JP6172894B2 - Method for determining the vertical length of ships with high lift rudder - Google Patents

Method for determining the vertical length of ships with high lift rudder Download PDF

Info

Publication number
JP6172894B2
JP6172894B2 JP2012092553A JP2012092553A JP6172894B2 JP 6172894 B2 JP6172894 B2 JP 6172894B2 JP 2012092553 A JP2012092553 A JP 2012092553A JP 2012092553 A JP2012092553 A JP 2012092553A JP 6172894 B2 JP6172894 B2 JP 6172894B2
Authority
JP
Japan
Prior art keywords
rudder
high lift
width
normal
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012092553A
Other languages
Japanese (ja)
Other versions
JP2013220697A (en
Inventor
俊彦 有井
俊彦 有井
和敬 細萱
和敬 細萱
冨田 和志
和志 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Hamworthy and Co Ltd
Original Assignee
Japan Hamworthy and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Hamworthy and Co Ltd filed Critical Japan Hamworthy and Co Ltd
Priority to JP2012092553A priority Critical patent/JP6172894B2/en
Publication of JP2013220697A publication Critical patent/JP2013220697A/en
Application granted granted Critical
Publication of JP6172894B2 publication Critical patent/JP6172894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Ship Loading And Unloading (AREA)

Description

本発明は高揚力舵を備えた船舶に関し、舵性能の向上により船倉の容積を増加させる技術に係るものである。   The present invention relates to a ship provided with a high lift rudder, and relates to a technique for increasing the volume of a hold by improving rudder performance.

従来、図4に示すように、船体100の長さを示す用語として、全長101、垂線間長102、登録長103がある。全長101は船首材の前面から船尾の端までの水平距離、垂線間長102は満載喫水線104と船首材の前面との交点を通る船首垂線105と舵軸位置を通る船尾垂線106との水平距離、登録長103は船首材の前面から船尾材の後面までの水平距離を上甲板の下面で測定した長さである。   Conventionally, as shown in FIG. 4, terms indicating the length of the hull 100 include a total length 101, an inter-perpendicular length 102, and a registered length 103. The total length 101 is the horizontal distance from the front of the bow material to the stern end, and the vertical length 102 is the horizontal distance between the bow vertical line 105 passing through the intersection of the full load water line 104 and the front of the bow material and the stern vertical line 106 passing through the rudder shaft position. The registered length 103 is a length obtained by measuring the horizontal distance from the front surface of the bow material to the rear surface of the stern material on the lower surface of the upper deck.

この垂線間長102が長くなると、旅客や貨物を積載するスペースの容積が増加する余地が多くなる。
船舶に使用する舵としては、2枚の舵板を合わせて流線形にした複舵板からなる普通舵が一般的である。
When the length between the perpendiculars 102 becomes longer, there is more room to increase the volume of the space for loading passengers and cargo.
As a rudder used for a ship, a general rudder composed of a double rudder plate in which two rudder plates are combined into a streamline is common.

図5に示すように、普通舵1は、舵ブレード2が水平断面の輪郭において前方へ半円形状に突出させた前縁部201と前縁部201に連続して流線型に幅を増大させた後に後方端202に向けて徐々に幅を減少させて先細る後半部203からなる流線型形状をなす。   As shown in FIG. 5, the normal rudder 1 has a streamlined width continuously extending from the front edge part 201 and the front edge part 201 in which the rudder blade 2 protrudes forward in a semicircular shape in the outline of the horizontal section. Later, a streamlined shape is formed, which is formed by a rear half portion 203 that gradually decreases in width toward the rear end 202.

普通舵1は、その取り付け方法によって、舵の上下の2点で支える釣合舵と、下部の支えのない吊舵と、舵の上部を非釣合舵にして下部を釣合舵にした半釣合舵等に分類される。   The ordinary rudder 1 is a semi-balanced rudder that is supported at two points above and below the rudder, a suspension rudder without support at the lower part, and an unbalanced rudder at the upper part of the rudder. It is classified as a balance rudder.

舵には上述した普通舵1のほかに、フラップ付き舵やシリング舵と呼ばれる高揚力舵がある。フラップ付き舵は、舵板の後端部にフラップと呼ばれる可動板を取り付けたものである。高揚力舵は、舵ブレードの頂端部と底端部にそれぞれ左右両舷側に張り出した頂端板と底端板を有し、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に最小幅部に向けて徐々に幅を減少させた中間部と中間部に連続して所定幅の後方端に向けて徐々に幅を増大させた魚尾後縁部からなる魚形水平断面形状をなすものである。   In addition to the ordinary rudder 1 described above, the rudder includes a high lift rudder called a rudder with a flap or a shilling rudder. A rudder with a flap is obtained by attaching a movable plate called a flap to the rear end of the rudder plate. The high lift rudder has a top plate and a bottom plate that project to the left and right sides at the top and bottom ends of the rudder blade, respectively, and the rudder blade projects in a semicircular shape forward in the outline of the horizontal section. After increasing the width in a streamlined manner continuously from the edge portion and the front edge portion, gradually decreasing the width toward the minimum width portion and gradually continuing toward the rear end of the predetermined width continuously from the intermediate portion and the intermediate portion It has a fish-shaped horizontal cross section consisting of a fish tail trailing edge with an increased width.

特許第3394153号Patent No. 3394153

船体において、垂線間長が長くなると、船の容積が大きくなって旅客や貨物を積載するスペースの容積が増加する余地が多くなる。垂線間長に大きな影響を与える因子として、船尾船殻の下方領域に配置する舵の大きさがある。舵の舵面積が大きくなるほどに、舵軸の位置が船首側に移動して垂線間長が短くなり、純トン数が少なくなる。舵軸の位置は舵面積に因って定まる。   In the hull, when the length between the perpendiculars becomes longer, the volume of the ship increases, and there is a room for increasing the volume of the space for loading passengers and cargo. As a factor having a great influence on the length between the vertical lines, there is a size of a rudder arranged in a lower region of the stern hull. As the rudder area of the rudder increases, the position of the rudder shaft moves to the bow side, the length between perpendiculars becomes shorter, and the net tonnage decreases. The position of the rudder axis is determined by the rudder area.

舵を動かす操舵装置には、大別してラプソンスライド型とロータリーベーン型があり、ラプソンスライド型は舵軸を介して両側にポンプユニット、シリンダー、ラム等を配置するので、装置が大型化する。このため、その配置に大きなスペースを必要とし、船尾領域に配置する上で構造的に制約を受けるので、船尾側に近づけて配置することには限界がある。   Steering devices that move the rudder are roughly classified into a Rapson slide type and a rotary vane type. The Raphson slide type has a pump unit, a cylinder, a ram, and the like arranged on both sides via a rudder shaft. For this reason, a large space is required for the arrangement, and structural restrictions are imposed on the arrangement in the stern region, so there is a limit to the arrangement close to the stern side.

一方、高揚力舵は、舵の揚力が大きくて大舵角に操舵できる舵として知られており、旋回半径が小さく、普通舵と同等の舵効き性能を発揮する場合に、舵面積を小さくすることができる。また、ロータリーベーン型の操舵装置は構造が簡単で、コンパクトな形状をなすので、その配置に大きなスペースを必要とせず、船尾領域に配置する上で構造的な制約を受けることが少なく、船尾側に近づけて配置することが可能である。   On the other hand, a high lift rudder is known as a rudder that has a large rudder lift and can be steered to a large rudder angle. When the turning radius is small and the rudder performance is equivalent to that of a normal rudder, the rudder area is reduced. be able to. In addition, the rotary vane type steering device is simple in structure and has a compact shape, so it does not require a large space for its placement, and is less subject to structural restrictions when placed in the stern area. It is possible to arrange it close to.

本発明は上記した課題を解決するものであり、高揚力舵を採用することにより船の容積を増加させた高揚力舵を備える船舶を提供することを目的とする。   This invention solves the above-mentioned subject, and it aims at providing the ship provided with the high lift rudder which increased the volume of the ship by employ | adopting a high lift rudder.

上記課題を解決するために、本発明の高揚力舵を備えた船舶の垂線間長決定方法は、高揚力舵を備えた船舶の垂線間長を決定するのに際し、はじめに推進プロペラの後方に船体の操船に要する舵効き性能を発揮するのに必要な舵面積を備えた普通舵を配設すると仮定して普通舵の垂線間長を決定し、普通舵の垂線間長における船尾垂線より所定距離だけ船尾側の位置に、前記普通舵と同等の舵効き性能を発揮するのに必要な舵面積を備えた高揚力舵を配設し、前記所定距離は前記普通舵の舵軸から舵後端までの距離と前記高揚力舵の舵軸から舵後端までの距離との差に相当し、普通舵の舵面積は、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に後方端に向けて徐々に幅を減少させて先細る後半部からなる流線型形状をなすとして算出し、高揚力舵の舵面積は、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に最小幅部に向けて徐々に幅を減少させた中間部と中間部に連続して所定幅の後方端に向けて徐々に幅を増大させた魚尾後縁部からなる魚形水平断面形状をなすとして算出することを特徴とする。 In order to solve the above problems, the method for determining the vertical length of a ship having a high lift rudder according to the present invention is as follows. Assuming that a normal rudder with the rudder area necessary to exhibit the rudder performance required for ship maneuvering is installed, the vertical length of the normal rudder is determined, and a predetermined distance from the stern vertical in the vertical length of the normal rudder A high lift rudder having a rudder area necessary for exhibiting a rudder performance equivalent to that of the ordinary rudder is disposed only at the stern side position, and the predetermined distance is the rear end of the rudder from the rudder shaft of the ordinary rudder. Equivalent to the distance from the rudder axle of the high lift rudder to the rear end of the rudder. After increasing the width in a streamlined manner continuously from the edge and the front edge, gradually toward the rear end The rudder area of the high lift rudder is calculated by forming a streamlined shape consisting of the latter half of the taper. A fishtail that has been continuously streamlined and then gradually decreased toward the minimum width, and the width gradually increased toward the rear end of the predetermined width continuously from the middle. It is calculated as a fish-shaped horizontal cross-sectional shape composed of a trailing edge.

以上のように本発明によれば、高揚力舵を採用することで舵面積の減少分だけ舵軸の位置を船尾側に移動させることが可能となり、船尾側の狭小領域においての操舵がロータリーベーン式舵取機の採用により実現できるので、普通舵の採用時における垂線間長に比べて高揚力舵の採用時における垂線間長が長くなり、船の容積を増加させることができる。   As described above, according to the present invention, it is possible to move the position of the rudder shaft to the stern side by a reduction in the rudder area by adopting the high lift rudder, and the steering in the narrow region on the stern side can be performed by the rotary vane. Since it can be realized by adopting a type steering gear, the length between perpendiculars when a high lift rudder is adopted is longer than the length between perpendiculars when a normal rudder is adopted, and the volume of the ship can be increased.

(a)は、本発明の実施の形態における高揚力舵の配置位置と従来の舵の配置との比較を示す模式図、(b)は高揚力舵の断面図(a) is a schematic diagram showing a comparison between the arrangement position of the high lift rudder and the arrangement of the conventional rudder in the embodiment of the present invention, (b) is a cross-sectional view of the high lift rudder 同実施の形態における高揚力舵を示す斜視図The perspective view which shows the high lift rudder in the embodiment (a)、(b)、(c)は、それぞれ高揚力舵の他の形態を示す模式図(a), (b), (c) is a schematic diagram showing another form of a high lift rudder, respectively. 船舶の要目を示す模式図Schematic diagram showing the main points of the ship (a)は、従来の普通舵を示す模式図、(b)は普通舵の断面図(a) is a schematic diagram showing a conventional ordinary rudder, (b) is a sectional view of the ordinary rudder

以下、本発明の実施の形態を図面に基づいて説明する。図1に高揚力舵50を備える船舶の一例を示す。
船51は、船尾に一軸の推進プロペラ52を配設し、推進プロペラ52の後方に高揚力舵50を配置しており、高揚力舵50を操作する舵取機としてロータリーベーン式舵取機60を配置している。ロータリーベーン式舵取機60は従来において公知のものであり、ここでは説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. An example of a ship provided with the high lift rudder 50 is shown in FIG.
The ship 51 has a uniaxial propulsion propeller 52 disposed at the stern, a high lift rudder 50 disposed behind the propulsion propeller 52, and a rotary vane type steerer 60 as a steerer for operating the high lift rudder 50. Is arranged. The rotary vane type steering device 60 is conventionally known and will not be described here.

図中に比較のために示す普通舵1は、船体100の操船に要する舵効き性能を発揮するものであり、上述したように、舵ブレード2が水平断面の輪郭において前方へ半円形状に突出させた前縁部201と前縁部201に連続して流線型に幅を増大させた後に後方端202に向けて徐々に幅を減少させて先細る後半部203からなる流線型形状をなす。   The normal rudder 1 shown for comparison in the figure exhibits the rudder performance required for maneuvering the hull 100, and as described above, the rudder blade 2 protrudes forward in a semicircular shape in the outline of the horizontal section. A streamlined shape is formed of the leading edge portion 201 and the leading edge portion 201 which are continuously streamlined to the streamlined shape and then gradually decrease toward the rear end 202 to taper the latter half portion 203.

この普通舵1の舵面積の決定方法としては従来から種々の方法があり、造船設計便覧(第4版)関西造船協会編や、関西造船協会会誌236号「進路安定・追従性から見た大型肥大船型の船尾プロファイル形状と舵面積決定法」山田孝三郎著に記載されたものがある。   There are various conventional methods for determining the rudder area of the ordinary rudder 1. The shipbuilding design manual (4th edition) edited by the Kansai Shipbuilding Association and the Kansai Shipbuilding Association Journal 236 “Large-scale in view of course stability and followability” The method of determining the stern profile shape and rudder area of a large-sized ship is described in Kosaburo Yamada.

例えば、従来の実績に基づく方法がある。これは、船の長さ、船種により整理された「舵面積比の実績を示す図表」においてLd/Arの値から推定するものであり、L:船の長さ、d:計画満載喫水、Ar:舵面積である。   For example, there is a method based on the past results. This is estimated from the value of Ld / Ar in the “Chart showing the results of the rudder area ratio” organized by ship length and ship type, L: length of ship, d: draft with full plan, Ar: Rudder area.

また、チャートに基づく方法がある。一つは村橋の「舵面積決定図表」による方法で、船型がCb<0.8、L/B>6.5程度の船型に用いられるものであり、Cb:船の肥大度を表す係数で方形係数、B:船の幅である。他の一つは山田の図表による方法で、Cb>0.8、L/B<6.5程度のタンカーなどの肥大船に用いられる方法で、「針路安定性からの標準舵面積比を示す図表」あるいは、「旋回性からの標準舵面積比を示す図表」において何れか大きい舵面積を採用する。さらに、船尾形状による影響を考慮し、「船尾プロファイル指数と舵面積比の増分を示す図表」において舵面積を修正して決定する。   There is also a method based on charts. One is a method based on the “Rudder Area Determination Chart” of Murabashi, which is used for ship types with Cb <0.8 and L / B> 6.5, and Cb is a coefficient representing the degree of enlargement of the ship. Square factor, B: width of the ship. The other is a method based on Yamada's chart, which is used for large ships such as tankers with Cb> 0.8 and L / B <6.5. “The standard rudder area ratio from course stability is shown. The larger rudder area is adopted in the “chart” or “chart showing the standard rudder area ratio from the turning performance”. Furthermore, in consideration of the influence of the stern shape, the rudder area is corrected and determined in the “chart showing the increment of the stern profile index and the rudder area ratio”.

また、「風圧側面積の大きな船の舵面積決定図表」による方法がある。これは、(風速)/(船速)が4.5以下の状態で操船可能であることを基準にして、舵面積を図表にしたもので、風圧側面積の大きなカーフェリー、自動車運搬船などで使用する。   In addition, there is a method according to a chart for determining the rudder area of a ship having a large wind pressure area. This is a chart of the rudder area based on the fact that (wind speed) / (ship speed) can be operated at a speed of 4.5 or less. For car ferry, car carrier, etc. with large wind pressure side area use.

上述した方法において決定した舵面積を備えた普通舵1を配設するとして垂線間長102を算出する。
次に、この普通舵1と同等の舵効き性能を発揮する高揚力舵50の舵面積を算出する。高揚力舵50は、舵ブレード501が水平断面の輪郭において前方へ半円形状に突出させた前縁部502と前縁部502に連続して流線型に幅を増大させた後に最小幅部503に向けて徐々に幅を減少させた中間部504と中間部504に連続して所定幅の後方端505に向けて徐々に幅を増大させた魚尾後縁部506からなる魚形水平断面形状をなす。
The perpendicular length 102 is calculated on the assumption that the ordinary rudder 1 having the rudder area determined in the above-described method is disposed.
Next, the rudder area of the high lift rudder 50 that exhibits the rudder performance equivalent to that of the ordinary rudder 1 is calculated. The high lift rudder 50 has a front edge portion 502 in which the rudder blade 501 protrudes forward in a semicircular shape in the outline of the horizontal cross section, and a streamlined width continuously extending from the front edge portion 502 to the minimum width portion 503. A fish-shaped horizontal cross-sectional shape is formed of an intermediate portion 504 that gradually decreases in width toward the rear end portion 506 that continues to the intermediate portion 504 and gradually increases in width toward the rear end 505 having a predetermined width. .

ここでは、普通舵1の舵面積から舵効きを考慮し、高揚力舵50の舵面積を決定する。高揚力舵50と普通舵1の断面形状による差は、各船級協会で統一されており、舵効きを考慮した高揚力舵50の舵面積は、普通舵1の舵面積の0.786(1.1/1.4)倍であり、21.4%の減少となる。   Here, the rudder area of the high lift rudder 50 is determined in consideration of the rudder effect from the rudder area of the ordinary rudder 1. Differences due to the cross-sectional shapes of the high lift rudder 50 and the ordinary rudder 1 are standardized by the respective classification societies, and the rudder area of the high lift rudder 50 considering the rudder effect is 0.786 (1 .1 / 1.4) times, a decrease of 21.4%.

次に、舵幅をプロペラ直径の60〜65%とする。ただし、操船上、横移動が要求される場合はプロペラ直径の80%以上とする。
そして、高揚力舵50の舵面積と舵幅から舵高さを決定する。この舵高さとプロペラ直径の関係をチェックする。
Next, the rudder width is set to 60 to 65% of the propeller diameter. However, when lateral movement is required for maneuvering, it should be 80% or more of the propeller diameter.
Then, the rudder height is determined from the rudder area and rudder width of the high lift rudder 50. Check the relationship between this rudder height and propeller diameter.

舵高さ≒プロペラ直径+α(α=0.2〜0.3m)を満たすように、舵高さと舵幅を調整する。
そして、図1に示すように、普通舵1の舵軸から舵後端までの距離L2と高揚力舵50の舵軸から舵後端までの距離L3との差L1を舵軸の位置を移す所定距離とする。普通舵1および高揚力舵50の舵軸の位置は、図3に示すように舵の取り付け方法によって異なり、図3(a)に示すように、舵の上下の2点で支える釣合舵と、図3(b)に示すように、下部の支えのない吊舵と、図3(c)に示すように、舵の上部を非釣合舵にして下部を釣合舵にした半釣合舵において、それぞれの舵面積に基づいて定まる。
The rudder height and the rudder width are adjusted so as to satisfy the rudder height≈propeller diameter + α (α = 0.2 to 0.3 m).
Then, as shown in FIG. 1, the position of the rudder shaft is shifted by a difference L1 between a distance L2 from the rudder shaft of the ordinary rudder 1 to the rear end of the rudder and a distance L3 from the rudder shaft of the high lift rudder 50 to the rear end of the rudder. A predetermined distance. The positions of the rudder shafts of the ordinary rudder 1 and the high lift rudder 50 differ depending on the rudder mounting method as shown in FIG. 3, and as shown in FIG. As shown in Fig. 3 (b), the lower unsupported suspension rudder and as shown in Fig. 3 (c), the upper part of the rudder is unbalanced and the lower part is balanced. The rudder is determined based on each rudder area.

次に、普通舵1を配設する場合の船尾垂線より所定距離L1だけ船尾側の位置に、普通舵1と同等の舵効き性能を発揮するのに必要な舵面積を備えた高揚力舵(2点鎖線で示す)50を配設する。   Next, a high lift rudder having a rudder area necessary for exerting a rudder performance equivalent to that of the ordinary rudder 1 at a position on the stern side by a predetermined distance L1 from the stern perpendicular when the ordinary rudder 1 is disposed ( 50 (indicated by a two-dot chain line).

この結果、高揚力舵50を採用することで舵面積の減少分だけ舵軸の位置を船尾側に移動させることが可能となり、さらに船尾側の狭小領域においての操舵がロータリーベーン式舵取機60の採用により実現できることで、普通舵1の採用時における垂線間長に比べて高揚力舵50の採用時における垂線間長が長くなり、船の容積を増加させることができる。   As a result, by adopting the high lift rudder 50, it becomes possible to move the position of the rudder shaft toward the stern side by a reduction in the rudder area, and further, the steering in the narrow region on the stern side is performed by the rotary vane type steering machine 60. As a result, the length between the vertical lines when the high lift rudder 50 is adopted becomes longer than the length between the vertical lines when the ordinary rudder 1 is adopted, and the volume of the ship can be increased.

以下に、高揚力舵を採用したことによる船倉容積増加の試算例を説明する。
実施例1 5,000kLタンカーの場合
1)船型要目
船種 5,000kLタンカー
主寸法
Lpp 95.0m
B 14.8m
D 8.0m
ext 7.016m
DW 5,413t
Cargo Cap 5,572m
舵 4.2m×3.0m(普通舵)
4.0m×2.5m(高揚力舵)
この例では、高揚力舵50の舵幅が0.5m減少することで、普通舵1を配設する場合の船尾垂線より所定距離0.5mだけ船尾側の位置に高揚力舵50を配設することができる。
Below, a trial calculation example of the increase in cargo volume due to the adoption of a high lift rudder will be described.
Example 1 In the case of a 5,000 kL tanker 1) Main ship type 5,000 kL tanker main dimension Lpp 95.0 m
B 14.8m
D 8.0m
d ext 7.016m
DW 5,413t
Cargo Cap 5,572m 3
Rudder 4.2m x 3.0m (ordinary rudder)
4.0m x 2.5m (high lift rudder)
In this example, by reducing the rudder width of the high lift rudder 50 by 0.5 m, the high lift rudder 50 is disposed at a position on the stern side by a predetermined distance 0.5 m from the stern perpendicular when the normal rudder 1 is disposed. can do.

このため、船倉容積は普通舵1を採用する場合に5,572mであるところ、高揚力舵50の採用により、5,631mとなり、増加量+59m、増加率+1.1%となる。
実施例2 58,000kDWTバルクキャリアの場合
1)船型要目
船種 58,000kDWTバルクキャリア
主寸法
Lpp 182.0m
B 32.25m
D 18.1m
dm 11.2m
ds 12.69m
DW 56,119t
Grain Cap 71,354m
舵 8.7m×4.8m(普通舵)
7.7m×4.3m(高揚力舵)
この例では、高揚力舵50の舵幅が0.5m減少することで、普通舵1を配設する場合の船尾垂線より所定距離0.5mだけ船尾側の位置に高揚力舵50を配設することができる。
Therefore, when the hold volume is 5,572M 3 when employing ordinary rudder 1, the adoption of high lift rudders 50, 5,631m 3, and the amount of increase + 59m 3, the increase rate + 1.1%.
Example 2 In the case of a 58,000 kDWT bulk carrier 1) Ship type main ship type 58,000 kDWT bulk carrier main dimension Lpp 182.0 m
B 32.25m
D 18.1m
dm 11.2m
ds 12.69m
DW 56,119t
Grain Cap 71,354m 3
Rudder 8.7m x 4.8m (ordinary rudder)
7.7m x 4.3m (high lift rudder)
In this example, by reducing the rudder width of the high lift rudder 50 by 0.5 m, the high lift rudder 50 is disposed at a position on the stern side by a predetermined distance 0.5 m from the stern perpendicular when the normal rudder 1 is disposed. can do.

このため、船倉容積は普通舵1を採用する場合に71,345mであるところ、高揚力舵50の採用により、71,581mとなり、増加量+236m、増加率+0.33%となる。
実施例3 VLCC場合
1)船型要目
船種 VLCC
主寸法
Lpp 316.0m
B 60.0m
D 29.7m
dm 19.25m
DW 311,620t
Cargo Cap 351,584m
舵 14.6m×9.1m(普通舵)
13.1m×8.3m(高揚力舵)
この例では、高揚力舵50の舵幅が0.8m減少することで、普通舵1を配設する場合の船尾垂線より所定距離0.8mだけ船尾側の位置に高揚力舵50を配設することができる。
Therefore, when the hold volume is 71,345M 3 when employing ordinary rudder 1, the adoption of high lift rudders 50, 71,581m 3, and the amount of increase + 236m 3, the increase rate + 0.33%.
Example 3 In the case of VLCC 1) Vessel type main ship type VLCC
Main dimension Lpp 316.0m
B 60.0m
D 29.7m
dm 19.25m
DW 311 620t
Cargo Cap 351, 584m 3
Rudder 14.6m x 9.1m (ordinary rudder)
13.1m x 8.3m (High lift rudder)
In this example, since the rudder width of the high lift rudder 50 is reduced by 0.8 m, the high lift rudder 50 is disposed at a position on the stern side by a predetermined distance 0.8 m from the stern perpendicular when the normal rudder 1 is disposed. can do.

このため、船倉容積は普通舵1を採用する場合に351,584mであるところ、高揚力舵50の採用により、352,690mとなり、増加量+1,106m、増加率+0.3%となる。 Therefore, when the hold volume is 351,584M 3 when employing ordinary rudder 1, the adoption of high lift rudders 50, 352,690m 3, and the amount of increase + 1,106M 3, the increase rate + 0.3% and Become.

1 普通舵
2 舵ブレード
50 高揚力舵
51 船
52 推進プロペラ
60 ロータリーベーン式舵取機
100 船体
201 前縁部
202 後方端
203 後半部
501 舵ブレード
502 前縁部
503 最小幅部
504 中間部
505 後方端
506 魚尾後縁部
L1 所定距離
L2 普通舵の舵軸から舵後端までの距離
L3 高揚力舵の舵軸から舵後端までの距離
DESCRIPTION OF SYMBOLS 1 Normal rudder 2 Rudder blade 50 High lift rudder 51 Ship 52 Propeller 60 Rotary vane steering gear 100 Hull 201 Front edge 202 Rear end 203 Rear part 203 Rear rudder 501 Rudder blade 502 Front edge 503 Minimum width part 504 Middle part 505 Back End 506 Rear tail edge of fish tail L1 Predetermined distance L2 Distance from rudder shaft of normal rudder to rear end of rudder L3 Distance from rudder shaft of high lift rudder to rear end of rudder

Claims (1)

高揚力舵を備えた船舶の垂線間長を決定するのに際し、はじめに推進プロペラの後方に船体の操船に要する舵効き性能を発揮するのに必要な舵面積を備えた普通舵を配設すると仮定して普通舵の垂線間長を決定し、普通舵の垂線間長における船尾垂線より所定距離だけ船尾側の位置に、前記普通舵と同等の舵効き性能を発揮するのに必要な舵面積を備えた高揚力舵を配設し、前記所定距離は前記普通舵の舵軸から舵後端までの距離と前記高揚力舵の舵軸から舵後端までの距離との差に相当し、
普通舵の舵面積は、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に後方端に向けて徐々に幅を減少させて先細る後半部からなる流線型形状をなすとして算出し、
高揚力舵の舵面積は、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に最小幅部に向けて徐々に幅を減少させた中間部と中間部に連続して所定幅の後方端に向けて徐々に幅を増大させた魚尾後縁部からなる魚形水平断面形状をなすとして算出することを特徴とする高揚力舵を備えた船舶の垂線間長決定方法。
When determining the vertical length of a ship equipped with a high lift rudder, it is assumed that a normal rudder with the rudder area necessary to demonstrate the rudder performance required for maneuvering the hull is first placed behind the propeller. The normal rudder vertical length is determined, and the rudder area necessary to exhibit the same rudder performance as the normal rudder is located at a position a predetermined distance from the stern vertical in the normal rudder vertical length. The predetermined distance corresponds to the difference between the distance from the rudder shaft of the normal rudder to the rear end of the rudder and the distance from the rudder shaft of the high lift rudder to the rear end of the rudder,
The rudder area of a normal rudder is gradually increased toward the rear end after the rudder blade is continuously streamed to the front edge and the front edge where the rudder blade protrudes in a semicircular shape forward in the outline of the horizontal section. Calculated as a streamlined shape consisting of the latter half of the taper with decreasing width,
The rudder area of the high lift rudder is directed to the minimum width part after the rudder blade has a semi-circular shape protruding forward in the horizontal cross-sectional outline and the streamlined width is continuously increased from the front edge part. It is calculated as a fish-shaped horizontal cross section consisting of an intermediate part with a gradually reduced width and a rear edge of a fish tail with a gradually increased width toward the rear end of a predetermined width. A method for determining a vertical length of a ship having a high lift rudder.
JP2012092553A 2012-04-16 2012-04-16 Method for determining the vertical length of ships with high lift rudder Active JP6172894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092553A JP6172894B2 (en) 2012-04-16 2012-04-16 Method for determining the vertical length of ships with high lift rudder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092553A JP6172894B2 (en) 2012-04-16 2012-04-16 Method for determining the vertical length of ships with high lift rudder

Publications (2)

Publication Number Publication Date
JP2013220697A JP2013220697A (en) 2013-10-28
JP6172894B2 true JP6172894B2 (en) 2017-08-02

Family

ID=49592003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092553A Active JP6172894B2 (en) 2012-04-16 2012-04-16 Method for determining the vertical length of ships with high lift rudder

Country Status (1)

Country Link
JP (1) JP6172894B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5950971B2 (en) * 2014-01-06 2016-07-13 ジャパン・ハムワージ株式会社 Ship rudder
CN105537926B (en) * 2015-12-15 2018-04-24 沪东中华造船(集团)有限公司 A kind of method for excluding steering engine and rudder stock mechanical zero deviation
JP6582296B2 (en) * 2016-03-31 2019-10-02 三井E&S造船株式会社 Ship rudder and ship
CN109050863B (en) * 2018-09-20 2023-09-01 杭州发达齿轮箱集团有限公司 Marine rudder with split double-leaf structure and control method thereof
CN113094819A (en) * 2021-04-23 2021-07-09 沪东中华造船(集团)有限公司 Method for estimating rudder area of liquid cargo ship

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421004B2 (en) * 2000-08-08 2003-06-30 ジャパン・ハムワージ株式会社 Steering machine installation method and rotary vane type steering machine
JP3751260B2 (en) * 2001-05-09 2006-03-01 ジャパン・ハムワージ株式会社 Two-wheel rudder system for large ships
JP5578931B2 (en) * 2010-05-18 2014-08-27 ジャパン・ハムワージ株式会社 High lift rudder for ships

Also Published As

Publication number Publication date
JP2013220697A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP6172894B2 (en) Method for determining the vertical length of ships with high lift rudder
JP6118880B1 (en) Ship
CN104540729A (en) Contra-rotating propeller propulsion-type ship
JP2003026096A (en) Two-rudder system for large ship
CN213832004U (en) Broadside longitudinal twisted long and narrow stern
EP2029420B1 (en) Vessel provided with a foil below the waterline
US7617793B2 (en) Vessel provided with a foil situated below the waterline
CN102596711B (en) Rudder and ship-like object having such a rudder
JP6292551B2 (en) Ship equipped with torsion rudder and torsion rudder
TWI613122B (en) Front double rudder propeller ship
WO2018150912A1 (en) Hull structure
JP5763479B2 (en) Arrangement method of sail of machine sailing merchant ship and machine sailing merchant ship
CN103754330A (en) Container cargo ship
JP5819764B2 (en) Ship and design method of the ship
JP6874927B2 (en) Rudder for ships and ships
JP2016107715A (en) Rudder, rudder unit and marine vessel
CN205769991U (en) A kind of broken line type bulkhead being applicable to floating production storage unit
KR200399050Y1 (en) Twin skeg hull that reduces stern slamming
CN202703849U (en) Bow part of car carrying ship for reducing wind pressure resistance
JP7329896B1 (en) Low fuel consumption navigation method for navigation
KR20240055630A (en) Ship
CN206466118U (en) The large-scale standardization Bulk Transport ship navigated by water suitable for Inland Changjiang River
JP7107668B2 (en) rudder
NO336465B1 (en) Balanced high load
JP2024021241A (en) ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6172894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250