TW200925252A - Fluorescent substance and method for manufacturing the same - Google Patents

Fluorescent substance and method for manufacturing the same Download PDF

Info

Publication number
TW200925252A
TW200925252A TW097139650A TW97139650A TW200925252A TW 200925252 A TW200925252 A TW 200925252A TW 097139650 A TW097139650 A TW 097139650A TW 97139650 A TW97139650 A TW 97139650A TW 200925252 A TW200925252 A TW 200925252A
Authority
TW
Taiwan
Prior art keywords
sialon
phosphor
powder
raw material
type
Prior art date
Application number
TW097139650A
Other languages
Chinese (zh)
Inventor
Hideyuki Emoto
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200925252A publication Critical patent/TW200925252A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/766Trigonal symmetry, e.g. alpha-Si3N4 or alpha-Sialon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

α type sialon may be obtained by using (a) silicon nitride, (b) aluminum nitride, c a compound containing Ca, (d) a compound containing Eu, (e) α type sialon as raw material powder and adopting heat treatment upon the raw material powder at 1650 to 1850 DEG C under the nitrogen atmosphere when a manufacturing method of fluorescent substance of α type sialon which showed as general formula: (CaX, EuY)(Si, Al)12(O, N)16(wherein 1.5 < X+Y < 2.2, and 0 < Y < 0.2, O/N ≤ 0.04) and acts as main component is proceeded. The powder posterior heat treatment without being grinded is graded in order to obtain 15 to 25 μm of average particle diameter. By this means, the present invention provides α type sialon fluorescent substance of high nitrogen content by percentage with excellent light emitting efficiency and peak of wavelength of more than 595 nm.

Description

200925252 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種螢光體及其製法’其可利用於已使 用藍色發光二極體(藍色LED)或紫色發光二極體(紫色 led)之白色發光二極體(白色led)等爲主之各式各樣 的發光裝置。 【先前技術】 白色LED係具有小型、輕量、長壽命、具優越之高速 ® 應答、或未使用如螢光燈中之水銀等有害物質、環境負荷 爲小的特徵,已泛用於行動電話等之小型液晶顯示器的背 光光源、或手電筒等之小型照明裝置’今後期待朝向中大 型顯示器光源或一般照明用途之發展。 已有人提案各種方式之白色LED,現在最爲普及之方 式,可列舉··由化合物半導體藍色發光二極體元件、與吸 收從此所發射之藍色光,活化發射其補色之黃色螢光的鈽 之鋁酸釔(YAG: Ce)螢光體所構成之物。 ❹ 由於此種白色LED帶紅色之發光成分將不足,具有現 色性爲低的問題。爲了補償紅色成分,已有人提案與YAG 之螢光體同時倂用橙〜紅色之氮化物及氧氮化物螢光體的 手法。 習知作爲氮化物、氧氮化物螢光體之已活化特定之稀 土類元素的α型賽隆(si al on)係具有有用的螢光特性,已 探討適用於白色LED等(參照專利文獻1〜3)。 專利文獻1:日本專利第3668770號公報 200925252 專利文獻2:日本專利特開2003-124527號2 專利文獻3:日本專利特開2004-067837號2 α型賽隆係α型氮化矽結晶之S i -N鍵的部5 鍵與A1-0鍵所置換,爲了確保電中性,於結晶格 有使特定之元素(Ca、及Li、Mg、Y;或是除了 以外之鑭系金屬)滲入固溶於格子內的構造。藉 滲入固溶之元素部分成爲發光中心的稀土類元素 螢光特性。其中,使Ca予以固溶、利用Eu以取 ® 之α型賽隆螢光體(以下,稱爲Ca-α-賽隆螢光體 外〜藍色區域之廣範圍波長領域較有效地被激發 &gt;〜橙色發光。 α型賽隆係於氮氣環境中之高溫下,處理由 氮化鋁、鈣及銪之氧化物(含有經由加熱處理而 物之化合物)而成的混合粉末所得到。於如此之 中,由於使用氧化物原料,必然成爲固溶相當量 賽隆。於此情形下所得的α型賽隆螢光體之發光 黃〜橙色(螢光波峰波長約爲580 nm)。 對此,相較於該習知α型賽隆,使用氮化鈣 料而合成之含氮率高的α型賽隆係可能形成高濃 溶。尤其,C a固溶濃度爲高的情形,在較習知組 長側( 595〜650nm),具有螢光波峰波長之螢光 得到(專利文獻4 )。 專利文獻4:日本專利特開2005-307012號ί 【發明內容】 r報 r報 卜被A1-N 子間,具 La 與 Ce 由作成使 ,以發現 代其部分 )係於紫 而顯示黃 氮化矽、 成爲氧化 合成方法 氣之α型 色係成爲 作爲鈣原 度之鈣固 成爲長波 體將可以 :報 200925252 發明所欲解決之技術問頴 將含氮率高的α型賽隆螢光體應用於白色LED等之發 光裝置時,期待發光效率之更進一步提高。 本發明之目的係針對具有5 95nm以上波長具有波峰之 含氮率高的α型賽隆螢光體,提供一種發光效率較習知爲 優越之螢光體與穩定製造它之方法。 解決問顆之技術丰跺 本發明人係關於一種活化Eu2 +之含氮率高的Ca-α -賽 ® 隆螢光體粉末之製造,進行實驗性檢討。其結果發現如下 之事實而完成本發明:藉由將預先合成的α型賽隆粉末作 爲粒成長之種粒子而添加於原料粉末中,可以得到較習知 爲大、表面爲平滑之粒子,而且不會經由其合成粉末加以 粉碎處理而得到特定粒度之粉末,可以得到具優越之發光 效率、於595 nm以上之波長具有螢光波峰的螢光體。 亦即’本發明係一種螢光體之製法,其特徵係以通式: (Cax、EuY)(Si、A1)12(0、N)16(其中,1.5&lt;Χ+Υ&lt;2·2,且 Ο ¥ 0 &lt; Υ&lt; 0.2、0/NS0.04)所示之α型賽隆作爲主要成分;藉 由在氮氣環境中’於1650〜1850 °C,加熱處理由(a)氮化 砂、(b)氮化錦、(c)含Ca之化合物、(d)含Eu之化 合物與(e) «型賽隆所構成的原料混合粉末。另外,僅藉 由分級處理,再經由加熱處理而形成α型賽隆,得到平均 粒徑爲15〜25μιη之粉末。 另外,所謂「僅藉由分級處理」係意指爲了得到特定 平均粒徑粉末的處理,不進行粉碎之其他處理,於本發明 200925252 之製法中,主旨上並不限於分級加熱處理後之處理。 於本發明之螢光體之製法中,使原料混合粉末中所含 之α型賽隆,其添加量爲5〜30質量%,其平均粒徑爲3 〜15μηι,並且比表面積爲0.2〜lm2/g。另外,固溶元素較 佳爲C a。 另外,於本發明之螢光體之製法中,其中使原料混合 粉末成爲體密度〇.6g/cm3以下之方式來塡充氮化硼製之掛 堝,進行加熱處理。 此外,本發明係一種以通式:(Cax、EuY)(Si、Al)12 (0、N)16 (其中 ’ 1.5&lt; X + Y&lt; 2.2,且 0&lt; Y&lt; 0.2、0/NS0.04) 所示之α型賽隆作爲主要成分,比表面積爲0.1〜〇.35m2/g 的螢光體(粉末)。 還有,於本發明中,比表面積係利用B ET法加以測定, 經由BET多點解析所求出之値。 〔發明之效果〕 本發明之含氮率高的賽隆螢光體之製法係與習知之製 法不同,藉由使起始原料中含有成爲粒成長之核的α型賽 隆粉末,容易使一次粒子之粒徑增大爲可能的。另外,根 據作爲核所添加的α型賽隆粉末之粒度,最終所得的賽隆 螢光體粉末之粒子形態的控制爲可能的。基於此效果’能 夠穩定提供一次粒徑爲大的、具有平滑之粒子表面、具優 越之發光特性的螢光體。 利用本發明之製法所得的螢光體,由於比表面積小至 0.1〜0.35m2/g,亦即一次粒子爲大的,而且未經粉碎處理, 200925252 粒子表面爲平滑的,其結果,具有發光效率爲60%以上之 優越的發光特性。 〔發明之實施形態〕 以下,茲將針對本發明之製法,詳細加以說明。 首先,針對利用本發明之製法所製造之最終生成物的 Eu活化之Ca-α-賽隆螢光體加以說明。 —般而言,α型賽隆係將α型氮化矽中之Si-N鍵之部 分置換成A1-N鍵及A1-0鍵,爲了保持電中性,使特定之 ❹ 陽離子滲入格子內的固溶體,以通式:Mz(Si、Al)12(〇、N)16 表示。其中,Μ係可滲入格子內的元素:Li、Mg、Ca、Y 及鑭系金屬(除了 La與Ce以外)。Μ之固溶量,Z値係根 據Si-N鍵之Al-Ν鍵取代率所決定之數値。 爲了使螢光特性得以發現,必須設定Μ之部分成爲可 固溶之發光中心的元素,尤其,藉由Μ使用Ca,於其部分 選擇成爲發光中心的Eu,被紫外〜藍色之廣泛波長區域的 光所激發,可以得到黃〜橙色之可見光的螢光體。 〇 即使在Eu活化之Ca-ot-賽隆螢光體之中,橙〜紅色之 長波長發光係在降低賽隆結晶內之含氧率的同時’也藉由 提高Ca (包含Eu)之固溶濃度而予以實現。 具體而言,於通式:(Cax、EuY)(Si、A1)12(0、N)16 中, 設爲 1.5&lt;Χ+Υ&lt;2·2,且 0&lt;Υ&lt;0·2、O/NS0.04。X+Y 爲 1 . 5以下之情形,波峰波長5 9 5 nm以上之螢光將難以得到, 欲製造超過2.2之α型賽隆之情形下,對螢光特性造成不 良影響之第二相將變得容易生成。另外,若0/Ν超過0.04 ❹200925252 IX. Description of the Invention: [Technical Field] The present invention relates to a phosphor and a method for producing the same, which can be utilized for using a blue light emitting diode (blue LED) or a purple light emitting diode (purple) Led) white light-emitting diode (white led) and other various types of light-emitting devices. [Prior Art] White LEDs are widely used in mobile phones because of their small size, light weight, long life, superior high-speed® response, or the use of harmful substances such as mercury in fluorescent lamps, and low environmental load. A small-sized illumination device such as a backlight source of a small liquid crystal display or a flashlight is expected to be developed toward a medium- and large-sized display light source or general illumination use. White LEDs in various ways have been proposed, and the most popular methods are: 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物A substance composed of a yttrium aluminate (YAG: Ce) phosphor. ❹ Since this white LED has a reddish luminescent component, it has a problem of low color rendering. In order to compensate for the red component, it has been proposed to use the orange-red nitride and oxynitride phosphor simultaneously with the YAG phosphor. It is known that the α-allon type which is a specific rare earth element activated by a nitride or oxynitride phosphor has useful fluorescent characteristics and has been studied for use in white LEDs and the like (refer to Patent Document 1). ~3). Patent Document 1: Japanese Patent No. 3668770, No. 200925252 Patent Document 2: Japanese Patent Laid-Open No. 2003-124527 No. 2 Patent No. JP-A-2004-067837 No. 2 Alpha-type Sialon type α-type tantalum nitride crystal S The part 5 bond of the i-N bond is replaced with the A1-0 bond, and in order to ensure electrical neutrality, the crystal element has a specific element (Ca, and Li, Mg, Y; or other than the lanthanide metal). Solid-dissolved in the structure of the lattice. By the infiltration of the element portion of the solid solution, the rare earth element of the luminescent center has a fluorescent property. Among them, the α-type Sialon phosphor which is used to dissolve Ca and use Eu to take the ® (hereinafter, the Ca-α-Sialon fluorescent in vitro-blue region is widely activated in the wavelength range) ~Orange luminescence. The α-type sialon is obtained by a mixed powder of aluminum nitride, calcium and strontium oxide (compound containing a compound treated by heat treatment) at a high temperature in a nitrogen atmosphere. Among them, the use of an oxide raw material is inevitably a solid solution equivalent of Sialon. In this case, the obtained α-sialon phosphor has a yellow to orange color (fluorescence peak wavelength of about 580 nm). Compared with the conventional α-type sialon, the α-type sialon system with high nitrogen content synthesized by using the calcium nitride material may form a highly concentrated solution. In particular, when the C a solid solution concentration is high, in comparison It is known that the long side of the group (595 to 650 nm) has fluorescence of the peak wavelength of the fluorescent light (Patent Document 4). Patent Document 4: Japanese Patent Laid-Open No. 2005-307012 No. [Abstract] r report is reported by A1-N Between the sub-subjects, with La and Ce made by, to make the modern part of it) Yellow yttrium lanthanum, the α-type color system that becomes the oxidative synthesis method gas becomes a calcium-solid solidification as a long-wave body. It can be reported as: 200925252 The technology to be solved by the invention asks for a high-nitrogen-containing α-type sialon When the light body is applied to a light-emitting device such as a white LED, it is expected that the luminous efficiency is further improved. SUMMARY OF THE INVENTION The object of the present invention is to provide a method of producing a phosphor having a luminous efficiency superior to that of a conventional one having a high nitrogen content having a peak at a wavelength of 5 95 nm or more and stably producing the same. The inventors of the present invention conducted an experimental review on the manufacture of a Ca-α-赛 ® luminescence phosphor powder having a high nitrogen content rate of activation of Eu 2 + . As a result, it has been found that the present invention can be obtained by adding a pre-synthesized α-sialon powder as a seed particle of the grain growth to the raw material powder, thereby obtaining a particle which is relatively large and smooth on the surface, and A powder having a specific particle size is not obtained by pulverizing the synthetic powder, and a phosphor having excellent luminous efficiency and having a fluorescence peak at a wavelength of 595 nm or more can be obtained. That is, the present invention is a method for producing a phosphor, which is characterized by the formula: (Cax, EuY) (Si, A1) 12 (0, N) 16 (where 1.5 &lt; Χ + Υ &lt; 2 · 2 And Ο ¥ 0 &lt; Υ &lt; 0.2, 0 / NS0.04) α-type Sialon as the main component; by nitrogen treatment in the nitrogen environment '1650~1850 °C, by (a) nitriding A mixed powder of sand, (b) nitride, (c) a compound containing Ca, (d) a compound containing Eu, and (e) « type Sialon. Further, the α-sialon was formed only by the classification treatment and then subjected to heat treatment to obtain a powder having an average particle diameter of 15 to 25 μm. In addition, the term "single-stage treatment only" means that the treatment for obtaining a specific average particle diameter powder is not subjected to other treatments for pulverization, and the method of the invention of 200925252 is not limited to the treatment after the classification heat treatment. In the method for producing a phosphor according to the present invention, the α-sialon contained in the raw material mixed powder is added in an amount of 5 to 30% by mass, the average particle diameter is 3 to 15 μm, and the specific surface area is 0.2 to lm 2 . /g. Further, the solid solution element is preferably Ca. Further, in the method for producing a phosphor of the present invention, the raw material mixed powder is filled with a boron nitride-made crucible so as to have a bulk density of 66 g/cm3 or less, and heat-treated. Further, the present invention is a general formula: (Cax, EuY) (Si, Al) 12 (0, N) 16 (where '1.5 &lt; X + Y &lt; 2.2, and 0 &lt; Y &lt; 0.2, 0 / NS0. 04) The above-mentioned α-sialon is used as a main component, and a phosphor (powder) having a specific surface area of 0.1 to 35.35 m 2 /g. Further, in the present invention, the specific surface area is measured by the B ET method and determined by BET multipoint analysis. [Effects of the Invention] The method for producing a sialon phosphor having a high nitrogen content according to the present invention is different from the conventional method, and it is easy to make the ?-sialon powder which is a core of grain growth in the starting material. It is possible to increase the particle size of the particles. Further, according to the particle size of the ?-sialon powder added as a core, the control of the particle morphology of the finally obtained Sialon phosphor powder is possible. Based on this effect, it is possible to stably provide a phosphor having a large particle diameter and having a smooth particle surface and having excellent luminescence characteristics. The phosphor obtained by the method of the present invention has a specific surface area as small as 0.1 to 0.35 m 2 /g, that is, the primary particles are large, and the surface of the particles is smooth without being pulverized, and as a result, the luminous efficiency is obtained. It is superior in luminescent properties of over 60%. [Embodiment of the Invention] Hereinafter, the production method of the present invention will be described in detail. First, an Eu-activated Ca-α-Sialon phosphor which is a final product produced by the production method of the present invention will be described. In general, the α-type Sialon replaces the portion of the Si-N bond in the α-type tantalum nitride with the A1-N bond and the A1-0 bond, and in order to maintain electrical neutrality, the specific cation is infiltrated into the lattice. The solid solution is represented by the formula: Mz(Si, Al)12(〇, N)16. Among them, the lanthanide can penetrate into the elements of the lattice: Li, Mg, Ca, Y and lanthanide metals (except La and Ce). The amount of solid solution of niobium is determined by the number of substitutions of the Al-Ν bond of the Si-N bond. In order to make the fluorescence characteristics discoverable, it is necessary to set the element of the ruthenium to become an element of the solvable center of luminescence. In particular, by using Ca, the Eu which is the center of the luminescence is selected in part, and the ultraviolet-blue broad wavelength region is selected. Excited by the light, a yellow-orange visible light phosphor can be obtained. 〇 Even in the Eu-activated Ca-ot-Sialon phosphor, the long-wavelength light of orange to red reduces the oxygen content in the crystal of the Sialon while also increasing the solidification of Ca (including Eu). It is achieved by dissolving the concentration. Specifically, in the formula: (Cax, EuY) (Si, A1) 12 (0, N) 16, it is set to 1.5 &lt; Χ + Υ &lt; 2 · 2, and 0 &lt; Υ &lt; 0 · 2, O /NS0.04. When X+Y is 1.5 or less, fluorescence with a peak wavelength of 5.9 5 nm or more will be difficult to obtain. In the case of producing α-type Sialon exceeding 2.2, the second phase which adversely affects the fluorescence characteristics will change. It is easy to generate. In addition, if 0/Ν exceeds 0.04 ❹

200925252 時’不僅波峰波長5 9 5 nm以上之螢光將難以ίΙ Eu之固溶界限量將變少,Χ+Υ&gt;;ι·5也將變得 另外’基於螢光波峰波長及發光效率之觀點,窄 溶量Υ値,較佳爲0&lt;Υ&lt;0.2。 接著,針對爲了製造上述Eu活化之Ca-a-的原材料加以說明。 本發明之製法之特徵在於:原料粉末除了 α型賽隆之製造的氮化矽、氮化鋁、Ca化合物万 之外,也含有預先所合成的α型賽隆。At 200925252, 'not only the fluorescence with a peak wavelength of 5.9 nm or more will be difficult. The solid solution limit of Eu will be less, Χ+Υ&gt;; ι·5 will also become another based on the wavelength of the fluorescence peak and the luminous efficiency. The viewpoint, narrow solubility Υ値, is preferably 0 &lt; Υ &lt; 0.2. Next, the raw material for producing the Au-activated Ca-a- will be described. The process of the present invention is characterized in that the raw material powder contains, in addition to the tantalum nitride, aluminum nitride, and Ca compound produced by the α-sialon, the α-sialon synthesized in advance.

Ca化合物係爲了得到含氮率高的α型賽隆 全部或其部分作成氮化鈣。另外•將CaF2使用 之部分也爲可能的。藉由添加CaF2,能夠抑制 結而使一次粒子增大,容易得到適當之物作爲卷 基於提高含氮率之觀點,關於Eu化合物, 物。但是,相較於Ca,由於Eu之摻合比例非 爲氧化物也可以。 於原料粉末中所預先摻合的α型賽隆(以 原料賽隆)係於加熱處理之際,選擇性成爲粒形 加速一次粒子之成長。相較於無添加之情形, 型賽隆,一次粒子之大小將變大約數倍〜十倍 著表面平滑化,結晶性之提高及在粒子表面上 被抑制,發光特性將提高。再者,對α型賽隆 的預先添加係具有抑制合成過程中之粒子間燒 易粉碎性之賽隆生成爲可能的。此賽隆並不 ^到,C a及 難以實現。 『關Eu之固 賽隆螢光體 可用於習知 t Eu化合物 ,較佳爲使 丨於Ca原料 粒子間之燒 Ϊ成長之核。 較佳爲氮化 常小,即使 下,也稱爲 〖成之基點, 藉由添加α 的同時,隨 之光散射將 之原料粉末 結的效果, 加以粉碎處 -10- 200925252 理,所希望之粒度粉末將可以得到,具有抑制使發光特性 降低之粉碎處理所伴隨之微粒生成的效果。 原料賽隆係於合成後,由於存在於粒子之中央部,相 對於發光特性的貢獻爲小的,尤其其組成並未予以限定。 但是,使用含有不同的發光中心元素,或含有阻礙發光之 鐵等不純物元素的α型賽隆粉末,因爲對其表面所形成的 α型賽隆螢光體層之特性造成大的影響而不佳。基於此觀 點,於本發明中,與螢光體層相同,較佳爲使用已固溶Ca ® 之α型賽隆,尤以使用與欲得到之螢光體的化學組成一致 的α型賽隆特別理想。 另外,相較於其他之原料粉末,由於原料賽隆成爲粒 成長之基點’其一次粒子相當大,再者,期望此等原料賽 隆不形成粗大的二次粒子。基於此觀點,平均粒徑較佳爲 3〜15μιη,並且比表面積較佳爲0.2〜lm2/g。於此範圍內, 可以得到充分之粒成長及燒結抑制效果,不會引起發光特 性之降低。 〇 針對α型賽隆之添加量,較佳爲5〜30質量%。若α 型賽隆之添加量爲5質量%以上的話,於所添加的α型賽 隆粒子以外的部分,並不進行新的α型賽隆粒子之形成及 燒結、粒成長’另外’若爲30質量%以下的話,粒成長之 基點將過多’各個粒子僅變成些微之成長,也能夠防止難 以得到相當大之一次粒子而較佳。 使含有上述之α型賽隆之各原料成爲所希望之組成(上 述通式所示之組成)之方式來加以混合。針對所混合之方 -11- 200925252 法,能夠採用進行乾式混合之方法、實質上與原料各成分 不進行反應之不活性溶劑中,於進行濕式混合之後,去除 溶劑之方法等。還有,混合裝置適合利用V型混合機、搖 滾式混合機、球磨機、振動式磨機等。 藉由將成爲所希望組成之方式來加以混合而得的粉末 (以下,簡稱爲原料粉末)塡充於與原料及所合成的登光 體之反應性低的材質之容器內,例如,塡充於氮化硼製之 容器內,於氮氣環境中,於1650〜1850 °c之溫度範圍,加 © 熱既定時間而得到螢光體。 藉由將加熱處理之溫度設爲1 6 5 0 °C以上,抑制未反應 生,成物所殘存的量,能夠使一次粒子充分成長,藉由設爲 1 8 5 0 °C以下,能夠抑制顯著之粒子間的燒結。 還有,基於抑制加熱中粒子間燒結之觀點,對原料粉 末之容器內的塡充較佳係盡可能提高體積。具體而言,於 對原料粉末之容器進行塡充之際,較佳爲使體密度成爲 0.6g/cm3以下。例如,藉由將原料粉末通過篩子,此時, ¥ 不對通過篩子的粉末施加振動,能夠降低體密度。 另外,針對加熱處理中之加熱時間,選擇不會發生下 列不利情況之時間範圍:存在許多未反應物、一次粒子爲 成長不足、或發生粒子間之燒結,若根據本發明人之探討, 較佳約爲2〜24小時之範圍。 藉由僅分級處理利用上述之操作所得的α型賽隆螢光 體之粉末,得到平均粒徑爲15〜25μιη之粉未。 加熱處理後之反應生成物係維持部分含有塊狀物的粉 -12- 200925252 末狀態,並且’由於粒子間的燒結受到抑制,並不進行發 光強度降低主因之一的粉碎處理’而是僅藉由利用篩等進 行之分級處理,能夠以高收率得到既定平均粒徑之粉末。 藉由分級處理,能夠去除塊狀物而得到粒度、特性均 質的螢光體。尤其,平均粒徑爲15〜25 μιη之粉末,其一 次粒子之粒徑大、比表面積小、顯示良好之發光強度。具 體而言,可以得到一次粒子大至3〜ΙΟμηι之螢光體。再者, 如上所述,由於此螢光體並未經粉碎操作,因爲表面係由 ® 平滑粒子所構成,具有發光效率爲60%以上之發光特性。 因而,利用本發明之製法所得的螢光體,例如,能夠適用 於作爲LED用螢光體。亦即,若平均粒徑爲15 μιη以上的 話,發光強度並不會變低;若平均粒徑爲25 μιη以下的話, 朝向密封LED樹脂之均勻分散爲容易的,不會發生發光強 度及色調之偏異,實用上爲可能使用。 還有,於習用技術中,一次粒子之平均粒徑最多也不 過約爲2μιη,而且,由於經歷粉碎操作,表面並非平滑, ❹ 發光效率僅能夠得到約5 0 %以下之物。 【實施方式】 接著,藉由實施例、比較例,更詳細說明本發明。 還有,於實施例及比較例中,粒子之比表面積係顯示 利用日本BEL公司製之比表面積測定裝置(BELSORP-mini) 加以測定,進行BET多點解析之結果,平均粒徑係顯示利 用COULTER公司製之雷射繞射/散射式粒度分布測定裝置 (LS-230型)測定之結果。 -13- 200925252 &lt;實施例1 &gt; 1.原料粉末中所含之α型賽隆(原料賽隆)之合成 原料粉末之摻合組成係將氮化矽粉末設爲61.2質量 %、將氮化鋁粉末設爲22.1質量%、將氮化鈣粉末設爲9.5 質量%、將氟化鈣粉末設爲5.〇質量%、將氧化銪粉末設 爲2_2質量%。此組成係與最終生成物的α型賽隆之組成 約略相同。於氮氣環境中之套手工具箱中,使用硏缽以混 合此原料粉末。 ¥ 接著,於相同之套手工具箱內,使該原料粉末通過篩 ?L 2 5 Ομιη之後,塡充於氮化硼材質坩堝中,利用碳加熱器 之電爐在氮之大氣壓下,於1 750〇C進行16小時之加熱處 S °由於原料粉末中所含之氮化鈣容易於空氣中氧化、水 解’已塡充混合粉末之坩堝係從套手工具箱取出之後,迅 速設置於電爐中,立即進行抽真空以防止氮化鈣之反應。 經由加熱處理所得的生成物係粉末狀,幾乎全部通過 4 5 μπι篩孔之篩。將通過此篩之粉末作爲α型賽隆螢光體製 造用之原料粉末的 α核粉末。α核粉末之比表面積爲 0-43m2/g,平均粒徑爲 9.2μιη。 2·α型賽隆螢光體之合成及評估 原料粉末係摻合15質量%之該α核粉末、53質量% 之氮化矽粉末、19.1質量%之氮化鋁粉末、11質量%之氮 化鈣粉末、1 . 9質量%之氧化銪粉末,於套手工具箱內,利 用硏缽混合,通過篩孔2 5 0 μιη之篩。將約2 2 g之此原料粉 末塡充於內容積88cm3 (內徑60mmx高度30mm)之氮化硼 -14- 200925252 材質坩堝中。坩堝內所塡充的原料混合粉末之體密度爲 0.38 g/cm3。從套手工具箱取出已塡充原料粉末之氮化硼材 質坩堝,迅速設置於碳加熱器之電爐內,於1 75 0 °C進行16 小時之加熱處理。所得的試料並不加以粉碎處理,而是進 行篩分級,最後將通過45 μιη篩之粉末設爲最終生成物(螢 光體)。此螢光體之組成係(Cai.67、Eu〇.〇8)(Si、Α1)ΐ2(〇、Ν)16 (其中,Χ+Υ=1·75、0/Ν = 0.03)。 相對於最終生成物之加熱處理回收物的比例爲72質 © 量%。最終生成物之平均粒徑爲17.7 μιη。另外,藉由使用 CuKa線之粉末 X線繞射測定以探討螢光體結晶相之結 果,所存在之結晶相僅爲α型賽隆。 &gt; 接著,使用分光螢光光度計(日本High Techno logis 公司製之「F4500」),進行激發/螢光光譜測定。將結果 顯示於第1圖。圖中,縱軸係相對強度,顯示將市售之 YAG: Ce螢光體(曰本化成OPTONIX製之P46Y3級)之 波長4 5 5 nm激發的螢光波峰強度設爲1〇〇時之相對値。 ® 由圖得知:螢光體係顯示被紫外〜藍色的寬幅波長所 激發、波峰波長爲60〇11111、半帶寬(11&amp;1【卜&amp;11(1以丨(^11)爲8511111 之螢光光譜。進一步使用積分球以對該螢光體進行總光束 發光光譜測定(參考文獻:日本「照明學會誌」第83卷第 2號、平成11年、87-93頁、「NBS標準螢光體之量子收 率測定」大久保和明等著)。針對激發光係使用已分光的 氙燈光源。利用波長4 5 5 nm之藍色光激發之情形的光吸收 率、內部量子收率、發光效率分別爲86%、73%、63%。 200925252 另外’針對此螢光體,進行掃描型電子顯微鏡(SEM) 觀察。將掃描型電子顯微鏡(S EM)顯示於第2圖。從SEM 像所判定之一次粒子的粒徑爲3〜1〇 μηι。還有,此螢光體 之比表面積爲0.24m2/g。 &lt;比較例1 &gt; 除了不添加α核粉末之外’進行完全相同於實施例1 之處理。亦即,原料粉末之摻合組成係設定氮化矽粉末62.4 質量%、氮化銘粉22.5質量%、氮化鈣粉末12.9質量%、 ® 氧化銪粉末2.2質量%。將此原料混合粉末(22g)塡充於 氮化硼材質坩堝內(內容積88cm3)之際的體密度爲 0.4lg/cm3。實施1750°C下進行16小時之加熱處理後之生 成物予以篩孔45μπι之篩分級的結果,篩通過率爲35質量 %。通過篩之最終生成物的平均粒徑爲1 1 . 6 μπι,粉末X線 繞射測定之結果,所存在之結晶相僅爲α型賽隆。 將所得的螢光體之激發/螢光光譜顯示於第1圖。比較 例之螢光體的激發光譜形狀、螢光光譜之波峰波長及半帶 〇 寬係與實施例之螢光體相同,螢光波峰強度將變低。利用 波長450nm之藍色光所激發之情形的光吸收率、內部量子 效率、發光效率分別爲77%、70%、54%。 由第3圖之S EM像可以得知,比較例之螢光體係燒結 許多個一次粒子爲2 μ m以下大小的二次粒子所構成。此營 光體粉末之比表面積爲〇.42m2/g。 &lt;實施例2、3、比較例2、3 &gt; 使用實施例1所製作的α核粉末、氮化矽粉末、氮化 -16- 200925252 銘粉、氮化耗粉末、氧化銪粉末,於合成後,成爲α型賽 隆單相之方式來作成表1所示之摻合,經由與實施例完全 相同的處理,得到與實施例1相同組成的螢光體粉末。針 對所得的螢光體粉末,進行與實施例1同樣的測定、評估。 與實施例1與比較例1之結果相一致,將評估結果顯示於 袠2及3。The Ca compound is formed into calcium nitride in order to obtain all or part of α-sialon having a high nitrogen content. In addition • It is also possible to use the part of CaF2. By adding CaF2, it is possible to suppress the formation and increase the primary particles, and it is easy to obtain a suitable material as a volume, and it is based on the Eu compound. However, compared to Ca, the blending ratio of Eu is not an oxide. The α-type Sialon (in the raw material Sialon) previously blended in the raw material powder is selectively heated into a granular shape to accelerate the growth of the primary particles. Compared with the case of no addition, the size of the primary particles will be several times to ten times larger than that of the surface, and the surface is smoothed, the crystallinity is improved, and the surface of the particles is suppressed, and the luminescent property is improved. Further, the pre-addition of α-sialon has a possibility of suppressing the formation of sialon which is easily pulverized between particles during the synthesis. This Sailong is not, and it is difficult to achieve. 『Eu's solid sialon phosphor can be used in the conventional t Eu compound, preferably the core of the sputum growth between the Ca raw materials. It is preferable that the nitriding is always small, and even if it is hereinafter, it is called the base point of the formation, and by adding α, the effect of the light-scattering of the raw material powder is pulverized. A particle size powder can be obtained, and it has an effect of suppressing the generation of fine particles accompanying the pulverization treatment which lowers the luminescent property. Since the raw material sialon is formed in the central portion of the particle after synthesis, the contribution to the luminescent property is small, and the composition thereof is not limited. However, the use of the ?-sialon powder containing a different luminescent center element or an impurity element such as iron which hinders luminescence is not preferable because of the large influence of the characteristics of the ?-sialon phosphor layer formed on the surface. Based on this point of view, in the present invention, similarly to the phosphor layer, it is preferred to use the α-type Sialon which has been dissolved in Ca®, in particular, the α-type Sellon which is identical to the chemical composition of the phosphor to be obtained. ideal. Further, compared with the other raw material powders, since the raw material sialon becomes the base point of the grain growth, the primary particles are relatively large, and further, it is desired that these raw materials are not formed into coarse secondary particles. From this viewpoint, the average particle diameter is preferably from 3 to 15 μm, and the specific surface area is preferably from 0.2 to lm 2 /g. Within this range, sufficient grain growth and sintering suppression effect can be obtained without causing a decrease in luminescent properties. 〇 The amount of addition to the α-type Sialon is preferably 5 to 30% by mass. When the addition amount of the α-type Sialon is 5% by mass or more, formation of new α-type Sialon particles, sintering, and grain growth are not performed in portions other than the added α-sialon particles. When the mass is less than or equal to 5%, the basis of the grain growth is too large, and the individual particles are only slightly grown, and it is also preferable to prevent the formation of a relatively large primary particle. The raw materials containing the above-mentioned α-sialon are mixed so as to have a desired composition (composition shown in the above formula). In the method of dry mixing, a method of performing dry mixing, an inactive solvent which does not substantially react with each component of the raw material, a method of removing the solvent after wet mixing, and the like can be employed. Further, the mixing device is preferably a V-type mixer, a roller mixer, a ball mill, a vibrating mill or the like. A powder obtained by mixing a desired composition (hereinafter, simply referred to as a raw material powder) is filled in a container of a material having low reactivity with a raw material and a synthesized light-receiving body, for example, charging The phosphor is obtained in a container made of boron nitride in a nitrogen atmosphere at a temperature ranging from 1650 to 1850 ° C by adding heat for a predetermined period of time. By setting the temperature of the heat treatment to 1 60 50 ° C or higher, the amount of the unreacted raw material remaining in the product can be suppressed, and the primary particles can be sufficiently grown, and the temperature can be suppressed by 1 to 85 ° C or lower. Significant sintering between particles. Further, from the viewpoint of suppressing sintering between particles during heating, it is preferable to increase the volume in the container of the raw material powder as much as possible. Specifically, when the container of the raw material powder is filled, the bulk density is preferably 0.6 g/cm3 or less. For example, by passing the raw material powder through the sieve, at this time, ¥ does not apply vibration to the powder passing through the sieve, and the bulk density can be lowered. Further, for the heating time in the heat treatment, a time range in which the following unfavorable conditions do not occur is present: there are many unreacted materials, the primary particles are insufficiently grown, or sintering between the particles occurs, and it is preferable according to the discussion of the present inventors. It is about 2 to 24 hours. By using only the powder of the ?-sialon phosphor obtained by the above operation, only the powder having an average particle diameter of 15 to 25 μm is obtained. The reaction product after the heat treatment is maintained in a state in which a part of the powder contains a powder of the powder - 12, 200925252, and "the sintering process between the particles is suppressed, and the pulverization treatment which is one of the main causes of the decrease in the luminescence intensity is not carried out" By the classification treatment by a sieve or the like, a powder having a predetermined average particle diameter can be obtained in a high yield. By the classification treatment, the bulk can be removed to obtain a phosphor having a uniform particle size and uniformity. In particular, a powder having an average particle diameter of 15 to 25 μm has a large particle diameter, a small specific surface area, and a good luminous intensity. Specifically, a phosphor having a primary particle size of 3 to ΙΟμηι can be obtained. Further, as described above, since the phosphor is not pulverized, since the surface is composed of ® smooth particles, it has an emission property of 60% or more. Therefore, the phosphor obtained by the production method of the present invention can be suitably used, for example, as a phosphor for LED. In other words, when the average particle diameter is 15 μm or more, the light-emitting intensity does not become low. When the average particle diameter is 25 μm or less, it is easy to uniformly disperse toward the sealed LED resin, and the light-emitting intensity and color tone do not occur. Biased, practically possible to use. Further, in the conventional technique, the average particle diameter of the primary particles is at most about 2 μm, and since the surface is not smooth due to the pulverization operation, the 发光 luminescence efficiency can only obtain about 50% or less. [Embodiment] Next, the present invention will be described in more detail by way of examples and comparative examples. In addition, in the examples and the comparative examples, the specific surface area of the particles was measured by a specific surface area measuring device (BELSORP-mini) manufactured by BEL Co., Ltd., and the results of BET multipoint analysis were carried out, and the average particle size showed COULTER. The results of the company's laser diffraction/scattering particle size distribution measuring device (Model LS-230). -13-200925252 &lt;Example 1&gt; 1. The blending composition of the synthetic raw material powder of the α-sialon (raw material sialon) contained in the raw material powder is set to 61.2% by mass of the tantalum nitride powder. The aluminum oxide powder was 22.1% by mass, the calcium nitride powder was 9.5% by mass, the calcium fluoride powder was 5.5% by mass, and the cerium oxide powder was 2% by mass. This composition is approximately the same as the composition of the α-Sialon of the final product. In a kit for use in a nitrogen atmosphere, hydrazine is used to mix the raw material powder. ¥ Next, in the same set of hand toolbox, the raw material powder is passed through a sieve of L 2 5 Ομιη, then filled in a boron nitride material crucible, and an electric furnace using a carbon heater is operated at a nitrogen pressure of 1 750. 〇C is heated for 16 hours. S ° Since the calcium nitride contained in the raw material powder is easily oxidized and hydrolyzed in the air, the 塡 which has been filled with the mixed powder is quickly taken out from the kit and then placed in the electric furnace. A vacuum is immediately applied to prevent the reaction of calcium nitride. The resulting product obtained by heat treatment was powdery, and almost all passed through a sieve of 4 5 μm. The powder passing through this sieve was used as an α-nuclear powder of a raw material powder produced by the α-Sialon fluorescent system. The α core powder has a specific surface area of 0 to 43 m 2 /g and an average particle diameter of 9.2 μm. 2. Synthesis and evaluation of α-type sialon phosphor The raw material powder is blended with 15% by mass of the α core powder, 53% by mass of tantalum nitride powder, 19.1% by mass of aluminum nitride powder, and 11% by mass of nitrogen. Calcium phosphate powder, 1.9 mass% of cerium oxide powder, in a kit of hand tools, mixed with mash, passed through a sieve of 250 μm. About 22 g of this raw material powder was filled in a boron nitride -14-200925252 material 内容 having an inner volume of 88 cm 3 (inner diameter 60 mm x height 30 mm). The bulk density of the raw material mixed powder in the crucible was 0.38 g/cm3. The boron nitride material which has been filled with the raw material powder is taken out from the kit and quickly placed in an electric furnace of a carbon heater, and heat-treated at 175 ° C for 16 hours. The obtained sample was not subjected to pulverization treatment, but was subjected to sieve classification, and finally, a powder which passed through a sieve of 45 μm was used as a final product (fluorescent body). The composition of this phosphor is (Cai.67, Eu〇.〇8) (Si, Α1) ΐ 2 (〇, Ν) 16 (where Χ+Υ=1·75, 0/Ν = 0.03). The ratio of the heat-treated regrind to the final product was 72% by mass%. The final product had an average particle diameter of 17.7 μηη. Further, by using the powder X-ray diffraction measurement of the CuKa line to investigate the results of the crystal phase of the phosphor, the crystal phase present is only α-sialon. &gt; Next, excitation/fluorescence spectrometry was performed using a spectrofluorometer ("F4500" manufactured by High Technologis, Japan). The results are shown in Figure 1. In the figure, the vertical axis is the relative intensity, and the relative intensity of the fluorescence peak excited by the wavelength of 4 5 5 nm of the commercially available YAG: Ce phosphor (P46Y3 grade manufactured by Okumoto Chemical Co., Ltd.) is set to 1 相对. value. ® It is known from the figure that the fluorescence system is excited by the wide wavelength of ultraviolet to blue, the peak wavelength is 60〇11111, and the half bandwidth (11&amp;1[b&amp;11(1 to 丨(^11) is 8511111) Fluorescence spectrum. Further use of an integrating sphere to measure the total beam luminescence spectrum of the phosphor (Reference: Japan, "Lighting Society", Vol. 83, No. 2, Heisei 11, 87-93, "NBS Standard The quantum yield measurement of the phosphor "Okubo and Akira et al." The use of a xenon lamp source that has been split for the excitation light system, the light absorption rate, the internal quantum yield, and the luminescence when excited by blue light having a wavelength of 45 5 nm The efficiency was 86%, 73%, and 63%, respectively. 200925252 In addition, a scanning electron microscope (SEM) observation was performed on this phosphor. A scanning electron microscope (S EM) was shown in Fig. 2. From the SEM image The particle diameter of the primary particles was determined to be 3 to 1 〇μηι. Further, the specific surface area of the phosphor was 0.24 m 2 /g. <Comparative Example 1 &gt; In addition to the absence of the α-nucleus powder, 'the same was performed. The treatment of Example 1. That is, the blending composition of the raw material powder is set 62.4% by mass of bismuth nitride powder, 22.5% by mass of nitriding powder, 12.9% by mass of calcium nitride powder, and 2.2% by mass of cerium oxide powder. The raw material mixed powder (22g) is filled in a boron nitride material. (The internal volume of the internal volume of 88 cm3) was 0.4 lg/cm3. The product obtained by heat-treating at 1750 ° C for 16 hours was sieved at a sieve size of 45 μm, and the sieve passage rate was 35% by mass. The average particle size of the final product of the sieve is 11.6%, as a result of powder X-ray diffraction measurement, the crystal phase present is only α-sialon. The excitation/fluorescence spectrum of the obtained phosphor is displayed. In the first embodiment, the excitation spectrum shape of the phosphor of the comparative example, the peak wavelength of the fluorescence spectrum, and the half-band width are the same as those of the phosphor of the embodiment, and the fluorescence peak intensity is lowered. The blue wavelength is 450 nm. The light absorption rate, internal quantum efficiency, and luminous efficiency of the case excited by the color light were 77%, 70%, and 54%, respectively. It can be seen from the S EM image of Fig. 3 that the fluorescent system of the comparative example sinters many primary particles. It is composed of secondary particles of a size of 2 μm or less. The specific surface area of the campsite powder was 〇.42 m 2 /g. &lt;Examples 2, 3, Comparative Examples 2, 3 &gt; Using the α core powder, tantalum nitride powder, nitrided-16- produced in Example 1 200925252 Ming powder, nitriding consumption powder, cerium oxide powder, after synthesis, into a single phase of α-type Sialon, the blending shown in Table 1 is obtained, and the same treatment as in the embodiment is obtained, and Example 1 is obtained. The phosphor powder having the same composition was measured and evaluated in the same manner as in Example 1 for the obtained phosphor powder. Consistent with the results of Example 1 and Comparative Example 1, the evaluation results are shown in 袠 2 and 3.

1] 混合組合(質量%) α核粉末 Si3N4 A1N Ca3N2 EU2〇h ^施例1 15 53 19.1 11 1.9 1施例2 10 ' 56.2 20.3 11.6 2.0 施例3 25 46.8 16.9 9.7 1.7 上t較例1 0 62.4 22.5 12.9 2.2 戈較例2 2 61.1 22 12.7 2.2 上b較例3 80 12.5 4.5 2.6 0.4 L表2】 45μηι舖通過率 (質量%) 平均粒徑 (nm) 比表面積 (m2/g) X線繞射 1施例1 72 17.7 0.24 僅α型賽隆 ^施例2 63 19.2 0.19 僅α型賽隆 I施例3 54 16.3 0.26 僅α型賽隆 較例1 35 11.6 0.42 僅α型賽隆 上匕較例2 36 12.7 0.40 僅α型賽隆 上匕較例3 80 12.5 0.38 僅α型賽隆 200925252 【表3】 發光波峰波長 光吸收率 內部量子效率 發光效率 (nm) (%) (%) (%) 實施例1 600 86 73 63 實施例2 599 88 71 62 實施例3 600 85 72 61 比較例1 600 77 70 54 比較例2 600 80 68 54 比較例3 594 76 65 49 由表1〜3之結果也明確得知,藉由添加作爲合成原料 之α型賽隆,可以得到平均粒徑大、比表面積小的螢光體。 但是,相較於實施例1〜3之螢光體之情形’於原料賽隆之 添加量爲2質量%、80質量%之情況’觀察到最終生成物 之螢光體的平均粒徑爲13 μιη以下、比表面積超過0.35 m2/g、 發光效率之降低。 &lt;實施例4、比較例4 &gt; © 爲了探討原料賽隆之粒度對最終生成物造成之影響, 調製粒度不同的二種α型賽隆。亦即’於乙醇溶劑中,利 用氮化矽材質坩堝與球所構成的濕式球磨機’進行實施例 1所製作之α核粉末的4小時粉碎,經由過濾、乾燥後而 得到α核粉末Α。進一步重複藉由使用水之沈澱分級以去 除α核粉末A中所含之微粉,得到α核粉末Β°α核粉末A 與B之平均粒徑分別爲1.2μιη、3·2μηι;比表面積分別爲 1.5m2/g、0.82m2/g。原料賽隆係於實施例4中使用α核粉 200925252 末B,於比較例4中使用α核粉末a,經由相同於實施例1 之方法而得到螢光體粉末。將評估結果顯示於表4及5。 【表4】 45μηι舗通過率 (%) 平均粒徑 (μηι) 比表面積 (m2/g) X線繞射 實施例4 68 17.5 0.24 僅α型賽隆 比較例4 42 13.2 0.45 僅α型賽隆 發光波峰波長 (nm) 光吸收率 (%) 內部量子效率 (%) 發光效率 (%) 實施例4 601 86 73 63 比較例4 599 81 67 54 〔產業上利用之可能性〕 若根據本發明之製法,能夠再現性佳地、量產性佳地 製造具優越之發光特性的螢光波峰波長爲59511111以上之橙 〜紅色的含氮率高的α型賽隆。 本發明之螢光體係由含氮率高的α型賽隆所構成,且 發射螢光波峰波長爲595nm以上之橙〜紅色的優越之螢光 體’可適用於以白色LED等爲主之各式各樣的照明裝置, 產業上大爲有用。 【圖式簡單說明】 第1圖係顯示測定有關實施例及比較例之螢光體 600nm的螢光強度時之激發光譜及因波長45〇nm之外部激 發光所得的發光光譜之圖形。 -19- 200925252 第2圖係顯示有關實施例之螢光體之掃描電子顯微鏡 (SEM )像的照片。 第3圖係顯示有關比較例之螢光體SEM像的照片。 【元件符號說明】 4FR1 〇1] Mixed combination (% by mass) α nuclear powder Si3N4 A1N Ca3N2 EU2〇h ^Example 1 15 53 19.1 11 1.9 1 Example 2 10 ' 56.2 20.3 11.6 2.0 Example 3 25 46.8 16.9 9.7 1.7 Upper t comparison example 1 0 62.4 22.5 12.9 2.2 Comparative Example 2 2 61.1 22 12.7 2.2 Upper b Comparative Example 3 80 12.5 4.5 2.6 0.4 L Table 2] 45μηι spread rate (% by mass) Average particle size (nm) Specific surface area (m2/g) X-ray Diffraction 1 Example 1 72 17.7 0.24 α-type Sialon ^Example 2 63 19.2 0.19 α-type Sialon I Example 3 54 16.3 0.26 α-type Sialon only Example 1 35 11.6 0.42 Alpha-type Sialon only匕Comparative example 2 36 12.7 0.40 Only α-type Sialon upper 匕 Comparative example 3 80 12.5 0.38 α-type Sialon 200925252 [Table 3] luminescence peak wavelength light absorption rate internal quantum efficiency luminous efficiency (nm) (%) (%) (%) Example 1 600 86 73 63 Example 2 599 88 71 62 Example 3 600 85 72 61 Comparative Example 1 600 77 70 54 Comparative Example 2 600 80 68 54 Comparative Example 3 594 76 65 49 From Tables 1 to 3 As a result, it was also clearly found that by adding α-sialon as a synthetic raw material, a phosphor having a large average particle diameter and a small specific surface area can be obtained. However, compared with the case of the phosphors of Examples 1 to 3, the amount of the phosphor of the final product was observed to be 2% by mass and 80% by mass in the case of the raw material Sialon. The average particle diameter of the phosphor of the final product was observed to be 13 μm. Hereinafter, the specific surface area exceeds 0.35 m 2 /g, and the luminous efficiency is lowered. &lt;Example 4, Comparative Example 4 &gt; © In order to investigate the influence of the particle size of the starting material on the final product, two types of α-sialon having different particle sizes were prepared. That is, the ?-nuclear powder produced in Example 1 was pulverized in a wet ball mill made of a tantalum nitride material and a ball in an ethanol solvent for 4 hours, and filtered and dried to obtain an α-nuclear powder. Further, the fine powder contained in the α core powder A is removed by fractionation using water precipitation to obtain an average particle diameter of the α core powder Βα α core powders A and B respectively of 1.2 μm and 3·2 μηι; the specific surface areas are respectively 1.5 m2 / g, 0.82 m2 / g. The raw material sialon was obtained by using the α core powder 200925252 at the end B in Example 4, and the α core powder a was used in Comparative Example 4, and a phosphor powder was obtained by the same method as in Example 1. The evaluation results are shown in Tables 4 and 5. [Table 4] 45μηι paving rate (%) Average particle diameter (μηι) Specific surface area (m2/g) X-ray diffraction Example 4 68 17.5 0.24 α-type Sialon Comparative Example 4 42 13.2 0.45 Alpha-type Sialon only Luminescence peak wavelength (nm) Light absorption rate (%) Internal quantum efficiency (%) Luminous efficiency (%) Example 4 601 86 73 63 Comparative example 4 599 81 67 54 [Possibility of industrial use] According to the present invention According to the production method, it is possible to produce an α-sialon having a high nitrogen-containing rate with an excellent peak luminescence wavelength of 59,511,111 or more and an orange-red color having excellent luminescence properties. The fluorescent system of the present invention is composed of α-sialon having a high nitrogen content, and an excellent phosphor of orange to red having a fluorescence peak wavelength of 595 nm or more is applicable to each of white LEDs and the like. A wide variety of lighting devices are commercially useful. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing an excitation spectrum obtained by measuring the fluorescence intensity of a phosphor of 600 nm in the examples and the comparative examples, and an emission spectrum obtained by external excitation at a wavelength of 45 Å. -19- 200925252 Fig. 2 is a photograph showing a scanning electron microscope (SEM) image of the phosphor of the embodiment. Fig. 3 is a photograph showing a SEM image of a phosphor of a comparative example. [Component Symbol Description] 4FR1 〇

-20 --20 -

Claims (1)

200925252 十、申請專利範圍: 1. —種螢光體之製法’其特徵係以通式:(Cax、Euy) ( Si、 Al) 12(0、N) 16 (其中 ’ 1·5&lt;χ+γ&lt;2.2,且 〇&lt;Y&lt; 0.2、0/NS0.04)所示之α型賽隆作爲主要成分;於氮氣 環境中,於1650〜1850 °C,加熱處理由(〇氮化矽、(b) 氮化鋁、(c)含Ca之化合物、(d)含Eu之化合物、 (e) α型賽隆所構成的原料混合粉末。 2. —種螢光體之製法’其特徵係以通式:(Cax、Euy) ( Si、 Ο Al) ΐ2(〇、Ν) 16(其中 ’ 1·5&lt;χ+γ&lt;2·2,且 0&lt;Υ&lt; 0_2、0/NS0.04)所示之α型賽隆作爲主要成分;藉由在 氮氣環境中,於1650〜1850 °C,加熱處理由(3)氮化矽、 (b)氮化鋁、(c)含Ca之化合物、(d)含Eu之化合 物、(e)a型賽隆所構成的原料混合粉末,並藉由分級 處理,得到平均粒徑爲15〜25μχη之粉末。 3 .如申請專利範圍第1或2項之螢光體之製法,其中原料 混合粉末中之(e) α型賽隆的含率爲5〜30暫量%。 4_如申請專利範圍第1至3項中任一項之螢光體之製法, 其中(e) α型賽隆的平均粒徑爲3〜15μιη,並且比表面 積爲0.2〜lm2/g。 5.如申請專利範圍第1至4項中任一項之螢光體之製法, 其中(e) α型賽隆至少固溶有Ca。 6·如申請專利範圍第5項之螢光體之製法,其中(e) α型 賽隆係與最終生成物之α型賽隆具有相同的組成。 7.如申請專利範圍第1至6項中任一項之螢光體之製法, -21 - 200925252 其中使原料混合粉末之體密度成爲〇.6g/cm3以下之方式 來塡充反應容器,進行加熱處理。 8·—種螢光體,其特徵係以通式:(Cax、EuY) (Si、Al) i2(0、N) 16(其中,1·5&lt;Χ+Υ&lt;2·2,且 0&lt;Y&lt;0.2、 O/NS0.04 )所示之α型賽隆作爲主要成分,比表面積爲 〇· 1 〜0.35m2/g 0 9.如申請專利範圍第8項之螢光體之製法,其中於5 9Onm 以上之波長範圍具有發光波峰波長。 ❹ ❹ -22 - 200925252 七、指定代表圖: (一) 本案指定代表圖為:第1圖。 (二) 本代表圖之元件符號簡單說明: 無0 ❹ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:200925252 X. Patent application scope: 1. The method of producing a kind of phosphor is characterized by the general formula: (Cax, Euy) (Si, Al) 12(0, N) 16 (where '1·5&lt;χ+ γ &lt; 2.2, and α &lt; Y &lt; 0.2, 0 / NS0.04) α type of Sialon as a main component; in a nitrogen atmosphere, at 1650~1850 ° C, heat treatment by (〇 〇, (b) aluminum nitride, (c) a compound containing Ca, (d) a compound containing Eu, and (e) a raw material mixed powder composed of α-sialon. 2. A method for producing a phosphor. By the general formula: (Cax, Euy) (Si, Ο Al) ΐ 2 (〇, Ν) 16 (where '1·5&lt;χ+γ&lt;2·2, and 0 &lt;Υ&lt; 0_2, 0/NS0.04) The α-type sialon is shown as a main component; by (3) tantalum nitride, (b) aluminum nitride, (c) a compound containing Ca, by heat treatment at 1650 to 1850 ° C in a nitrogen atmosphere, (d) a raw material mixed powder composed of a compound containing Eu and (e) type a sialon, and subjected to a classification treatment to obtain a powder having an average particle diameter of 15 to 25 μχ. 3. As claimed in claim 1 or 2 Fluorescent body preparation method, wherein raw material mixed powder (e) The content of the α-type Sialon is 5 to 30% by weight. 4_ The method for producing a phosphor according to any one of claims 1 to 3, wherein (e) the α-type Sialon The average particle diameter is 3 to 15 μm, and the specific surface area is 0.2 to lm 2 /g. 5. The method for producing a phosphor according to any one of claims 1 to 4, wherein (e) the α-type Sialon is at least solid The method of preparing a phosphor according to item 5 of the patent application, wherein (e) the α-type sialon has the same composition as the α-sialon of the final product. The method for producing a phosphor according to any one of items 1 to 6, wherein -21 - 200925252, wherein the bulk density of the raw material mixed powder is 〇6 g/cm3 or less, the reaction vessel is filled and heat-treated. A phosphor characterized by the formula: (Cax, EuY) (Si, Al) i2 (0, N) 16 (wherein, 1·5 &lt; Χ + Υ &lt; 2·2, and 0 &lt; Y &lt; 0.2, The α-type sialon shown as O/NS0.04) has a specific surface area of 〇·1 to 0.35 m 2 /g 0 9. The method of producing a phosphor according to item 8 of the patent application, wherein it is above 5 9 Onm Wavelength range It has a luminous peak wavelength. ❹ ❹ -22 - 200925252 VII. Designated representative map: (1) The representative representative of the case is: Figure 1. (2) A brief description of the symbol of the representative figure: No 0 ❹ 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW097139650A 2007-10-17 2008-10-16 Fluorescent substance and method for manufacturing the same TW200925252A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269969A JP2009096882A (en) 2007-10-17 2007-10-17 Phosphor and method for producing the same

Publications (1)

Publication Number Publication Date
TW200925252A true TW200925252A (en) 2009-06-16

Family

ID=40567400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139650A TW200925252A (en) 2007-10-17 2008-10-16 Fluorescent substance and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP2009096882A (en)
TW (1) TW200925252A (en)
WO (1) WO2009051138A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498687A (en) * 2014-03-06 2019-11-26 地方独立行政法人神奈川县立产业技术综合研究所 Transparent fluorescent sialon and preparation method thereof
CN113698927A (en) * 2021-09-22 2021-11-26 烟台布莱特光电材料有限公司 Preparation method of alpha-sialon orange fluorescent powder

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087291B (en) 2010-03-31 2017-04-12 宇部兴产株式会社 Production method of sialon-based oxynitride phosphor, and sialon-based oxynitride phosphor
US9257607B2 (en) * 2010-12-01 2016-02-09 Koninklijke Philips N.V. Red emitting luminescent materials
JP2012132001A (en) * 2010-12-02 2012-07-12 Niigata Univ Method for producing phosphor
JP5676653B2 (en) * 2011-01-18 2015-02-25 シャープ株式会社 Semiconductor light emitting device
US9024519B2 (en) 2011-01-26 2015-05-05 Denki Kagaku Kogyo Kabushiki Kaisha α-SiAlON, light-emitting device and use thereof
WO2013054901A1 (en) 2011-10-12 2013-04-18 宇部興産株式会社 Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
JP5919015B2 (en) * 2012-02-09 2016-05-18 デンカ株式会社 Phosphor and light emitting device
JP2013163736A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
JP5919014B2 (en) * 2012-02-09 2016-05-18 デンカ株式会社 Phosphor and light emitting device
KR101660618B1 (en) 2012-03-29 2016-09-27 우베 고산 가부시키가이샤 Oxynitride phosphor powder
JPWO2014030637A1 (en) * 2012-08-22 2016-07-28 デンカ株式会社 β-sialon manufacturing method, β-sialon and light-emitting device
KR101374076B1 (en) * 2013-01-04 2014-03-13 한국기계연구원 Stabilization of raw powders for manufacturing alpha sialon phosphors, powder composition therefrom and manufacturing methods for alpha sialon phosphors using the same
CN105143399B (en) 2013-03-21 2017-02-15 宇部兴产株式会社 Oxynitride fluorescent powder and method for manufacturing same
TWI602904B (en) 2013-03-29 2017-10-21 宇部興產股份有限公司 Oxynitride phosphor powder and method of manufacturing the same
CN103484110A (en) * 2013-09-06 2014-01-01 北京科技大学 Red silicon-aluminum oxynitride fluorescent material and preparation method thereof
JP6398997B2 (en) 2014-02-03 2018-10-03 宇部興産株式会社 Oxynitride phosphor powder and method for producing the same
EP3211462A4 (en) * 2014-10-24 2018-07-11 Denka Company Limited Wavelength converter, light-emitting device using same, and production method for wavelength converter
JP2016204616A (en) * 2015-04-28 2016-12-08 デンカ株式会社 Red phosphor and light emitting device
JP6997548B2 (en) * 2017-06-30 2022-01-17 デンカ株式会社 Method for producing active β-type sialone phosphor with Eu
JP6667026B1 (en) 2019-03-29 2020-03-18 デンカ株式会社 Phosphor particles, composite, light emitting device, and method for producing phosphor particles
JP6667025B1 (en) 2019-03-29 2020-03-18 デンカ株式会社 Phosphor particles, composite, light emitting device, and method for producing phosphor particles
JP6785333B2 (en) 2019-03-29 2020-11-18 デンカ株式会社 Fluorescent powder, complex and light emitting device
JP7436214B2 (en) 2019-03-29 2024-02-21 デンカ株式会社 Phosphor powders, composites and light emitting devices
JP6667027B1 (en) 2019-03-29 2020-03-18 デンカ株式会社 Phosphor powder, composite and light emitting device
CN113388400B (en) * 2021-06-03 2023-06-30 西安鸿宇光电技术有限公司 Yellow-green power-induced luminescent material and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207489B2 (en) * 2002-08-06 2009-01-14 株式会社豊田中央研究所 α-sialon phosphor
JP4066828B2 (en) * 2003-02-06 2008-03-26 宇部興産株式会社 Sialon oxynitride phosphor and method for producing the same
JP5145934B2 (en) * 2005-03-04 2013-02-20 三菱化学株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
JP4494306B2 (en) * 2005-07-27 2010-06-30 電気化学工業株式会社 Method for producing α-sialon powder
CN102816565B (en) * 2005-09-27 2015-05-27 三菱化学株式会社 Phosphor and manufacturing method therefore, and light emission device using the phosphor
JP4879567B2 (en) * 2005-11-25 2012-02-22 電気化学工業株式会社 Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498687A (en) * 2014-03-06 2019-11-26 地方独立行政法人神奈川县立产业技术综合研究所 Transparent fluorescent sialon and preparation method thereof
US11111433B2 (en) 2014-03-06 2021-09-07 National University Corporation Yokohama National University Transparent fluorescent sialon ceramic and method of producing same
CN113698927A (en) * 2021-09-22 2021-11-26 烟台布莱特光电材料有限公司 Preparation method of alpha-sialon orange fluorescent powder

Also Published As

Publication number Publication date
WO2009051138A1 (en) 2009-04-23
JP2009096882A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
TW200925252A (en) Fluorescent substance and method for manufacturing the same
TWI299055B (en)
JP4052136B2 (en) Sialon oxynitride phosphor and method for producing the same
KR100900282B1 (en) ?-SiAlON, ?-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME
TWI373507B (en)
JP5124101B2 (en) Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
KR101660618B1 (en) Oxynitride phosphor powder
US8663500B2 (en) α-sialon phosphor, method for producing same, and light-emitting device
JP4494306B2 (en) Method for producing α-sialon powder
EP2314659A1 (en) Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device
WO2014077240A1 (en) Phosphor, light-emitting element and lighting device
WO2008004640A1 (en) Sialon-base oxynitride phosphors and process for production thereof
KR20170124614A (en) SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
WO2006121083A1 (en) β-TYPE SIALON FLUORESCENT SUBSTANCE
JP2006016413A (en) Phosphor and luminescent implement
JP5854051B2 (en) Oxynitride phosphor powder and method for producing the same
TW201125955A (en) β type SiAlON, method for preparing the same and luminescence device using the same
JP4538739B2 (en) α-type sialon phosphor and lighting equipment using the same
JP5954425B2 (en) Wavelength conversion member and light emitting device using the same
JP4364189B2 (en) α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same
JP2010275437A (en) Alpha type sialon phosphor, and light-emitting element using the same
JP2006348139A (en) Method for producing alpha-sialon phosphor powder
TW201211210A (en) β-Sialon, light emitting device and method for producing β-Sialon
JP2010116564A (en) Alpha-type sialon fluorescent material and illumination instrument using the same
JP2019011428A (en) PRODUCTION METHOD OF Eu-ACTIVATED β TYPE SIALON PHOSPHOR