに、Yと重希土類元素とを除く希土類元素、Mg、Ca及びZrからなる群より選ばれる少なくとも1種の元素であり、R2はY及び重希土類元素からなる群より選ばれる少なくとも1種の元素であり、R3はMn、Al、Zn、Fe、Cu及びSiからなる群より選ばれる少なくとも1種の元素であり、a、b、c、d及びeは、0<b<0.3、a+b=1、5.15<c+d+e<5.45、0≦d≦1、かつ、0≦e≦1を満たす数値である。)で表される組成を有する。なお、前記水素吸蔵合金は、前記一般式で表される合金であることは当然ながら、該一般式で規定されていない元素を、例えば、不可避の不純物として含み得るものである。 Matrix of the hydrogen storage alloy according to the present invention have the general formula R1 a R2 b Ni c Co d R3 e ( wherein, R1 is La, and rare earth elements except Y and heavy rare earth elements, Mg, Ca and Zr R2 is at least one element selected from the group consisting of Y and heavy rare earth elements, and R3 is composed of Mn, Al, Zn, Fe, Cu and Si. A, b, c, d, and e are 0 <b <0.3, a + b = 1, 5.15 <c + d + e <5.45, 0 ≦ d ≦ 1 And a numerical value satisfying 0 ≦ e ≦ 1). The hydrogen storage alloy is naturally an alloy represented by the above general formula, and may contain an element not defined by the general formula as an inevitable impurity, for example.

前記母相は前記一般式において、R1が、La及びCeであり、R3が、Mn及び/又はAlであり、c、d及びeが、5.20<c+d+e<5.45、かつ、0≦d≦0.45であるものが好ましい。より好ましくは、5.25≦c+d+e≦5.35であり、0≦d≦0.2である。   In the above general formula, R1 is La and Ce, R3 is Mn and / or Al, c, d and e are 5.20 <c + d + e <5.45 and 0 ≦ Those satisfying d ≦ 0.45 are preferred. More preferably, 5.25 ≦ c + d + e ≦ 5.35 and 0 ≦ d ≦ 0.2.

本発明に係る水素吸蔵合金の製造方法としては特に限定されないが、例えば、以下の方法によることができる。まず、得られる合金が目的の組成となるよう秤量された原料金属をルツボに入れ、アルゴンガス等の不活性ガスの雰囲気下で、Y又は重希土類元素の融点未満である例えば1500℃以下、好ましくは1450℃以下の高周波誘導加熱により、該原料金属を完全に溶融させる。溶融温度がY又は重希土類元素の融点を超えると、これらの均質化が起こりやすい。なお、溶融温度の下限は、他の原料金属を溶融することが可能であれば特に限定されない。また、融点の低い金属をルツボに配置することで、母相が均質な合金を鋳込むことができる。更に、融点の低いMg、Caは揮発しやすいため、最後に投入するか、又は合金化したものを投入することが好ましい。   Although it does not specifically limit as a manufacturing method of the hydrogen storage alloy which concerns on this invention, For example, it can be based on the following method. First, a raw material metal weighed so that the obtained alloy has a target composition is put in a crucible, and it is less than the melting point of Y or heavy rare earth element in an atmosphere of an inert gas such as argon gas, for example, 1500 ° C. , The raw metal is completely melted by high frequency induction heating at 1450 ° C. or lower. When the melting temperature exceeds the melting point of Y or heavy rare earth elements, homogenization thereof tends to occur. The lower limit of the melting temperature is not particularly limited as long as it can melt other raw material metals. Further, by arranging a metal having a low melting point in the crucible, an alloy having a homogeneous matrix can be cast. Furthermore, since Mg and Ca having a low melting point are likely to volatilize, it is preferable to put them in the last or alloyed ones.

次いで、溶融した原料金属を、金型鋳造法やメルトスピニング法等により10000℃/秒以下、好ましくは5〜100℃/秒、より好ましくは10〜100℃/秒で冷却してインゴットを得る。冷却速度がこの範囲内であれば、Y又は重希土類元素の偏析が起こりやすい。   Next, the molten raw metal is cooled at a rate of 10,000 ° C./second or less, preferably 5 to 100 ° C./second, more preferably 10 to 100 ° C./second by a die casting method or a melt spinning method to obtain an ingot. If the cooling rate is within this range, segregation of Y or heavy rare earth elements tends to occur.

更に、得られたインゴットを900〜1080℃、好ましくは940〜1050℃で熱処理することにより、本発明に係る水素吸蔵合金を得ることができる。熱処理温度がこの範囲内であれば、母相が均質化されやすい。   Furthermore, the hydrogen storage alloy which concerns on this invention can be obtained by heat-processing the obtained ingot at 900-1080 degreeC, Preferably 940-1050 degreeC. When the heat treatment temperature is within this range, the matrix phase is easily homogenized.

本発明に係る水素吸蔵合金の用途としては特に限定されず、ニッケル水素蓄電池、燃料電池、水素自動車用の燃料用タンク等をはじめ、様々な用途に適用することが可能であるが、なかでも、ニッケル水素蓄電池の負極活物質に好適に用いられる。このように本発明に係る水素吸蔵合金を含有する負極を備えたニッケル水素蓄電池もまた、本発明の一つである。   The use of the hydrogen storage alloy according to the present invention is not particularly limited, and can be applied to various uses including nickel-metal hydride storage batteries, fuel cells, fuel tanks for hydrogen automobiles, among others, It is suitably used as a negative electrode active material for nickel metal hydride storage batteries. Thus, the nickel metal hydride storage battery provided with the negative electrode containing the hydrogen storage alloy according to the present invention is also one aspect of the present invention.

本発明に係るニッケル水素蓄電池は、例えば、本発明に係る水素吸蔵合金を負極活物質として含有する負極に加えて、更に、水酸化ニッケルを主成分とする正極活物質を含有する正極(ニッケル電極)、セパレータ、及び、アルカリ電解液等を備えているものである。   The nickel metal hydride storage battery according to the present invention includes, for example, a positive electrode (nickel electrode) containing a positive electrode active material mainly composed of nickel hydroxide in addition to a negative electrode containing the hydrogen storage alloy according to the present invention as a negative electrode active material. ), A separator, an alkaline electrolyte, and the like.

前記負極は、本発明に係る水素吸蔵合金が負極活物質として配合されているものである。本発明に係る水素吸蔵合金は、例えば、粉末化された水素吸蔵合金粉末として負極中に配合される。   The negative electrode is one in which the hydrogen storage alloy according to the present invention is blended as a negative electrode active material. The hydrogen storage alloy which concerns on this invention is mix | blended in a negative electrode as powdered hydrogen storage alloy powder, for example.

前記水素吸蔵合金粉末の平均粒径は、20〜100μmであることが好ましく、より好ましくは40〜70μmである。平均粒径が20μm未満であると、合金の活性化が不充分となり、一方、平均粒径が100μmを超えると、生産性が低下することがある。前記水素吸蔵合金粉末は、例えば、不活性ガスの存在下に、本発明に係る水素吸蔵合金を機械で粉砕すること等により得られる。   The average particle size of the hydrogen storage alloy powder is preferably 20 to 100 μm, more preferably 40 to 70 μm. When the average particle size is less than 20 μm, the activation of the alloy becomes insufficient, while when the average particle size exceeds 100 μm, the productivity may be lowered. The hydrogen storage alloy powder is obtained, for example, by pulverizing the hydrogen storage alloy according to the present invention with a machine in the presence of an inert gas.

前記負極は、前記水素吸蔵合金粉末に加えて、導電剤、結着剤(増粘剤を含む。)等を含有していてもよい。   In addition to the hydrogen storage alloy powder, the negative electrode may contain a conductive agent, a binder (including a thickener), and the like.

前記導電剤としては、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウィスカー、炭素繊維、気相成長炭素等の炭素系導電剤;ニッケル、コバルト、銅等の金属の粉末や繊維等からなる金属系導電剤;酸化イットリウム等が挙げられる。これらの導電剤は、単独で用いられてもよく、2種以上が併用されてもよい。また、防食剤として酸化イットリウム等の希土類酸化物を含有していてもよい。   Examples of the conductive agent include natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, vapor-grown carbon, etc. Examples thereof include metal-based conductive agents; metal-based conductive agents composed of powders or fibers of metals such as nickel, cobalt, and copper; yttrium oxide. These electrically conductive agents may be used independently and 2 or more types may be used together. Moreover, you may contain rare earth oxides, such as an yttrium oxide, as a corrosion inhibitor.

前記導電剤の配合量は、前記水素吸蔵合金粉末100質量部に対して、0.1〜10質量部であることが好ましく、より好ましくは0.2〜5質量部である。前記導電剤の配合量が0.1質量部未満であると、充分な導電性を得ることが難しく、一方、前記導電剤の配合量が10質量部を超えると、放電容量の向上効果が不充分となることがある。   The blending amount of the conductive agent is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. When the blending amount of the conductive agent is less than 0.1 parts by mass, it is difficult to obtain sufficient conductivity. On the other hand, when the blending amount of the conductive agent exceeds 10 parts by mass, the effect of improving the discharge capacity is not good. May be sufficient.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、エチレン−プロピレン−ジエンゴム(EPDM)、スルフォン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、キサンタンガム等が挙げられる。これらの結着剤は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the binder include polytetrafluoroethylene (PTFE), polyolefin resins such as polyethylene and polypropylene, ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, polyvinyl Alcohol, methylcellulose, carboxymethylcellulose, xanthan gum, etc. are mentioned. These binders may be used independently and 2 or more types may be used together.

前記結着剤の配合量は、前記水素吸蔵合金粉末100質量部に対して、0.1〜1.0質量部であることが好ましく、より好ましくは0.5〜1.0質量部である。前記結着剤の配合量が0.1質量部未満であると、充分な増粘性が得られにくく、一方、前記結着剤の配合量が1.0質量部を超えると、電極の性能が低下してしまうことがある。   The blending amount of the binder is preferably 0.1 to 1.0 part by mass, more preferably 0.5 to 1.0 part by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. . When the blending amount of the binder is less than 0.1 parts by mass, sufficient thickening is difficult to be obtained. On the other hand, when the blending amount of the binder exceeds 1.0 parts by mass, the performance of the electrode is improved. May fall.

前記正極としては、例えば、主成分である水酸化ニッケルに水酸化亜鉛や水酸化コバルトが混合されてなる水酸化ニッケル複合酸化物が正極活物質として配合された電極等が挙げられる。当該水酸化ニッケル複合酸化物としては、共沈法によって均一分散されたものが好適に用いられる。   Examples of the positive electrode include an electrode in which a nickel hydroxide composite oxide obtained by mixing zinc hydroxide or cobalt hydroxide with nickel hydroxide as a main component is blended as a positive electrode active material. As the nickel hydroxide composite oxide, those uniformly dispersed by a coprecipitation method are preferably used.

前記正極は、前記水酸化ニッケル複合酸化物に加えて電極性能を改善するための添加剤を含有していることが好ましい。前記添加剤としては、例えば、水酸化コバルト、酸化コバルト等の導電改質剤が挙げられ、また、前記水酸化ニッケル複合酸化物に水酸化コバルトがコートされたものや、前記水酸化ニッケル複合酸化物の一部が、酸素又は酸素含有気体、K、次亜塩素酸等によって酸化されていてもよい。 The positive electrode preferably contains an additive for improving electrode performance in addition to the nickel hydroxide composite oxide. Examples of the additive include conductive modifiers such as cobalt hydroxide and cobalt oxide, and the nickel hydroxide composite oxide coated with cobalt hydroxide, and the nickel hydroxide composite oxide. Part of the product may be oxidized with oxygen or oxygen-containing gas, K 2 S 2 O 8 , hypochlorous acid, or the like.

前記添加剤としては、また、Y、Yb等の希土類元素を含む化合物や、Caを含む化合物等の酸素過電圧を向上させる物質を用いることもできる。Y、Yb等の希土類元素は、その一部が溶解して、負極表面に配置されるため、負極活物質の腐食を抑制する効果も期待される。   As the additive, a substance that improves oxygen overvoltage, such as a compound containing a rare earth element such as Y or Yb or a compound containing Ca, can also be used. Since some of rare earth elements such as Y and Yb are dissolved and disposed on the negative electrode surface, an effect of suppressing corrosion of the negative electrode active material is also expected.

前記正極は、更に、前記負極と同様に、上述の導電剤、結着剤等を含有していてもよい。   The positive electrode may further contain the above-described conductive agent, binder and the like, similarly to the negative electrode.

このような正極及び負極は、各活物質に、必要に応じて上述の導電剤、結着剤等を加えた上で、これらを水又はアルコールやトルエン等の有機溶媒と共に混練して得られたペーストを、導電性支持体に塗布し、乾燥させた後、圧延成形すること等により製造することができる。   Such a positive electrode and a negative electrode were obtained by kneading these with water or an organic solvent such as alcohol or toluene after adding the above-mentioned conductive agent, binder, or the like to each active material as necessary. The paste can be produced by applying it to a conductive support and drying it, followed by rolling.

前記導電性支持体としては、例えば、鋼板、鋼板にニッケル等の金属材料からなるメッキが施されたメッキ鋼板等が挙げられる。前記導電性支持体の形状としては、例えば、発泡体、繊維群の成形体、凹凸加工を施した3次元基材;パンチング板等の2次元基材が挙げられる。これらの導電性支持体のうち、正極用としては、アルカリに対する耐食性と耐酸化性に優れたニッケルを材料とし、集電性に優れた構造である多孔体構造からなる発泡体が好ましい。一方、負極用としては、安価で、かつ、導電性に優れる鉄箔に、ニッケルメッキを施した穿孔鋼板が好ましい。   Examples of the conductive support include a steel plate and a plated steel plate obtained by plating a steel plate with a metal material such as nickel. Examples of the shape of the conductive support include a foam, a molded product of a fiber group, a three-dimensional base material subjected to unevenness processing, and a two-dimensional base material such as a punching plate. Of these conductive supports, for the positive electrode, a foam made of nickel having excellent corrosion resistance and oxidation resistance with respect to alkali and having a porous structure having a current collecting property is preferable. On the other hand, for a negative electrode, a perforated steel sheet obtained by applying nickel plating to an iron foil that is inexpensive and excellent in conductivity is preferable.

前記導電性支持体の厚さは、30〜100μmであることが好ましく、より好ましくは40〜70μmである。前記導電性支持体の厚さが30μm未満であると、生産性が低下することがあり、一方、前記導電性支持体の厚さが100μmを超えると、放電容量が不充分となることがある。   The thickness of the conductive support is preferably 30 to 100 μm, more preferably 40 to 70 μm. When the thickness of the conductive support is less than 30 μm, the productivity may be reduced. On the other hand, when the thickness of the conductive support exceeds 100 μm, the discharge capacity may be insufficient. .

前記導電性支持体が多孔性のものである場合、その内径は、0.8〜2μmであることが好ましく、より好ましくは1〜1.5μmである。内径が0.8μm未満であると、生産性が低下することがあり、一方、内径が2μmを超えると、水素吸蔵合金の保持性能が不充分となることがある。   When the conductive support is porous, the inner diameter is preferably 0.8 to 2 μm, more preferably 1 to 1.5 μm. If the inner diameter is less than 0.8 μm, the productivity may be lowered. On the other hand, if the inner diameter exceeds 2 μm, the holding performance of the hydrogen storage alloy may be insufficient.

前記導電性支持体への各電極用ペーストの塗布方法としては、例えば、アプリケーターロール等を用いたローラーコーティング、スクリーンコーティング、ブレードコーティング、スピンコーティング、パーコーティング等が挙げられる。   Examples of a method for applying each electrode paste to the conductive support include roller coating using an applicator roll and the like, screen coating, blade coating, spin coating, and per coating.

前記セパレータとしては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、アクリル、ポリアミド等を材料とする多孔膜や不織布等が挙げられる。   Examples of the separator include a porous film and a nonwoven fabric made of a polyolefin resin such as polyethylene or polypropylene, acrylic, polyamide, or the like.

前記セパレータの目付は、40〜100g/mであることが好ましい。目付が40g/m未満であると、短絡や自己放電性能の低下が起こることがあり、一方、目付が100g/mを超えると単位体積当たりに占めるセパレータの割合が増加するため、電池容量が下がる傾向にある。また、前記セパレータの通気度は、1〜50cm/secであることが好ましい。通気度が1cm/sec未満であると、電池内圧が高くなりすぎることがあり、一方、通気度が50cm/secを超えると、短絡や自己放電性能の低下が起こることがある。更に、前記セパレータの平均繊維径は、1〜20μmであることが好ましい。平均繊維径が1μm未満であるとセパレータの強度が低下し、電池組み立て工程での不良率が増加することがあり、一方、平均繊維径が20μmを超えると、短絡や自己放電性能の低下が起こることがある。 The basis weight of the separator is preferably 40 to 100 g / m 2 . If the basis weight is less than 40 g / m 2 , a short circuit or a decrease in self-discharge performance may occur. On the other hand, if the basis weight exceeds 100 g / m 2 , the proportion of the separator per unit volume increases. Tend to go down. The separator preferably has an air permeability of 1 to 50 cm / sec. If the air permeability is less than 1 cm / sec, the internal pressure of the battery may be too high. On the other hand, if the air permeability exceeds 50 cm / sec, a short circuit or a decrease in self-discharge performance may occur. Furthermore, the average fiber diameter of the separator is preferably 1 to 20 μm. When the average fiber diameter is less than 1 μm, the strength of the separator may decrease, and the defect rate in the battery assembling process may increase. On the other hand, when the average fiber diameter exceeds 20 μm, short circuit and self-discharge performance decrease. Sometimes.

前記セパレータは、その繊維表面に親水化処理が施されていることが好ましい。当該親水化処理としては、例えば、スルフォン化処理、コロナ処理、フッ素ガス処理、プラズマ処理等が挙げられる。なかでも、繊維表面にスルフォン化処理が施されたセパレータは、シャトル現象を引き起こすNO 、NO 、NH 等の不純物や負極からの溶出元素を吸着する能力が高いため、自己放電抑制効果が高く、好ましい。 The separator is preferably subjected to a hydrophilic treatment on the fiber surface. Examples of the hydrophilization treatment include sulfonation treatment, corona treatment, fluorine gas treatment, and plasma treatment. Among them, the separator whose fiber surface has been sulfonated has a high ability to adsorb impurities such as NO 3 , NO 2 , NH 3 − and the like, which cause a shuttle phenomenon, and an elution element from the negative electrode. The suppression effect is high and preferable.

前記アルカリ電解液としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等を含有するアルカリ性の水溶液が挙げられる。前記アルカリ電解液は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the alkaline electrolyte include alkaline aqueous solutions containing potassium hydroxide, sodium hydroxide, lithium hydroxide and the like. The said alkaline electrolyte may be used independently and 2 or more types may be used together.

前記アルカリ電解液の濃度は、イオン濃度の合計が9.0M以下であるものが好ましく、5.0〜8.0Mであるものがより好ましい。   The concentration of the alkaline electrolyte is preferably a total ion concentration of 9.0 M or less, more preferably 5.0 to 8.0 M.

前記アルカリ電解液には、正極での酸素過電圧向上、負極の耐食性の向上、自己放電向上等のため、種々の添加剤を添加してもよい。このような添加剤としては、例えば、Y、Yb、Er、Ca、Zn等の酸化物や水酸化物等が挙げられる。これらの添加剤は、単独で用いられてもよく、2種以上が併用されてもよい。   Various additives may be added to the alkaline electrolyte in order to improve oxygen overvoltage at the positive electrode, improve corrosion resistance of the negative electrode, improve self-discharge, and the like. Examples of such additives include oxides and hydroxides such as Y, Yb, Er, Ca, and Zn. These additives may be used independently and 2 or more types may be used together.

本発明に係るニッケル水素蓄電池が開放型ニッケル水素蓄電池である場合、当該電池は、例えば、セパレータを介して負極を正極で挟み込み、これらの電極に所定の圧力がかかるように電極を固定した状態で、アルカリ電解液を注液し、開放形セルを組み立てることにより製造することができる。   When the nickel-metal hydride storage battery according to the present invention is an open-type nickel-metal hydride storage battery, for example, the battery is sandwiched between a negative electrode and a positive electrode via a separator, and the electrodes are fixed so that a predetermined pressure is applied to these electrodes. It can be produced by injecting an alkaline electrolyte and assembling an open cell.

一方、本発明に係るニッケル水素蓄電池が密閉型ニッケル水素蓄電池である場合、当該電池は、正極、セパレータ及び負極を積層する前又は後に、アルカリ電解液を注液し、外装材で封止することにより製造することができる。また、正極と負極とがセパレータを介して積層された発電要素を巻回してなる密閉型ニッケル水素蓄電池においては、前記発電要素を巻回する前又は後に、アルカリ電解液を発電要素に注液するのが好ましい。アルカリ電解液の注液法としては特に限定されず、常圧で注液してもよいが、例えば、真空含浸法、加圧含浸法、遠心含浸法等を用いてもよい。また、密閉型ニッケル水素蓄電池の外装材としては、例えば、鉄、ニッケル等の金属材料からなるメッキが施された鉄、ステンレススチール、ポリオレフィン系樹脂等からなるものが挙げられる。   On the other hand, when the nickel-metal hydride storage battery according to the present invention is a sealed nickel-metal hydride storage battery, the battery is injected with an alkaline electrolyte before or after the positive electrode, the separator, and the negative electrode are stacked, and sealed with an exterior material. Can be manufactured. Further, in a sealed nickel-metal hydride storage battery in which a power generation element in which a positive electrode and a negative electrode are stacked via a separator is wound, an alkaline electrolyte is injected into the power generation element before or after the power generation element is wound. Is preferred. The method of injecting the alkaline electrolyte is not particularly limited, and may be injected at normal pressure. For example, a vacuum impregnation method, a pressure impregnation method, a centrifugal impregnation method, or the like may be used. Moreover, as an exterior material of a sealed nickel-metal hydride storage battery, for example, a material made of iron, stainless steel, polyolefin resin, or the like plated with a metal material such as iron or nickel can be cited.

前記密閉型ニッケル水素蓄電池の態様としては特に限定されず、例えば、コイン電池、ボタン電池、角型電池、扁平型電池等の正極、負極及び単層又は複層のセパレータを備えた電池や、ロール状の正極、負極及びセパレータを備えた円筒型電池等が挙げられる。   The embodiment of the sealed nickel-metal hydride storage battery is not particularly limited. For example, a battery including a positive electrode such as a coin battery, a button battery, a square battery, and a flat battery, a negative electrode, and a single-layer or multi-layer separator, a roll And a cylindrical battery including a positive electrode, a negative electrode and a separator.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<ニッケル水素蓄電池の作製>
以下に示す方法により、ニッケル水素蓄電池を作製した。
<Production of nickel metal hydride storage battery>
A nickel-metal hydride storage battery was produced by the method described below.

(1)水素吸蔵合金の作製
(実施例1〜5、比較例2〜4)
化学組成が下記表1に記載のものとなるように、それぞれ原料インゴットを所定量秤量してLa、Ce、Pr、Nd、Al、Mnを入れた後に、Ni、Co、Yをルツボに入れ、減圧アルゴンガス雰囲気下で高周波溶融炉を用いて1500℃に加熱し、材料を溶融した。溶融後、水冷した金型を用いて50℃/秒で冷却し、合金を固化させた。次に、得られた合金をアルゴンガス雰囲気下で、それぞれ1000℃にて熱処理を5時間行った後、粉砕し、平均粒径(D50)50μmの水素吸蔵合金粉末を得た。なお、平均粒径はマイクロトラック社製MT3000装置を用いて測定した。
(1) Production of hydrogen storage alloy (Examples 1-5, Comparative Examples 2-4)
Each raw material ingot was weighed in a predetermined amount and put La, Ce, Pr, Nd, Al, and Mn so that the chemical composition was as shown in Table 1 below, and then Ni, Co, and Y were put in a crucible, The material was melted by heating to 1500 ° C. using a high-frequency melting furnace in a reduced-pressure argon gas atmosphere. After melting, the alloy was solidified by cooling at 50 ° C./second using a water-cooled mold. Next, the obtained alloy was heat-treated at 1000 ° C. for 5 hours in an argon gas atmosphere and then pulverized to obtain a hydrogen storage alloy powder having an average particle size (D50) of 50 μm. The average particle size was measured using an MT3000 apparatus manufactured by Microtrack.

(比較例1)
高周波溶融炉における加熱温度を1550℃にしたこと以外は、実施例1〜5及び比較例2〜4と同様にして水素吸蔵合金粉末を得た。
(Comparative Example 1)
A hydrogen storage alloy powder was obtained in the same manner as in Examples 1 to 5 and Comparative Examples 2 to 4 except that the heating temperature in the high frequency melting furnace was changed to 1550 ° C.

(参考例1、2)
化学組成が下記表1に記載のものとなるように、それぞれ原料インゴットを所定量秤量してLa、Alを入れた後にNi、Yをルツボに入れ、減圧アルゴンガス雰囲気下で高周波溶融炉を用いて1500℃に加熱溶融し、更にMgNi、Caを投入溶融した。溶融後、メルトスピニング法を適用して急冷し、1000℃/秒で合金を固化させた。次に、得られた合金をアルゴンガス雰囲気下で、それぞれ970℃にて熱処理を5時間行った後、粉砕し、平均粒径(D50)50μmの水素吸蔵合金粉末を得た。
(Reference Examples 1 and 2)
Each raw material ingot is weighed in a predetermined amount so that the chemical composition is as shown in Table 1 below, La and Al are added, then Ni and Y are put in a crucible, and a high frequency melting furnace is used in a reduced pressure argon gas atmosphere. The mixture was heated and melted to 1500 ° C., and MgNi 2 and Ca were added and melted. After melting, the alloy was quenched by applying a melt spinning method to solidify the alloy at 1000 ° C./second. Next, the obtained alloy was heat-treated at 970 ° C. for 5 hours in an argon gas atmosphere and then pulverized to obtain a hydrogen storage alloy powder having an average particle size (D50) of 50 μm.

(2)Yの濃度分布の測定
水素吸蔵合金インゴットを樹脂固めした後、サンドペーパーにて研磨し、洗浄した。なお、インゴットの代わりに粉末又はニッケル水素蓄電池電極群を用いてもよい。前記合金のインゴット又は粒子の概中心部を通る断面が露出するように研磨をおこない、前記断面をPt-Pdコートをした後、EPMA装置(島津製作所製 型番8705)を用いて、0.5×0.5mmの範囲でYの濃度分析を行った。結果を下記表1に示す。母相に対する偏析相のY濃度とNi濃度は強度比を比較することで算出した。また、Yの偏析相の割合としては、母相中に分布して析出している偏析相の面積比率を算出した。更に、Yの偏析相の大きさは母相中に分布して析出している偏析相の長辺と短辺との平均を測ることで算出した。
(2) Measurement of Y concentration distribution A hydrogen storage alloy ingot was solidified with resin, then polished with sandpaper and washed. In addition, you may use a powder or a nickel hydride storage battery electrode group instead of an ingot. Polishing is performed so that a cross section passing through the approximate center of the alloy ingot or particle is exposed, and the cross section is coated with Pt-Pd, and then 0.5 mm using an EPMA apparatus (model number 8705 manufactured by Shimadzu Corporation). Y concentration analysis was performed in the range of 0.5 mm. The results are shown in Table 1 below. The Y concentration and Ni concentration of the segregation phase relative to the parent phase were calculated by comparing the strength ratio. Moreover, as the ratio of the segregation phase of Y, the area ratio of the segregation phase distributed and precipitated in the matrix was calculated. Further, the size of the segregation phase of Y was calculated by measuring the average of the long side and the short side of the segregation phase distributed and precipitated in the matrix phase.

下記表1に示すように、原料インゴットを1500℃で溶融したものにはYの偏析が確認できた。これは溶融温度がYの融点温度未満であったため、均質化が充分にされず、偏析相として析出したものと推定される。なお、図2は、EPMA装置により撮像された実施例1の水素吸蔵合金インゴットの切断面を示すものであり、丸で囲った領域に偏析相が分布している。   As shown in Table 1 below, segregation of Y could be confirmed in the raw material ingot melted at 1500 ° C. Since the melting temperature was lower than the melting point temperature of Y, it was presumed that the homogenization was not sufficient and the segregation phase was precipitated. FIG. 2 shows the cut surface of the hydrogen storage alloy ingot of Example 1 imaged by the EPMA apparatus, and the segregation phase is distributed in a circled region.

(3)開放形ニッケル水素蓄電池の作製
上記のようにして得られた水素吸蔵合金粉末100質量部に、導電剤(ニッケル粉末)5質量部、増粘剤(メチルセルロース)を溶解した水溶液を加え、更に、結着剤(スチレンブタジエンゴム)を1質量部加えてペースト状にしたものを厚さ35μmの穿孔鋼板(開口率50%)の両面に塗布して乾燥させた後、厚さ0.33mmにプレスして、負極板(500mAh)とした。
(3) Production of an open-type nickel-metal hydride storage battery To 100 parts by mass of the hydrogen storage alloy powder obtained as described above, an aqueous solution in which 5 parts by mass of a conductive agent (nickel powder) and a thickener (methyl cellulose) are dissolved is added, Further, a paste obtained by adding 1 part by mass of a binder (styrene butadiene rubber) was applied to both sides of a 35 μm-thick perforated steel sheet (opening ratio 50%), dried, and then 0.33 mm thick. To obtain a negative electrode plate (500 mAh).

また、正極板には負極容量の3倍の容量をもつシンター式水酸化ニッケル電極を用いた。   Further, a sinter type nickel hydroxide electrode having a capacity three times as large as the negative electrode capacity was used for the positive electrode plate.

更に、セパレータを介して負極を正極で挟み込み、これらの電極に1Nの力がかかるようにこれらの電極を固定して7M水酸化カリウム水溶液を注入し、開放形セルを組み立てた。   Further, the negative electrode was sandwiched between the positive electrodes through the separator, these electrodes were fixed so that a force of 1 N was applied to these electrodes, and a 7M potassium hydroxide aqueous solution was injected to assemble an open cell.

<充放電試験>
20℃で、0.1ItAで15時間の充電、休止1時間、0.2ItAでHg/HgO参照電極に対して−0.6Vまで放電を行う充放電サイクルを10サイクル繰り返した。その後、20℃で、1ItAで45分の充電、休止15分、0.5ItAでHg/HgO参照電極に対して−0.6Vまで放電を行う充放電サイクルを40サイクル繰り返した。
<Charge / discharge test>
At 20 ° C., a charging / discharging cycle of charging for 15 hours at 0.1 ItA, resting for 1 hour, and discharging to −0.6 V with respect to the Hg / HgO reference electrode at 0.2 ItA was repeated 10 cycles. Thereafter, a charge / discharge cycle of charging at 20 ° C. for 45 minutes at 1 ItA, resting for 15 minutes, and discharging the Hg / HgO reference electrode to −0.6 V at 0.5 ItA was repeated 40 cycles.

<電池の解体と比表面積値の測定>
充放電試験後の負極を取り出し、中性となるまで100℃で湯洗した。乾燥後、比表面積測定装置(Quantachrome製モノソーブ、BET法)を用いて、比表面積値を求めた。結果を下記表1に示す。
<Battery disassembly and measurement of specific surface area>
The negative electrode after the charge / discharge test was taken out and washed with hot water at 100 ° C. until neutrality. After drying, the specific surface area value was determined using a specific surface area measuring device (Quantochrome monosorb, BET method). The results are shown in Table 1 below.

なお、表1において、「各B/A比ごとの比表面積値の差」とは、B/A比がほぼ等しい水素吸蔵合金間で、Yを含有しない水素吸蔵合金の比表面積値を基準とした場合の、比表面積値の差分を表したものであり、基準となる水素吸蔵合金より比表面積値が小さい場合はマイナスの値で表し、基準となる水素吸蔵合金より比表面積値が大きい場合はプラスの値で表した。また、表1中で、「各B/A比ごとの比表面積値の差」が空欄となっているものは、未測定であることを示す。   In Table 1, the “difference in specific surface area value for each B / A ratio” refers to the specific surface area value of hydrogen storage alloys that do not contain Y between hydrogen storage alloys having substantially the same B / A ratio. When the specific surface area value is smaller than the standard hydrogen storage alloy, it is expressed as a negative value. When the specific surface area value is larger than the standard hydrogen storage alloy, Expressed as a positive value. Further, in Table 1, the case where “difference in specific surface area value for each B / A ratio” is blank indicates that it has not been measured.

水素吸蔵合金は腐食により、希土類の水酸化物等が表面に生成し、形態が変化する。そこで、比表面積値を測定することにより、合金腐食量の指標とすることができ、比表面積値が大きいほど、腐食量が多いといえる。Yの偏析相を持つ合金は、偏析相を持たないものと比較して、比表面積値が小さいことがわかる。これは水素吸蔵合金がアルカリ溶液に接触したとき、偏析したYが優先的に溶出し、速やかに合金表面に水酸化イットリウムの被膜を形成するためと考えられる。特にB/A比が5.25から5.35のとき、その効果が大きかった。また、Co量がCo/A比で0.2と少ないときでも、Yを添加することで、耐食性が向上することが分かった。なお、このようなYの効果は、イオン半径、原子半径がYに近く、また、反応次数がYとほぼ同じである重希土類元素(Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)にも当てはまると推測される。   As a result of corrosion, rare earth hydroxide and the like are generated on the surface of the hydrogen storage alloy, and the form changes. Therefore, by measuring the specific surface area value, it can be used as an index of the alloy corrosion amount, and it can be said that the larger the specific surface area value, the larger the corrosion amount. It can be seen that an alloy having a segregation phase of Y has a smaller specific surface area value than an alloy having no segregation phase. This is presumably because when the hydrogen storage alloy comes into contact with the alkaline solution, the segregated Y preferentially elutes and quickly forms a yttrium hydroxide coating on the alloy surface. The effect was particularly great when the B / A ratio was 5.25 to 5.35. Moreover, even when the amount of Co was as small as 0.2 in the Co / A ratio, it was found that the corrosion resistance was improved by adding Y. Note that such an effect of Y is that a heavy rare earth element (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, whose ionic radius and atomic radius are close to Y and whose reaction order is almost the same as Y. ).

Claims (5)

La、Ni、及び、Y又は重希土類元素を含有する母相と偏析相を有する水素吸蔵合金であって、
母相が、一般式R1R2NiCoR3(式中、R1はLa、並びに、Yと重希土類元素とを除く希土類元素から選ばれる少なくとも1種の元素であり、R2はY及び重希土類元素からなる群より選ばれる少なくとも1種の元素であり、R3はMn又はAlの少なくとも1種の元素であり、a、b、c、d及びeは、0<b<0.3、a+b=1、5.15<c+d+e<5.45、0≦d≦1、かつ、0≦e≦1を満たす数値である。)で表される組成を有し、
前記偏析相におけるY又は重希土類元素の濃度は、前記母相におけるY又は重希土類元素の濃度の2倍以上であり、
前記偏析相におけるNiの濃度は、前記母相におけるNiの濃度の0.02倍以下であり、
前記偏析相は、前記母相の面積に対して0.05〜2%の割合で、前記母相中に分散しており、かつ大きさが1μm以上であることを特徴とする水素吸蔵合金。
A hydrogen storage alloy having a parent phase and a segregation phase containing La, Ni, and Y or heavy rare earth elements,
Parent phase, in the general formula R1 a R2 b Ni c Co d R3 e ( wherein, R1 is La, and at least one element selected from rare earth elements except Y and heavy rare earth elements, the R2 Y And at least one element selected from the group consisting of heavy rare earth elements, R3 is at least one element of Mn or Al, and a, b, c, d and e are 0 <b <0.3. A + b = 1, 5.15 <c + d + e <5.45, 0 ≦ d ≦ 1, and 0 ≦ e ≦ 1).
The concentration of Y or heavy rare earth elements in the segregation phase is at least twice the concentration of Y or heavy rare earth elements in the matrix phase,
The concentration of Ni in the segregation phase is not more than 0.02 times the concentration of Ni in the matrix phase,
The segregation phase is dispersed in the matrix at a ratio of 0.05 to 2% with respect to the area of the matrix and has a size of 1 μm or more .
前記一般式において、
R1は、La及びCeであり、
R3は、Mn及び/又はAlであり、
c、d及びeは、5.20<c+d+e<5.45、かつ、0≦d≦0.45である請求項1記載の水素吸蔵合金。
In the general formula:
R1 is La and Ce;
R3 is Mn and / or Al,
2. The hydrogen storage alloy according to claim 1, wherein c, d, and e are 5.20 <c + d + e <5.45 and 0 ≦ d ≦ 0.45.
請求項1又は2記載の水素吸蔵合金を含有することを特徴とする電極。   An electrode comprising the hydrogen storage alloy according to claim 1. 請求項3記載の電極を負極として備えていることを特徴とするニッケル水素蓄電池。   A nickel-metal hydride storage battery comprising the electrode according to claim 3 as a negative electrode. 請求項1又は2記載の水素吸蔵合金の製造方法であって、
原料金属を高周波誘導溶解法を用いてY又は重希土類元素の融点温度未満で溶融し、合金化する工程と、
得られた溶融合金を冷却する工程と、
冷却された合金を900〜1080℃で熱処理する工程と、を備えていることを特徴とする水素吸蔵合金の製造方法。
A method for producing a hydrogen storage alloy according to claim 1 or 2,
Melting the raw material metal below the melting point temperature of Y or heavy rare earth elements using a high frequency induction melting method, and alloying;
Cooling the obtained molten alloy;
A process for heat-treating the cooled alloy at 900 to 1080 ° C., and a method for producing a hydrogen storage alloy.
JP2012268800A 2012-02-20 2012-12-07 Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy Active JP6201307B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012268800A JP6201307B2 (en) 2012-02-20 2012-12-07 Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
CN201310045698.4A CN103259003B (en) 2012-02-20 2013-02-05 The manufacture method of hydrogen-storage alloy, electrode, nickel-hydrogen accumulator and hydrogen-storage alloy
EP13154884.4A EP2628812A1 (en) 2012-02-20 2013-02-12 Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
US13/766,033 US20130213532A1 (en) 2012-02-20 2013-02-13 Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012034227 2012-02-20
JP2012034227 2012-02-20
JP2012268800A JP6201307B2 (en) 2012-02-20 2012-12-07 Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2013199703A JP2013199703A (en) 2013-10-03
JP6201307B2 true JP6201307B2 (en) 2017-09-27

Family

ID=49520155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268800A Active JP6201307B2 (en) 2012-02-20 2012-12-07 Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP6201307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272259B2 (en) * 2012-04-19 2016-03-01 Ovonic Battery Company, Inc. Metal hydride alloys having improved activation and high rate performance
US20190097213A1 (en) * 2017-09-28 2019-03-28 Basf Corporation Processes and compositions to improve high-temperature performance of nimh batteries
CN115449726B (en) * 2022-08-31 2023-04-07 广东省科学院资源利用与稀土开发研究所 Process annealing method of La-Mg-Ni series hydrogen storage alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321223A (en) * 1996-09-12 1998-12-04 Toshiba Corp Hydrogen storage electrode and metal oxide-hydrogen secondary battery
JP4117918B2 (en) * 1996-09-30 2008-07-16 株式会社東芝 Hydrogen storage alloy, manufacturing method thereof, and nickel metal hydride secondary battery
JPH1125964A (en) * 1997-06-27 1999-01-29 Hitachi Maxell Ltd Alkaline storage battery
US6268084B1 (en) * 1997-11-28 2001-07-31 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and secondary battery
JP4304430B2 (en) * 2003-03-06 2009-07-29 独立行政法人産業技術総合研究所 Hydrogen storage alloy and electrode using the same
CN102127664B (en) * 2005-08-11 2012-08-08 株式会社杰士汤浅国际 Hydrogen storage alloy, its production method, hydrogen storage alloy electrode, and secondary battery
US8343659B2 (en) * 2005-08-26 2013-01-01 Gs Yuasa International Ltd. Hydrogen absorbing alloy, production method thereof, and secondary battery
JP5796787B2 (en) * 2010-03-12 2015-10-21 株式会社Gsユアサ Hydrogen storage alloy and nickel metal hydride storage battery

Also Published As

Publication number Publication date
JP2013199703A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US20130213532A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
US8318349B2 (en) Negative electrode active material for nickel-metal hydride battery and nickel-metal hydride battery using the same, and method for treating negative electrode active material for nickel-metal hydride battery
JP5534459B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP5217826B2 (en) Nickel metal hydride storage battery
JP5796787B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP6201307B2 (en) Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
US20110033748A1 (en) Hydrogen-absorbing alloy powder, method for treating the surface thereof, negative electrode for alkaline storage battery, and alkaline storage battery
WO2013145752A1 (en) Electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP6152952B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP5716969B2 (en) Nickel metal hydride storage battery
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5481803B2 (en) Nickel metal hydride storage battery
JP6406796B2 (en) Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP6394955B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP5532390B2 (en) Nickel metal hydride storage battery
US10323301B2 (en) Hydrogen storing alloy, electrode, and nickel-hydrogen storage battery
JP5769028B2 (en) Nickel metal hydride storage battery
CN204102994U (en) Nickel-hydrogen secondary cell
JP2014199732A (en) Nickel hydride storage battery
CN106663796A (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2017191782A (en) Nickel hydrogen storage battery
CN115394991A (en) Cathode material, preparation method thereof and nickel-hydrogen secondary battery using cathode material
JPH10237571A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150