JP6169829B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP6169829B2
JP6169829B2 JP2012167682A JP2012167682A JP6169829B2 JP 6169829 B2 JP6169829 B2 JP 6169829B2 JP 2012167682 A JP2012167682 A JP 2012167682A JP 2012167682 A JP2012167682 A JP 2012167682A JP 6169829 B2 JP6169829 B2 JP 6169829B2
Authority
JP
Japan
Prior art keywords
phosphor
led
light
led bare
transparent sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012167682A
Other languages
Japanese (ja)
Other versions
JP2014017459A (en
Inventor
敏 藤井
藤井  敏
常清 岩川
常清 岩川
修 種田
修 種田
晃 矢野
晃 矢野
順子 竹中
順子 竹中
敏民 大井
敏民 大井
Original Assignee
交和電気産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 交和電気産業株式会社 filed Critical 交和電気産業株式会社
Priority to JP2012167682A priority Critical patent/JP6169829B2/en
Publication of JP2014017459A publication Critical patent/JP2014017459A/en
Application granted granted Critical
Publication of JP6169829B2 publication Critical patent/JP6169829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、LED照明に関する。より詳しくは、複数個のLEDベアチップを連結しそれらを複数配列し、透明シートに蛍光体を印刷して光源とした平面発光モジュールおよび演色性、配光性を制御できる大出力照明装置に関する。      The present invention relates to LED lighting. More specifically, the present invention relates to a planar light emitting module in which a plurality of LED bare chips are connected, a plurality of LED bare chips are arrayed, and a phosphor is printed on a transparent sheet as a light source, and a high output lighting device capable of controlling color rendering and light distribution.

光源による物体の見え方、すなわち演色性は、電球、蛍光灯、水銀灯、キセノン灯などによって異なる。白色光と言われるものも色温度によっても異なる。  The appearance of the object by the light source, that is, the color rendering, varies depending on the light bulb, fluorescent lamp, mercury lamp, xenon lamp, and the like. What is called white light also depends on the color temperature.

特開2004−253309号公報(特許文献1)に、「「赤色LED、青色LED、緑色LEDなる3つの異なる色度のLEDを備えるLED照明であって、該LED照明が該LED照明からの出射光を所望の色度に制御するLED制御手段を備え、該LED制御手段が該LEDの温度変化に対する所定の関数に基づいて該LEDの駆動電流又は/及び駆動電圧を制御して該LED照明からの出射光を白色光に制御し、さらに前記LED制御手段は、いずれか一つの色度のLEDを一定電流駆動することを特徴とするLED照明。」(請求項9)、「より標準光源に近い白色光等を得るために互いに波長帯域の異なる光を出射する複数個の発光ダイオード(LED)の光源を備え、これらの光源からのLEDの出射光を混合することで再現性のある演色性を85%以上備えた白色光等をつくり、照射する照明装置において、光源の種類による劣化度合いの違いや経時変化の違い、同種の発光ダイオード(LED)や受光センサ(フォトトランジスタ等)のロット間の発光強度や輝度、受光感度バラツキの影響を受けることなく簡便かつ安定して再現性良く、信頼性の高い演色性を85%以上備えた、かつホワイトバランスや色バランスのとれた白色光等を照射することのできる調光機能を備えた照明装置」(段落番号0010)、「本実施例においては、図6に示すような、とりわけ600nm近辺での黄色付近の波長がブロードに加わり、幅広い発光スペクトルを可視領域全体にわたって獲得し、かつ高演色性のホワイトバランスが取れた白色光が再現性良く、安定して得られることが確認できた。しかも、この照明光は、赤色LEDと緑色LEDとYAG系白色LEDの3種類のLEDで得られているので3種類以上の多種類のLEDで構成した照明に比べ、ユーティリティに優れ、軽く、電流源や制御装置やスイッチ類などが極めて簡便に構成できコストや量産効果に優れる。さらに受光センサは人間の視感度に影響の大きいRGB3種で構成しているので、照明光の明るさ変化に対してホワイトバランスの崩れと、演色性の低下などの影響が極めて少なく低減でき、明暗等の調光に対して照明としての安定性とバランス効果に突出した好ましい光を演出することが可能となった。」(段落番号0050)、図6」という記載がある。  Japanese Patent Application Laid-Open No. 2004-253309 (Patent Document 1) states that ““ LED illumination having three different chromaticity LEDs, a red LED, a blue LED, and a green LED, the LED illumination being emitted from the LED illumination. LED control means for controlling the light emission to a desired chromaticity, wherein the LED control means controls the drive current or / and drive voltage of the LED based on a predetermined function with respect to the temperature change of the LED, and from the LED illumination The LED light is controlled to white light, and the LED control means drives the LED of any one chromaticity at a constant current. (Claim 9), "More standard light source. In order to obtain near white light, etc., it is equipped with a plurality of light emitting diode (LED) light sources that emit light with different wavelength bands, and the light emitted from these light sources is mixed and reproduced. In lighting equipment that produces and irradiates white light with a color rendering property of 85% or more, differences in deterioration due to the type of light source and changes over time, light emitting diodes (LEDs) and light receiving sensors (phototransistors, etc.) ) With a color balance of 85% or more that is simple, stable and highly reproducible, highly reliable color rendering without being affected by variations in light intensity, brightness, and light sensitivity between lots. Illuminating device having a dimming function capable of irradiating white light or the like "(paragraph number 0010)," In this embodiment, as shown in FIG. 6, the wavelength near yellow particularly near 600 nm is broad. In addition, a wide emission spectrum is acquired over the entire visible range, and white light with high color rendering white balance can be obtained with good reproducibility and stability. Moreover, since this illumination light is obtained with three types of LEDs, a red LED, a green LED, and a YAG-type white LED, it is more useful than an illumination composed of three or more types of LEDs. It is excellent in light weight, can be easily configured with current sources, control devices, switches, etc., and is excellent in cost and mass production effects.Besides the light receiving sensor is composed of three types of RGB that have a great influence on human visual sensitivity, illumination light It can reduce the influence of the white balance collapse and the color rendering deterioration with respect to the brightness change, and can produce a favorable light that is outstanding in the stability and balance effect as lighting for light and dark dimming. "(Paragraph number 0050), FIG. 6" is described.

特開2011−44741号公報(特許文献2)に、「「蛍光体膜8は、Si基板4で受けるような形で、前記半導体多層膜6の側面およびSi基板とは反対側の主面(光取り出し面)を覆うように形成されている。蛍光体膜8は、シリコーンなどの透光性樹脂に、青色蛍光体として例えば(Ba、Sr)MgAl1017:Eu2+や(Ba、Sr、Ca、Mg)10(POCl:Eu2+などから少なくとも1種類、緑色蛍光体として例えばBaMgAl1017:Eu2+,Mn2+や(Ba、Sr)SiO:Eu2+などから少なくとも1種類、黄色蛍光体として例えば(Sr、Ba)SiO:Eu2+を少なくとも1種類、赤色蛍光体として例えばLaS:Eu3+やCaS:Eu2+や(Ca、Sr、Ba)Si:Eu2+などから少なくとも1種類の計4色の蛍光体粉末とSiOなどの酸化金属微粒子を分散させたものからなる。なお、透光性樹脂にはエポキシ樹脂やポリイミド樹脂を用いても構わない。蛍光体膜8は、全体に渡ってほぼ一様な厚みを有している。」(段落番号0031)、「セラミックス基板316にLEDチップ2を実装後、第1の樹脂としてシリコーン樹脂326等でLEDチップ2を覆い、更に第2の樹脂としてエポキシ樹脂328などを用いたインジェクションモールドによりレンズ304を形成する。
17個のLEDチップ2は、セラミックス基板316上面に形成された配線パターン330によって、31直列7並列に接続されている。」(段落番号0146〜0147)、「照明装置334において、商業電源から給電がなされると、前述したように、各LEDチップ2から白色光が発され、レンズ304を介して放射される。
LEDモジュール300に対して電流を1A流したときの典型的な特性として、全光束は4,000lm、中心光度10,000cdであった。また、その発光スペクトルは図33に示すとおりであった。」(段落番号0155)、図27、図29、図31、図33」という記載がある。
Japanese Patent Laid-Open No. 2011-44741 (Patent Document 2) states that ““ The phosphor film 8 is received by the Si substrate 4 and the side surface of the semiconductor multilayer film 6 and the main surface opposite to the Si substrate ( The phosphor film 8 is formed of, for example, (Ba, Sr) MgAl 10 O 17 : Eu 2+ or (Ba, Sr) as a blue phosphor on a translucent resin such as silicone. , Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ and the like, and green phosphors such as BaMgAl 10 O 17 : Eu 2+ , Mn 2+ and (Ba, Sr) 2 SiO 4 : Eu 2+ at least one from, for example, as a yellow phosphor (Sr, Ba) 2 SiO 4 : at least one of Eu 2+, a red phosphor as for example La 2 O 2 S: Eu 3+ and CaS Eu 2+ and (Ca, Sr, Ba) 3 Si 5 N 8:. Made from those etc. Eu 2+ is dispersed at least one four-color phosphor powder and metal oxide fine particles such as SiO 2 of yet, Toru An epoxy resin or a polyimide resin may be used as the light-sensitive resin, and the phosphor film 8 has a substantially uniform thickness over the whole ”(paragraph number 0031),“ on the ceramic substrate 316. After the LED chip 2 is mounted, the LED chip 2 is covered with a silicone resin 326 or the like as a first resin, and a lens 304 is formed by injection molding using an epoxy resin 328 or the like as a second resin.
The 17 LED chips 2 are connected in 31 series and 7 in parallel by a wiring pattern 330 formed on the upper surface of the ceramic substrate 316. (Paragraph Nos. 0146 to 0147), “When lighting device 334 is powered from a commercial power supply, white light is emitted from each LED chip 2 and emitted through lens 304 as described above.
As typical characteristics when a current of 1 A was passed through the LED module 300, the total luminous flux was 4,000 lm and the central luminous intensity was 10,000 cd. The emission spectrum was as shown in FIG. "(Paragraph number 0155), FIG. 27, FIG. 29, FIG. 31, FIG. 33".

特表2003−535477号公報(特許文献3)に、「「本発明では、BGG混合、つまり青色、黄色および緑色の組み合わせに基づく全く新しいコンセプトが初めて利用される。この場合重要であるのは、黄色の蛍光体がワイドバンドであって、十分な発光の成分を赤色のスペクトル領域にも有している、特にこの発光体の全発光の少なくとも20%の成分を620nm以上のスペクトル領域の可視領域に有しているということである。」(0007)、「白色LEDのさらに別の有利な実施例では、InGaNチップ(450nmで青色発光)に加えて、上記のクロロシリケート蛍光体(CS:Eu)のYAG:Ceとの組み合わせが用いられる。この実施例は、両蛍光体の温度消光挙動が極めて等しいことを特徴としており、このことは、図6において明らかである。両蛍光体の温度消光拳動は、信頼性の高い使用領域(約100℃まで)にわたって実際的には同様であり、温度にはほんのわずかにしか依存しない。たとえば、ここで測定された混合ガーネット(Y .33Gd0.63Ce0.04)Al12のような他のガーネットでは、温度恒常性が著しく劣っている(図6にこの混合ガーネットを(Y,Gd)AG:Ceで表す)。これにより、種々様々な温度条件の下での、色度座標および別の光工学的なデータの特別な恒常性が、この実施例において保証され、この実施例は、SEとしてY(またはTbも)を多量に含有している(SE格子サイトの少なくとも60モル%)。この実施例の発光スペクトルを、図7に示す。これは、8000Kの色温度および色度座標x=0.294およびy=0.309に対応している。また、色再現は、Ra=77である。両蛍光体の混合比は、4.6:1である。」」」という記載がある。JP 2003-535477 A (Patent Document 3) states, ““ In the present invention, a completely new concept based on BGG mixing, that is, a combination of blue, yellow and green, is used for the first time. In this case, what is important is that The yellow phosphor has a wide band and has a sufficient emission component in the red spectral region, in particular at least 20% of the total emission of this phosphor has a visible region in the spectral region of 620 nm or more. (0007), “In yet another advantageous embodiment of a white LED, in addition to an InGaN chip (blue emission at 450 nm), the above chlorosilicate phosphor (CS: Eu). ) Is used in combination with YAG: Ce, which is characterized in that the temperature quenching behavior of both phosphors is very equal. Is evident in Figure 6. The temperature quenching behavior of both phosphors is practically similar over a reliable use area (up to about 100 ° C) and is only slightly dependent on temperature. for example, where the measured was mixed garnet (Y 0 .33 Gd 0.63 Ce 0.04 ) in other garnets, such as Al 5 O 12, temperature homeostasis is significantly inferior (mixture garnet 6 (Represented by (Y, Gd) AG: Ce), which ensures special constancy of chromaticity coordinates and other optoelectronic data in this example under a wide variety of temperature conditions. This example contains a large amount of Y (or Tb) as SE (at least 60 mol% of the SE lattice site) The emission spectrum of this example is shown in FIG. color Corresponding to the degree and chromaticity coordinates x = 0.294 and y = 0.309, the color reproduction is Ra = 77 The mixing ratio of both phosphors is 4.6: 1. """.

特願2011−174361(特許文献4)に、「「複数の大出力発光素子を金属基板・封止枠、等に接合する光源とレンズ系とで構成とし、ヒートシンクや放熱フィンを介して排熱されることで、発光素子を高密度に集積しても、蓄熱が抑制され、効率よく、持続的に発光することができ、また、封止材に蛍光体を分散することで蛍光体の粒子が光源となり、あたかも封止枠内が単一光源のように作用することで、平面発光単一型光源とみなし、これを点光源とするレンズ系による配光性を制御することにより、高い伝熱性と熱輸送及び平面発光の光源を配光制御するという作用機構によって、照度むらのない、近距離、遠距離の配光性を制御した、高輝度、大出力の新規なLED照明装置を実現したものである。」(段落番号0093)」という記載がある。  Japanese Patent Application No. 2011-174361 (Patent Document 4) states that ““ a plurality of high-power light-emitting elements are composed of a light source and a lens system that are bonded to a metal substrate, a sealing frame, etc., and the heat is exhausted through a heat sink or heat radiating fins. Therefore, even if the light emitting elements are integrated at a high density, heat storage is suppressed, light can be emitted efficiently and continuously, and phosphor particles can be dispersed by dispersing the phosphor in a sealing material. It becomes a light source and acts as if it is a single light source inside the sealing frame. A new high-brightness, high-power LED lighting device that controls light distribution over short and long distances with no illuminance unevenness has been realized by the mechanism of light distribution control of the light source for heat transport and planar light emission. (Paragraph number 0093) There is a description that.

特開2004−253309号公報JP 2004-253309 A 特開2011−44741号公報JP 2011-44741 A 特開2003−535477号公報JP 2003-535477 A 特願2011−174361号Japanese Patent Application No. 2011-174361

しかしながら、大出力、高輝度を達成するためには多数のLEDを用いて、高負荷を懸ける必要がある。高負荷LEDは駆動により発熱し、高温になると放射強度が低下する。LEDランプをアレイすると照明ムラが生じる。多数のLEDベアチップを集積アレイすると急激に昇温するので、放射強度が急激に低下し、動作不良することにも繋がる。  However, in order to achieve high output and high luminance, it is necessary to use a large number of LEDs and to apply a high load. The high-load LED generates heat when driven, and the radiation intensity decreases when the temperature becomes high. When LED lamps are arrayed, illumination unevenness occurs. When a large number of LED bare chips are integrated and arrayed, the temperature rapidly rises, so that the radiation intensity decreases rapidly, leading to malfunction.

また、多数のLEDベアチップに直接蛍光体を塗布すると、演色性を制御することが難しい。擬似太陽光のような連続スペクトルを得ると同時に、必要に応じて任意の可視光を放射できる照明装置にすることが求められる。
本発明は、高輝度、大出力の平面発光単一型の光源であり、それを用いて近距離、遠距離に到達する配光性を制御できると共に演色性をも制御できる高輝度、大出力、平面発光の黒体放射スペクトル型LED照明装置を提供しようとするものである。
Further, when the phosphor is directly applied to a large number of LED bare chips, it is difficult to control the color rendering properties. At the same time as obtaining a continuous spectrum such as pseudo-sunlight, it is required to provide a lighting device that can emit arbitrary visible light as required.
The present invention is a single light source with a high luminance and a high output, which emits a single light source. A high luminance and a high output which can control the color distribution by controlling the light distribution reaching a short distance and a long distance. An object of the present invention is to provide a flat-light-emitting black body radiation spectrum type LED lighting device.

本願発明者は、鋭意研究の結果、LEDベアチップの昇温を抑えるための縞状の遮蔽壁を備えた、熱伝導性の高い金属等の基板に複数のLEDベアチップを直接に接合し、接着して集積することにより、LEDベアチップからの発熱を金属等の基板及び封止枠に伝熱し、金属等の基板とヒートシンク、ヒートパイプや放熱フィンを接合し、大量の熱輸送と排熱をすることができ、集積されたLEDベアチップの励起光側の空間に、R、G、Bの蛍光を発光するそれぞれ単独の蛍光体を算出した面積量を透明シート上に印刷したもの又は透明体に挟んだものを配置し、これを点光源とするレンズ系によって配光性を制御することにより発明を完成し、上記課題を解決した。すなわち、  As a result of diligent research, the inventor of the present application directly joined and adhered a plurality of LED bare chips to a substrate such as a metal with high thermal conductivity having a striped shielding wall for suppressing the temperature rise of the LED bare chips. The heat generated from the LED bare chip is transferred to the substrate such as metal and the sealing frame, and the substrate such as metal and the heat sink, heat pipe and heat radiating fin are joined, and a large amount of heat is transported and exhausted. In the space on the excitation light side of the integrated LED bare chip, the calculated area amount of each phosphor emitting R, G, B fluorescence is printed on a transparent sheet or sandwiched between transparent bodies The present invention was completed by controlling the light distribution using a lens system in which an object is arranged and using this as a point light source, and the above-mentioned problems have been solved. That is,

本願発明者は、R、G、Bの蛍光体を必要とする波長域から算出した蛍光体をモザイク状などに印刷した印刷シート等を適宜交換して挿入することにより演色性にも対応した、照度むらのない、近距離、遠距離の配光性を制御した、高輝度、大出力の新規な平面発光の黒体放射スペクトル型LED照明装置を実現したものである。  The inventor of the present application also coped with the color rendering properties by appropriately replacing and inserting a printed sheet or the like printed in a mosaic form of phosphors calculated from the wavelength range requiring R, G, and B phosphors, The present invention realizes a new flat-light-emitting blackbody radiation spectrum type LED lighting device with high brightness and high output, which controls light distribution at short distances and long distances without uneven illuminance.

本発明の照明装置は、縞状の遮蔽壁を備えた金属基板と、前記金属基板の表面に接合される複数のLEDベアチップと、回路基板と、前記金属基板の表面上に密着する封止枠であると共に前記回路基板の全部又は一部と配線接続された複数のLEDベアチップとの周囲を囲む内部反射枠と、R、G、B蛍光体のそれぞれが蛍光を発する蛍光スペクトルを加算して黒体温度の放射スペクトルに見合う量の蛍光体を、それぞれ独立に透明板状に印刷した蛍光体透明シート又はそれぞれ独立にフィルム化した蛍光体フィルムを透明体に挟んだ蛍光体透明シートとを備え、前記金属基板の裏面をヒートシンク、ヒートパイプ及び又は放熱フィンと接合、密接又は接着させ、前記遮蔽壁及び/又は前記封止枠並びに前記蛍光体透明シートを取り付けた前記内部反射筒とを密着、密接又は接触させることを特徴とする高輝度、大出力の新規な平面発光の黒体放射スペクトル型LED照明装置である。  The illumination device of the present invention includes a metal substrate having a striped shielding wall, a plurality of LED bare chips bonded to the surface of the metal substrate, a circuit board, and a sealing frame that is in close contact with the surface of the metal substrate. And an internal reflection frame surrounding the plurality of LED bare chips connected to all or a part of the circuit board and a fluorescence spectrum in which each of the R, G, and B phosphors emits fluorescence. A phosphor transparent sheet in which phosphors of an amount corresponding to the radiation spectrum of body temperature are independently printed on a transparent plate, or a phosphor transparent sheet in which each phosphor film formed into a film is sandwiched between transparent bodies, Before attaching the shielding wall and / or the sealing frame and the phosphor transparent sheet by bonding, intimately or adhering the back surface of the metal substrate to a heat sink, heat pipe and / or heat radiating fin Close contact with the internal reflection tube, high brightness, characterized in that to close or contacting a black body radiation spectrum type LED lighting apparatus of a novel flat light emitting large output.

本発明の照明装置は、前記金属基板、遮蔽壁が、熱伝導率(W/m*K)が100〜10,00の範囲である金属、合金、半導体化合物、炭素のそれぞれを板状にしたものから選ばれた少なくとも一つのものを含む。とくに、前記金属基板が、真鍮、窒化アルミニウム、ガリウムナイトライド、アルミニウム、金、銀、銅、石炭、グラアァイト、ダイヤモンド、グラフィンから選ばれた少なくとも一つのものが好ましい。  In the illuminating device of the present invention, the metal substrate and the shielding wall have a plate shape of each of a metal, an alloy, a semiconductor compound, and carbon each having a thermal conductivity (W / m * K) in the range of 100 to 10,000. Includes at least one selected from those. In particular, the metal substrate is preferably at least one selected from brass, aluminum nitride, gallium nitride, aluminum, gold, silver, copper, coal, graphite, diamond, and graphene.

前記LEDベアチップが、放射波長ピークが430〜480nmの青色LED及び/又は380〜420nmの紫色LEDであるものが好ましい。  The LED bare chip is preferably a blue LED having a radiation wavelength peak of 430 to 480 nm and / or a purple LED having a wavelength of 380 to 420 nm.

本発明の照明装置は、前記R、G、B蛍光体として、蛍光波長ピークが455±5nm、480±5nm、518±5nm、528±5nm、541±5nm、591±5nm、627±5nm、646±5nmの蛍光体であるものも黒体放射スペクトル型LED照明装置に含まれる。  The illuminating device of the present invention has fluorescent wavelength peaks of 455 ± 5 nm, 480 ± 5 nm, 518 ± 5 nm, 528 ± 5 nm, 541 ± 5 nm, 591 ± 5 nm, 627 ± 5 nm, 646 as the R, G, B phosphors. What is a fluorescent substance of ± 5 nm is also included in the black body radiation spectrum type LED lighting device.

本発明の照明装置は、前記R、G、B蛍光体として、青色LEDベアチップの励起光(440〜460nm)による蛍光波長ピークが480±5nm、518±5nm、528±5nm、543±5nm、591±5nm、627±5nm、646±5nmであって、スペクトル半値幅(FWHM)30〜100nmの蛍光体であるものも黒体放射スペクトル型LED照明装置に含まれる。  In the illumination device of the present invention, as the R, G and B phosphors, the fluorescence wavelength peaks due to the excitation light (440 to 460 nm) of the blue LED bare chip are 480 ± 5 nm, 518 ± 5 nm, 528 ± 5 nm, 543 ± 5 nm, 591 The black body radiation spectrum type LED lighting device includes a phosphor having ± 5 nm, 627 ± 5 nm, and 646 ± 5 nm and having a spectral half width (FWHM) of 30 to 100 nm.

本発明の照明装置は、前記R、G、B蛍光体として、ナイトライド系、バリウム−ジルコニウム−シリコン酸化物蛍光体であって、放射波長ピークが430〜480nmの青色LED及び/又は380〜420nmの紫色LEDによる蛍光波長ピークが455±5nm、4850±5nm、543±5nm、595±5nm、627±5nm、646±5nmであって、擬白色LED蛍光体YAG(P46Y3)に対してピーク強度比110%以上、スペクトル半値幅(FWHM)100〜300nmの蛍光体であることを特徴とする黒体放射スペクトル型LED照明装置でもある。  The illumination device of the present invention is a nitride-based, barium-zirconium-silicon oxide phosphor as the R, G, B phosphor, and a blue LED having an emission wavelength peak of 430 to 480 nm and / or 380 to 420 nm. Fluorescence wavelength peaks of violet LEDs of 455 ± 5 nm, 4850 ± 5 nm, 543 ± 5 nm, 595 ± 5 nm, 627 ± 5 nm, 646 ± 5 nm, and the peak intensity ratio to the pseudo-white LED phosphor YAG (P46Y3) It is also a black body radiation spectrum type LED illumination device characterized by being a phosphor having a spectral half width (FWHM) of 100 to 300 nm of 110% or more.

本発明の照明装置は、前記蛍光体透明シートが、熱伝導性のある網目状のものとの複合したもの及び/又は金属蒸着したものであることを特徴とする黒体放射スペクトル型LED照明装置でもある。  The illuminating device of the present invention is a blackbody radiation spectrum type LED illuminating device characterized in that the phosphor transparent sheet is a composite with a thermally conductive mesh and / or metal-deposited. But there is.

本発明の照明装置は、前記蛍光体透明シートの上面方向30〜300mmを移動させることができるレンズ系機構を更に備えていることを特徴とする黒体放射スペクトル型LED照明装置でもある。  The illuminating device of the present invention is also a black body radiation spectrum type LED illuminating device further comprising a lens system mechanism capable of moving the upper surface direction of the phosphor transparent sheet of 30 to 300 mm.

本発明の照明装置は、複数のLEDベアチップを熱伝導性の高い金属等の基板に直接に接合、接着することにより、LEDベアチップからの放熱を金属等の基板に及び内部反射枠に伝熱し、ヒートシンク、ヒートパイプや放熱フィンを介して排熱されることで、発光素子を高密度に集積・アレイすることができるので、小型照明機器はもとより、スタジアム用の投光装置等、ロケーション用スポットライト等、体育館等の大空間用の大型で、大出力で、高輝度の照明装置とすることができる。  The lighting device of the present invention directly heats heat from the LED bare chip to the substrate such as metal and to the internal reflection frame by directly bonding and bonding a plurality of LED bare chips to the substrate such as metal having high thermal conductivity. By exhausting heat through heat sinks, heat pipes and heat radiating fins, light emitting elements can be densely integrated and arrayed, so that not only small lighting equipment, but also stadium floodlights, location spotlights, etc. It can be a large-sized, large-output, high-luminance lighting device for large spaces such as gymnasiums.

また、縞状の遮蔽壁を備えたことでLEDベアチップの昇温を抑えることができ、蓄熱が抑制され、LEDベアチップ集積部の温度上昇が抑制されるので、長時間の照明によっても照度の低下を起こさない。遮蔽壁、封止枠によって、LEDベアチップから放射される光が効率良く蛍光体透明シートを照射することにより発光効率が向上し、蛍光体の発光に伴う熱の発生も遮蔽壁によって伝導されて温度上昇が抑制されるので、発光効率の低下が抑えられる。  Moreover, since the LED bare chip can be prevented from rising in temperature by providing the striped shielding wall, heat storage is suppressed, and the temperature rise of the LED bare chip integrated part is suppressed, so that the illuminance is reduced even by long-time illumination. Does not cause. The light emitted from the LED bare chip is efficiently radiated to the phosphor transparent sheet by the shielding wall and the sealing frame, so that the light emission efficiency is improved, and the heat generation due to the light emission of the phosphor is also conducted by the shielding wall to the temperature. Since the increase is suppressed, a decrease in luminous efficiency can be suppressed.

LEDベアチップを高密度に集積することができること、蛍光体透明シートの蛍光体の粒子が光源となり、あたかも封止枠内が単一光源のように作用することにより、あたかも封止枠内が単一に平面発光した光源となり、照度ムラが殆ど生じなく、被照射体を優しく見ることができる。
また、平面発光単一型光源とみなせることで、モザイク状に分布した複数のRGBスペクトルが混光され、黒体温度の放射スペクトルに見合う光源ができる。
RGB蛍光体の印刷する量を変えることにより、蛍光体透明シートを交換するだけで、必要とする演色性を得ることができる。
The LED bare chip can be integrated with high density, the phosphor particles of the phosphor transparent sheet serve as the light source, and the inside of the sealing frame acts like a single light source, so that the inside of the sealing frame is single The light source emits flat light, and the unevenness of illuminance hardly occurs, so that the irradiated object can be seen gently.
Further, by considering it as a flat light emitting single-type light source, a plurality of RGB spectra distributed in a mosaic shape are mixed, and a light source suitable for the radiation spectrum of the black body temperature can be obtained.
By changing the printing amount of the RGB phosphor, it is possible to obtain the required color rendering by simply replacing the phosphor transparent sheet.

黒体温度6000Kの放射スペクトルが得られるので、オゾン、水(ミストなど)によるフィルターを付設することで、擬太陽光を実現することができ、太陽光発電のテスト照明装置として利用できる。
さらに、平面発光単一型光源とみなし、これを点光源とするレンズ系による配光性を制御することにより、近距離、遠距離の照度分布を制御できるので、大空間作業場の照明灯、自動車道路の照明灯や街灯などに使用することができる。
Since a radiation spectrum with a black body temperature of 6000 K is obtained, pseudo sunlight can be realized by attaching a filter with ozone and water (mist, etc.), and it can be used as a test lighting device for photovoltaic power generation.
Furthermore, it is possible to control the illuminance distribution at short distance and far distance by controlling the light distribution by a lens system that uses this as a point light source, considering it as a flat light emitting single light source. It can be used for road lights and street lights.

本発明照明器具実施形態の全体概念図である。1 is an overall conceptual diagram of an embodiment of a lighting fixture according to the present invention. 本発明照明器具実施形態の光源モジュール部図面である。It is a light source module part drawing of illuminating device embodiment of this invention. 光源モジュール部の隔壁構造例図である。It is an example of the partition structure of a light source module part. 本発明照明器具実施形態の平面発光モジュール部図面である。It is a plane light emission module part drawing of illuminating device embodiment of this invention. 本発明照明器具実施形態のLEDベアチップの配列部図面である。It is an arrangement | sequence part drawing of the LED bare chip of embodiment of this invention lighting fixture. 平面発光モジュールから発生する熱の放熱系図面である。3 is a heat dissipation system drawing of heat generated from a planar light emitting module. 用いた蛍光体の蛍光スペクトル強度(相対値)図である。It is a fluorescence spectrum intensity | strength (relative value) figure of the used fluorescent substance. 用いた蛍光体の蛍光スペクトル強度(相対値)図である。It is a fluorescence spectrum intensity | strength (relative value) figure of the used fluorescent substance. 用いた蛍光体の蛍光スペクトル強度(相対値)図である。It is a fluorescence spectrum intensity | strength (relative value) figure of the used fluorescent substance. 得られた擬似太陽光連続スペクトル図である。It is the obtained pseudo-sunlight continuous spectrum figure. 得られた擬似太陽光連続スペクトル図である。It is the obtained pseudo-sunlight continuous spectrum figure. 代表的な太陽光スペクトルと代表的な蛍光体スペクトル及び図10のスペクトルとを比較した図である。It is the figure which compared the typical sunlight spectrum, the typical fluorescent substance spectrum, and the spectrum of FIG.

本発明の照明装置に関する実施するための形態について記載する。
以下、ベアチップ状態の発光素子をLEDベアチップといい、一般に市販されている封止材で封止されている発光素子をLED素子という。LEDからの発光を「励起光」と言い、蛍光体からの発光を「蛍光」と言うことにする。
本発明の照明装置の概念図を図1に示す。また光源モジュール部を図2(A)に示す。縞状の遮蔽壁を有する熱伝導性の高い金属基板の凹部に複数のLEDベアチップ21を配列し、その励起光により複数のRGB蛍光体を発光させて蛍光を光源とする平面発光モジュール10と、平面発光モジュールから発生する熱を拡散し排熱する放熱系30と、平面発光モジュール10を点光源として配光性を制御するレンズ系50とを主として構成する、高輝度、大出力の新規な平面発光の黒体放射スペクトル型LED照明装置01である。
The form for implementing regarding the illuminating device of this invention is described.
Hereinafter, a light emitting element in a bare chip state is referred to as an LED bare chip, and a light emitting element that is generally sealed with a commercially available sealing material is referred to as an LED element. Light emission from the LED is referred to as “excitation light”, and light emission from the phosphor is referred to as “fluorescence”.
The conceptual diagram of the illuminating device of this invention is shown in FIG. The light source module portion is shown in FIG. A planar light emitting module 10 in which a plurality of LED bare chips 21 are arranged in a concave portion of a highly thermally conductive metal substrate having a striped shielding wall, a plurality of RGB phosphors are emitted by the excitation light, and fluorescence is used as a light source; A new high-brightness, high-output flat surface mainly comprising a heat dissipation system 30 for diffusing and exhausting heat generated from the flat light-emitting module and a lens system 50 for controlling the light distribution using the flat light-emitting module 10 as a point light source. This is a light emitting black body radiation spectrum type LED lighting device 01.

実施の形態1Embodiment 1

〔LEDベアチップの実装〕
〔平面発光モジュールの構造及び機能〕
本発明にかかる平面発光モジュールの概略構成を図2(A),(B)、3、4に示す。平行な縞状に仕切る遮蔽壁14を有する金属基板12の凹部表面にLEDベアチップ21を直接接合し、シリーズに接続し、LEDベアチップを駆動・制御する回路基板23と接続する。遮蔽壁14は、配列したLEDベアチップからの励起光が、蛍光体透明シート25の方向に導かれる作用、LEDベアチップから発生する熱を拡散する作用などを持つ。その形状は図に示した矩形に限定されるものではなく、先細りのフィン形状などの熱輸送を金属基板の方向に規制するものも好ましい。
内部反射枠18の一部は回路基板23と接するが、その一部は金属基板12とを透明封止剤で固定・密着する構造とし、内部反射枠18にはR・G・B蛍光体26・27・28をそれぞれモザイク状に印刷した蛍光体透明シート25を交換するための挿入口19を備えている。また、内部反射枠18を上下に分割できるようにし、その嵌合部を19とする。この場合は、内部反射枠18の上部に蛍光体透明シート25を取り付けておく。
内部反射枠18は、LEDベアチップからの照射光を有効に、効率よく蛍光体に照射すると共に発生した熱を放熱系30に伝導する機能も持っている。放熱系の概略図を図5に示す。
[Mounting of LED bare chip]
[Structure and function of planar light emitting module]
2A, 2B, 3 and 4 show a schematic configuration of a flat light emitting module according to the present invention. The LED bare chip 21 is directly bonded to the concave surface of the metal substrate 12 having the shielding walls 14 that are partitioned into parallel stripes, connected in series, and connected to the circuit board 23 that drives and controls the LED bare chip. The shielding wall 14 has an action in which excitation light from the arranged LED bare chips is guided in the direction of the phosphor transparent sheet 25, an action to diffuse heat generated from the LED bare chips, and the like. The shape is not limited to the rectangular shape shown in the figure, and it is also preferable to regulate heat transport such as a tapered fin shape in the direction of the metal substrate.
A part of the internal reflection frame 18 is in contact with the circuit board 23, but a part of the internal reflection frame 18 is fixed and adhered to the metal substrate 12 with a transparent sealant. The internal reflection frame 18 has an R • G • B phosphor 26. -It has the insertion port 19 for replacing | exchanging the fluorescent substance transparent sheet 25 which each printed 27 and 28 in mosaic. Further, the internal reflection frame 18 can be divided into upper and lower parts, and the fitting portion is set to 19. In this case, the phosphor transparent sheet 25 is attached to the upper part of the internal reflection frame 18.
The internal reflection frame 18 also has a function of effectively and efficiently irradiating the phosphor with the irradiation light from the LED bare chip and conducting the generated heat to the heat dissipation system 30. A schematic diagram of the heat dissipation system is shown in FIG.

金属基板12の凹部表面に直接接合するLEDベアチップについて、紫外線LEDベアチップ、青色LEDベアチップ、緑色LEDベアチップ、赤色LEDベアチップなど種々のLEDベアチップを取り混ぜて使用することもできるが、高輝度、大出力を得ること、制御を容易にすること、取り扱いが容易なこと、安全・衛生面を考慮することなどの観点から、青色LEDベアチップ及び/又は紫色LEDベアチップを主として使用することが望ましい。  Various LED bare chips such as ultraviolet LED bare chip, blue LED bare chip, green LED bare chip, and red LED bare chip can be mixed and used for LED bare chips that are directly bonded to the concave surface of the metal substrate 12, but with high brightness and high output. It is desirable to mainly use a blue LED bare chip and / or a purple LED bare chip from the viewpoints of obtaining, easy control, easy handling, safety and hygiene.

まず、(70〜300)mm×(70〜168〜300)mmの銅板の金属基板12を用いて、遮蔽壁ピッチ(3.5〜7〜9)mmとしLEDベアチップの配列ピッチを(2〜3.5〜5)mmとする。
次いで、430nm〜480nmに励起光のピークを有する青色LEDベアチップを用意する。たとえば、設定出力から算定される数のGeneLite社製B4545EC10の青色LEDベアチップを用意する。72mmの正方形の銅板の金属基板12を用いて、遮蔽壁ピッチ7mmとして青色LEDベアチップをシリーズに接続する場合、その配列ピッチを約3.5mmとすると、200個の青色LEDベアチップを用意することになる。これを3V、350mAで駆動すると、約200Wの大出力となり、波長450〜460nm、光強度74Wを蛍光体に与える。72mmの正方形の銅板の金属基板12を用いて、遮蔽壁ピッチ5mmとして青色LEDベアチップの配列ピッチを2mmとすると、490個で約500Wの大出力となり、波長450〜460nm、光強度148Wを蛍光体に与える。最大LEDの実装数は、60×150=9,000個となる。かなわち、9KWの大出力となる。
First, using a metal substrate 12 of a copper plate of (70 to 300) mm × (70 to 168 to 300) mm, the shielding wall pitch (3.5 to 7 to 9) mm is set, and the array pitch of the LED bare chips is (2 to 2). 3.5 to 5) mm.
Next, a blue LED bare chip having an excitation light peak at 430 nm to 480 nm is prepared. For example, the number of blue light bare LED B4545EC10 manufactured by GeneLite, which is calculated from the set output, is prepared. When a blue LED bare chip is connected to a series with a shielding wall pitch of 7 mm using a 72 mm square copper-plated metal substrate 12, if the arrangement pitch is about 3.5 mm, 200 blue LED bare chips will be prepared. Become. When this is driven at 3 V and 350 mA, a large output of about 200 W is obtained, and a wavelength of 450 to 460 nm and a light intensity of 74 W are given to the phosphor. Using a metal substrate 12 of a square copper plate of 72 mm, if the arrangement pitch of blue LED bare chips is 2 mm with a shield wall pitch of 5 mm, a large output of about 500 W with 490 pieces, a wavelength of 450 to 460 nm, and a light intensity of 148 W is a phosphor. To give. The maximum number of LEDs mounted is 60 × 150 = 9,000. That is, a large output of 9 KW.

また、OBL−CH6060 4XXBXXシリーズのGeneLite社OBL−CH6060 4XXBXXシリーズの青色LEDベアチップを用いると、チップサイズが1.5×1.5mmであるので、遮蔽壁ピッチ7mm、配列ピッチを3.5mmとし、200個の青色LEDベアチップを集積する。これを3V、700mAで駆動すると、約400Wの大出力を蛍光体に与える。Moreover, when the blue LED bare chip of OBL-CH6060 4XXBXX series GeneLite OBL-CH6060 4XXBXX series is used, the chip size is 1.5 × 1.5 mm, so the shielding wall pitch is 7 mm and the array pitch is 3.5 mm. 200 blue LED bare chips are integrated. When this is driven at 3 V and 700 mA, a large output of about 400 W is given to the phosphor.

三菱化学社製XCG−700−Dの紫色LEDベアチップを用意する。これは、波長395〜413nmに発光のピークを有する紫色LEDベアチップであり、「m面−GaN基板」の製造技術を確立し、従来のスライスGaN基板に比べて電気特性に優れ、励起光効率が大幅に向上、RGB蛍光体など各部材のさらなる性能向上と合わせ、既存白色LED製品と比較し3倍の発光効率の実現していることから、検討した。  A purple LED bare chip of XCG-700-D manufactured by Mitsubishi Chemical Corporation is prepared. This is a purple LED bare chip having a light emission peak at a wavelength of 395 to 413 nm, has established a manufacturing technique of “m-plane GaN substrate”, has superior electrical characteristics compared to a conventional sliced GaN substrate, and has an excitation light efficiency. Considering the significant improvement and further performance improvement of each member such as RGB phosphors, the light emission efficiency was tripled compared with the existing white LED products.

GeneLite社製の青色LEDベアチップ(ピーク波長455nm)及び三菱化学社製の紫色LEDベアチップからの励起光(ピーク波長400nm)に対する各社の蛍光体の蛍光スベクトルを測定する。測定にはコニカミノルタ製色彩輝度計CS−2000を使用した。以下、蛍光スペクトル強度(相対値)測定も同様である。大塚電子株式会社MCPD7000積分球を用いて半値幅を測定した。  The fluorescence vector of each company's fluorescent substance with respect to the excitation light (peak wavelength 400nm) from the blue LED bare chip made from GeneLite (peak wavelength 455nm) and the purple LED bare chip made from Mitsubishi Chemical Corporation is measured. A Konica Minolta color luminance meter CS-2000 was used for the measurement. The same applies to the fluorescence spectrum intensity (relative value) measurement. The full width at half maximum was measured using MCPD7000 integrating sphere, Otsuka Electronics Co., Ltd.

まず、青色から緑色に蛍光波長ピークを持つ蛍光体を選択した。
波長510nm〜520nmに蛍光のピークを有する緑蛍光体、例えば、三菱化学(株)製CaSC2:Ce蛍光体粉末BG−301B(ピーク波長518nm、半値幅FWHM=100nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度測定した。最も高いスペクトル強度を1として正規化したものを図6に示す。以下図6のデータは同様に正規化したものである。
First, a phosphor having a fluorescence wavelength peak from blue to green was selected.
A ratio of 8 wt% of a green phosphor having a fluorescence peak at a wavelength of 510 nm to 520 nm, for example, CaS C2 O 4 : Ce phosphor powder BG-301B (peak wavelength 518 nm, full width at half maximum FWHM = 100 nm) manufactured by Mitsubishi Chemical Corporation The phosphor dispersed in the silicone-based sealing material was formed into a coating film having a thickness of 1.0 mm.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength 455 nm) was irradiated to measure the fluorescence spectrum intensity. FIG. 6 shows a result obtained by normalizing the highest spectral intensity as 1. The data in FIG. 6 is normalized in the same manner.

波長520nm〜530nmに蛍光のピークを有する緑蛍光体、例えば、三菱化学(株)製(BaSr)SiO:Eu蛍光体粉末BG−201B(ピーク波長528nm、半値幅FWHM=67nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図6に示す。
8 wt% of a green phosphor having a fluorescence peak at a wavelength of 520 nm to 530 nm, for example, (BaSr) 2 SiO 4 : Eu phosphor powder BG-201B (peak wavelength 528 nm, half-value width FWHM = 67 nm) manufactured by Mitsubishi Chemical Corporation A phosphor dispersed in a silicone-based sealing material at a ratio of 1 to 10 mm was formed into a coating film having a thickness of 1.0 mm.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

波長535nm〜550nmに発光のピークを有する緑蛍光体、例えば、電気化学(株)製のナイトライド系(βサイアロン)蛍光体粉末GR−240(ピーク波長541nm、半値幅FWHM=53nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図7に示す。
8 wt% of a green phosphor having a light emission peak at a wavelength of 535 nm to 550 nm, for example, a nitride (β sialon) phosphor powder GR-240 (peak wavelength 541 nm, full width at half maximum FWHM = 53 nm) manufactured by Electrochemical Co., Ltd. A phosphor dispersed in a silicone-based sealing material at a ratio of 1 to 10 mm was formed into a coating film having a thickness of 1.0 mm.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

波長520nm〜530nmに蛍光のピークを有する緑色蛍光体、例えば、三菱化学(株)製(BaSr)SiO:Eu蛍光体粉末VG−201B(ピーク波長528nm、半値幅FWHM=67nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これに三菱化学社製の紫色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長400nm)を照射し、蛍光スペクトル強度(相対値)測定した。
波長430nm〜500nmに蛍光のピークを有する青色蛍光体、例えば、三菱化学(株)製(BaMgAl1017:Eu蛍光体粉末VB−101B(ピーク波長455nm、半値幅FWHM=51nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これに三菱化学社製の紫色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長400nm)を照射し、蛍光スペクトル強度(相対値)測定した。図6に示す。
8 wt% of a green phosphor having a fluorescence peak at a wavelength of 520 nm to 530 nm, for example, (BaSr) 2 SiO 4 : Eu phosphor powder VG-201B (peak wavelength 528 nm, half-value width FWHM = 67 nm) manufactured by Mitsubishi Chemical Corporation A phosphor dispersed in a silicone-based sealing material at a ratio of 1 to 10 mm was formed into a coating film having a thickness of 1.0 mm. A purple LED bare chip manufactured by Mitsubishi Chemical Corporation was driven at a voltage of 3 V, and emitted excitation light (peak wavelength: 400 nm) was irradiated to measure the fluorescence spectrum intensity (relative value).
Blue phosphor having a fluorescence peak at a wavelength of 430 nm to 500 nm, for example, 8 wt% of Mitsubishi Chemical Corporation (BaMgAl 10 O 17 : Eu phosphor powder VB-101B (peak wavelength 455 nm, half width FWHM = 51 nm)) A phosphor dispersed in a silicone-based encapsulant at a ratio was made into a coating film having a thickness of 1.0 mm, and a purple LED bare chip manufactured by Mitsubishi Chemical Corporation was driven at a voltage of 3 V to emit excited light (peak wavelength). 400 nm), and the fluorescence spectrum intensity (relative value) was measured, as shown in FIG.

次いで、黄色に波長ピークを持つ蛍光体を選択した。
波長590nmから600nmに発光のピークを有する黄色蛍光体、例えば、電気化学(株)製ナイトライド系(αサイアロン)蛍光体粉末YL−C190(ピーク波長591nm、半値幅FWHM=83nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図7に示す。
Next, a phosphor having a wavelength peak in yellow was selected.
A yellow phosphor having an emission peak at a wavelength of 590 nm to 600 nm, for example, 8 wt% of a nitride-based (α sialon) phosphor powder YL-C190 (peak wavelength 591 nm, full width at half maximum FWHM = 83 nm) manufactured by Electrochemical Co., Ltd. A phosphor dispersed in a silicone-based sealing material at a ratio was formed into a coating film having a thickness of 1.0 mm. A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

波長620nm〜630nmに発光のピークを有する赤色蛍光体、例えば、電気化学(株)製ナイトライド系蛍光体粉末(CaAlSiN:Eu)Re−sample Y1(ピーク波長626nm、半値幅FWHM=89nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図7に示す。
波長630nm〜650nmに発光のピークを有する赤色蛍光体、例えば、電気化学(株)製ナイトライド系蛍光体粉末(CaAlSiN:Eu)Re−sample X1(ピーク波長646nm、半値幅FWHM=94nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図7に示す。
A red phosphor having an emission peak at a wavelength of 620 nm to 630 nm, for example, a nitride-based phosphor powder (CaAlSiN 3 : Eu) Re-sample Y1 (peak wavelength 626 nm, full width at half maximum FWHM = 89 nm) manufactured by Electrochemical Co., Ltd. A phosphor dispersed in a silicone-based sealing material at a rate of 8 wt% was formed on a coating film having a thickness of 1.0 mm.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.
A red phosphor having an emission peak at a wavelength of 630 nm to 650 nm, for example, a nitride-based phosphor powder (CaAlSiN 3 : Eu) Re-sample X1 (peak wavelength 646 nm, full width at half maximum FWHM = 94 nm) manufactured by Electrochemical Co., Ltd. A phosphor dispersed in a silicone-based sealing material at a rate of 8 wt% was formed on a coating film having a thickness of 1.0 mm.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

更に、蛍光の波長半値幅が100nm以上の蛍光体を用意する。
α−サイアロンは,一般式CaSi12−(m+n)Al(m+n)16−n:Euで表される蛍光体である。
電気化学(株)製ナイトライド系(αサイアロン)蛍光体粉末Re−sample Y3(ピーク波長645nm、半値幅112nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図8に示す。
三菱化学(株)製(CaSiAl(ON):Eu)蛍光体粉末VR−103B(ピーク波長638nm、半値幅FWHM=125nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これに三菱化学社製の紫色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長400nm)を照射し、蛍光スペクトル強度(相対値)測定した。
Further, a phosphor having a half-wave width of fluorescence of 100 nm or more is prepared.
α- sialon has the general formula Ca p Si 12- (m + n ) Al (m + n) O n N 16-n: a phosphor represented by Eu.
A phosphor obtained by dispersing a nitride-based (α sialon) phosphor powder Re-sample Y3 (peak wavelength: 645 nm, half-value width: 112 nm) manufactured by Electrochemical Co., Ltd. in a silicone-based encapsulant at a rate of 8 wt%. It was created in a 0 mm coating film.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.
A phosphor obtained by dispersing a phosphor powder VR-103B (peak wavelength 638 nm, half width FWHM = 125 nm) manufactured by Mitsubishi Chemical Corporation (CaSiAl (ON) 3 : Eu) in a silicone-based sealing material at a rate of 8 wt%. It was created in a coating film having a thickness of 1.0 mm. A purple LED bare chip manufactured by Mitsubishi Chemical Corporation was driven at a voltage of 3 V, and emitted excitation light (peak wavelength: 400 nm) was irradiated to measure the fluorescence spectrum intensity (relative value).

電気化学(株)製ナイトライド系(αサイアロン)蛍光体粉末OR−sample K(ピーク波長596nm、半値幅FWHM134nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。
これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図8に示す。
A phosphor obtained by dispersing a nitride-based (α sialon) phosphor powder OR-sample K (peak wavelength 596 nm, half-value width FWHM 134 nm) manufactured by Electrochemical Co., Ltd. in a silicone-based sealing material at a ratio of 8 wt%. It was created in a 0 mm coating film.
A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

バリウムージルコニウムーシリコン酸化物蛍光体粉末(Sr,Ba,Eu)SiO(ピーク波長563nm、半値幅FWHM=111nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これにGeneLite社製B4545EC10の青色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長455nm)を照射し、蛍光スペクトル強度(相対値)測定した。図8に示す。Barium-zirconium-silicon oxide phosphor powder (Sr, Ba, Eu) 2 SiO 4 (peak wavelength 563 nm, full width at half maximum FWHM = 111 nm) is dispersed in a silicone-based encapsulant at a rate of 8 wt%. It created in the coating film of 1.0 mm. A B4545EC10 blue LED bare chip manufactured by GeneLite was driven at a voltage of 3 V, and the emitted excitation light (peak wavelength: 455 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

バリウムージルコニウムーシリコン酸化物蛍光体粉末(Ba,Eu)ZrSi(ピーク波長480nm、半値幅FWHM=48nm)を8wt%の割合でシリコーン系封止材に分散させた蛍光体を厚み1.0mmの塗膜に作成した。これに三菱化学社製の紫色LEDベアチップを電圧3Vで駆動させて、発光した励起光(ピーク波長400nm)を照射し、蛍光スペクトル強度(相対値)測定した。図8に示す。Barium-zirconium-silicon oxide phosphor powder (Ba, Eu) ZrSi 3 O 9 (peak wavelength 480 nm, half-value width FWHM = 48 nm) dispersed in a silicone-based encapsulant at a rate of 8 wt% has a thickness of 1 It was prepared as a 0.0 mm coating film. A purple LED bare chip manufactured by Mitsubishi Chemical Corporation was driven at a voltage of 3 V, and emitted excitation light (peak wavelength: 400 nm) was irradiated to measure the fluorescence spectrum intensity (relative value). As shown in FIG.

透明体24は、ガラス、熱伝導性フィルム又は、それらに金属を蒸着したもの、あるいは熱伝導性のある網目状のものとの複合したものを用いるとことも好ましい。
シリコーン系樹脂に8wt%の割合で蛍光体を混入し、脱泡・消泡しながら混練する。これを、ロールコートを用いて0.5〜3.5mmの厚みに成形する。150℃程度でキュアさせて塗膜を作成する。これを任意のサイズにカットする。これらの蛍光体フィルム29を5,6種類用いるので、透明体24のサイズに合わせて、カットサイズを決める。
蛍光体フィルム29の総面積が蛍光強度に比例するので、任意の黒体温度に対応するスペクトルに見合う構成比を算出し、透明体24に挟んで平面発光モジュール10を作成する。
As the transparent body 24, it is also preferable to use glass, a thermally conductive film, a metal vapor-deposited on them, or a composite of a thermally conductive network.
A phosphor is mixed in a silicone resin at a rate of 8 wt% and kneaded while defoaming and defoaming. This is formed into a thickness of 0.5 to 3.5 mm using a roll coat. Cure at about 150 ° C. to create a coating film. Cut this to any size. Since five or six types of these phosphor films 29 are used, the cut size is determined in accordance with the size of the transparent body 24.
Since the total area of the phosphor film 29 is proportional to the fluorescence intensity, a composition ratio corresponding to a spectrum corresponding to an arbitrary black body temperature is calculated, and the planar light emitting module 10 is created with the transparent body 24 interposed therebetween.

蛍光体粉末BG−201B、蛍光体粉末YL−C190、蛍光体粉末BG−301B、蛍光体粉末(CaAlSiN:Eu)Re−sample X1、蛍光体粉末(Ba,Eu)ZrSiの厚み1.0mmの塗膜を、110mm四方のガラス板の上に前記5色のストライプ状発光ゾーンを6セット繰り返し、敷き詰める。これらの蛍光体の発光スペクトルの半値幅FWHMは100nm未満のものである。
210mm×168mmの銅板の金属基板12を用いて、遮蔽壁ピッチを3.5mmとして、三十列配置した。そしてGeneLite社製B4545EC10の青色LEDベアチップを40個シリーズに接続し、その配列ピッチを2.5mmとした。二十四列960個の青色LEDベアチップと三菱化学社製の紫色LEDベアチップを六列240個で構成した。各々のLEDチップを3V、350mAで駆動し、LEDチップへの全投入電力を約1260Wとした。
放熱系30は、ヒートパイプ及び放熱フィンとした。金属基板10の裏面温度は75度C、放熱系30の表面温度共に60度C以下であり、実用上問題ない温度であることを確認した。蛍光スペクトル強度を測定した。図9に示す。波長480〜600nmの領域で多少の凹凸はあるもののほぼフラットな連続スペクトルである大出力の黒体輻射スペクトルに準じた可視光擬太陽光スペクトルを得ることができた。
Thickness 1 of phosphor powder BG-201B, phosphor powder YL-C190, phosphor powder BG-301B, phosphor powder (CaAlSiN 3 : Eu) Re-sample X1, phosphor powder (Ba, Eu) ZrSi 3 O 9 A coating film of 0 mm is spread on a 110 mm square glass plate by repeating 6 sets of the above-mentioned five-color striped light emitting zones. The full width at half maximum FWHM of the emission spectrum of these phosphors is less than 100 nm.
Thirty rows were arranged using a metal substrate 12 of a 210 mm × 168 mm copper plate with a shielding wall pitch of 3.5 mm. And 40 blue LED bare chips of GeneLite B45545EC10 were connected in series, and the arrangement pitch was 2.5 mm. Twenty-four rows of 960 blue LED bare chips and Mitsubishi Chemical's purple LED bare chips were composed of 240 in six rows. Each LED chip was driven at 3 V and 350 mA, and the total input power to the LED chip was about 1260 W.
The heat radiation system 30 was a heat pipe and a heat radiation fin. The back surface temperature of the metal substrate 10 was 75 ° C., and the surface temperature of the heat dissipation system 30 was 60 ° C. or less. The fluorescence spectrum intensity was measured. As shown in FIG. Although there were some irregularities in the wavelength region of 480 to 600 nm, a visible light pseudo-sunlight spectrum according to a large output black body radiation spectrum which was a substantially flat continuous spectrum could be obtained.

蛍光体粉末GR−240、蛍光体粉末BG−201B、蛍光体粉末YL−C190、蛍光体粉末BG−301B、蛍光体粉末(CaAlSiN3:Eu)Re−sample X1、蛍光体粉末(Ba,Eu)ZrSi3O9の厚み1.0mmの塗膜を、110mm四方のガラス板の上に前記6色のストライプ状発光ゾーンを5セット繰り返し、敷き詰める以外は、実施例1と同様に実施した。これらの蛍光体の発光スペクトルの半値幅FWHMは100nmを超えるものである。
210mm×168mmの銅板の金属基板12を用いて、遮蔽壁ピッチを3.5mmとして、三十列配置した。またGeneLite社製B4545EC10の青色LEDベアチップを40個シリーズに接続し、その配列ピッチを2.5mmとした。二十五列1000個の青色LEDベアチップと三菱化学社製の紫色LEDベアチップを五列200個で構成した。各々のLEDチップを3V、350mAで駆動し、LEDチップへの全投入電力を約1260Wとした。
放熱系30は、ヒートパイプ及び放熱フィンとした。金属基板10の裏面温度は75度C、放熱系30の表面温度共に60度C以下であり、実用上問題ない温度であることを確認した。蛍光スペクトル強度を測定した。図10に示す。波長470〜600nmの領域でほぼフラットな連続スペクトルである大出力の黒体輻射スペクトルに準じた可視光擬太陽光スペクトルを得ることができた。代表的な太陽光スペクトルと代表的な蛍光体のスペクトル及び図10のスペクトルとを比較したものを図11に示す。
Phosphor powder GR-240, phosphor powder BG-201B, phosphor powder YL-C190, phosphor powder BG-301B, phosphor powder (CaAlSiN3: Eu) Re-sample X1, phosphor powder (Ba, Eu) ZrSi3O9 A coating film having a thickness of 1.0 mm was carried out in the same manner as in Example 1 except that five sets of the six-color striped light-emitting zones were repeatedly spread on a 110 mm square glass plate. The full width at half maximum FWHM of the emission spectrum of these phosphors exceeds 100 nm.
Thirty rows were arranged using a metal substrate 12 of a 210 mm × 168 mm copper plate with a shielding wall pitch of 3.5 mm. In addition, 40 blue LED bare chips of GeneLite B45545EC10 were connected in series, and the arrangement pitch was 2.5 mm. Twenty-five rows of 1000 blue LED bare chips and Mitsubishi Chemical's purple LED bare chips were composed of 200 rows. Each LED chip was driven at 3 V and 350 mA, and the total input power to the LED chip was about 1260 W.
The heat radiation system 30 was a heat pipe and a heat radiation fin. The back surface temperature of the metal substrate 10 was 75 ° C., and the surface temperature of the heat dissipation system 30 was 60 ° C. or less. The fluorescence spectrum intensity was measured. As shown in FIG. A visible light pseudo-sunlight spectrum according to a large output black body radiation spectrum which is a substantially flat continuous spectrum in a wavelength region of 470 to 600 nm was obtained. FIG. 11 shows a comparison between a typical sunlight spectrum, a spectrum of a typical phosphor, and the spectrum of FIG.

実施の形態2Embodiment 2

〔LEDベアチップの実装〕
本実施例では熱伝導率の高いAu薄膜(図示せず)をLEDベアチップの実装面および対応する金属基板表面上に形成し、チップボンダーにより金属接合し、固定する。
熱伝導性の高い金属板(たとえば厚み1.0〜3.5mm、幅50〜72〜150mmの銅板)にピッチ3〜7〜15mmの平行な縞状に仕切る遮蔽壁14(たとえば厚み1.0〜3.5mm、高さ1.5〜3.5mm)を有する金属基板12を準備する。平行な縞状に仕切る遮蔽壁14は、直線でも、曲線の形状であっても良い。
熱伝導性の高い金属板として、例えば銅基板やアルミニウム基板を用いる。より詳しくは、熱伝導率(W/m*K)が100〜10,00の範囲である金属、合金、半導体化合物、炭素のそれぞれを板状にしたものから選ばれた少なくとも一つのものを含む。とくに、金属基板が、真鍮、窒化アルミニウム、ガリウムナイトライド、アルミニウム、金、銀、銅、石炭、グラアァイト、ダイヤモンド、グラフィンから選ばれた少なくとも一つのものが好ましい。
平行な縞状に仕切る遮蔽壁14を有する金属基板12上の凹部表面にLEDベアチップ21チップボンダーにより金属接合し、固定する。LEDベアチップ21に電圧を供給するための回路線を有する回路基板23を固定し、回路基板上の電極パッドおよびチップ上の電極パッド間をAuワイヤ線22によりワイヤボンディングを行う。
[Mounting of LED bare chip]
In this embodiment, an Au thin film (not shown) having high thermal conductivity is formed on the mounting surface of the LED bare chip and the corresponding metal substrate surface, and is bonded and fixed by a chip bonder.
Shielding wall 14 (for example, thickness 1.0) partitioning in parallel strips with a pitch of 3 to 7 to 15 mm on a metal plate having high thermal conductivity (for example, a copper plate having a thickness of 1.0 to 3.5 mm and a width of 50 to 72 to 150 mm). A metal substrate 12 having a height of 3.5 mm and a height of 1.5 mm to 3.5 mm is prepared. The shielding wall 14 partitioned into parallel stripes may be a straight line or a curved shape.
For example, a copper substrate or an aluminum substrate is used as the metal plate having high thermal conductivity. More specifically, it includes at least one selected from a metal, an alloy, a semiconductor compound, and a carbon plate each having a thermal conductivity (W / m * K) in the range of 100 to 10,000. . In particular, the metal substrate is preferably at least one selected from brass, aluminum nitride, gallium nitride, aluminum, gold, silver, copper, coal, graphite, diamond, and graphene.
The LED bare chip 21 chip bonder is used for metal bonding to and fixed to the concave surface on the metal substrate 12 having the shielding walls 14 partitioned in parallel stripes. A circuit board 23 having a circuit line for supplying a voltage to the LED bare chip 21 is fixed, and wire bonding is performed between the electrode pad on the circuit board and the electrode pad on the chip by an Au wire 22.

放熱系は、ヒートパイプ34及び放熱フィン32並びに内部反射枠とから主として構成される。図5に概略図を示す。
ヒートパイプ34及び放熱フィン32は金属基板12のLEDベアチップ21実装と反対の面に連結され、例えばヒートパイプ34はCuにNiメッキ処理をしたものを、放熱フィン32はAlに黒色アルマイト処理したものを使用した。ヒートパイプ34を金属基板12内に埋め込む形態としているが、金属基板12にヒートパイプ34を接合する構造としても良い。ヒートパイプ34は放熱フィン32に圧入接合しているが、他の熱抵抗の小さい接合の工法も可能である。更に金属基板12に取り付け金具38を連結することにより、取付け金具38も放熱性向上に寄与するため、有効であった。
The heat dissipation system is mainly composed of a heat pipe 34, a heat dissipation fin 32, and an internal reflection frame. FIG. 5 shows a schematic diagram.
The heat pipe 34 and the heat radiating fin 32 are connected to the surface of the metal substrate 12 opposite to the mounting of the LED bare chip 21. For example, the heat pipe 34 is obtained by performing Ni plating on Cu, and the heat radiating fin 32 is obtained by performing black alumite treatment on Al. It was used. Although the heat pipe 34 is embedded in the metal substrate 12, the heat pipe 34 may be joined to the metal substrate 12. Although the heat pipe 34 is press-fitted and joined to the radiation fins 32, other joining methods with low thermal resistance are possible. Furthermore, by connecting the mounting bracket 38 to the metal substrate 12, the mounting bracket 38 also contributes to improving heat dissipation, which is effective.

ワイヤボンディング後チップ実装領域にシリコーン系封止樹脂を封止材として、LEDベアチップ21と接触しつつ、覆うように充填し、この後、例えば150℃程度でキュアさせて封止材の層20を形成する。封止材の層20はLEDベアチップ12の表面と略平行になるように形成することにより、優れた平面発光する光源を実現することができた。シリコーン系封止樹脂の代わりにエポキシ系樹脂、その他耐熱性、耐光性を持つ樹脂を用いても良い。  After wire bonding, the chip mounting region is filled with silicone-based sealing resin as a sealing material so as to be in contact with the LED bare chip 21, and then cured at, for example, about 150 ° C. to form the sealing material layer 20 Form. By forming the encapsulant layer 20 so as to be substantially parallel to the surface of the LED bare chip 12, it was possible to realize an excellent light source emitting flat light. Instead of the silicone-based sealing resin, an epoxy-based resin or other resin having heat resistance and light resistance may be used.

高輝度、大出力を得ること、制御を容易にすること、取り扱いが容易なこと、安全・衛生面を考慮することなどの観点から、青色LEDベアチップ及び/又は紫色LEDベアチップを主として使用した。
210mm*168mmの銅板の金属基板10を用いて、遮蔽壁ピッチを3.5mmとして、三十列配置した。またGeneLite社製B4545EC10の青色LEDベアチップを40個シリーズに接続し、その配列ピッチを2.5mmとした。この場合全体として1200個のLEDチップ数となり、LEDチップへの全投入電力は約1260Wとなる。
放熱系は、ヒートパイプ34及び放熱フィン32とした。金属基板10の裏面温度は75度C、熱輸送系30の表面温度共に60度C以下であり、実用上問題ない温度であることを確認した。
また、青色LEDベアチップの配列ピッチを1.5mmとし、1200個のLEDチップ数にすると、金属銅基板10の裏面温度は90°Cまで上昇した。
100度C以下であり、長期間使用で実用上問題とならない。
The blue LED bare chip and / or the purple LED bare chip were mainly used from the viewpoints of obtaining high brightness, large output, easy control, easy handling, and safety and hygiene.
Thirty rows were arranged using a metal substrate 10 of 210 mm * 168 mm copper plate with a shielding wall pitch of 3.5 mm. In addition, 40 blue LED bare chips of GeneLite B45545EC10 were connected in series, and the arrangement pitch was 2.5 mm. In this case, the total number of LED chips is 1200, and the total input power to the LED chips is about 1260W.
The heat dissipation system was a heat pipe 34 and a heat dissipation fin 32. The back surface temperature of the metal substrate 10 was 75 ° C., and the surface temperature of the heat transport system 30 was 60 ° C. or less, and it was confirmed that there was no practical problem.
When the arrangement pitch of the blue LED bare chips was 1.5 mm and the number of LED chips was 1200, the back surface temperature of the metal copper substrate 10 rose to 90 ° C.
It is 100 degrees C or less, and does not cause a practical problem when used for a long time.

1 黒体放射スペクトル型LED照明装置
10 平面発光モジュール
12 金属基板
14 遮蔽壁
16 封止枠
18 内部反射枠
19 挿入口又は内部反射枠分割嵌合部
20 封止材の層
21 LEDベアチップ
22 Auワイヤ線
23 回路基板
24 透明体
25 蛍光体透明シート
26 R蛍光体
27 G蛍光体
28 B蛍光体
29 蛍光体フィルム
30 放熱系
32 ヒートシンク又は放熱フィン
34 ヒートパイプ
36 金属ネジ
38 取り付け金具
50 レンズ系50
52 レンズ
54 支柱
56 外部反射枠
DESCRIPTION OF SYMBOLS 1 Black body radiation | emission spectrum type | mold LED lighting apparatus 10 Planar light emission module 12 Metal substrate 14 Shielding wall 16 Sealing frame 18 Internal reflection frame 19 Insertion opening or internal reflection frame division | segmentation fitting part 20 Layer 21 of sealing material LED bare chip 22 Au wire Wire 23 Circuit board 24 Transparent body 25 Phosphor transparent sheet 26 R phosphor 27 G phosphor 28 B phosphor 29 Phosphor film 30 Heat radiation system 32 Heat sink or heat radiation fin 34 Heat pipe 36 Metal screw 38 Mounting bracket 50 Lens system 50
52 Lens 54 Post 56 External reflection frame

Claims (5)

縞状の遮蔽壁を備えた金属基板と、
前記金属基板の表面に接合される複数のLEDベアチップと、
回路基板と、
前記金属基板の表面上に密着する封止枠であると共に前記回路基板の全部又は一部と配線接続された複数のLEDベアチップとの周囲を囲む内部反射枠と、
R、G、B蛍光体のそれぞれが蛍光を発する蛍光スペクトルを加算して黒体温度の放射スペクトルに見合う蛍光体の量を、それぞれ独立に透明板状に印刷した蛍光体透明シート又はそれぞれ独立にフィルム化した蛍光体フィルムを透明体に挟んだ蛍光体透明シートとを備え、前記蛍光体透明シートを焦点とする光学系を構成する、
前記金属基板の裏面をヒートシンク、ヒートパイプ及び/又は放熱フィンと接合、密接又は接着させ、
前記遮蔽壁及び/又は前記封止枠並びに前記蛍光体透明シートを取り付けた前記内部反射枠とを密着、密接又は接触させ、
前記蛍光体透明シートが、熱伝導性のある網目状のものとの複合したもの及び/又は金属蒸着したものであり、前記内部反射枠は上下に分割されており、前記蛍光体透明シートは前記内部反射枠の上部に取り付けられている、ことを特徴とする黒体放射スペクトル型LED照明装置。
A metal substrate with striped shielding walls;
A plurality of LED bare chips bonded to the surface of the metal substrate;
A circuit board;
An internal reflection frame that surrounds the periphery of a plurality of LED bare chips that are wire-connected to all or part of the circuit board, and a sealing frame that adheres closely to the surface of the metal substrate;
A phosphor transparent sheet printed independently on a transparent plate or an amount of phosphor corresponding to the emission spectrum of the black body temperature by adding the fluorescence spectrum in which each of the R, G and B phosphors emits fluorescence. A phosphor transparent sheet sandwiching a film-formed phosphor film between transparent bodies, and constituting an optical system that focuses on the phosphor transparent sheet;
Bonding, intimately or adhering to the back surface of the metal substrate with a heat sink, heat pipe and / or radiating fin,
Close contact, close contact, or contact with the internal reflection frame with the shielding wall and / or the sealing frame and the phosphor transparent sheet attached,
The phosphor transparent sheet is a composite with a thermally conductive mesh and / or metal-deposited, the internal reflection frame is divided into upper and lower parts, and the phosphor transparent sheet is A black body radiation spectrum type LED lighting device, which is attached to an upper part of an internal reflection frame.
前記LEDベアチップが、放射波長ピークが430〜480nmの青色LED及び/又は380〜420nmの紫色LEDである請求項1に記載の黒体放射スペクトル型LED照明装置。 2. The black body radiation spectrum type LED lighting device according to claim 1, wherein the LED bare chip is a blue LED having a radiation wavelength peak of 430 to 480 nm and / or a violet LED of 380 to 420 nm. 前記R、G、B蛍光体として、蛍光波長ピークが455±5nm、480±5nm、518±5nm、528±5nm、541±5nm、591±5nm、627±5nm、646±5nmの蛍光体である請求項1又は請求項2に記載の黒体放射スペクトル型LED照明装置。 The R, G, B phosphors are phosphors having fluorescence wavelength peaks of 455 ± 5 nm, 480 ± 5 nm, 518 ± 5 nm, 528 ± 5 nm, 541 ± 5 nm, 591 ± 5 nm, 627 ± 5 nm, and 646 ± 5 nm. The black body radiation spectrum type | mold LED lighting apparatus of Claim 1 or Claim 2. 前記R、G、B蛍光体として、青色LEDベアチップの励起光(440〜460nm)による蛍光波長ピークが480±5nm、518±5nm、528±5nm、543±5nm、591±5nm、627±5nm、646±5nmであって、スペクトル半値幅(FWHM)30〜100nmの蛍光体である請求項1から請求項3のいずれかに記載の黒体放射スペクトル型LED照明装置。 As the R, G and B phosphors, the fluorescence wavelength peaks due to the excitation light (440 to 460 nm) of the blue LED bare chip are 480 ± 5 nm, 518 ± 5 nm, 528 ± 5 nm, 543 ± 5 nm, 591 ± 5 nm, 627 ± 5 nm, The blackbody radiation spectrum type LED illumination device according to any one of claims 1 to 3, which is a phosphor having a wavelength of 646 ± 5 nm and a spectral half width (FWHM) of 30 to 100 nm. 前記蛍光体透明シートの上面方向30〜300mmを移動させることができるレンズ系機構を更に備えていることを特徴とする請求項1から請求項のいずれかに記載の黒体放射スペクトル型LED照明装置。 The black body radiation spectrum type LED illumination according to any one of claims 1 to 4 , further comprising a lens system mechanism capable of moving an upper surface direction of 30 to 300 mm of the phosphor transparent sheet. apparatus.
JP2012167682A 2012-07-09 2012-07-09 Lighting device Expired - Fee Related JP6169829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012167682A JP6169829B2 (en) 2012-07-09 2012-07-09 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167682A JP6169829B2 (en) 2012-07-09 2012-07-09 Lighting device

Publications (2)

Publication Number Publication Date
JP2014017459A JP2014017459A (en) 2014-01-30
JP6169829B2 true JP6169829B2 (en) 2017-07-26

Family

ID=50111876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167682A Expired - Fee Related JP6169829B2 (en) 2012-07-09 2012-07-09 Lighting device

Country Status (1)

Country Link
JP (1) JP6169829B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3117267B1 (en) * 2014-03-11 2018-05-02 Osram Sylvania Inc. Light converter assemblies with enhanced heat dissipation
KR102476137B1 (en) 2016-02-25 2022-12-12 삼성전자주식회사 Method of manufacturing light emitting device package
KR20180064033A (en) 2016-12-05 2018-06-14 삼성전자주식회사 Display apparatus having quantum dot unit or quantum dot sheet and method for manufacturing quantum dot unit
KR102378918B1 (en) * 2018-12-26 2022-03-28 루미레즈 엘엘씨 Two-step phosphor deposition to make a matrix array
CN110107823A (en) * 2019-05-21 2019-08-09 江苏天楹之光光电科技有限公司 A kind of high photosynthetic efficiency, the LED light of good heat dissipation
US20230393067A1 (en) * 2020-10-27 2023-12-07 Konica Minolta, Inc. Information processing apparatus, information processing system, and trained model

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066828B2 (en) * 2003-02-06 2008-03-26 宇部興産株式会社 Sialon oxynitride phosphor and method for producing the same
JP2004259541A (en) * 2003-02-25 2004-09-16 Cateye Co Ltd Lighting fixture
US20050225222A1 (en) * 2004-04-09 2005-10-13 Joseph Mazzochette Light emitting diode arrays with improved light extraction
JP4471356B2 (en) * 2004-04-23 2010-06-02 スタンレー電気株式会社 Semiconductor light emitting device
JP2006002043A (en) * 2004-06-17 2006-01-05 Daiden Co Ltd Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
JP5320655B2 (en) * 2004-06-30 2013-10-23 三菱化学株式会社 LIGHT EMITTING DEVICE, LIGHTING, BACKLIGHT UNIT FOR DISPLAY DEVICE, AND DISPLAY DEVICE
JP4674348B2 (en) * 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
JP2007081234A (en) * 2005-09-15 2007-03-29 Toyoda Gosei Co Ltd Lighting system
JP2008016341A (en) * 2006-07-06 2008-01-24 Ri Bunsu Led lighting device having high uniformity
JP2008063549A (en) * 2006-08-10 2008-03-21 Sumitomo Chemical Co Ltd Phosphor
JP5036332B2 (en) * 2007-01-26 2012-09-26 スタンレー電気株式会社 Light emitting device and color conversion filter
JP2009010308A (en) * 2007-05-31 2009-01-15 Toshiba Lighting & Technology Corp Light emitting device
JP2008258171A (en) * 2008-05-07 2008-10-23 Shizuo Fujita Planar light-emitting device
JP5327601B2 (en) * 2008-12-12 2013-10-30 東芝ライテック株式会社 Light emitting module and lighting device
FR2948099B1 (en) * 2009-07-16 2012-05-11 Airbus Operations Sas METHOD FOR MANUFACTURING A FIXED SAIL AIRCRAFT
JP5376404B2 (en) * 2009-09-09 2013-12-25 東芝ライテック株式会社 Light emitting device
JP2011216868A (en) * 2010-03-16 2011-10-27 Toshiba Lighting & Technology Corp Light emitting device, and illumination apparatus
JP5553235B2 (en) * 2010-10-21 2014-07-16 東芝ライテック株式会社 Lighting device

Also Published As

Publication number Publication date
JP2014017459A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US9335006B2 (en) Saturated yellow phosphor converted LED and blue converted red LED
TWI463636B (en) High cri lighting device with added long-wavelength blue color
US9515055B2 (en) Light emitting devices including multiple anodes and cathodes
US9220149B2 (en) Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US9351371B2 (en) Light emitting device
JP5710603B2 (en) Light emitting device
JP6169829B2 (en) Lighting device
TW200409478A (en) Saturated phosphor solid state emitter
JP5443959B2 (en) Lighting device
TW201205892A (en) LED-based light emitting systems and devices
TW201146075A (en) High CRI adjustable color temperature lighting devices
JP2011216868A (en) Light emitting device, and illumination apparatus
JP5598323B2 (en) Light emitting device and method for manufacturing light emitting device
JP2011159832A (en) Semiconductor light emitting device
KR102300558B1 (en) Light source module
CN108110118A (en) For manufacturing the method and apparatus of fluorescent powder coating LED die
JP2016171147A (en) Light emission device and luminaire
JP2018067573A (en) Light-emitting module and lighting equipment
WO2019093339A1 (en) Lighting apparatus having mounting substrate for led lighting
JP2008218998A (en) Light emitting device
KR100889603B1 (en) Light emitting diode module with enhanced heat release for lumination
JP6035069B2 (en) Lighting device
JP2008244469A (en) Light-emitting device
JP2006147214A (en) Lighting system
JP2011159769A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees