JP4304430B2 - Hydrogen storage alloy and electrode using the same - Google Patents

Hydrogen storage alloy and electrode using the same Download PDF

Info

Publication number
JP4304430B2
JP4304430B2 JP2003059784A JP2003059784A JP4304430B2 JP 4304430 B2 JP4304430 B2 JP 4304430B2 JP 2003059784 A JP2003059784 A JP 2003059784A JP 2003059784 A JP2003059784 A JP 2003059784A JP 4304430 B2 JP4304430 B2 JP 4304430B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
negative electrode
storage alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003059784A
Other languages
Japanese (ja)
Other versions
JP2004269929A (en
Inventor
哲男 境
浩 福永
俊樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
GS Yuasa Corp
Hitachi Maxell Energy Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
GS Yuasa Corp
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, GS Yuasa Corp, Hitachi Maxell Energy Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003059784A priority Critical patent/JP4304430B2/en
Publication of JP2004269929A publication Critical patent/JP2004269929A/en
Application granted granted Critical
Publication of JP4304430B2 publication Critical patent/JP4304430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金及びこれを負極活物質とするアルカリ畜電池用負極に関する。
【0002】
【従来の技術】
アルカリ蓄電池の中で最も需要の大きなニッケル水素蓄電池は、可逆的に水素を吸蔵・放出することができる水素吸蔵合金を負極活物質として用いたものであり、通常、水素吸蔵合金を活物質とする負極、水酸化ニッケルを活物質とする正極、セパレ―タおよびアルカリ電解液を組み合わせて構成されている。
【0003】
この様な電池では、負極活物質である水素吸蔵合金としては、Laまたはミッシュメタル(Mm)と、Ni、Co、Mn、Alなどの元素とから構成された希土類系合金や、Zr、Ni、V、Mnなどから構成されたラーベス系合金がよく知られているが、一般的には希土類系合金が広く用いられている。
【0004】
該希土類系合金を構成する元素の中で、コストに占める割合が最も高い元素はCoであり、できる限りその含有量を低減することが望まれている。特に、電気自動車用などの大型の蓄電池においては、合金の高容量化とともにコスト低減は重要な課題である。また、電池が高温あるいは低温にさらされることも考えられるため、高温及び低温下での大電流での使用を念頭に置いた合金が要求される。
【0005】
上記観点からCo量を低減した希土類系合金として、Laを60〜90質量%含有するミッシュメタル、NiCo及びMn各成分を含む合金に、更に、Mgを添加して、Co量を低減し且つ低温及び高温での安定性を向上させた合金が報告されている(下記特許文献1参照)。
【0006】
この合金は、従来よりも大幅にCoの含有量を低減しても可逆性を保つことが可能であり、また高温あるいは低温での特性もある程度満足できる水素吸蔵合金である。しかしながら、該合金は、高温や低温下での大電流での放電特性が要求される、ガソリンと電気を併用したハイブリッド車(HEV車)用電池としては、満足のいく性能を有するものとはいえない。
【0007】
また、通常、水素吸蔵合金は、電池作製後に、所望の高率放電特性を得るため活性化と称される充放電が行われるが、上記合金は、Co量を低減するとともにMgを添加することで貯蔵性を向上させており、この様な貯蔵性に優れた安定な合金では、活性化に必要な充放電サイクル数が非常に多くなり、電池製造工数・時間が大幅に増加する。このためCo量を低下させて合金そのものの材料コストを低減させても、電池製造のためのトータルコストについては、かえって上昇することになる。
【0008】
【特許文献1】
特開2001−291510号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記した従来技術に鑑みてなされたものであり、その主な目的は、従来と比べてCo含有量を低減した希土類系水素吸蔵合金であって、低温及び高温での安定性に優れ、しかも少ない充放電サイクルで十分に活性化することが可能な、低コスト且つ高出力のアルカリ蓄電池用の負極活物質として適した新規な水素吸蔵合金を提供することである。
【0010】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、ミッシュメタル、Ni、Co、Mn、Al等を含み、更に、これに特定量のMgを加えた水素吸蔵合金において、全体を均一相とするのではなく、母相と比べてMg量の多い相を偏析させることによって、電池活性化時に合金中の偏析相が選択的に腐食されて、偏析相付近から表面積が増大し、早期に合金が活性化されることを見出した。そして、斯かる合金を負極活物質としたアルカリ畜電池は、活性化に要する充放電サイクルが大きく減少して、低コストで高出力の電池とすることができることを見出した。本発明は、斯かる知見に基づいてなされたものである。
【0011】
即ち、本発明は、下記の水素吸蔵合金及びそれを用いた電池を提供するものである。
1. La量が60〜90質量%のミッシュメタル、Mg、NiCo、Mn及びAlを含み、ミッシュメタルとMgの合計量を基準として、Mg量が2〜6原子%である水素吸蔵合金であって、母相中に少なくとも一相の偏析相が存在し、該偏析相中のMg濃度が母相中のMg濃度より高いことを特徴とする希土類系水素吸蔵合金。
2. 平均組成が一般式:
Mm(1−v)MgNiCoMnAl
(Mmはミッシュメタルであり、3.8≦x≦4.4、0.2≦y≦0.7、0.1≦s≦0.5、0.1≦t≦0.4、0.02≦v≦0.06であって、5.03≦x+y+s+t≦5.4である)で表されることを特徴とする上記項1に記載の水素吸蔵合金。
3. 上記項1又は2に記載の水素吸蔵合金を負極活物質とすることを特徴とするアルカリ蓄電池用負極。
4. 上記項1又は2に記載の水素吸蔵合金からなる負極活物質を含むペーストを金属支持体に塗布し乾燥して得られる負極であって、負極の厚さが0.1〜0.3mm、金属支持体の重量が150〜450g/mであることを特徴とするアルカリ畜電池用負極。
5. 水素吸蔵合金が、酸溶液に接触させることによる表面処理及びアルカリ溶液に接触させることによる表面処理のいずれか一方又は両方の処理を行われたものである上記項3又は4に記載のアルカリ畜電池用負極。
【0012】
【発明の実施の形態】
以下、本発明の水素吸蔵合金、その製造方法、該水素吸蔵合金を用いた電池について、順次説明する。
【0013】
水素吸蔵合金
本発明の水素吸蔵合金は、La量が60〜90質量%のミッシュメタル、Mg、NiCo、Mn及びAlを含み、ミッシュメタルとMgの合計量を基準として、Mg量が2〜6原子%の水素吸蔵合金であって、母相中に少なくとも一相の偏析相が存在し、該偏析相中のMg濃度が母相中のMg濃度より高いことを特徴とする希土類系水素吸蔵合金である。
【0014】
上記したLa量が60〜90質量%のミッシュメタル、Ni、CoおよびMnを構成元素として含む合金は、比較的低温特性が良好であり、また、Coの含有量を低減した場合の可逆性や高温での充電効率低下が小さい合金である。また、ミッシュメタルとMgの合計量を基準として2〜6原子%のMgを含むことにより、合金の安定性を高めて、微細化を抑制することができ、更に、適度な量の偏析相を析出させることが可能となる。
【0015】
本発明の合金は、上記した平均組成の合金において、均一相ではなく、母相中に少なくとも一相の偏析相が存在し、該偏析相中のMg濃度が母相中のMg濃度より高いことが必要である。この様な偏析相が存在することにより、電池活性化時に偏析相が選択的に腐食されて、偏析相付近から表面積が増大し、合金そのものの活性が早期に生じる。これにより、本発明の水素吸蔵合金を負極活物質としたアルカリ畜電池は、少ない充放電サイクルで十分に活性化することが可能であり、電池製造工数・時間を短縮でき、低コストで高出力を得ることができる。本発明の合金では、偏析相の量は、合金表面中の面積比率として、1〜15%程度であることが好ましい。
【0016】
該水素吸蔵合金としては、特に、平均組成が一般式:
Mm(1-v)MgvNixCoyMnsAlt
(Mmはミッシュメタルであり、3.8≦x≦4.4、0.2≦y≦0.7、0.1≦s≦0.5、0.1≦t≦0.4、0.02≦v≦0.06であって、5.03≦x+y+s+t≦5.4である)で表されるものが好ましい。
【0017】
ここで、Mmは、La量が60〜90質量%のミッシュメタルである。ミッシュメタル中のLa量が60〜90質量%であることによって、合金の平衡水素吸蔵圧力を容易に低く抑えることができ、電池使用温度範囲での水素の吸蔵放出を安易に行うことができ、Mn(s)やAl(t)の大幅な調整を必要とせず合金設計が簡便となる。本発明で用いるMmを得るには、鉱石より採掘される原料をベースとし、Laリッチな鉱石を組み合わせて、La量が60〜90質量%となるように組成の調整を行えばよい。このためMmにおけるLa以外の希土類元素であるCe、Pr、Nd等の割合は特に限定されない。
【0018】
上記一般式で表される水素吸蔵合金では、Mgの比率を示すv値は0.02〜0.06、即ち、ミッシュメタルとMgの合計量を基準としてMg量は2〜6原子%である。この様なMg量とすることによって、水素吸蔵合金の微粉化を防止して良好な安定性を付与できると共に、後述する方法で合金を製造する際に、熱処理により適度な量の偏析相を形成することが可能となる。v値が0.02を下回ると、偏析相がほとんど現れず、従来と同様に、貯蔵性が良好となり過ぎて電池作製時の活性化に多大な時間を要し、コストアップにつながるので好ましくない。また、v値が0.06を上回る場合には、偏析相が多量に析出するため、合金そのものの容量が低下し、電池特性に必要な寿命が低下することになるので好ましくない。
【0019】
x+y+s+tの値は、Mm及びMgの合計量に対する、Ni、Co、Mn及びAlの合計量の原子比であり、5.03から5.4の範囲内とする。この値が5.03を下回ると、アルカリ中で腐食しやすいMm及びMgの割合が相対的に増加することになり、寿命が低下する要因や反応を妨げる要因となるので好ましくない。また、5.4を上回ると合金そのものの容量が減少することになるので、好ましくない。
【0020】
Coの比率を示すy値は、0.2〜0.7であり、通常用いられている希土類系水素吸蔵合金よりCoの比率が少ない範囲である。y値を上記範囲とすることによって、コスト低減が可能となり、更に、上記した組成とすることによって、水素吸蔵・放出の可逆性を保ち、且つ高温及び低温での特性も満足できるものとなる。
【0021】
Niの比率であるx値は3.8〜4.4の範囲、Mnの比率であるs値は0.1〜0.5の範囲、Alの比率であるt値は0.1〜0.4の範囲とする。x、s、及びt値については、いずれも上記範囲からはずれると、平衡水素圧が異常に高くなったり、寿命が急激に低下する要因となるので好ましくない。
【0022】
水素吸蔵合金の製造方法
以下、本発明の水素吸蔵合金の製造方法の一例を説明する。
【0023】
本発明の水素吸蔵合金は、例えば、各原料成分を混合し、高周波溶解などの通常の溶解法を用いて溶解した後冷却し、熱処理を行うことによって作製することができる。ただし、Mgの融点が他の元素と比較して低く、溶解中に組成が変動しやすいため、あらかじめMg以外の元素を合金化しておき、さらにMgとの合金化を行うか、Mgの金属間化合物やMg合金を原料として用いるなどの方法で目的とする水素吸蔵合金を作製するとよい。例えば、Laを含むMm、Ni、Mn及びAlを、真空中又はAr等の不活性ガス雰囲気下で1300〜1400℃程度で溶解した後、MgNi2等のMg化合物を添加し、溶解して均一化した後、冷却する方法などを採用できる。
【0024】
本発明では、作製した合金の熱処理温度が重要であり、1000〜1100℃で真空中又はAr等の不活性ガス雰囲気下で熱処理を施すことが好ましい。この熱処理温度は、従来の熱処理温度である700〜1000℃より高い温度であり、この温度範囲で熱処理を行うことにより、母相よりMgを多く含む偏析相を形成することができる。
【0025】
熱処理温度が1000℃を下回ると、合金のひずみを取るだけの効果しかなく、所望の偏析相は得られない。また、1100℃を上回ると低融点のMgが揮発しやすく、所定の合金組成を得ることができなくなる。熱処理時間は5〜7時間程度が好ましい。
【0026】
上記した方法で得られた合金については、機械的粉砕、水素化等によって微粉化して、平均粒子径を8〜34μm程度の範囲とすることが好ましい。この範囲の平均粒子径に粉砕することによって、合金粉末の比表面積が好適となり、大電流放電に適した表面積の大きい合金とすることができる。
【0027】
上記した方法で得られる本発明の水素吸蔵合金は、そのまま負極活物質として使用することが可能であるが、更に、酸溶液に接触させることによる表面処理及びアルカリ溶液に接触させることによる表面処理のいずれか一方又は両方の処理を行った後、負極活物質として用いることが好ましい。
【0028】
前述したように、本発明の水素吸蔵合金は、電池内でアルカリ溶液により腐食される傾向があり、Mgを多く含む偏析相が選択的に腐食されて表面積が増大し、それにより早期に活性化することができる。上記した表面処理を行う場合には、電極作製前に事前に偏析相を選択的に腐食させて、より短期間に活性化を行うことが可能となる。
【0029】
この表面処理は、塩酸、燐酸、酢酸、しゅう酸などの酸を含有する溶液(水溶液又はアルコールなど有機溶媒の溶液)に浸漬する方法、水酸化カリウム、水酸化ナトリウム、アンモニア等のアルカリを含有する溶液(水溶液又はアルコールなど有機溶媒の溶液)に浸漬する方法などによって行うことができる。
【0030】
表面処理の具体的な条件は、処理の種類や用いる薬品の種類により変化し、最適な条件については一概に言えないが、酸による処理ではpH0.5〜5.5程度の範囲が適当であり、アルカリによる処理では、pH9〜15程度の範囲が適当である。また、処理時間は2〜90分程度が適当であり、必要に応じて110℃程度までの範囲で溶液を加温して処理を行ってもよい。
【0031】
上記した表面処理は、酸溶液に接触させることによる表面処理及びアルカリ溶液に接触させることによる表面処理のいずれか一方のみを行っても良いが、両方の処理を組み合わせて行うことによって、一層好ましい結果が得られることがある。これは、例えばアルカリ溶液で合金を処理した場合、アルカリ中の金属イオンが飽和し、処理溶液の温度が低下する際に、金属酸化物として合金表面に再析出してしまう恐れがある。この酸化物は電池内で再び溶解を必要とし、活性化に時間を要する原因になることや、大電流放電での電圧低下の原因になることがある。このため、処理後の合金を酸により再び処理することにより、合金表面付近に存在する再析出した酸化物を除去すると、活性化時間の短縮により効果的である。
【0032】
複数の表面処理を続けて行う場合は、酸素ガスによる処理結果への影響を避けるため、合金表面が濡れた状態で次の処理に移るか、不活性ガス中で合金を扱うことが望ましい。
【0033】
水素吸蔵合金を用いた電池
本発明の水素吸蔵合金又はこれに表面処理を行った合金は、アルカリ蓄電池、特にニッケル水素蓄電池用負極活物質として有効に利用することができる。以下、該水素吸蔵合金を負極活物質とするアルカリ畜電池の一例について説明する。
【0034】
本発明の水素吸蔵合金又はこれに表面処理を行った合金は、導電助剤や増粘剤、高分子結着剤などとともにペースト化し、これを穿孔鋼板(通称:パンチングメタル)、エキスパンド、金属箔、発泡メタルなどの金属支持体に塗布し、乾燥することにより負極とすることができる。
【0035】
増粘剤としてはヒドロキシプロピルセルロース、ポリN−ビニルアセトアミド、ポリエチレンオキサイド、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール等があげられる。本発明では特にヒドロキシプロピルセルロースを用いるのが望ましい。その理由は、次の通りである。
【0036】
即ち、本発明の水素吸蔵合金は、Mgを含有しているため、ペースト化した際に若干量のMgの溶出が生じる傾向がある。従来用いられていたポリエチレンオキサイドやポリビニルアルコールでは、溶出した微量のMgイオンによりペースト粘度の変動や流動性の低下といった変化が生じてしまうため、連続塗布乾燥工程で得られる電極は、活物質充填量や電極厚みなどにばらつきを生じやすくなる。これに対して、ヒドロキシプロピルセルロースは、このような変化に対して粘度変化が非常に小さいため、長時間安定して塗布を行うことができ、前記ばらつきも抑制することができる。さらに、ヒドロキシプロピルセルロースは、ポリエチレンオキサイドやカルボキシメチルセルロースに比べ、非イオン性であり、電荷による凝集が生じない、また、チクソ性(線弾性)にも優れ、合金表面に強く吸着し、一種の耐酸化保護層のような働きをすると考えられ、ペースト中に含有させることにより、乾燥工程や加圧成形工程での合金の発火等も抑制できると考えられる。
【0037】
本発明に用いられるヒドロキシプロピルセルロースとしては、重量平均分子量が10,000〜10,000,000程度、好ましくは50,000〜5,000,000程度であるのがよい。重量平均分子量を10,000以上とすることにより、水素吸蔵合金表面への高い吸着効果が得られ、また、重量平均分子量を10,000,000以下とすることにより、ペーストの安定した増粘性を確保することができるので、塗布を高速化する場合でも、連続塗布性にすぐれたペーストを得ることができる。
【0038】
このようなヒドロキシプロピルセルロースの使用量は、水素吸蔵合金100重量部に対して、通常0.03〜5重量部、好ましくは0.1〜3重量部、より好ましくは0.2〜1重量部とするのがよい。すなわち、増粘作用の点から0.03重量部以上とするのが望ましく、活物質である水素吸蔵合金の充填密度の点から5重量部以下とするのが望ましい。また、他の増粘剤と混合して用いる場合は、総量が上記範囲内であればよい。
【0039】
また、高分子結着剤としてポリテトラフルオロエチレンやラテックス等ゴム系高分子を用いることができる。特にゴム系高分子を用いると、基材と塗膜との接着性がより一層向上するので望ましい。このようなゴム系高分子としては、スチレンと2-エチルヘキシルアクリレートを主成分とした共重合体が最も好ましく、その他、スチレン-ブタジエン共重合体、天然ゴム、スチレン−イソプレン共重合体、シリコンゴムなどを用いることができる。
【0040】
上記のゴム系高分子の使用量は、水素吸蔵合金100重量部に対して、通常0.1〜5重量部、好ましくは0.2〜2重量部とするのがよい。すなわち、基材と塗膜との接着性の点から0.1重量部以上とするのが望ましく、活物質である水素吸蔵合金の充填密度の点から5重量部以下とするのが望ましい。また、他の結着剤を併用する場合も、その使用量はゴム系高分子との総量で上記範囲内であることが望ましい。特に、ポリテトラフルオロエチレンを併用すれば電極の柔軟性が向上し、捲回時の短絡などの不良発生を防止できるので好ましい。
【0041】
さらに、上記ペースト中には、従来から用いられている導電剤を配合してもよい。導電剤は、水素吸蔵合金の導電性を高めて負極としての集電能を向上させ、更に、水素吸蔵合金の充填性を向上させるため、通常、微粒子状態のものが用いられる。この導電剤としては、ニッケル粉末、コバルト粉末、銅粉末、カーボン粉末などを用いることができるが、これらの中でも、粒子径が5μm以下のニッケル粉末を用いることがより好ましい。
【0042】
上記した水素吸蔵合金を含むペーストを金属支持体に塗布し、熱風乾燥炉や赤外線乾燥炉などにより乾燥を行い、乾燥後、所定の厚みに加圧成形し、必要な寸法に裁断することにより、アルカリ畜電池用負極とすることができる。
【0043】
尚、高出力電池に用いる負極は、電極面積を多く取る事により大きなレートでの放電が可能となるため、電極面積が広いことが望まれる。電極面積が広い負極とするためには、負極の厚さは0.3mm以下であることが効果的であり、これ以上では民生用の携帯電話に必要な容量重視の設計となる。また、より薄ければ効果的であるが、0.1mm以下では電極作製の歩留まりが却って低下し、コストアップや性能の不安定を招くこととなる。従って、高出力電池用の負極とするためには、負極の厚さは、0.1〜0.3mm程度であることが好ましい。
【0044】
通常、電極の支持体としては、2次元的な金属支持体が用いられ、例えば、鋼板を打ち抜いた通称パンチングメタルの両面にさび止めのためニッケルメッキを施して使用される。上記した厚さ0.1〜0.3mm程度の高出力電池用の負極を作製するためには、金属支持体の重量は150〜450g/m2 の範囲内であることが望ましい。負極の厚さが、0.3mmを上回る場合には、450g/m2程度の重量の基材を用いても、基材の占める体積は20%以下であるため、活物質である合金の充填容量が減じることは無い。しかしながら、電極厚みが0.3mm以下では、活物質を多く充填して、大電流を必要とするHEV用電池とするために、合金にかかる負荷を低減するために、金属支持体の重量を450g/m2以下にすることが好ましい。また、電極厚み0.1mm程度では支持体重量は150g/m2程度が望ましい。150g/m2を下回ると、電極作製の歩留まりが却って低下し、コストアップや性能の不安定を招くこととなる。
【0045】
本発明のアルカリ畜電池では、正極としては、焼結式のニッケル極やペースト式のニッケル極を用いることができる。ペースト式ニッケル極の場合、活物質として用いられる水酸化ニッケル粉末は、低温又は高温下での使用を考えると、亜鉛又はコバルトを固溶したものが好ましく用いられる。また同様の理由から、表面に水酸化コバルト粒子を有する水酸化ニッケル粉末を用いることも好ましい。さらに、導電性を高めるために、コバルト化合物が添加されていることが望ましく、特に、低温特性などの向上に効果的である。また、HEV用に大電流を必要とする場合は、薄い厚みの正極が有効であるため、電極作製上はペースト式が簡便である。
【0046】
上記構成の負極と正極とをセパレータを介して積層し、これを電池缶に挿入した後、アルカリ電解液を注入することによりアルカリ畜電池を得ることができる。セパレータとしては、ポリオレフィン繊維やポリアミド繊維などからなる不織布が用いられ、表面を親水化処理されたものが特に好ましく用いられる。
【0047】
アルカリ電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液などのアルカリ水溶液が用いられ、水酸化リチウムや水酸化ナトリウムとの混合溶液が好ましく用いられる。また、水酸化ナトリウムは高温で電池を使用する際に充電効率を向上させるので好ましい。
【0048】
【発明の効果】
本発明によれば、以下のような優れた効果が奏される。
(1)本発明の希土類系水素吸蔵合金は、従来と比べてCo含有量を低減した水素吸蔵合金であって、低温及び高温での安定性に優れ、少ない充放電サイクルで十分に活性化することが可能な材料である。
【0049】
このため、該水素吸蔵合金を負極活物質として用いることより、電池作製時の活性化サイクルを少なくすることができ、電池製造工数・時間を大幅に短縮できる。
(2)本発明の水素吸蔵合金に対して、酸溶液に接触させることによる表面処理及びアルカリ溶液に接触させることによる表面処理のいずれか一方又は両方の処理を行うことによって、活性化がより一層容易になり、電池作製時の活性化サイクルをより減少させることができる。
(3)本発明の水素吸蔵合金を含むペーストを金属支持体に塗布し、乾燥した構造の負極において、負極の厚さ、金属支持体の重量などを特定条件に設定することによって、高出力電池とすることができる。従って、本発明の水素吸蔵合金を負極活物質として、斯かる構造の電池とすることによって、HEV車に適した低コストで高出力の電池を得ることができる。
【0050】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0051】
実施例1〜4及び比較例1〜3
La80質量%、Ce10質量%、Pr6質量%及びNd4質量%からなるMm(ミッシュメタル)、Ni、Co、Mn及びAlを高周波溶解炉によりアルゴンガス雰囲気中において1300〜1400℃の範囲で完全に溶解した後、最後にMgNi合金を溶解し、その後冷却した。得られたインゴットを真空中で5時間熱処理して表 1に示す組成の合金を得た。熱処理温度は、実施例1〜4及び比較例2、3については1030℃とし、比較例1については900℃とした。
【0052】
次いで、各々の合金をアルゴンガス中で機械的に粉砕し、平均粒子径25μmの合金粉末を作製した。
【0053】
更に、実施例4の合金粉末に対しては、以下の方法で表面処理を行った。
【0054】
まず、100℃に加温した30質量%水酸化カリウム水溶液1リットルに対して合金粉末を500gの割合で投入し、30分間撹拌しながらアルカリ水溶液による処理を行った。その後中性になるまで純水で洗浄し、水分をほとんど含まない状態として、pH1に調整した塩酸250ml中に投入し、合金表面の酸化物の溶解反応が落ち着くまで撹拌しながら酸による処理を行った。その後中性になるまで純水で洗浄し、乾燥を行った。
【0055】
【表1】

Figure 0004304430
【0056】
上記した方法で得られた合金の内で、実施例2で得た合金の結晶構造を示す走査電子顕微鏡写真(SEM写真)を図1に示す。また、図1に示したSEM写真における母相A、偏析相B及び偏析相CのEPMA分析値を下記表2に示す。
【0057】
【表2】
Figure 0004304430
【0058】
表2から、母相Aと比較すると、偏析相であるB及びCは、いずれもMgを多く含んでいることがわかる。
【0059】
また、図2に、比較例1で得た合金のSEM写真を示す。図2の写真では、合金中に偏析相は見られず、EPMA分析でも均一な組織となっていることが確認できた。
【0060】
更に、実施例3で作製した合金のSEM写真を図3に示し、比較例2で作製した合金のSEM写真を図4に示す。これらの比較から、Mg量が増加するに従って偏析相が増加していることが判る。
【0061】
SEM観察より視野内の面積割合から偏析相の割合を算出した。下記表3に、母相Aに対する偏析層B、Cの割合をまとめて示す。
【0062】
【表3】
Figure 0004304430
【0063】
比較例2の合金は、Mgの比率を示すv値が0.1であり、Mgの比率が高く、合金表面中、偏析相の面積割合が20%と多く、合金そのものの容量が低い値となった。
【0064】
また、熱処理を900℃で行った比較例1と、Mgの比率v値が0.01と低い値である比較例3は偏析相が現れなかった。
【0065】
上記した実施例及び比較例で得た水素吸蔵合金を負極活物質として用い、以下の方法でアルカリ蓄電池を作製した。
【0066】
まず、水素吸蔵合金粉末100重量部、導電剤として濃度50質量%のSBR水溶液2重量部、及びヒドロキシプロピルセルロース0.3重量部を混合し、粘度が約50000mPa・sになるよう水を添加してペーストを調製した。このペーストを厚さ35μmのパンチングメタルに塗布し、赤外線乾燥炉中を走行させながら乾燥を行い、負極シートを作製した。
【0067】
その後、加圧成形して厚さ0.16mmのシート状物とした。これを幅36mm、長さ100mmに裁断して負極とした。
【0068】
正極活物質としては、表面にアルカリ処理したコバルト化合物粒子を有する水酸化ニッケル粉末(亜鉛を4質量%,コバルトを1質量%固溶、表面のコバルト化合物中のコバルトは水酸化ニッケルに対して4質量%)を用い、この水酸化ニッケル粉末100重量部に対して水酸化コバルトを4重量部添加したペーストを作製した。このペーストを厚さ0.4mmの金属発泡体(目付け300g/m)に塗布し、赤外線乾燥炉中を走行させながら乾燥を行い、正極シートを作製した。
【0069】
その後、加圧成形して厚さが0.23mmのシート状物とした。これを幅36mm、長さ80mmに裁断して正極とした。
【0070】
上記負極と正極とを、表面を親水化処理したポリプロピレン不織布製のセパレータを介して捲回し、単4サイズの電極缶に入れ、これに28質量%の水酸化カリウム、2質量%の水酸化リチウム混合水溶液よりなるアルカリ電解液を注入した後、密閉してアルカリ蓄電池とした。
【0071】
上記方法で得た各アルカリ蓄電池を60℃で17時間保持し、放冷後に10mAで14時間の充電を行い、さらに100mAで5時間充電し、100mAで放電(放電終止電圧:1V)した後、再度60℃で17時間保持し、放冷後に100mAで7時間充電し、1時間休止の後、100mAで放電(放電終止電圧:1V)する充放電サイクルを5サイクル行うことにより、化成処理を行った。
【0072】
上記した化成処理を行った後、大電流特性として、100mAで7時間充電し、1時間休止後、8A(20ItA)で放電(放電終止電圧:0.7V)を行い、放電容量を求めた。その後、100mAで7時間充電し、1時間休止後、100mAで放電(放電終止電圧:1V)する充放電サイクルを5サイクル行い、再度大電流特性を測定した。この測定を放電容量が電池の容量に近づくまで繰り返し、電池内の合金が完全に活性化するサイクル数を求めた。
【0073】
大電流特性とは別に、サイクル寿命として、化成処理が終了した電池を、0.4A(1ItA)で充電(−ΔV:5mVcut)し、15分休止の後0.4A(1ItA)で放電(放電終止電圧:1V)し、初期の放電容量の80%まで低下したサイクル数を求めた。
【0074】
実施例2で得た合金を負極活物質とした電池の20ItA放電カーブの一例を図5に示し、比較例1で得た合金を負極活物質とした電池の20ItA放電カーブの一例を図6に示す。偏析相を持たない合金を用いた比較例1の電池では十分な容量がでるまで40サイクルかかるのに対して、偏析相を持つ合金を用いた実施例2の電池では、20サイクル後に十分な容量が出ており、比較的短時間で活性化できることが判る。
【0075】
また、サイクル数と放電容量の関係を表すグラフを図7に示す。放電容量は作製した電池5個の平均値である。実施例1〜4で得た合金を用いた電池は、いずれも比較例1、3で得た合金を用いた電池と比べて早期に20ItA放電容量が確保できていることがわかる。特に、表面処理を行った実施例4の合金を用いた電池は、未処理の合金を用いた実施例2の電池より、更に早いサイクル数で十分な放電容量を得ることができ、容量の低下も無いことが判る。この結果から、表面処理の有効性が明らかである。
【0076】
Mg添加量の多い合金(v値=0.1)を用いた比較例2の電池は、わずか5サイクルに十分な放電容量を得ることができたが、25サイクル目には容量の低下が生じ、40サイクル目には300mAhまで低下した。この様な放電容量の低下の原因は、偏析相が20%占めていたことから、合金そのものの容量が低下し易いことによるものと思われる。
【0077】
表4に、各実施例及び比較例で得た合金を用いた電池について、十分な20ItA放電容量を得るサイクル数と1ItA/1ItAサイクル数を示す。
【0078】
【表4】
Figure 0004304430
【0079】
この結果から、実施例1〜4の各電池は、1ItA/1ItAサイクル寿命については、比較例1〜3の各電池と比較して同等以上に優れていることがわかる。これは、偏析相の部分が合金の活性化に寄与し、Mgが均一な母相の部分が耐食性に寄与して、寿命が向上したことによるものと考えられる。また、Mg量の多い合金を用いた比較例2の電池やMg量の少ない合金を用いた比較例3の電池については、偏析相の効果が無く、サイクル寿命が逆に低下した。
【0080】
このように本発明の水素吸蔵合金を負極活物質として用いた電池では、該水素吸蔵合金中に適度な偏析相が含まれることによって、寿命を低下させることなく、活性化サイクルを少なくすることができ、電池製造工数・時間を大幅に短縮して、低コストで高出力を得ることが可能であった。
【図面の簡単な説明】
【図1】実施例2で得た合金の結晶構造を示す走査電子顕微鏡写真。
【図2】比較例1で得た合金の結晶構造を示す走査電子顕微鏡写真。
【図3】実施例3で得た合金の結晶構造を示す走査電子顕微鏡写真。
【図4】比較例2で得た合金の結晶構造を示す走査電子顕微鏡写真。
【図5】実施例2で得た合金を用いた電気の20ItAカーブを示すグラフ。
【図6】比較例1で得た合金を用いた電気の20ItAカーブを示すグラフ。
【図7】サイクル数と放電容量との関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy and a negative electrode for alkaline livestock batteries using this as a negative electrode active material.
[0002]
[Prior art]
The most demanding nickel-metal hydride storage battery among alkaline storage batteries uses a hydrogen storage alloy capable of reversibly occluding and releasing hydrogen as a negative electrode active material, and normally uses a hydrogen storage alloy as the active material. A negative electrode, a positive electrode using nickel hydroxide as an active material, a separator, and an alkaline electrolyte are combined.
[0003]
In such a battery, as the hydrogen storage alloy as the negative electrode active material, a rare earth alloy composed of La or Misch metal (Mm) and elements such as Ni, Co, Mn, Al, Zr, Ni, Laves alloys composed of V, Mn, etc. are well known, but rare earth alloys are widely used in general.
[0004]
Of the elements constituting the rare earth alloy, the element having the highest ratio in the cost is Co, and it is desired to reduce the content thereof as much as possible. In particular, in large-sized storage batteries for electric vehicles and the like, cost reduction is an important issue as the alloy capacity increases. Further, since the battery may be exposed to a high temperature or a low temperature, an alloy in consideration of use at a high current at a high temperature and a low temperature is required.
[0005]
From the above viewpoint, La is 60 to 90 as a rare earth alloy with a reduced amount of Co.mass% Misch metal, Ni,An alloy in which Mg is further added to an alloy containing Co and Mn components to reduce the amount of Co and improve the stability at low and high temperatures has been reported (see Patent Document 1 below).
[0006]
This alloy is a hydrogen storage alloy that can maintain reversibility even when the Co content is significantly reduced as compared with the conventional alloy, and that can satisfy some characteristics at high or low temperatures. However, the alloy has satisfactory performance as a battery for a hybrid vehicle (HEV vehicle) using both gasoline and electricity, which requires discharge characteristics at a high current at high and low temperatures. Absent.
[0007]
Also, normally, hydrogen storage alloys are charged and discharged, called activation, in order to obtain desired high rate discharge characteristics after the battery is made. However, the above alloys reduce the amount of Co and add Mg. In such a stable alloy having excellent storage properties, the number of charge / discharge cycles required for activation is very large, and the battery manufacturing man-hour and time are greatly increased. For this reason, even if the amount of Co is reduced to reduce the material cost of the alloy itself, the total cost for manufacturing the battery increases.
[0008]
[Patent Document 1]
JP 2001-291510 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described prior art, and its main object is a rare earth-based hydrogen storage alloy with a reduced Co content compared to the prior art, which is stable at low and high temperatures. An object of the present invention is to provide a novel hydrogen storage alloy suitable as a negative electrode active material for an alkaline storage battery with low cost and high output, which is excellent and can be sufficiently activated with a small charge / discharge cycle.
[0010]
[Means for Solving the Problems]
The present inventor has intensively studied to achieve the above-described object. As a result, in the hydrogen storage alloy containing misch metal, Ni, Co, Mn, Al, etc., and further adding a specific amount of Mg, the whole is made a uniform phase.InWithout segregating the phase with a larger amount of Mg compared to the parent phase, the segregation phase in the alloy is selectively corroded when the battery is activated, increasing the surface area from the vicinity of the segregation phase and activating the alloy early. I found out that And it discovered that the alkaline storage battery which used such an alloy for the negative electrode active material can reduce a charge / discharge cycle required for activation significantly, and can make it a low output and a high output battery. The present invention has been made based on such knowledge.
[0011]
That is, the present invention provides the following hydrogen storage alloy and a battery using the same.
1. La amount is 60-90mass% Misch Metal, Mg, Ni,Co, Mn, and Al, a hydrogen storage alloy having a Mg content of 2 to 6 atomic% based on the total amount of misch metal and Mg, and at least one segregation phase is present in the parent phase, A rare earth-based hydrogen storage alloy characterized in that the Mg concentration in the segregation phase is higher than the Mg concentration in the matrix phase.
2. The average composition is the general formula:
Mm(1-v)MgvNixCoyMnsAlt
(Mm is Misch metal, 3.8 ≦ x ≦ 4.4, 0.2 ≦ y ≦ 0.7, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.4, 0. (2 ≦ v ≦ 0.06, and 5.03 ≦ x + y + s + t ≦ 5.4)).
3. 3. A negative electrode for an alkaline storage battery, wherein the hydrogen storage alloy according to item 1 or 2 is used as a negative electrode active material.
4). 3. A negative electrode obtained by applying a paste containing a negative electrode active material comprising the hydrogen storage alloy according to item 1 or 2 to a metal support and drying the paste, wherein the negative electrode has a thickness of 0.1 to 0.3 mm, a metal The weight of the support is 150 to 450 g / m2A negative electrode for alkaline livestock batteries, characterized in that
5). Item 5. The alkaline storage battery according to Item 3 or 4, wherein the hydrogen storage alloy has been subjected to either or both of a surface treatment by contacting with an acid solution and a surface treatment by contacting with an alkaline solution. Negative electrode.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the hydrogen storage alloy of the present invention, the production method thereof, and the battery using the hydrogen storage alloy will be sequentially described.
[0013]
Hydrogen storage alloy
The hydrogen storage alloy of the present invention has an La amount of 60 to 90.mass% Misch Metal, Mg, Ni,Co, Mn, and Al, a hydrogen storage alloy having a Mg content of 2 to 6 atomic% based on the total amount of misch metal and Mg, wherein at least one segregation phase is present in the parent phase, A rare earth-based hydrogen storage alloy characterized in that the Mg concentration in the segregation phase is higher than the Mg concentration in the matrix phase.
[0014]
The above La amount is 60 to 90mass% Of misch metal, Ni, Co, and Mn as constituent elements have relatively good low-temperature characteristics, and have low reversibility when the Co content is reduced and small reduction in charging efficiency at high temperatures. It is. In addition, by containing 2 to 6 atomic% of Mg based on the total amount of misch metal and Mg, the stability of the alloy can be improved, miniaturization can be suppressed, and an appropriate amount of segregation phase can be added. It can be deposited.
[0015]
In the alloy of the present invention, in the alloy having the above average composition, at least one segregation phase is present in the matrix phase, not a homogeneous phase, and the Mg concentration in the segregation phase is higher than the Mg concentration in the matrix phase. is required. Due to the presence of such a segregation phase, the segregation phase is selectively corroded when the battery is activated, the surface area increases from the vicinity of the segregation phase, and the activity of the alloy itself occurs early. As a result, the alkaline livestock battery using the hydrogen storage alloy of the present invention as a negative electrode active material can be sufficiently activated with a small number of charge / discharge cycles, can reduce battery manufacturing man-hours and time, and can achieve high output at low cost. Can be obtained. In the alloy of the present invention, the amount of segregation phase is preferably about 1 to 15% as an area ratio in the alloy surface.
[0016]
In particular, the hydrogen storage alloy has an average composition of the general formula:
Mm (1-v) MgvNixCoyMnsAlt
(Mm is misch metal, 3.8 ≦ x ≦ 4.4, 0.2 ≦ y ≦ 0.7, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.4, 0.4. (2 ≦ v ≦ 0.06, and 5.03 ≦ x + y + s + t ≦ 5.4) is preferable.
[0017]
Here, Mm has a La amount of 60 to 90.mass% Misch Metal. La amount in misch metal is 60-90mass%, The equilibrium hydrogen storage pressure of the alloy can be easily suppressed to a low level, hydrogen can be stored and released easily in the battery operating temperature range, and Mn (s) and Al (t) are greatly reduced. The alloy design becomes simple without requiring any adjustment. In order to obtain Mm used in the present invention, a raw material mined from ore is used as a base, and La-rich ore is combined.massThe composition may be adjusted to be%. For this reason, the ratio of Ce, Pr, Nd, etc. which are rare earth elements other than La in Mm is not specifically limited.
[0018]
In the hydrogen storage alloy represented by the above general formula, the v value indicating the ratio of Mg is 0.02 to 0.06, that is, the Mg amount is 2 to 6 atomic% based on the total amount of misch metal and Mg. . By making such an amount of Mg, it is possible to prevent the pulverization of the hydrogen storage alloy and give good stability, and when manufacturing the alloy by the method described later, an appropriate amount of segregation phase is formed by heat treatment. It becomes possible to do. When the v value is less than 0.02, almost no segregation phase appears, and as in the conventional case, the storage property becomes too good, and it takes a lot of time for activation at the time of battery preparation, which is not preferable because it leads to cost increase. . On the other hand, when the v value exceeds 0.06, a large amount of segregation phase precipitates, so that the capacity of the alloy itself is reduced and the life required for battery characteristics is reduced, which is not preferable.
[0019]
The value of x + y + s + t is an atomic ratio of the total amount of Ni, Co, Mn, and Al to the total amount of Mm and Mg, and is in the range of 5.03 to 5.4. When this value is less than 5.03, the ratio of Mm and Mg that are easily corroded in alkali is relatively increased, which is not preferable because it causes a decrease in life and a factor that hinders reaction. On the other hand, if it exceeds 5.4, the capacity of the alloy itself decreases, which is not preferable.
[0020]
The y value indicating the ratio of Co is 0.2 to 0.7, and is a range in which the ratio of Co is smaller than that of a commonly used rare earth hydrogen storage alloy. By setting the y value in the above range, the cost can be reduced. Furthermore, by using the above composition, the reversibility of hydrogen storage / release is maintained and the characteristics at high and low temperatures can be satisfied.
[0021]
The x value that is the ratio of Ni is in the range of 3.8 to 4.4, the s value that is the ratio of Mn is in the range of 0.1 to 0.5, and the t value that is the ratio of Al is 0.1 to 0.00. The range is 4. If the x, s, and t values are all out of the above ranges, it is not preferable because the equilibrium hydrogen pressure becomes abnormally high or the life is rapidly reduced.
[0022]
Method for producing hydrogen storage alloy
Hereinafter, an example of the manufacturing method of the hydrogen storage alloy of this invention is demonstrated.
[0023]
The hydrogen storage alloy of the present invention can be produced, for example, by mixing each raw material component, melting it using a normal melting method such as high frequency melting, cooling it, and performing a heat treatment. However, since the melting point of Mg is low compared to other elements and the composition tends to fluctuate during melting, elements other than Mg are alloyed in advance and further alloyed with Mg, or between Mg metals The target hydrogen storage alloy may be produced by a method such as using a compound or Mg alloy as a raw material. For example, after dissolving Mm, Ni, Mn, and Al containing La in a vacuum or in an inert gas atmosphere such as Ar at about 1300 to 1400 ° C., MgNi2A method of cooling after adding an Mg compound such as, etc., dissolving and homogenizing can be employed.
[0024]
In the present invention, the heat treatment temperature of the produced alloy is important, and it is preferable to perform the heat treatment at 1000 to 1100 ° C. in a vacuum or in an inert gas atmosphere such as Ar. This heat treatment temperature is higher than the conventional heat treatment temperature of 700 to 1000 ° C., and by performing the heat treatment in this temperature range, a segregation phase containing more Mg than the parent phase can be formed.
[0025]
When the heat treatment temperature is lower than 1000 ° C., there is only an effect of taking strain of the alloy, and a desired segregation phase cannot be obtained. On the other hand, when the temperature exceeds 1100 ° C., Mg having a low melting point tends to volatilize, and a predetermined alloy composition cannot be obtained. The heat treatment time is preferably about 5 to 7 hours.
[0026]
The alloy obtained by the above method is preferably pulverized by mechanical pulverization, hydrogenation, or the like, and the average particle size is preferably in the range of about 8 to 34 μm. By grinding to an average particle diameter in this range, the specific surface area of the alloy powder becomes suitable, and an alloy having a large surface area suitable for large current discharge can be obtained.
[0027]
The hydrogen storage alloy of the present invention obtained by the above-described method can be used as a negative electrode active material as it is, but is further subjected to surface treatment by contacting with an acid solution and surface treatment by contacting with an alkaline solution. It is preferable to use it as a negative electrode active material after performing either or both of the treatments.
[0028]
As described above, the hydrogen storage alloy of the present invention tends to be corroded by an alkaline solution in the battery, and the segregation phase containing a large amount of Mg is selectively corroded to increase the surface area, thereby being activated early. can do. When the surface treatment described above is performed, the segregation phase is selectively corroded in advance before the electrode is manufactured, and the activation can be performed in a shorter time.
[0029]
This surface treatment includes a method of immersing in a solution containing an acid such as hydrochloric acid, phosphoric acid, acetic acid or oxalic acid (an aqueous solution or a solution of an organic solvent such as alcohol), or an alkali such as potassium hydroxide, sodium hydroxide or ammonia. It can be performed by a method of immersing in a solution (an aqueous solution or a solution of an organic solvent such as alcohol).
[0030]
The specific conditions for the surface treatment vary depending on the type of treatment and the type of chemical used, and the optimum conditions cannot be generally stated, but in the treatment with acid, a pH range of about 0.5 to 5.5 is appropriate. In the treatment with alkali, a pH range of about 9 to 15 is appropriate. The treatment time is suitably about 2 to 90 minutes, and the treatment may be carried out by heating the solution in the range up to about 110 ° C. as necessary.
[0031]
The above-mentioned surface treatment may be performed by either one of the surface treatment by contacting with an acid solution and the surface treatment by contacting with an alkaline solution, but by performing both treatments in combination, a more preferable result May be obtained. For example, when an alloy is treated with an alkaline solution, when metal ions in the alkali are saturated and the temperature of the treated solution is lowered, there is a risk that the alloy will reprecipitate as a metal oxide on the alloy surface. This oxide needs to be dissolved again in the battery, and it may take time for activation, and may cause a voltage drop in large current discharge. For this reason, it is more effective to shorten the activation time if the re-precipitated oxide existing in the vicinity of the alloy surface is removed by treating the alloy after treatment again with acid.
[0032]
When performing a plurality of surface treatments in succession, in order to avoid the influence on the treatment result by oxygen gas, it is desirable to move to the next treatment with the alloy surface wet or to handle the alloy in an inert gas.
[0033]
Batteries using hydrogen storage alloys
The hydrogen storage alloy of this invention or the alloy which surface-treated this can be utilized effectively as an alkaline storage battery, especially a negative electrode active material for nickel metal hydride storage batteries. Hereinafter, an example of an alkaline storage battery using the hydrogen storage alloy as a negative electrode active material will be described.
[0034]
The hydrogen storage alloy according to the present invention or the surface-treated alloy is made into a paste together with a conductive additive, a thickener, a polymer binder, etc., and this is perforated steel sheet (common name: punching metal), expanded, metal foil The negative electrode can be formed by applying to a metal support such as foam metal and drying.
[0035]
Examples of the thickener include hydroxypropylcellulose, poly N-vinylacetamide, polyethylene oxide, carboxymethylcellulose, methylcellulose, polyvinyl alcohol and the like. In the present invention, it is particularly desirable to use hydroxypropylcellulose. The reason is as follows.
[0036]
That is, since the hydrogen storage alloy of the present invention contains Mg, there is a tendency that a slight amount of Mg is eluted when it is made into a paste. In polyethylene oxide and polyvinyl alcohol that have been used in the past, changes in paste viscosity and fluidity drop occur due to a small amount of eluted Mg ions. And electrode thickness are likely to vary. On the other hand, since the change in viscosity of hydroxypropylcellulose is very small with respect to such a change, it can be applied stably for a long time, and the variation can also be suppressed. Furthermore, hydroxypropylcellulose is nonionic compared to polyethylene oxide and carboxymethylcellulose, does not cause aggregation due to electric charge, is excellent in thixotropy (linear elasticity), strongly adsorbs on the alloy surface, and is a kind of acid resistant It is thought that it functions like a chemical protective layer, and by containing it in the paste, it is considered that ignition of the alloy in the drying step or pressure forming step can be suppressed.
[0037]
The hydroxypropyl cellulose used in the present invention has a weight average molecular weight of about 10,000 to 10,000,000, preferably about 50,000 to 5,000,000. By setting the weight average molecular weight to 10,000 or more, a high adsorption effect on the surface of the hydrogen storage alloy can be obtained, and by setting the weight average molecular weight to 10,000,000 or less, stable thickening of the paste can be achieved. Therefore, even when the application speed is increased, a paste excellent in continuous application property can be obtained.
[0038]
The amount of such hydroxypropyl cellulose used is usually 0.03 to 5 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.2 to 1 part by weight with respect to 100 parts by weight of the hydrogen storage alloy. It is good to do. That is, it is preferably 0.03 parts by weight or more from the viewpoint of thickening action, and is preferably 5 parts by weight or less from the point of filling density of the hydrogen storage alloy as the active material. Moreover, when using it mixing with another thickener, the total amount should just be in the said range.
[0039]
In addition, rubber-based polymers such as polytetrafluoroethylene and latex can be used as the polymer binder. In particular, the use of a rubber-based polymer is desirable because the adhesion between the substrate and the coating film is further improved. As such a rubber polymer, a copolymer having styrene and 2-ethylhexyl acrylate as main components is most preferable, and a styrene-butadiene copolymer, natural rubber, styrene-isoprene copolymer, silicon rubber, etc. Can be used.
[0040]
The amount of the rubber polymer used is usually 0.1 to 5 parts by weight, preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy. That is, it is preferably 0.1 parts by weight or more from the viewpoint of adhesion between the base material and the coating film, and is preferably 5 parts by weight or less from the point of filling density of the hydrogen storage alloy as the active material. Also when other binders are used in combination, the amount used is preferably within the above range in terms of the total amount with the rubber polymer. In particular, it is preferable to use polytetrafluoroethylene in combination because the flexibility of the electrode is improved and the occurrence of defects such as a short circuit during winding can be prevented.
[0041]
Furthermore, you may mix | blend the electrically conductive agent conventionally used in the said paste. The conductive agent is usually in the form of fine particles in order to increase the conductivity of the hydrogen storage alloy to improve the current collecting ability as a negative electrode and to further improve the filling property of the hydrogen storage alloy. As the conductive agent, nickel powder, cobalt powder, copper powder, carbon powder and the like can be used. Among these, nickel powder having a particle diameter of 5 μm or less is more preferable.
[0042]
By applying the paste containing the hydrogen storage alloy described above to a metal support, drying it with a hot air drying furnace or an infrared drying furnace, etc., after drying, press-molding to a predetermined thickness, and cutting to the required dimensions, It can be set as the negative electrode for alkaline livestock batteries.
[0043]
In addition, since the negative electrode used for a high output battery can discharge at a large rate by taking a large electrode area, it is desired that the electrode area is wide. In order to obtain a negative electrode having a large electrode area, it is effective that the thickness of the negative electrode is 0.3 mm or less. Above this, the capacity-oriented design required for a portable cellular phone is used. In addition, it is effective if it is thinner, but if the thickness is 0.1 mm or less, the yield of electrode production is lowered, leading to cost increase and performance instability. Therefore, in order to obtain a negative electrode for a high-power battery, the thickness of the negative electrode is preferably about 0.1 to 0.3 mm.
[0044]
Normally, a two-dimensional metal support is used as the electrode support, and for example, nickel plating is applied to both surfaces of a so-called punching metal punched out of a steel plate to prevent rust. In order to produce a negative electrode for a high-power battery having a thickness of about 0.1 to 0.3 mm, the weight of the metal support is 150 to 450 g / m.2 It is desirable to be within the range. 450 g / m when the thickness of the negative electrode exceeds 0.3 mm2Even if a base material of a certain weight is used, since the volume occupied by the base material is 20% or less, the filling capacity of the alloy as the active material is not reduced. However, when the electrode thickness is 0.3 mm or less, the weight of the metal support is 450 g in order to reduce the load applied to the alloy in order to reduce the load on the alloy in order to fill the active material and make a battery for HEV that requires a large current. / M2The following is preferable. Further, when the electrode thickness is about 0.1 mm, the weight of the support is 150 g / m.2Degree is desirable. 150 g / m2If the value is less than 1, the yield of electrode production will decrease, leading to cost increase and performance instability.
[0045]
In the alkaline livestock battery of the present invention, a sintered nickel electrode or a paste type nickel electrode can be used as the positive electrode. In the case of a paste-type nickel electrode, the nickel hydroxide powder used as the active material is preferably a solid solution of zinc or cobalt in consideration of use at low or high temperatures. For the same reason, it is also preferable to use nickel hydroxide powder having cobalt hydroxide particles on the surface. Furthermore, it is desirable to add a cobalt compound in order to increase conductivity, and this is particularly effective for improving low-temperature characteristics. In addition, when a large current is required for HEV, a thin positive electrode is effective, and the paste method is simple for electrode preparation.
[0046]
After laminating | stacking the negative electrode and positive electrode of the said structure through a separator, and inserting this into a battery can, an alkaline livestock battery can be obtained by inject | pouring alkaline electrolyte. As the separator, a nonwoven fabric made of polyolefin fiber, polyamide fiber or the like is used, and a separator whose surface is hydrophilized is particularly preferably used.
[0047]
As the alkaline electrolyte, an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution is used, and a mixed solution with lithium hydroxide or sodium hydroxide is preferably used. Sodium hydroxide is preferable because it improves the charging efficiency when the battery is used at a high temperature.
[0048]
【The invention's effect】
According to the present invention, the following excellent effects are exhibited.
(1) The rare earth-based hydrogen storage alloy of the present invention is a hydrogen storage alloy with a reduced Co content compared to the prior art, and is excellent in stability at low and high temperatures, and is sufficiently activated with fewer charge / discharge cycles. It is a possible material.
[0049]
For this reason, by using the hydrogen storage alloy as the negative electrode active material, it is possible to reduce the activation cycle at the time of manufacturing the battery, and to significantly reduce the battery manufacturing man-hour and time.
(2) The hydrogen storage alloy of the present invention is further activated by performing either or both of a surface treatment by contacting with an acid solution and a surface treatment by contacting with an alkaline solution. It becomes easy and the activation cycle at the time of battery preparation can be reduced more.
(3) A paste containing the hydrogen storage alloy of the present invention is applied to a metal support, and in a negative electrode having a dried structure, the thickness of the negative electrode, the weight of the metal support, and the like are set to specific conditions, whereby a high output battery It can be. Therefore, by using the hydrogen storage alloy of the present invention as the negative electrode active material to obtain a battery having such a structure, a low-cost and high-power battery suitable for HEV vehicles can be obtained.
[0050]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0051]
Examples 1-4 and Comparative Examples 1-3
La80mass%, Ce10mass%, Pr6mass% And Nd4mass% Mm (Misch metal), Ni, Co, Mn, and Al were completely dissolved in an argon gas atmosphere in the range of 1300 to 1400 ° C. in a high frequency melting furnace, and finally the MgNi alloy was melted and then cooled. . The obtained ingot was heat-treated in vacuum for 5 hours to obtain an alloy having the composition shown in Table 1. The heat treatment temperature was 1030 ° C. for Examples 1 to 4 and Comparative Examples 2 and 3, and 900 ° C. for Comparative Example 1.
[0052]
Subsequently, each alloy was mechanically pulverized in argon gas to produce an alloy powder having an average particle size of 25 μm.
[0053]
Further, the alloy powder of Example 4 was subjected to a surface treatment by the following method.
[0054]
First, 30 heated to 100 ° C.massAn alloy powder was added at a rate of 500 g per 1 liter of a potassium hydroxide aqueous solution, and a treatment with an alkaline aqueous solution was performed while stirring for 30 minutes. After that, it is washed with pure water until neutral, and is put in 250 ml of hydrochloric acid adjusted to pH 1 in a state containing almost no water, and is treated with acid while stirring until the dissolution reaction of the oxide on the alloy surface is settled. It was. Thereafter, it was washed with pure water until neutral and dried.
[0055]
[Table 1]
Figure 0004304430
[0056]
FIG. 1 shows a scanning electron micrograph (SEM photograph) showing the crystal structure of the alloy obtained in Example 2 among the alloys obtained by the method described above. Table 2 below shows EPMA analysis values of the matrix A, the segregation phase B, and the segregation phase C in the SEM photograph shown in FIG.
[0057]
[Table 2]
Figure 0004304430
[0058]
From Table 2, it can be seen that B and C, which are segregated phases, contain a large amount of Mg as compared with the parent phase A.
[0059]
FIG. 2 shows an SEM photograph of the alloy obtained in Comparative Example 1. In the photograph of FIG. 2, no segregation phase was observed in the alloy, and it was confirmed by EPMA analysis that the structure was uniform.
[0060]
Furthermore, the SEM photograph of the alloy produced in Example 3 is shown in FIG. 3, and the SEM photograph of the alloy produced in Comparative Example 2 is shown in FIG. From these comparisons, it can be seen that the segregation phase increases as the amount of Mg increases.
[0061]
The ratio of the segregation phase was calculated from the area ratio in the field of view by SEM observation. Table 3 below summarizes the ratios of the segregation layers B and C with respect to the matrix A.
[0062]
[Table 3]
Figure 0004304430
[0063]
In the alloy of Comparative Example 2, the v value indicating the Mg ratio is 0.1, the Mg ratio is high, the segregation phase area ratio in the alloy surface is as high as 20%, and the capacity of the alloy itself is low. became.
[0064]
Moreover, the segregation phase did not appear in Comparative Example 1 in which the heat treatment was performed at 900 ° C. and Comparative Example 3 in which the Mg ratio v value was as low as 0.01.
[0065]
Using the hydrogen storage alloys obtained in the above Examples and Comparative Examples as negative electrode active materials, alkaline storage batteries were produced by the following method.
[0066]
First, 100 parts by weight of hydrogen storage alloy powder, concentration 50 as a conductive agentmass2 parts by weight of an aqueous SBR solution and 0.3 parts by weight of hydroxypropylcellulose were mixed, and water was added so that the viscosity was about 50000 mPa · s to prepare a paste. This paste was applied to a punching metal having a thickness of 35 μm, and dried while being run in an infrared drying furnace to produce a negative electrode sheet.
[0067]
Then, it pressure-molded and it was set as the sheet-like thing of thickness 0.16mm. This was cut into a width of 36 mm and a length of 100 mm to obtain a negative electrode.
[0068]
As a positive electrode active material, nickel hydroxide powder (4% zinc) having cobalt compound particles treated with alkali on the surface is used.mass%, 1 cobaltmassCobalt in the surface cobalt compound is 4% of nickel hydroxide.mass%) Was used to prepare a paste in which 4 parts by weight of cobalt hydroxide was added to 100 parts by weight of the nickel hydroxide powder. This paste was formed into a metal foam having a thickness of 0.4 mm (weight per unit: 300 g / m2) And dried while running in an infrared drying furnace to produce a positive electrode sheet.
[0069]
Then, it pressure-molded and it was set as the sheet-like thing with a thickness of 0.23 mm. This was cut into a width of 36 mm and a length of 80 mm to obtain a positive electrode.
[0070]
The negative electrode and the positive electrode are wound through a separator made of a polypropylene non-woven fabric whose surface is hydrophilized, and put into a single size electrode can.mass% Potassium hydroxide, 2massAfter injecting an alkaline electrolyte composed of an aqueous lithium hydroxide solution, the solution was sealed to obtain an alkaline storage battery.
[0071]
Each alkaline storage battery obtained by the above method was held at 60 ° C. for 17 hours, allowed to cool and then charged at 10 mA for 14 hours, further charged at 100 mA for 5 hours, and discharged at 100 mA (discharge end voltage: 1 V). It is again held at 60 ° C. for 17 hours, allowed to cool, charged at 100 mA for 7 hours, rested for 1 hour, and then discharged at 100 mA (discharge end voltage: 1 V) for 5 cycles to perform chemical conversion treatment. It was.
[0072]
After performing the above-mentioned chemical conversion treatment, as a large current characteristic, the battery was charged at 100 mA for 7 hours, rested for 1 hour, discharged at 8 A (20 ItA) (discharge end voltage: 0.7 V), and the discharge capacity was determined. Thereafter, the battery was charged at 100 mA for 7 hours, and after resting for 1 hour, 5 charge / discharge cycles were performed at 100 mA (discharge end voltage: 1 V), and the large current characteristics were measured again. This measurement was repeated until the discharge capacity approached the capacity of the battery, and the number of cycles at which the alloy in the battery was completely activated was determined.
[0073]
In addition to the large current characteristics, as the cycle life, the battery after the chemical conversion treatment is charged at 0.4 A (1 ItA) (−ΔV: 5 mVcut), and after a 15-minute rest, it is discharged at 0.4 A (1 ItA) (discharge) The final cycle voltage was 1 V), and the number of cycles decreased to 80% of the initial discharge capacity was determined.
[0074]
An example of a 20 ItA discharge curve of a battery using the alloy obtained in Example 2 as a negative electrode active material is shown in FIG. 5, and an example of a 20 ItA discharge curve of a battery using the alloy obtained in Comparative Example 1 as a negative electrode active material is shown in FIG. Show. The battery of Comparative Example 1 using an alloy having no segregation phase takes 40 cycles until a sufficient capacity is obtained, whereas the battery of Example 2 using an alloy having a segregation phase has a sufficient capacity after 20 cycles. It can be seen that it can be activated in a relatively short time.
[0075]
A graph showing the relationship between the number of cycles and the discharge capacity is shown in FIG. The discharge capacity is an average value of five produced batteries. It can be seen that the batteries using the alloys obtained in Examples 1 to 4 can secure a 20 ItA discharge capacity at an early stage as compared with the batteries using the alloys obtained in Comparative Examples 1 and 3. In particular, the battery using the alloy of Example 4 subjected to the surface treatment can obtain a sufficient discharge capacity at a faster cycle number than the battery of Example 2 using the untreated alloy, and the capacity is reduced. It turns out that there is not. From this result, the effectiveness of the surface treatment is clear.
[0076]
The battery of Comparative Example 2 using an alloy with a large amount of added Mg (v value = 0.1) was able to obtain a sufficient discharge capacity for only 5 cycles, but the capacity decreased at the 25th cycle. In the 40th cycle, it decreased to 300 mAh. The cause of such a decrease in the discharge capacity is considered to be that the segregation phase accounted for 20%, so that the capacity of the alloy itself tends to decrease.
[0077]
Table 4 shows the number of cycles for obtaining a sufficient 20 ItA discharge capacity and the number of 1 ItA / 1 ItA cycles for the batteries using the alloys obtained in the examples and comparative examples.
[0078]
[Table 4]
Figure 0004304430
[0079]
From this result, it can be seen that the batteries of Examples 1 to 4 are equivalent or superior in terms of 1 ItA / 1 ItA cycle life as compared to the batteries of Comparative Examples 1 to 3. This is presumably because the segregation phase portion contributes to the activation of the alloy, and the mother phase portion where Mg is uniform contributes to the corrosion resistance, thereby improving the life. Further, the battery of Comparative Example 2 using an alloy with a large amount of Mg and the battery of Comparative Example 3 using an alloy with a small amount of Mg had no effect of segregation phase, and the cycle life was reduced.
[0080]
Thus, in the battery using the hydrogen storage alloy of the present invention as the negative electrode active material, the activation cycle can be reduced without deteriorating the life by including an appropriate segregation phase in the hydrogen storage alloy. It was possible to significantly reduce the battery manufacturing man-hour and time, and to obtain high output at low cost.
[Brief description of the drawings]
1 is a scanning electron micrograph showing the crystal structure of the alloy obtained in Example 2. FIG.
2 is a scanning electron micrograph showing the crystal structure of the alloy obtained in Comparative Example 1. FIG.
3 is a scanning electron micrograph showing the crystal structure of the alloy obtained in Example 3. FIG.
4 is a scanning electron micrograph showing the crystal structure of the alloy obtained in Comparative Example 2. FIG.
5 is a graph showing an electrical 20 ItA curve using the alloy obtained in Example 2. FIG.
6 is a graph showing an electrical 20 ItA curve using the alloy obtained in Comparative Example 1. FIG.
FIG. 7 is a graph showing the relationship between the number of cycles and the discharge capacity.

Claims (4)

水素吸蔵合金からなる負極活物質及びヒドロキシプロピルセルロースを含むペーストを金属支持体に塗布し乾燥して得られるアルカリ蓄電池用負極であって、該水素吸蔵合金は、平均組成が一般式:
Mm (1−v) Mg Ni Co Mn Al
(MmはLa量が60〜90質量%のミッシュメタルであり、3.8≦x≦4.4、0.2≦y≦0.7、0.1≦s≦0.5、0.1≦t≦0.4、0.02≦v≦0.06であって、5.03≦x+y+s+t≦5.4である)で表され、母相中に少なくとも一相の偏析相が存在し、該偏析相中のMg濃度が母相中のMg濃度より高い水素吸蔵合金であるアルカリ畜電池用負極
A negative electrode for an alkaline storage battery obtained by applying a negative electrode active material composed of a hydrogen storage alloy and a paste containing hydroxypropyl cellulose to a metal support and drying , the average composition of the hydrogen storage alloy being a general formula:
Mm (1-v) Mg v Ni x Co y Mn s Al t
(Mm is a misch metal having an La amount of 60 to 90% by mass, 3.8 ≦ x ≦ 4.4, 0.2 ≦ y ≦ 0.7, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.4, 0.02 ≦ v ≦ 0.06, and 5.03 ≦ x + y + s + t ≦ 5.4), and at least one segregated phase is present in the parent phase, A negative electrode for an alkaline storage battery, which is a hydrogen storage alloy in which the Mg concentration in the segregation phase is higher than the Mg concentration in the matrix phase .
極の厚さが0.1〜0.3mmである請求項1に記載のアルカリ畜電池用負極。 The negative electrode for alkaline livestock batteries according to claim 1, wherein the negative electrode has a thickness of 0.1 to 0.3 mm . 水素吸蔵合金が、酸溶液に接触させることによる表面処理及びアルカリ溶液に接触させることによる表面処理のいずれか一方又は両方の処理を行われたものである請求項又はに記載のアルカリ畜電池用負極。The alkaline storage battery according to claim 1 or 2 , wherein the hydrogen storage alloy has been subjected to either or both of a surface treatment by contacting with an acid solution and a surface treatment by contacting with an alkaline solution. Negative electrode. ヒドロキシプロピルセルロースの含有量が、水素吸蔵合金100重量部に対して0.03〜5重量部である請求項1〜3のいずれかに記載のアルカリ畜電池用負極。The negative electrode for alkaline livestock batteries according to any one of claims 1 to 3, wherein the content of hydroxypropylcellulose is 0.03 to 5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy.
JP2003059784A 2003-03-06 2003-03-06 Hydrogen storage alloy and electrode using the same Expired - Lifetime JP4304430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059784A JP4304430B2 (en) 2003-03-06 2003-03-06 Hydrogen storage alloy and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059784A JP4304430B2 (en) 2003-03-06 2003-03-06 Hydrogen storage alloy and electrode using the same

Publications (2)

Publication Number Publication Date
JP2004269929A JP2004269929A (en) 2004-09-30
JP4304430B2 true JP4304430B2 (en) 2009-07-29

Family

ID=33122508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059784A Expired - Lifetime JP4304430B2 (en) 2003-03-06 2003-03-06 Hydrogen storage alloy and electrode using the same

Country Status (1)

Country Link
JP (1) JP4304430B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815738B2 (en) * 2003-09-18 2011-11-16 株式会社Gsユアサ Method for producing hydrogen storage alloy powder
JP4634256B2 (en) * 2005-08-24 2011-02-16 日本重化学工業株式会社 Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP5046539B2 (en) * 2006-03-24 2012-10-10 三洋電機株式会社 Nickel metal hydride storage battery
JP5278411B2 (en) * 2010-11-17 2013-09-04 株式会社Gsユアサ Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
CN103703591B (en) 2011-07-28 2016-04-27 株式会社杰士汤浅国际 Negative electrode for alkaline storage battery, alkaline storage battery used outer tinning and alkaline battery
JP6406796B2 (en) * 2012-12-07 2018-10-17 株式会社Gsユアサ Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP6201307B2 (en) * 2012-02-20 2017-09-27 株式会社Gsユアサ Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy

Also Published As

Publication number Publication date
JP2004269929A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP5534459B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP4304430B2 (en) Hydrogen storage alloy and electrode using the same
EP1936719A1 (en) Alkaline storage battery
WO2020115953A1 (en) Hydrogen storage material, negative electrode and nickel hydrogen secondary battery
JP5481803B2 (en) Nickel metal hydride storage battery
US20100081053A1 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP2009295575A (en) Composite material for electrode, production method thereof, and alkaline storage battery using the material
JP4503132B2 (en) Alkaline storage battery
JP2004281289A (en) Alkaline storage battery
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP5532390B2 (en) Nickel metal hydride storage battery
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP5542308B2 (en) Hydrogen storage alloy electrode, method for producing hydrogen storage alloy electrode, and alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2008269888A (en) Nickel-hydrogen storage battery
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080310

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term