JP6190265B2 - Method for producing barium nitride particles and phosphor - Google Patents

Method for producing barium nitride particles and phosphor Download PDF

Info

Publication number
JP6190265B2
JP6190265B2 JP2013262154A JP2013262154A JP6190265B2 JP 6190265 B2 JP6190265 B2 JP 6190265B2 JP 2013262154 A JP2013262154 A JP 2013262154A JP 2013262154 A JP2013262154 A JP 2013262154A JP 6190265 B2 JP6190265 B2 JP 6190265B2
Authority
JP
Japan
Prior art keywords
less
particle size
phosphor
barium nitride
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013262154A
Other languages
Japanese (ja)
Other versions
JP2015117163A (en
Inventor
智紀 初森
智紀 初森
哲也 石本
哲也 石本
和彦 常世田
和彦 常世田
将治 鈴木
将治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013262154A priority Critical patent/JP6190265B2/en
Publication of JP2015117163A publication Critical patent/JP2015117163A/en
Application granted granted Critical
Publication of JP6190265B2 publication Critical patent/JP6190265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、蛍光体の原料として有用な窒化バリウム粒子の製造法及び該窒化バリウム粒子を用いた蛍光体の製造方法に関する。   The present invention relates to a method for producing barium nitride particles useful as a raw material of a phosphor and a method for producing a phosphor using the barium nitride particles.

窒化バリウムは、白色LED用窒化物蛍光体の原料として広く用いられている。具体的には、Ba2Si58:Eu2+に代表されるようなバリウムを含む窒化物蛍光体やMAlSiN3:Eu2+、M2Si58:Eu2+、MAlSi47:Eu2+、M2Si7Al3ON13:Eu2+(式中、Mはアルカリ土類元素を示す)などのアルカリ土類元素を一部置換する窒化物蛍光体や酸窒化物蛍光体などが挙げられる。 Barium nitride is widely used as a raw material for nitride phosphors for white LEDs. Specifically, a nitride phosphor containing barium represented by Ba 2 Si 5 N 8 : Eu 2+ , MAlSiN 3 : Eu 2+ , M 2 Si 5 N 8 : Eu 2+ , MAlSi 4 N 7 : Eu 2+ , M 2 Si 7 Al 3 ON 13 : Nitride phosphor and oxynitride partially replacing alkaline earth elements such as Eu 2+ (wherein M represents an alkaline earth element) Examples thereof include phosphors.

窒化バリウムは、金属バリウムを窒素気流中で加熱する方法、バリウムアミドを熱分解する方法、バリウムを水素化し、次いで窒素気流中で加熱する方法等により製造される(特許文献1)、かかる方法において、窒化バリウムは、通常100mm程度であり10mm以上の塊として得られる。このような塊状では蛍光体原料としては使用できないため、合成された窒化バリウムはマイクロメートルオーダーの粒子に粉砕される。   Barium nitride is produced by a method in which metal barium is heated in a nitrogen stream, a method in which barium amide is thermally decomposed, a method in which barium is hydrogenated and then heated in a nitrogen stream (Patent Document 1). The barium nitride is usually about 100 mm and is obtained as a lump of 10 mm or more. Since such a lump cannot be used as a phosphor material, the synthesized barium nitride is pulverized into micrometer order particles.

特許第4585043号公報Japanese Patent No. 4585043

しかしながら、粒子状の窒化バリウムは、窒化カルシウムや窒化ストロンチウムなどに比べて大気中の水分や酸素と反応しやすく、自然発火性を示しやすい。従って、運搬中の容器の破損などにより、大気中の水分や酸素と反応し、火災に繋がる可能性がある。
従って、本発明の課題は、自然発火を生じない窒化バリウムの製造法を提供することにある。さらには、窒化バリウム粒子を用いて安全に蛍光体を製造する方法を提供することを課題とする。
However, particulate barium nitride is more likely to react with moisture and oxygen in the atmosphere than calcium nitride, strontium nitride, and the like, and tends to exhibit spontaneous ignition. Therefore, there is a possibility that the container reacts with moisture and oxygen in the atmosphere due to breakage of the container being transported, leading to a fire.
Accordingly, an object of the present invention is to provide a method for producing barium nitride which does not cause spontaneous ignition. It is another object of the present invention to provide a method for producing a phosphor safely using barium nitride particles.

そこで本発明者は、合成した窒化バリウムの粉砕条件及び粒度分布と発火性との関係について検討してきたところ、全く意外にも、粒子径が小さすぎる場合よりも、ある一定の粒度分布の範囲にある窒化バリウム粒子とすることにより自然発火が防止されることを見出し、本発明を完成した。   Therefore, the present inventor has examined the relationship between the pulverization condition and particle size distribution of the synthesized barium nitride and the ignition property, and surprisingly, it has a certain particle size distribution range rather than the case where the particle size is too small. It has been found that spontaneous combustion is prevented by using certain barium nitride particles, and the present invention has been completed.

すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。   That is, the present invention provides the following [1] to [3].

〔1〕粒子径10mm以上の窒化バリウムを、露点−100℃〜−50℃、酸素濃度0.1ppm〜1000ppmの不活性ガス雰囲気中で粉砕し、最大粒径が10mm未満、平均粒子径15μm以上であり、体積基準の累積値で10μm以下が40%未満、20μm以下が70%以下、30μm以下が90%以下の粒度分布を有する粒子とすることを特徴とする自然発火を示さない窒化バリウム粒子の製造法。
〔2〕露点−100℃〜−50℃、酸素濃度0.1ppm〜1000ppmの不活性ガス雰囲気中で粉砕して得られる、最大粒径が10mm未満、平均粒子径15μm以上であり、体積基準の累積値で10μm以下が40%未満、20μm以下が70%以下、30μm以下が90%以下の粒度分布を有する自然発火を示さない窒化バリウム粒子。
〔3〕〔2〕に記載の窒化バリウム粒子を平均粒子径10μm以下に粉砕し、該粉砕物を用いて蛍光体原料に調合した後焼成するか、あるいは〔2〕に記載の窒化バリウム粒子を用いて蛍光体原料を調合し、平均粒子径10μm以下に混合粉砕した後焼成することを特徴とする蛍光体の製造方法。
[1] Barium nitride having a particle size of 10 mm or more is pulverized in an inert gas atmosphere having a dew point of −100 ° C. to −50 ° C. and an oxygen concentration of 0.1 ppm to 1000 ppm, the maximum particle size is less than 10 mm, and the average particle size is 15 μm or more. Barium nitride particles that do not exhibit spontaneous ignition, characterized by having a particle size distribution with a volume-based cumulative value of 10 μm or less of less than 40%, 20 μm or less of 70% or less, and 30 μm or less of 90% or less Manufacturing method.
[2] Dew point −100 ° C. to −50 ° C., obtained by pulverization in an inert gas atmosphere having an oxygen concentration of 0.1 ppm to 1000 ppm, the maximum particle size is less than 10 mm, the average particle size is 15 μm or more, Barium nitride particles which have a particle size distribution in which the cumulative value is less than 40% at 10 μm or less, 70% or less at 20 μm or less, and 90% or less at 30 μm or less and does not show spontaneous ignition.
[3] The barium nitride particles as described in [2] are pulverized to an average particle size of 10 μm or less, and prepared by using the pulverized product as a phosphor raw material, followed by firing, or the barium nitride particles as described in [2] A method for producing a phosphor, comprising preparing a phosphor raw material using the mixture, mixing and pulverizing the phosphor to an average particle size of 10 μm or less, and firing the mixture.

本発明により得られる窒化バリウム粒子は、自然発火を生じないので、安全に流通させることができる。さらには、安全に高品質の蛍光体を製造することができる。   Since the barium nitride particles obtained by the present invention do not cause spontaneous ignition, they can be safely distributed. Furthermore, a high-quality phosphor can be manufactured safely.

参考例1で得られた窒化バリウムのXRD結果を示す。The XRD result of the barium nitride obtained in Reference Example 1 is shown.

本発明の窒化バリウム粒子の製造法について説明する。   The manufacturing method of the barium nitride particle | grains of this invention is demonstrated.

原料となる窒化バリウムは、既知の方法により製造される粗粒子又は塊であればよい。このような窒化バリウムの製造法としては、前記特許文献1に記載の方法等が挙げられる。原料窒化バリウムの粒子径は10mm以上であり、15〜50mm程度が好ましい。ここで、原料窒化バリウムの純度は、99%以上、さらに99.9%以上であるのが、蛍光体としての利用性の点から好ましい。また、高純度の窒化バリウムでなければ発火の問題も生じない。ここで、純度はX線回折で決定できる。   The barium nitride used as a raw material may be coarse particles or lumps produced by a known method. Examples of such a method for producing barium nitride include the method described in Patent Document 1. The particle diameter of the raw material barium nitride is 10 mm or more, preferably about 15 to 50 mm. Here, the purity of the raw material barium nitride is preferably 99% or more, and more preferably 99.9% or more, from the viewpoint of availability as a phosphor. Moreover, the problem of ignition does not occur unless the barium nitride is of high purity. Here, the purity can be determined by X-ray diffraction.

窒化バリウム粗粒子又は塊は、露点−100℃〜−50℃、酸素濃度0.1ppmから1000ppmの不活性ガス雰囲気中で粉砕する。露点が−50℃より高い条件又は酸素濃度が1000ppmより高い条件で粉砕を行うと、粉砕過程で発火を生じるおそれがある。このような条件とするには、乾燥したN2、Ar、He等の不活性ガス雰囲気とすればよい。より好ましい条件は、露点−70℃〜−90℃、酸素濃度0.5〜100ppmのN2、Ar又はHeガス雰囲気である。 Barium nitride coarse particles or lumps are pulverized in an inert gas atmosphere having a dew point of −100 ° C. to −50 ° C. and an oxygen concentration of 0.1 ppm to 1000 ppm. If pulverization is performed under conditions where the dew point is higher than −50 ° C. or the oxygen concentration is higher than 1000 ppm, ignition may occur during the pulverization process. In order to achieve such conditions, a dry inert gas atmosphere such as N 2 , Ar, or He may be used. More preferable conditions are an N 2 , Ar or He gas atmosphere having a dew point of −70 ° C. to −90 ° C. and an oxygen concentration of 0.5 to 100 ppm.

粉砕手段としては、遊星ボールミル粉砕、乳針による粉砕、SUS製ポットを用いたポットミル粉砕等が挙げられる。このうち、粉砕効率や忌避成分の混入不安など点から、遊星ボールミル粉砕、乳針による粉砕が好ましい。   Examples of the pulverizing means include planetary ball mill pulverization, pulverization with a nipple, and pot mill pulverization using a SUS pot. Of these, planetary ball mill pulverization and pulverization with a nipple are preferred from the standpoint of pulverization efficiency and fear of mixing repellent components.

粉砕後の窒化バリウム粒子は、必要によりふるい分けし、10mmのふるい目を全通するようにする。得られる窒化バリウムの最大粒子径は、蛍光体原料としての輸送や調合、粉砕時の取扱い性、蛍光体中の組成が均一となり蛍光体の品質が低下しないよう他の原料との混合性の点から、10mm未満以下であり、8mm以下が好ましく、3mm以下がより好ましく、1mm以下がさらに好ましい。また、窒化バリウムの平均粒子径は15μm以上であり、好ましくは20〜5000μm、より好ましくは30〜2000μmである。   The barium nitride particles after pulverization are screened as necessary so that the 10-mm screen is completely passed through. The maximum particle size of the obtained barium nitride is the transportability and blending as a phosphor raw material, the handling property at the time of pulverization, and the miscibility with other raw materials so that the composition in the phosphor becomes uniform and the quality of the phosphor does not deteriorate. To less than 10 mm, preferably 8 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less. Moreover, the average particle diameter of barium nitride is 15 micrometers or more, Preferably it is 20-5000 micrometers, More preferably, it is 30-2000 micrometers.

窒化バリウム粒子の粒度分布は、30μm以下の小さい粒子が少ないことが好ましく、体積基準の累積値で10μm以下が40%未満、20μm以下が70%以下、30μm以下が90%以下である。この粒度分布よりも細かい場合には、発火性を示すため好ましくない。より好ましい粒度分布は、体積基準の累積値で10μm以下が20%未満、20μm以下が45%以下、30μm以下が70%以下である。   The particle size distribution of the barium nitride particles is preferably such that there are few small particles of 30 μm or less, 10 μm or less is less than 40%, 20 μm or less is 70% or less, and 30 μm or less is 90% or less by volume-based cumulative value. If it is finer than this particle size distribution, it is not preferable because it shows ignition properties. More preferable particle size distribution is a cumulative value based on volume of 10 μm or less of less than 20%, 20 μm or less of 45% or less, and 30 μm or less of 70% or less.

本発明によって得られた窒化バリウム粒子は、大気中において、自然発火を示さない。従って、種々の形態の窒化物蛍光体原料として取扱いやすいものである。   The barium nitride particles obtained by the present invention do not show spontaneous ignition in the atmosphere. Therefore, it is easy to handle as various forms of nitride phosphor raw materials.

本発明の窒化バリウム粒子を用いて、蛍光体を製造する方法としては、本発明の窒化バリウム粒子と窒化ストロンチウム、窒化カルシウム、窒化珪素、窒化アルミニウム等の所要の他の窒化金属と、ユーロピウム、セリウム等の賦活剤元素を含む化合物が調合された粉体を焼成して、蛍光体を得る方法が挙げられる。詳細には(1)本発明の窒化バリウム粒子を平均粒子径10μm以下に粉砕し、該粉砕物を用いて蛍光体原料に調合した後、焼成するか、あるいは(2)本発明の窒化バリウム粒子を用いて蛍光体原料を調整し、平均粒子径10μm以下に混合粉砕した後焼成する方法が挙げられる。より具体的には、(1)窒化バリウム粒子を輸送及び/又は保管し、次いで、露点−100℃〜−50℃、酸素濃度0.1ppmから1000ppmの不活性ガス雰囲気中で平均粒子径10μm以下に粉砕し、その他原料と混合した調合原料を焼成しても良いし、(2)窒化バリウム粒子を輸送及び/又は保管した後、次いで、露点−100℃〜−50℃、酸素濃度0.1ppmから1000ppmの不活性ガス雰囲気中で該窒化バリウム粒子とその他所要の原料を平均粒子径10μm以下に混合粉砕した調合原料を焼成しても良い。   As a method for producing a phosphor using the barium nitride particles of the present invention, the barium nitride particles of the present invention and other required metal nitrides such as strontium nitride, calcium nitride, silicon nitride, aluminum nitride, europium, cerium, etc. Examples include a method of firing a powder prepared with a compound containing an activator element such as to obtain a phosphor. Specifically, (1) the barium nitride particles of the present invention are pulverized to an average particle size of 10 μm or less, and the pulverized material is used to prepare a phosphor material, followed by firing, or (2) the barium nitride particles of the present invention. The phosphor raw material is adjusted using, and the mixture is pulverized to an average particle size of 10 μm or less and then fired. More specifically, (1) The barium nitride particles are transported and / or stored, and then the average particle diameter is 10 μm or less in an inert gas atmosphere having a dew point of −100 ° C. to −50 ° C. and an oxygen concentration of 0.1 ppm to 1000 ppm. The mixed raw material may be pulverized and mixed with other raw materials, or (2) after the barium nitride particles are transported and / or stored, the dew point is −100 ° C. to −50 ° C., and the oxygen concentration is 0.1 ppm. To 1,000 ppm in an inert gas atmosphere, the prepared raw material obtained by mixing and grinding the barium nitride particles and other required raw materials to an average particle size of 10 μm or less may be fired.

前記(1)の方法の粉砕された窒化バリウム粒子、あるいは前記(2)の方法の粉砕された調合原料の粒度は、蛍光体中の組成が均一となり蛍光体の品質が低下しないよう平均粒径10μm以下、好ましくは5μm以下とする。該調合原料は、通常なら発火する微粒子の窒化バリウムを含むが、他の原料と混合されているので発火することはなく、安全に焼成工程に移行できる。   The particle size of the pulverized barium nitride particles obtained by the method (1) or the pulverized preparation raw material obtained by the method (2) is such that the composition in the phosphor is uniform and the quality of the phosphor is not deteriorated. 10 μm or less, preferably 5 μm or less. The blended raw material usually contains fine particles of barium nitride that ignite, but since it is mixed with other raw materials, it does not ignite and can be safely transferred to the firing step.

前記(1)の方法は、窒化バリウム粒子を粉砕した後に他の原料と混合するまでの取り扱い時に発火や酸化の恐れがあるので、常に発火する恐れがない前記(2)の方法を用いることが好ましい。   In the method (1), there is a risk of ignition or oxidation during handling until the barium nitride particles are pulverized and then mixed with other raw materials. preferable.

粉砕手段としては、遊星ボールミル粉砕、乳針による粉砕、SUS製ポットを用いたポットミル粉砕等が挙げられる。このうち、粉砕効率や忌避成分の混入不安など点から、遊星ボールミル粉砕、乳針による粉砕が好ましい。   Examples of the pulverizing means include planetary ball mill pulverization, pulverization with a nipple, and pot mill pulverization using a SUS pot. Of these, planetary ball mill pulverization and pulverization with a nipple are preferred from the standpoint of pulverization efficiency and fear of mixing repellent components.

蛍光体調合原料の組成は、Ba2Si58:Eu2+に代表されるようなバリウムを含む窒化物蛍光体やMAlSiN3:Eu2+、M2Si58:Eu2+、MAlSi47:Eu2+、M2Si7Al3ON13:Eu2+(式中、Mはアルカリ土類元素を示す)となるように窒化金属と賦活剤元素を調合すればよい。 The composition of the phosphor blending raw material is a nitride phosphor containing barium represented by Ba 2 Si 5 N 8 : Eu 2+ , MAlSiN 3 : Eu 2+ , M 2 Si 5 N 8 : Eu 2+ , MAlSi 4 N 7: Eu 2+, M 2 Si 7 Al 3 ON 13: Eu 2+ ( wherein, M represents an alkaline-earth element) may be formulated activator element and a metal nitride such that.

蛍光体調合原料は、1200℃以上2200℃以下で焼成することにより蛍光体を製造することができる。焼成は、窒素を含有する不活性雰囲気で行い、窒素ガス単独、窒素とアルゴン又は水素との混合ガス、アンモニアガスを用いることができる。また、ガスの圧力は特に制限はないが、常圧で行うのが経済的で好ましい。   The phosphor blending raw material can produce a phosphor by firing at 1200 ° C. or more and 2200 ° C. or less. Firing is performed in an inert atmosphere containing nitrogen, and nitrogen gas alone, a mixed gas of nitrogen and argon or hydrogen, or ammonia gas can be used. The gas pressure is not particularly limited, but it is economical and preferable to carry out at normal pressure.

次に実施例を挙げて本発明をさらに詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

参考例1
グローブボックスにて耐圧容器中に金属バリウムを400g仕込み、水素圧力を0.9MPa、保持温度100℃、保持時間12時間の条件下で水素化バリウムを合成した。次に、管状炉(長さ1000mm,内径80mm)にて窒素フロー下保持温度900℃、保持時間12時間の条件において窒化バリウムを得た。得られた窒化バリウムの塊の粒径は長さ100mm、太さ50mm程度であった。得られた窒化バリウムの純度は、XRDにより99%以上であることを確認した(図1)。
Reference example 1
400 g of metal barium was charged in a pressure vessel in a glove box, and barium hydride was synthesized under the conditions of a hydrogen pressure of 0.9 MPa, a holding temperature of 100 ° C., and a holding time of 12 hours. Next, barium nitride was obtained in a tubular furnace (length 1000 mm, inner diameter 80 mm) under conditions of a holding temperature of 900 ° C. under a nitrogen flow and a holding time of 12 hours. The particle diameter of the obtained barium nitride lump was about 100 mm in length and about 50 mm in thickness. The purity of the obtained barium nitride was confirmed to be 99% or more by XRD (FIG. 1).

実施例
参考例1で得られた窒化バリウムを露点−70〜−90℃、酸素濃度0.5ppm〜100ppmに保たれたグローブボックスにて遊星ミル容器(窒化ケイ素製500ml)に仕込み、遊星ボールミルによる粉砕または乳鉢による粉砕(手粉砕)および分級(75μm)を行い、窒化バリウム粒子を得た。粉砕・分級条件は表1に示す通りである。
Example Barium nitride obtained in Reference Example 1 was charged into a planetary mill container (500 ml made of silicon nitride) in a glove box maintained at a dew point of −70 to −90 ° C. and an oxygen concentration of 0.5 ppm to 100 ppm. Pulverization or pulverization with a mortar (hand pulverization) and classification (75 μm) were performed to obtain barium nitride particles. The pulverization / classification conditions are as shown in Table 1.

Figure 0006190265
Figure 0006190265

各サンプルの粒度分布及び自然発火が生じるか否かを試験した結果を、(表2)及び(表3)に示す。
粒度分布は、レーザー回折・散乱法を用いた日機装(株)製マイクロトラックHRAにて測定した。自然発火が生じるか否かは、国連勧告可燃性物質類自然発火性物質判定試験により判定した。具体的には、1〜2mLの粉状物質を約1mの高さから不燃材の表面に注ぎ、落下中又は落下後5分以内に物質が発火するかどうかを観察した。肯定的な結果が得られるまで、この手順を6回行った。
Table 2 and Table 3 show the particle size distribution of each sample and the results of testing whether spontaneous ignition occurs.
The particle size distribution was measured with a Nikkiso Co., Ltd. Microtrac HRA using a laser diffraction / scattering method. Whether or not spontaneous ignition occurs was determined by the UN-Recommended Combustible Substances Pyrophoric Substance Determination Test. Specifically, 1-2 mL of powdery substance was poured onto the surface of the non-combustible material from a height of about 1 m, and it was observed whether the substance ignited during the fall or within 5 minutes after the fall. This procedure was repeated 6 times until a positive result was obtained.

Figure 0006190265
Figure 0006190265

Figure 0006190265
Figure 0006190265

(表1)〜(表3)より、蛍光体製造時に必要とされる平均粒径10μm以下に調整した場合は、発火することがわかる。一方、本発明の方法により得られた特定の粒子径及び粒度分布を有する窒化バリウム粒子は、自然発火を生じないことがわかる。   From (Table 1) to (Table 3), it can be seen that when the average particle size is adjusted to 10 μm or less, which is required at the time of manufacturing the phosphor, ignition occurs. On the other hand, it turns out that the barium nitride particle | grains which have the specific particle diameter and particle size distribution obtained by the method of this invention do not produce spontaneous combustion.

実施例7
比較的多くの窒化バリウムを用いる蛍光体組成であるBa2Si58の比になるように、露点−70〜−90℃、酸素濃度0.1ppmから100ppmの不活性ガス雰囲気中で、比較例1で得られた窒化バリウム粉体と窒化ケイ素粉末を混合し、自然発火性試験を行ったところ、自然発火性は認められなかった。
したがって、蛍光体の調合原料とした場合には、通常なら発火する微粒子の窒化バリウムを含んでいても自然発火を生じないことがわかる。
Example 7
Comparison was made in an inert gas atmosphere having a dew point of −70 to −90 ° C. and an oxygen concentration of 0.1 ppm to 100 ppm so that the ratio of Ba 2 Si 5 N 8 , which is a phosphor composition using a relatively large amount of barium nitride. When the barium nitride powder and silicon nitride powder obtained in Example 1 were mixed and subjected to a spontaneous ignition test, no spontaneous ignition was observed.
Therefore, it can be seen that when the phosphor is prepared as a raw material, spontaneous ignition does not occur even if fine particles of barium nitride that normally ignite are included.

Claims (3)

粒子径10mm以上の窒化バリウムを、露点−100℃〜−50℃、酸素濃度0.1ppm〜1000ppmの不活性ガス雰囲気中で粉砕し、最大粒径が10mm未満、平均粒子径15μm以上であり、体積基準の累積値で10μm以下が40%未満、20μm以下が70%以下、30μm以下が90%以下の粒度分布を有する粒子とすることを特徴とする自然発火を示さない窒化バリウム粒子の製造法。   Barium nitride having a particle size of 10 mm or more is pulverized in an inert gas atmosphere having a dew point of −100 ° C. to −50 ° C. and an oxygen concentration of 0.1 ppm to 1000 ppm, the maximum particle size is less than 10 mm, and the average particle size is 15 μm or more. A method for producing barium nitride particles that do not exhibit spontaneous ignition, characterized in that particles having a particle size distribution with a cumulative value of 10 μm or less being less than 40%, 20 μm or less being 70% or less, and 30 μm or less being 90% or less in a cumulative value on a volume basis . 大粒径が10mm未満、平均粒子径15μm以上であり、体積基準の累積値で10μm以下が40%未満、20μm以下が70%以下、30μm以下が90%以下の粒度分布を有する自然発火を示さない窒化バリウム粒子。 Than most large particle size is 10 mm, and the average particle diameter of 15μm or more, 10 [mu] m or less is less than 40% in the cumulative value of the volumetric basis, 20 [mu] m or less is 70% or less, the spontaneous combustion of 30μm or less has a particle size distribution of 90% or less Barium nitride particles not shown. 請求項1に記載の方法により得られた窒化バリウム粒子を平均粒子径10μm以下に粉砕し、該粉砕物を用いて蛍光体原料に調合した後焼成するか、あるいは請求項1に記載の方法により得られた窒化バリウム粒子を用いて蛍光体原料を調合し、平均粒子径10μm以下に混合粉砕した後焼成することを特徴とする蛍光体の製造方法。 The barium nitride particles obtained by the method according to claim 1 are pulverized to an average particle size of 10 μm or less, and the pulverized material is used to prepare a phosphor material, followed by firing, or by the method according to claim 1. A method for producing a phosphor, comprising preparing a phosphor material using the obtained barium nitride particles, mixing and pulverizing to an average particle size of 10 μm or less, and firing.
JP2013262154A 2013-12-19 2013-12-19 Method for producing barium nitride particles and phosphor Active JP6190265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262154A JP6190265B2 (en) 2013-12-19 2013-12-19 Method for producing barium nitride particles and phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262154A JP6190265B2 (en) 2013-12-19 2013-12-19 Method for producing barium nitride particles and phosphor

Publications (2)

Publication Number Publication Date
JP2015117163A JP2015117163A (en) 2015-06-25
JP6190265B2 true JP6190265B2 (en) 2017-08-30

Family

ID=53530236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262154A Active JP6190265B2 (en) 2013-12-19 2013-12-19 Method for producing barium nitride particles and phosphor

Country Status (1)

Country Link
JP (1) JP6190265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713794B2 (en) * 2016-03-01 2020-06-24 太平洋セメント株式会社 Method for producing alkaline earth metal nitride particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515536A (en) * 2008-03-21 2011-05-19 ナノグラム・コーポレイション Metallic silicon nitride or metallic silicon oxynitride submicron phosphor particles and method of synthesizing these particles
JP4425977B1 (en) * 2008-12-26 2010-03-03 韓国エネルギー技術研究院 Nitride red phosphor and white light emitting diode using the same
US9309120B2 (en) * 2009-11-12 2016-04-12 Taiheiyo Cement Corporation Method for producing alkali metal nitride or alkaline earth metal nitride
JP5825920B2 (en) * 2010-08-11 2015-12-02 太平洋セメント株式会社 Method for producing metal nitride
TW201213506A (en) * 2010-09-30 2012-04-01 Chi Mei Corp Phosphor and luminous device

Also Published As

Publication number Publication date
JP2015117163A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP4762892B2 (en) α-sialon and method for producing the same
RU2507034C2 (en) METHOD OF PRODUCING POWDERS OF TITANIUM-, ZIRCONIUM- AND HAFNIUM-BASED ALLOYS DOPED WITH ELEMENTS Ni, Cu, Ta, W, Re, Os, AND Ir
TW200925252A (en) Fluorescent substance and method for manufacturing the same
JP5419467B2 (en) Aluminum nitride sintered body and method for producing the same
WO2006011317A1 (en) α-SIALON POWDER AND PROCESS FOR PRODUCING THE SAME
TWI732944B (en) Spinel powder containing magnesium oxide and its manufacturing method
TW201213508A (en) A method for producing β -SiAlON
JP7515353B2 (en) Manufacturing method of europium-activated β-type sialon phosphor
KR20180004020A (en) β-sialon fluorescent material, Method of producing thereof, Light-emitting member and Light-emitting device
WO2019017451A1 (en) Aluminum nitride powder and production method therefor
TW200804564A (en) Fluorescent material and method of manufacturing alloy for fluorescent material
US9657223B2 (en) Method of stabilizing alpha-sialon phosphor raw powder, alpha-sialon phosphor composition obtained therefrom, and method of manufacturing alpha-sialon phosphor
JP6190265B2 (en) Method for producing barium nitride particles and phosphor
CN101831294A (en) Blue-light-emitting fluorescent material
JP7515352B2 (en) Manufacturing method of europium-activated β-type sialon phosphor
JP2007112650A (en) Alpha-type sialon, phosphor consisting of alpha-type sialon, and lighting equipment using it
JP6487787B2 (en) Barium hydride particles and process for producing the same
JP2013193919A (en) Inorganic powder for aerosol deposition method, and method of manufacturing inorganic film using the same
TW201942334A (en) Red fluorescent body and light-emitting device
JP2016023217A (en) Phosphor and method for producing the same
JP6940778B2 (en) Nitride phosphor manufacturing method
JP2013170184A (en) Method of producing phosphor powder
JP6439844B2 (en) Method for producing nitride phosphor
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
JP2014141359A (en) Sialon-base sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250