JP6170821B2 - Method for producing solid catalyst and solid catalyst - Google Patents

Method for producing solid catalyst and solid catalyst Download PDF

Info

Publication number
JP6170821B2
JP6170821B2 JP2013245809A JP2013245809A JP6170821B2 JP 6170821 B2 JP6170821 B2 JP 6170821B2 JP 2013245809 A JP2013245809 A JP 2013245809A JP 2013245809 A JP2013245809 A JP 2013245809A JP 6170821 B2 JP6170821 B2 JP 6170821B2
Authority
JP
Japan
Prior art keywords
water
solid catalyst
oxide
metal compound
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013245809A
Other languages
Japanese (ja)
Other versions
JP2015100783A (en
Inventor
準 仙頭
準 仙頭
由治 嶋崎
由治 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013245809A priority Critical patent/JP6170821B2/en
Publication of JP2015100783A publication Critical patent/JP2015100783A/en
Application granted granted Critical
Publication of JP6170821B2 publication Critical patent/JP6170821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、親水性が乏しい金属化合物の親水性を高め、当該金属化合物の構成元素金属を含む均一な固体触媒を製造するための方法と、当該方法で得られる固体触媒に関するものである。   The present invention relates to a method for increasing the hydrophilicity of a metal compound having poor hydrophilicity and producing a uniform solid catalyst containing a constituent element metal of the metal compound, and a solid catalyst obtained by the method.

固体触媒の一般的な製造方法として、触媒成分金属元素を含む水溶性化合物の水溶液に無機担体を浸漬した後、乾燥と焼成を行う含浸法が公知である(非特許文献1)。   As a general method for producing a solid catalyst, an impregnation method in which an inorganic carrier is immersed in an aqueous solution of a water-soluble compound containing a catalyst component metal element, followed by drying and firing is known (Non-Patent Document 1).

水溶性が高い金属化合物としては、硝酸塩、酢酸塩、塩化物などがある。しかし、これら金属化合物を含浸法の原料として用いると、反応系に種々のアニオンが持ち込まれることになり、場合によってはこれらアニオンが触媒成分金属の担持後の処理工程を困難にしたり、触媒毒となるおそれがある(特許文献1)。   Examples of highly water-soluble metal compounds include nitrates, acetates, and chlorides. However, when these metal compounds are used as a raw material for the impregnation method, various anions are brought into the reaction system. In some cases, these anions make the treatment process after supporting the catalyst component metal difficult, (Patent Document 1).

或いは、有機溶媒に可溶な金属化合物を原料として用い、有機溶媒溶液として含浸法で用いる方法もある。しかし、有機溶媒は水に比べて環境負荷が大きいことから処理の必要があり、触媒製造後における有機溶媒の処理に多大な労力と費用を要する(特許文献2)。   Alternatively, there is a method in which a metal compound soluble in an organic solvent is used as a raw material, and an organic solvent solution is used in an impregnation method. However, since the organic solvent has a larger environmental load than water, it needs to be treated, and the treatment of the organic solvent after the production of the catalyst requires a great deal of labor and cost (Patent Document 2).

また、水溶性の低い金属化合物にシュウ酸などの酸を併用して水溶性を高める方法もあるが(特許文献3)、酸の毒性や酸による装置の腐食などの問題があり、酸の取り扱いには相当の注意を要する。   In addition, there is a method of increasing the water solubility by using an acid such as oxalic acid in combination with a metal compound having low water solubility (Patent Document 3), but there are problems such as acid toxicity and corrosion of the apparatus due to the acid. Requires considerable care.

さらに、水溶性の低い金属化合物の場合、気相分解接触により触媒成分金属元素を無機担体に担持させる方法も知られているが(特許文献4)、専用の装置が必要であり、製造コストの面から普及が進んでいない。   Furthermore, in the case of a metal compound with low water solubility, a method of supporting a catalyst component metal element on an inorganic carrier by vapor phase decomposition contact is also known (Patent Document 4), but a dedicated device is required and the production cost is low. The spread is not progressing from the aspect.

特開平8−176175号公報JP-A-8-176175 特表2007−501695号公報Special table 2007-501695 gazette 特開2002−159853号公報JP 2002-159853 A 特開平10−202109号公報JP-A-10-202109

岩本正和監修,「触媒調製ハンドブック」株式会社エヌ・ティー・エス,第8編,第4章(2011年)Supervised by Masakazu Iwamoto, “Catalyst Preparation Handbook”, NTS Corporation, Volume 8, Chapter 4 (2011)

上述したように、親水性の低い金属化合物を可溶化して固体触媒を調製する方法は種々知られているが、いずれも何らかの問題を有していた。   As described above, various methods for preparing a solid catalyst by solubilizing a metal compound having low hydrophilicity are known, but all have some problems.

そこで本発明は、触媒毒となるアニオンや、取り扱いが困難な酸を用いることなく親水性が乏しい金属化合物の親水性を高め、有機溶媒や特殊な装置を用いることなく安全に、当該金属化合物の構成元素金属を含む均一な固体触媒を製造するための方法と、当該方法で得られる固体触媒を提供することを目的とする。   Therefore, the present invention enhances the hydrophilicity of a metal compound having poor hydrophilicity without using an anion that becomes a catalyst poison or an acid that is difficult to handle, and can safely be used without using an organic solvent or a special device. It is an object of the present invention to provide a method for producing a uniform solid catalyst containing a constituent element metal and a solid catalyst obtained by the method.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、難水溶性金属化合物にアミノ酸を作用させることによりその親水性が高められて水溶液や均一な水分散液が得られ、かかる水溶液または水分散液を用いることで無機担体表面に難水溶性金属またはその化合物が均一分散された固体触媒が得られることを見出して、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, an amino acid is allowed to act on the poorly water-soluble metal compound to increase its hydrophilicity to obtain an aqueous solution or a uniform aqueous dispersion. By using such an aqueous solution or aqueous dispersion, the surface of the inorganic carrier is hardly water-soluble. The present invention was completed by finding that a solid catalyst in which a metal or a compound thereof was uniformly dispersed was obtained.

本発明に係る固体触媒の製造方法は、
工程1:水中で、難水溶性金属化合物をアミノ酸と複合化して当該複合体の水溶液または水分散液を得る工程;
工程2:上記水溶液または水分散液と無機担体とを接触させて混合物を得る工程;
工程3:上記混合物を乾燥および焼成する工程を含むことを特徴とする。
The method for producing a solid catalyst according to the present invention comprises:
Step 1: A step of complexing a poorly water-soluble metal compound with an amino acid in water to obtain an aqueous solution or aqueous dispersion of the complex;
Step 2: A step of bringing the aqueous solution or aqueous dispersion into contact with an inorganic carrier to obtain a mixture;
Process 3: It is characterized by including the process of drying and baking the said mixture.

本発明に係る固体触媒は、上記本発明方法により製造されたものであることを特徴とする。   The solid catalyst according to the present invention is produced by the above-described method of the present invention.

本発明方法によれば、難水溶性の金属化合物の親水性を改善することができ、その水溶液や均一な水分散液が得られる。即ち、溶媒として水を用いるものであることから、有機溶媒を用いる場合に比べて安全であり、廃液の処理コストも低い。また、これら水溶液または水分散液を用いれば、上記金属化合物を構成する金属を含む固体触媒が得られる。例えば、これら水溶液または水分散液に無機担体を浸漬し、乾燥後、さらに焼成することにより、触媒成分金属が均一に担持された固体触媒を得ることができる。また、同含浸方法において、固体触媒を製造するための既存の原料を、単独または複数の上記水溶液等で置き換えたり、或いは、既存の固体触媒に上記水溶液等を反応促進剤として添加することも可能である。このように本発明によれば、安全性やハンドリングの面だけでなく、製造コストの削減や、従来、均一な固体触媒の原料としての利用が難しかった難水溶性金属化合物が使用できることから、高活性な固体触媒や新たな性能を有する固体触媒の開発が可能になり得る。   According to the method of the present invention, the hydrophilicity of a poorly water-soluble metal compound can be improved, and an aqueous solution or a uniform aqueous dispersion thereof can be obtained. That is, since water is used as a solvent, it is safer than the case where an organic solvent is used, and the waste liquid treatment cost is low. Moreover, if these aqueous solution or aqueous dispersion are used, the solid catalyst containing the metal which comprises the said metal compound will be obtained. For example, a solid catalyst in which a catalyst component metal is uniformly supported can be obtained by immersing an inorganic carrier in these aqueous solutions or aqueous dispersions, drying, and further firing. In the impregnation method, the existing raw material for producing the solid catalyst can be replaced with one or more of the above aqueous solutions, or the above aqueous solution can be added to the existing solid catalyst as a reaction accelerator. It is. Thus, according to the present invention, not only in terms of safety and handling, it is possible to use a slightly water-soluble metal compound that has been difficult to use as a raw material for a uniform solid catalyst, as well as reduced manufacturing costs. It may be possible to develop an active solid catalyst or a solid catalyst having new performance.

以下、まず本発明に係る製造方法を工程ごとに説明する。   Hereinafter, the manufacturing method according to the present invention will be described step by step.

(1) 水溶液または水分散液の調製工程
本工程では、水中で、難水溶性金属化合物をアミノ酸と複合化して当該複合体の水溶液または水分散液を得る。
(1) Preparation Step of Aqueous Solution or Aqueous Dispersion In this step, an aqueous solution or aqueous dispersion of the complex is obtained by complexing a sparingly water-soluble metal compound with an amino acid in water.

本発明において、難水溶性金属化合物とアミノ酸との複合体とは、難水溶性金属化合物とアミノ酸が複合して得られるものであり、複合状態は明確には分からないが、通常では水に難溶な難水溶性金属化合物が、後述するように、水に可溶または高分散性を有する状態になるものである。   In the present invention, the complex of a poorly water-soluble metal compound and an amino acid is obtained by combining a poorly water-soluble metal compound and an amino acid, and the complex state is not clearly understood, but is usually difficult to water. As will be described later, the hardly soluble water-soluble metal compound is soluble or highly dispersible in water.

当該複合体の水溶液または分散液を担体と接触させることで得られた混合物は、乾燥しさらに焼成した状態で固体触媒として用いることができる。   The mixture obtained by bringing the aqueous solution or dispersion of the complex into contact with the carrier can be used as a solid catalyst in a dried and further calcined state.

本発明では、溶媒として、後処理に手間やコストのかかる有機溶媒は用いず、水を用いる。また、本発明では、触媒毒となるようなアニオンなどは用いない。   In the present invention, water is used as the solvent without using an organic solvent that requires labor and cost for the post-treatment. In the present invention, an anion that becomes a catalyst poison is not used.

具体的には、本発明で溶媒として用いる水としては、電解質を実質的に含まないものが好ましい。ここで述べる電解質とは、特に、アルカリ金属、アルカリ土類金属、遷移金属およびその塩に由来するイオン種を指す。当該水の比抵抗は25℃で1μS/cm未満であることが好ましい。当該比抵抗が25℃で1μS/cmより大きい場合、当該複合体の水溶液が当該電解質と不溶性の塩を形成する、或いは触媒製造工程に当該電解質が持ち込まれ、触媒の性能を低下させるおそれがある。このような水としては、超純水、イオン交換水、蒸留水を挙げることができる。   Specifically, the water used as the solvent in the present invention is preferably one that does not substantially contain an electrolyte. The electrolyte described here refers to an ionic species derived from an alkali metal, an alkaline earth metal, a transition metal, and a salt thereof, in particular. The specific resistance of the water is preferably less than 1 μS / cm at 25 ° C. If the specific resistance is greater than 1 μS / cm at 25 ° C., the aqueous solution of the complex may form an insoluble salt with the electrolyte, or the electrolyte may be brought into the catalyst manufacturing process, thereby reducing the performance of the catalyst. . Examples of such water include ultrapure water, ion exchange water, and distilled water.

本発明で用いる難水溶性金属化合物は、触媒を構成する金属元素の化合物であって、水に難溶であるものをいう。ここで「難水溶性」とは、20±5℃において、目開き150μmの篩を通過する金属化合物の細末1gを水に入れて5分ごとに強く30秒間振り混ぜるとき、30分以内に溶解するに必要な水の量が1000mL以上である場合をいい、いわゆる「非水溶性」や「水不溶性」も含む概念である。   The poorly water-soluble metal compound used in the present invention is a compound of a metal element constituting a catalyst and hardly soluble in water. Here, “poorly water-soluble” means that, at 20 ± 5 ° C., when 1 g of a fine powder of a metal compound passing through a sieve having an opening of 150 μm is placed in water and shaken vigorously for 30 seconds every 5 minutes, within 30 minutes This refers to the case where the amount of water required for dissolution is 1000 mL or more, and is a concept including so-called “water-insoluble” and “water-insoluble”.

難水溶性金属化合物を構成する金属元素は、触媒を構成するものであれば特に制限されないが、少なくとも触媒毒となり得るアルカリ金属は含まないものとする。例えば、周期律表の5〜12族金属元素を挙げることができる。   The metal element constituting the hardly water-soluble metal compound is not particularly limited as long as it constitutes a catalyst, but at least an alkali metal that can be a catalyst poison is not included. For example, a 5-12 group metal element of a periodic table can be mentioned.

難水溶性金属化合物としては、例えば、5〜12族金属元素の酸化物、水酸化物、炭酸塩および塩基性炭酸塩のうち、難水溶性のものを挙げることができる。   Examples of the hardly water-soluble metal compound include those that are hardly water-soluble among oxides, hydroxides, carbonates and basic carbonates of Group 5-12 metal elements.

金属酸化物としては、例えば、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ニオブ、モリブテン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、銀、水銀などの遷移金属の酸化物を挙げることができる。   Examples of the metal oxide include vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, tantalum, tungsten, rhenium, osmium, iridium, Examples thereof include oxides of transition metals such as platinum, gold, silver, and mercury.

金属水酸化物としては、例えば、鉄、コバルト、ニッケル、銅、亜鉛の水酸化物を挙げることができる。
金属炭酸塩としては、例えば、マンガン、コバルト、ニッケル、銅、亜鉛、銀などの遷移金属の炭酸塩を挙げることができる。
塩基性炭酸塩としては、例えば、銅、コバルト、ニッケル、亜鉛の塩基性炭酸塩を挙げることができる。
Examples of the metal hydroxide include iron, cobalt, nickel, copper, and zinc hydroxides.
Examples of the metal carbonate include carbonates of transition metals such as manganese, cobalt, nickel, copper, zinc, and silver.
Examples of the basic carbonate include basic carbonates of copper, cobalt, nickel, and zinc.

本工程では、難水溶性金属化合物の親水性を向上させて水溶液または水分散液を得ることから、原料である難水溶性金属化合物はできるだけ微細化しておくことが好ましい。具体的には、摩砕の後に篩などで粗大な粒子を除去するなどし、150μm以下の粒子で、動的光散乱法にて測定した平均粒子径が0.1μm以上、150μm以下のものを用いることが好ましい。   In this step, since the hydrophilicity of the poorly water-soluble metal compound is improved to obtain an aqueous solution or aqueous dispersion, it is preferable that the raw water-insoluble metal compound is made as fine as possible. Specifically, after grinding, coarse particles are removed with a sieve or the like, and particles having an average particle diameter of 0.1 μm or more and 150 μm or less measured by a dynamic light scattering method with particles of 150 μm or less. It is preferable to use it.

アミノ酸としてはタンパク質を構成する20種のアミノ酸と、それ以外のアミノ酸があり、前者は、さらに中性アミノ酸、酸性アミノ酸、塩基性アミノ酸に分類され、中性アミノ酸は、脂肪族アミノ酸、イミノ酸、芳香族アミノ酸に分類される。脂肪族アミノ酸としては、グリシンおよびアラニン;バリン、ロイシン、イソロイシンが含まれる分枝アミノ酸;セリン、トレオニンが含まれるヒドロキシアミノ酸;システインおよびメチオニンが含まれる含硫アミノ酸;アスパラギンおよびグルタミンが含まれる酸アミドアミノ酸がある。イミノ酸としてはプロリンがあり、芳香族アミノ酸としてはフェニルアラニン、チロリン、トリプトファンがある。酸性アミノ酸としてはアスパラギン酸およびグルタミン酸があり、塩基性アミノ酸としてはリシン、アルギニン、ヒスチジンがある。タンパク質を構成する上記アミノ酸以外のアミノ酸としては、例えば、β−アラニン、γ−アミノ酪酸(GABA)、シトルリン、オルニチン、3,4−ジヒドロキシフェニルアラニン(DOPA)、5−アミノレブリン酸、ホモシステインなどを挙げることができる。本発明では、リシン、アルギニンおよびヒスチジンからなる群より選択される1以上の塩基性アミノ酸が、最も高い難水溶性金属化合物の親水性向上作用を示すことから、好適に使用する。   As amino acids, there are 20 kinds of amino acids constituting proteins and other amino acids. The former is further classified into neutral amino acids, acidic amino acids, and basic amino acids. Neutral amino acids are aliphatic amino acids, imino acids, Classified as aromatic amino acids. Aliphatic amino acids include glycine and alanine; branched amino acids including valine, leucine and isoleucine; hydroxyamino acids including serine and threonine; sulfur-containing amino acids including cysteine and methionine; acid amide amino acids including asparagine and glutamine There is. The imino acid includes proline, and the aromatic amino acid includes phenylalanine, tyrolin, and tryptophan. Acidic amino acids include aspartic acid and glutamic acid, and basic amino acids include lysine, arginine, and histidine. Examples of amino acids other than the above-mentioned amino acids constituting the protein include β-alanine, γ-aminobutyric acid (GABA), citrulline, ornithine, 3,4-dihydroxyphenylalanine (DOPA), 5-aminolevulinic acid, homocysteine, and the like. be able to. In the present invention, one or more basic amino acids selected from the group consisting of lysine, arginine and histidine are preferably used because they exhibit the highest hydrophilicity-improving action of the poorly water-soluble metal compound.

水、難水溶性金属化合物およびアミノ酸の使用量は、難水溶性金属化合物の親水性を高めてその水溶液または水分散液が得られる範囲で適宜調整すればよい。例えば、水に対する難水溶性金属化合物の量を、0.005g/mL以上、0.1g/mL以下程度とすることができる。また、難水溶性金属化合物に対するアミノ酸のモル比を、1以上、5以下とすることができる。   The amount of water, the hardly water-soluble metal compound and the amino acid used may be appropriately adjusted within a range where the hydrophilicity of the poorly water-soluble metal compound is increased to obtain an aqueous solution or aqueous dispersion thereof. For example, the amount of the hardly water-soluble metal compound with respect to water can be set to about 0.005 g / mL or more and 0.1 g / mL or less. Moreover, the molar ratio of the amino acid to the poorly water-soluble metal compound can be 1 or more and 5 or less.

本工程では、水中で難水溶性金属化合物をアミノ酸と複合化して当該複合体の水溶液または水分散液を得る。かかる複合化を可能にするために、水中で難水溶性金属化合物とアミノ酸を単に混合するのみでもよいが、超音波処理をしたり、加熱処理をすることが好ましい。また、上記の処理は単独で行ってもよいし、組み合わせて行ってもよい。   In this step, a slightly water-soluble metal compound is complexed with an amino acid in water to obtain an aqueous solution or aqueous dispersion of the complex. In order to make such a complex possible, it is possible to simply mix the poorly water-soluble metal compound and the amino acid in water, but it is preferable to perform ultrasonic treatment or heat treatment. Moreover, said process may be performed independently and may be performed in combination.

使用する超音波の強度や照射時間は、難水溶性金属化合物が可溶化または均一分散する範囲で適宜調整すればよいが、例えば、3J/s以上、20J/s以下程度で、30秒間以上、10分間以上程度とすることができる。   The intensity and irradiation time of the ultrasonic wave to be used may be appropriately adjusted within a range in which the poorly water-soluble metal compound is solubilized or uniformly dispersed. For example, it is about 3 J / s or more and 20 J / s or less for 30 seconds or more. It can be about 10 minutes or more.

加熱する場合の温度や時間も同様に適宜調整すればよいが、例えば、30℃以上、90℃以下で、1分間以上、10時間以下とすることができる。   The temperature and time for heating may be appropriately adjusted in the same manner, but may be, for example, 30 ° C. or higher and 90 ° C. or lower and 1 minute or longer and 10 hours or shorter.

本工程では、水溶液または水分散液を得るが、これら水溶液または水分散液において難水溶性金属化合物とアミノ酸がいかなる状態にあるかは必ずしも明らかではない。しかし、難水溶性金属化合物もアミノ酸も、それぞれの溶解度以上に水に溶解できるので、それぞれが単独で溶解しているとは考え難く、複合体を形成して水中に分散していると考えられる。   In this step, an aqueous solution or aqueous dispersion is obtained, but it is not always clear what state the poorly water-soluble metal compound and amino acid are in these aqueous solution or aqueous dispersion. However, since both poorly water-soluble metal compounds and amino acids can be dissolved in water more than their solubility, it is unlikely that each of them is dissolved alone, and it is considered that a complex is formed and dispersed in water. .

かかる複合体の形態は明らかではなく、水溶液または水分散液が得られる限り特に制限されないが、例えば、コロイドやキレート、或いはそれらの混合物などが考えられる。   The form of such a complex is not clear and is not particularly limited as long as an aqueous solution or an aqueous dispersion can be obtained. For example, a colloid, a chelate, or a mixture thereof can be considered.

なお、本発明において「水溶液」とは、上記複合体が水に完全に溶解しているもののみならず、例えばコロイドである上記複合体が均一分散しているものであっても、見かけ上透明であればよいものとする。また、本発明において「水分散液」とは、上記複合体が水中に均一分散したものをいい、本発明の水分散液は安定性に極めて優れ、本発明者らが実験的に確認したところでは半年程度でも沈降が見られなかったものがあったが、一つの基準として、例えば90日間静置した場合に上記複合体や難水溶性金属化合物が沈降しないものが好ましい。   In the present invention, the “aqueous solution” is not only a solution in which the complex is completely dissolved in water, but also is apparently transparent even if, for example, the complex as a colloid is uniformly dispersed. If it is good. Further, in the present invention, the “aqueous dispersion” means that the above-mentioned complex is uniformly dispersed in water. The aqueous dispersion of the present invention is extremely stable and has been experimentally confirmed by the present inventors. In some cases, no sedimentation was observed for about half a year, but as one criterion, for example, when the composite or the poorly water-soluble metal compound does not settle when left standing for 90 days is preferable.

本工程で得られた水溶液または水分散液は、以降の工程を経ることにより固体触媒とするための材料として用いることができる他、例えば固体触媒層形成用の塗料としても用いることが可能である。   The aqueous solution or aqueous dispersion obtained in this step can be used as a material for forming a solid catalyst through the following steps, and can also be used as a coating for forming a solid catalyst layer, for example. .

(2) 接触工程
本工程では、上記水溶液または水分散液と無機担体とを接触させて混合物を得る。
本工程で使用する無機担体は、担持触媒の担体として用いられるものであれば特に制限されないが、例えば、活性炭、炭化ケイ素、金属酸化物、金属複合酸化物およびオキソ酸の金属塩からなる群から選択される1以上の無機担体を挙げることができる。これらの表面に難水溶性金属化合物を担持することで、もとの無機担体に比べ表面積が増加した担持物を得ることが可能になる、或いは、新たな触媒活性作用を得ることができる。
(2) Contacting step In this step, the aqueous solution or aqueous dispersion is brought into contact with an inorganic carrier to obtain a mixture.
The inorganic carrier used in this step is not particularly limited as long as it is used as a carrier for the supported catalyst. For example, the inorganic carrier is selected from the group consisting of activated carbon, silicon carbide, metal oxide, metal composite oxide, and metal salt of oxo acid. Mention may be made of one or more selected inorganic carriers. By supporting a poorly water-soluble metal compound on these surfaces, it becomes possible to obtain a support having an increased surface area compared to the original inorganic support, or to obtain a new catalytic activity.

また、触媒活性を有する成分を担体として用いることもできる。触媒活性を有する無機担体としては、例えば、チタニア、活性アルミナ、シリカ−アルミナ、ゼオライトなどの固体酸性を有するもの;マグネシア、カルシア、バリア、ジルコニアなどの固体塩基性を有するもの;ランタノイド系酸化物などを用いることができる。また種々の金属塩の混合物からなるスラリーや非担持型固体触媒も触媒活性を有する無機担体として用いることができる。触媒活性を有する無機担体を使用することで相乗的効果が得られる他、新たな触媒作用も得ることができる。   A component having catalytic activity can also be used as a carrier. Examples of the inorganic carrier having catalytic activity include those having solid acidity such as titania, activated alumina, silica-alumina and zeolite; those having solid basicity such as magnesia, calcia, barrier and zirconia; lanthanoid oxides and the like Can be used. In addition, a slurry made of a mixture of various metal salts and an unsupported solid catalyst can also be used as an inorganic carrier having catalytic activity. In addition to obtaining a synergistic effect by using an inorganic carrier having catalytic activity, a new catalytic action can also be obtained.

上記水溶液または水分散液と無機担体等を接触させる方法は、特に制限されない。例えば、十分量の上記水溶性または水分散液に無機担体を浸漬する方法が最も簡便で一般的な方法である。無機担体等として多孔質のものを用いた場合には、細孔にも上記水溶液または水分散液を十分に浸透させるため、30分間以上、10時間以下程度、浸漬することが好ましい。また、無機担体等に、必要量の上記水溶液または水分散液を滴下したり或いは満遍なくスプレーしてもよい。当該工程は常圧で行ってもよいし、減圧下で行ってもよい。   The method for bringing the aqueous solution or aqueous dispersion into contact with the inorganic carrier is not particularly limited. For example, the most simple and general method is to immerse the inorganic carrier in a sufficient amount of the water-soluble or aqueous dispersion. When a porous material is used as the inorganic carrier or the like, it is preferably immersed for about 30 minutes to 10 hours in order to allow the aqueous solution or aqueous dispersion to sufficiently penetrate into the pores. Further, a necessary amount of the above aqueous solution or aqueous dispersion may be dropped or sprayed evenly onto an inorganic carrier or the like. This step may be performed at normal pressure or under reduced pressure.

(3) 乾燥・焼成工程
本工程では、上記水溶液または水分散液と無機担体等との混合物を乾燥しさらに焼成して、固体触媒とする。乾燥および焼成して固体状態とすることで、液−固相や気−固相の反応に用いることができる。
(3) Drying / calcining step In this step, the mixture of the aqueous solution or aqueous dispersion and the inorganic carrier is dried and further calcined to obtain a solid catalyst. It can be used for a liquid-solid phase or gas-solid phase reaction by drying and baking to obtain a solid state.

乾燥は、上記混合物を直接焼成すると、触媒成分が無機担体の細孔内から表面に移動し表面で凝集するおそれがあるため、分散性を確保する目的で行う。乾燥条件は特に制限されず適宜調整すればよいが、例えば、40℃以上、120℃以下の温度で、30分間以上、10時間以内程度の条件とすることができる。また、過剰量の上記水溶液または水分散液に無機担体等を浸漬したような場合には、濾過や遠心分離などにより固液分離して過剰の水溶液等を除去することが好ましい。より効率的に乾燥するために、減圧してもよい。   Drying is performed for the purpose of ensuring dispersibility because the catalyst component may move from the pores of the inorganic carrier to the surface and aggregate on the surface when the mixture is directly fired. The drying conditions are not particularly limited and may be appropriately adjusted. For example, the drying conditions may be set to a temperature of 40 ° C. or higher and 120 ° C. or lower for 30 minutes or longer and 10 hours or less. In addition, when an inorganic carrier or the like is immersed in an excessive amount of the above aqueous solution or aqueous dispersion, it is preferable to remove the excessive aqueous solution or the like by solid-liquid separation by filtration or centrifugation. In order to dry more efficiently, you may reduce pressure.

乾燥した混合物は、アミノ酸などを分解除去し、且つ金属成分を酸化して固体触媒とするために、焼成する。焼成条件は、難水溶性金属化合物の種類などに応じて適宜調整すればよいが、例えば、200℃以上、800℃以下の温度で、1時間以上、10時間以下程度とすればよい。さらに、得られた固体触媒には、必要に応じて還元処理を施してもよい。   The dried mixture is calcined in order to decompose and remove amino acids and the like, and to oxidize the metal component into a solid catalyst. The firing conditions may be adjusted as appropriate according to the type of the poorly water-soluble metal compound. Furthermore, the obtained solid catalyst may be subjected to a reduction treatment as necessary.

上記混合物ではなく、上記の水溶液または水分散液の調製工程(1)で得られた水溶液または水分散液を、基材などに散布や塗布した後、上記条件で直接乾燥および焼成してもよい。その場合、固体触媒が均一に分散した触媒層が得られる。なお、この場合、本発明に係る「無機担体」には上記基材も含まれるものとし、また、本発明に係る「接触」には上記の散布や塗布も含まれるものとする。   Instead of the above mixture, the aqueous solution or aqueous dispersion obtained in the preparation step (1) of the above aqueous solution or aqueous dispersion may be sprayed or applied to a substrate and then directly dried and fired under the above conditions. . In that case, a catalyst layer in which the solid catalyst is uniformly dispersed is obtained. In this case, the “inorganic carrier” according to the present invention includes the above-mentioned base material, and the “contact” according to the present invention includes the above-described spraying and coating.

また、無機担体を用いた場合には、無機担体上に触媒が均一に担持された担持触媒が得られる。さらに、種々の金属塩の混合物からなるスラリーや非担持型固体触媒を無機担体として用いた場合には、本発明による複合体由来の触媒成分が均一に分散された複合担持触媒が得られる。   When an inorganic carrier is used, a supported catalyst in which the catalyst is uniformly supported on the inorganic carrier can be obtained. Furthermore, when a slurry comprising a mixture of various metal salts or an unsupported solid catalyst is used as an inorganic support, a composite supported catalyst in which the catalyst component derived from the composite according to the present invention is uniformly dispersed can be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
酸化バナジウム(III)0.05gとL−ヒスチジン0.311gを樹脂製バイアルに入れ、次いでイオン交換水5mLを加えた。これに超音波プロセッサー(Vibra cell VC130,Sonics&Materials社製)のプローブを挿入し、10J/sの強度で3分間超音波振動を加えた。この操作を5回繰り返した後、室温で一晩静置し、未反応の原料をろ過により除去した。得られた溶液は褐色を呈していた。溶液中の酸化バナジウム(III)の溶解量をICP発光分析により定量したところ、酸化バナジウム(III)の仕込み量の約45%が溶解していた。
Example 1
0.05 g of vanadium (III) oxide and 0.311 g of L-histidine were placed in a resin vial, and then 5 mL of ion-exchanged water was added. A probe of an ultrasonic processor (Vibra cell VC130, manufactured by Sonics & Materials) was inserted into this, and ultrasonic vibration was applied at an intensity of 10 J / s for 3 minutes. This operation was repeated 5 times, and then allowed to stand overnight at room temperature, and unreacted raw materials were removed by filtration. The resulting solution had a brown color. When the amount of vanadium (III) oxide dissolved in the solution was quantified by ICP emission analysis, about 45% of the charged amount of vanadium (III) oxide was dissolved.

実施例2
三酸化モリブデン0.1gとL−ヒスチジン0.214gを用いたこと以外は、実施例1の手法に従って、三酸化モリブデンを溶解させた。三酸化モリブデンはすべて溶解し、得られた溶液は透明であった。
Example 2
Molybdenum trioxide was dissolved according to the procedure of Example 1 except that 0.1 g of molybdenum trioxide and 0.214 g of L-histidine were used. All the molybdenum trioxide dissolved and the resulting solution was clear.

実施例3
酸化タングステン(IV)0.1gとL−ヒスチジン0.216gを用いたこと以外は、実施例1の手法に従って、酸化タングステン(IV)を水中で一部溶解させた。未反応原料を濾過により除去し、得られた溶液は薄い褐色を呈していた。溶液中の酸化タングステン(IV)の溶解量をICP発光分析により定量したところ、仕込みの酸化タングステン(IV)の約23%が溶解していた。
Example 3
Tungsten oxide (IV) was partially dissolved in water according to the procedure of Example 1 except that 0.1 g of tungsten (IV) oxide and 0.216 g of L-histidine were used. Unreacted raw material was removed by filtration, and the resulting solution had a light brown color. When the amount of tungsten (IV) oxide dissolved in the solution was quantified by ICP emission analysis, about 23% of the charged tungsten oxide (IV) was dissolved.

実施例4
酸化レニウム(VI)0.1gとL−ヒスチジン0.199gを用いたこと以外は、実施例1の手法に従って、酸化レニウム(VI)を水中で一部溶解させた。未反応原料を濾過により除去し、得られた溶液は薄い褐色を呈していた。溶液中の酸化レニウム(VI)の溶解量をICP発光分析により定量したところ、酸化レニウム(VI)の仕込み量の約25%以上が溶解していた。
Example 4
Except for using 0.1 g of rhenium (VI) oxide and 0.199 g of L-histidine, a portion of rhenium (VI) oxide was dissolved in water according to the procedure of Example 1. Unreacted raw material was removed by filtration, and the resulting solution had a light brown color. When the amount of rhenium oxide (VI) dissolved in the solution was quantified by ICP emission analysis, about 25% or more of the charged amount of rhenium oxide (VI) was dissolved.

実施例5
酸化コバルト(II)0.1gとL−ヒスチジン0.586gを用いたこと以外は、実施例1の手法に従って、酸化コバルト(II)を水中で溶解させた。酸化コバルト(II)は水中で全て溶解し、濃い褐色を呈した溶液が得られた。
Example 5
Cobalt (II) oxide was dissolved in water according to the procedure of Example 1 except that 0.1 g of cobalt (II) oxide and 0.586 g of L-histidine were used. Cobalt (II) oxide was completely dissolved in water, and a solution having a dark brown color was obtained.

実施例6
酸化コバルト(II)0.1gとL−グルタミン酸を0.278g用いたこと以外は、実施例1の手法に従って酸化コバルト(II)を水中で一部溶解させた。未反応原料を濾過により除去し、得られた溶液は赤紫色を呈していた。溶液中の酸化コバルト(II)の溶解量をICP発光分析により定量したところ、酸化コバルト(II)の仕込み量の約67%が溶解していた。
Example 6
Cobalt oxide (II) was partially dissolved in water according to the procedure of Example 1 except that 0.1 g of cobalt oxide (II) and 0.278 g of L-glutamic acid were used. Unreacted raw materials were removed by filtration, and the resulting solution was reddish purple. When the amount of cobalt (II) oxide dissolved in the solution was quantified by ICP emission analysis, about 67% of the charged amount of cobalt (II) oxide was dissolved.

実施例7
水酸化ニッケル0.05gとL−ヒスチジン0.249gを用いたこと以外は、実施例1の手法に従って、水酸化ニッケルを水中で溶解させた。水酸化ニッケルは水中で全て溶解し、薄い紫色を呈した溶液が得られた。
Example 7
Nickel hydroxide was dissolved in water according to the procedure of Example 1 except that 0.05 g of nickel hydroxide and 0.249 g of L-histidine were used. Nickel hydroxide was completely dissolved in water, and a light purple solution was obtained.

実施例8
塩基性炭酸ニッケル0.05gとL−ヒスチジン0.178gを用いたこと以外は、実施例1の手法に従って、塩基性炭酸ニッケルを水中で溶解させた。塩基性炭酸ニッケルは水中で全て溶解し、薄い紫色を呈した溶液が得られた。
Example 8
Basic nickel carbonate was dissolved in water according to the procedure of Example 1 except that 0.05 g of basic nickel carbonate and 0.178 g of L-histidine were used. All of the basic nickel carbonate was dissolved in water, and a light purple solution was obtained.

実施例9
酸化銅(II)0.1gとL−ヒスチジン0.583gを用いたこと以外は、実施例1の手法に従って、酸化銅(II)を水中で溶解させた。酸化銅(II)は水中で全て溶解し、得られた濃い青色を呈した溶液が得られた。
Example 9
Copper (II) oxide was dissolved in water according to the procedure of Example 1 except that 0.1 g of copper (II) oxide and 0.583 g of L-histidine were used. Copper (II) oxide was completely dissolved in water, and the resulting dark blue solution was obtained.

実施例10
酸化銅(II)0.1gとグリシン0.282gを用いたこと以外は、実施例1の手法に従って、酸化銅(II)を水中で一部溶解させた。未反応原料をろ過により除去し、得られた溶液は青色を呈していた。溶液中の酸化銅(II)の溶解量をICP発光分析により定量したところ、酸化銅(II)の仕込み量の約10%が溶解していた。
Example 10
Except for using 0.1 g of copper (II) oxide and 0.282 g of glycine, copper (II) oxide was partially dissolved in water according to the procedure of Example 1. Unreacted raw material was removed by filtration, and the resulting solution had a blue color. When the amount of copper (II) oxide dissolved in the solution was quantified by ICP emission analysis, about 10% of the charged amount of copper (II) oxide was dissolved.

実施例11
酸化銅(II)0.05gとL−グルタミン酸0.277gを用いたこと以外は、実施例1の手法に従って、酸化銅(II)を水中で一部溶解させた。未反応原料を濾過により除去し、得られた溶液は青色を呈していた。溶液中の酸化銅(II)の溶解量をICP発光分析により定量したところ、酸化銅(II)の仕込み量の約12%が溶解していた。
Example 11
Except for using 0.05 g of copper (II) oxide and 0.277 g of L-glutamic acid, copper (II) oxide was partially dissolved in water according to the procedure of Example 1. Unreacted raw material was removed by filtration, and the resulting solution had a blue color. When the amount of copper (II) oxide dissolved in the solution was quantified by ICP emission analysis, about 12% of the charged amount of copper (II) oxide was dissolved.

実施例12
酸化銀(I)0.05gとL−ヒスチジン0.199gを用いたこと以外は、実施例1の手法に従って、酸化銀(I)を水中で溶解させた。水中で溶解させた。酸化銀(I)は水中で全て溶解し、得られた溶液は薄い黄色を呈していた。
Example 12
Silver (I) oxide was dissolved in water according to the procedure of Example 1 except that 0.05 g of silver oxide (I) and 0.199 g of L-histidine were used. Dissolved in water. Silver (I) oxide was completely dissolved in water, and the resulting solution had a pale yellow color.

実施例13
酸化亜鉛(II)0.1gとL−ヒスチジン0.283gを用いたこと以外は、実施例1の手法に従って、酸化亜鉛(II)を水中で溶解させた。酸化亜鉛(II)は水中で全て溶解し、得られた溶液は透明であった。
Example 13
Zinc (II) oxide was dissolved in water according to the procedure of Example 1 except that 0.1 g of zinc (II) oxide and 0.283 g of L-histidine were used. Zinc (II) oxide was completely dissolved in water and the resulting solution was clear.

実施例14
実施例5で得られた水溶液にシリカ担体2g(富士シリシア社製、キャリアクトQ10)を浸漬し、室温で約1時間静置した。その後、55℃で減圧乾燥して水分を除去し、さらに120℃のオーブンで約1時間乾燥して水分を完全に除去した。その後、当該担持物を空気雰囲気中、300℃で3時間以上焼成して触媒を得た。当該シリカ担持コバルト触媒は、水素雰囲気下で還元した後、FT合成やメタセシス、或いは水素化向けの触媒として利用可能である。
Example 14
In an aqueous solution obtained in Example 5, 2 g of a silica carrier (manufactured by Fuji Silysia Co., Carriert Q10) was immersed and allowed to stand at room temperature for about 1 hour. After that, it was dried under reduced pressure at 55 ° C. to remove moisture, and further dried in an oven at 120 ° C. for about 1 hour to completely remove moisture. Thereafter, the supported material was calcined at 300 ° C. for 3 hours or more in an air atmosphere to obtain a catalyst. The silica-supported cobalt catalyst can be used as a catalyst for FT synthesis, metathesis, or hydrogenation after reduction in a hydrogen atmosphere.

Claims (3)

固体触媒を製造するための方法であって、
工程1:水中で、難水溶性である5〜12属元素の酸化物、水酸化物、炭酸塩および塩基性炭酸塩から選択される金属化合物をアミノ酸と複合化して当該複合体の水溶液または水分散液を得る工程;
工程2:上記水溶液または水分散液と無機担体とを接触させて混合物を得る工程;
工程3:上記混合物を乾燥および焼成する工程を含むことを特徴とする製造方法。
A method for producing a solid catalyst comprising:
Step 1: An aqueous solution or water of the complex obtained by complexing a metal compound selected from oxides, hydroxides, carbonates, and basic carbonates, which are hardly water-soluble, with an amino acid, in water. Obtaining a dispersion;
Step 2: A step of bringing the aqueous solution or aqueous dispersion into contact with an inorganic carrier to obtain a mixture;
Process 3: The manufacturing method characterized by including the process of drying and baking the said mixture.
上記アミノ酸としてヒスチジンを用いる請求項1に記載の方法。The method according to claim 1, wherein histidine is used as the amino acid. 上記元素として、バナジウム、モリブデン、タングステン、レニウム、コバルト、ニッケル、銅、銀および亜鉛から選択される元素を用いる請求項1または2に記載の方法。The method according to claim 1 or 2, wherein an element selected from vanadium, molybdenum, tungsten, rhenium, cobalt, nickel, copper, silver and zinc is used as the element.
JP2013245809A 2013-11-28 2013-11-28 Method for producing solid catalyst and solid catalyst Expired - Fee Related JP6170821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245809A JP6170821B2 (en) 2013-11-28 2013-11-28 Method for producing solid catalyst and solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245809A JP6170821B2 (en) 2013-11-28 2013-11-28 Method for producing solid catalyst and solid catalyst

Publications (2)

Publication Number Publication Date
JP2015100783A JP2015100783A (en) 2015-06-04
JP6170821B2 true JP6170821B2 (en) 2017-07-26

Family

ID=53376975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245809A Expired - Fee Related JP6170821B2 (en) 2013-11-28 2013-11-28 Method for producing solid catalyst and solid catalyst

Country Status (1)

Country Link
JP (1) JP6170821B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154089A (en) * 1974-11-06 1976-05-12 Hitachi Maxell
JPS54148189A (en) * 1978-05-12 1979-11-20 Suzuki Motor Co Manufacture of oxidating catalyst
EP1676937B1 (en) * 2004-11-26 2016-06-01 Rohm and Haas Electronic Materials, L.L.C. UV curable catalyst compositions
WO2012098712A1 (en) * 2011-01-20 2012-07-26 昭和電工株式会社 Catalyst carrier production method, composite catalyst production method, composite catalyst, fuel cell using same

Also Published As

Publication number Publication date
JP2015100783A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Rossi et al. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts
Zabilskiy et al. Nanoshaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction
Kawawaki et al. Creation of High‐Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster
Soltani et al. Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
Inceesungvorn et al. Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light
JPH11226426A (en) Production of catalyst
RU2013144578A (en) ALLOY CONTAINING CATALYST, METHOD OF MANUFACTURE AND USE
WO2016136970A1 (en) Method for removing sulfur compounds included in liquid
Andonova et al. Fine-Tuning the Dispersion and the Mobility of BaO Domains on NO x Storage Materials via TiO2 Anchoring Sites
US20120077669A1 (en) Polymer-Assisted Synthesis Of A Supported Metal Catalyst
KR102069959B1 (en) Method of regenerating used denitration catalyst
Huang et al. On the roles of solid-bound ligand scavengers in the removal of palladium residues and in the distinction between homogeneous and heterogeneous catalysis
JP2021530343A (en) Nanoparticles and preparation method
JP2024001112A (en) Catalyst support comprising homogeneously distributed titanium dioxide, and method for production
Kimura et al. Preparation of highly dispersed platinum catalysts on various oxides by using polymer-protected nanoparticles
JP7005829B2 (en) Method for manufacturing a late-period transition metal fine particle carrier
JP6170821B2 (en) Method for producing solid catalyst and solid catalyst
WO2018123786A1 (en) Low-temperature oxidation catalyst
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
JP6359678B2 (en) Composite particle dispersion and method for producing the same
JP4483172B2 (en) Titanium oxide dispersion
CN1317072C (en) Nobel metal catalyst for treating industrial waste water, preparing method and use thereof
JP6441454B2 (en) Gold hydroxo anion complex solution
Zhang et al. Incorporation of polyoxometalate in La-BTC metal-organic frameworks for fast and selective removal of methylene blue dyes in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6170821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees