JP6164705B2 - Shock wave catheter - Google Patents

Shock wave catheter Download PDF

Info

Publication number
JP6164705B2
JP6164705B2 JP2015526587A JP2015526587A JP6164705B2 JP 6164705 B2 JP6164705 B2 JP 6164705B2 JP 2015526587 A JP2015526587 A JP 2015526587A JP 2015526587 A JP2015526587 A JP 2015526587A JP 6164705 B2 JP6164705 B2 JP 6164705B2
Authority
JP
Japan
Prior art keywords
catheter
balloon
shock wave
source
standoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015526587A
Other languages
Japanese (ja)
Other versions
JP2015528329A (en
JP2015528329A5 (en
Inventor
ダニエル ホーキンス,
ダニエル ホーキンス,
ジョン アダムス,
ジョン アダムス,
Original Assignee
ショックウェーブ メディカル, インコーポレイテッド
ショックウェーブ メディカル, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ショックウェーブ メディカル, インコーポレイテッド, ショックウェーブ メディカル, インコーポレイテッド filed Critical ショックウェーブ メディカル, インコーポレイテッド
Publication of JP2015528329A publication Critical patent/JP2015528329A/en
Publication of JP2015528329A5 publication Critical patent/JP2015528329A5/ja
Application granted granted Critical
Publication of JP6164705B2 publication Critical patent/JP6164705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22025Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement applying a shock wave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22098Decalcification of valves

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Description

優先権の主張
本願は、同時係属中の米国仮特許出願第61/679,911号(2012年8月6日出願)の利益を主張し、その出願は、本明細書で参照によってその全体が援用される。
This application claims the benefit of co-pending US Provisional Patent Application No. 61 / 679,911 (filed Aug. 6, 2012), which is hereby incorporated by reference in its entirety. Incorporated.

背景
大動脈弁狭窄に罹患している患者は、しばしば、石灰化した大動脈弁尖を有する。大動脈弁狭窄の処置のための衝撃波療法は、例えば、開示が参照によって本明細書に援用される米国特許出願公開第2010/0114020号A1で以前に説明されている。その中で説明されているように、弁形成術カテーテルは、流体で膨張可能であるバルーンを含む。バルーンは、膨張させられるとき、大動脈弁の弁尖等の弁尖に隣接するように構成される。バルーン内には、衝撃波発生器が配置されている。衝撃波発生器は、少なくとも2つの電極を含む。高電圧パルスが複数の電極にわたって印加されるとき、電気アークが形成される。電気アークは、弁尖と弁上の石灰化とに作用するようにバルーン壁に伝搬する流体内の衝撃波を生成する。繰り返される衝撃波が、石灰化を粉砕する。
Background Patients suffering from aortic stenosis often have calcified aortic leaflets. Shock wave therapy for the treatment of aortic valve stenosis has been previously described, for example, in US 2010/0114020 A1, whose disclosure is incorporated herein by reference. As described therein, valvuloplasty catheters include a balloon that is inflatable with fluid. The balloon is configured to be adjacent to a leaflet, such as a leaflet of an aortic valve, when inflated. A shock wave generator is disposed in the balloon. The shock wave generator includes at least two electrodes. When a high voltage pulse is applied across multiple electrodes, an electric arc is formed. The electric arc generates a shock wave in the fluid that propagates to the balloon wall to affect the leaflets and calcification on the valve. Repeated shock waves crush calcification.

上記で説明されるカテーテルの衝撃波発生器(電極)と弁尖との間の距離は、可変であり、制御されない。カルシウム沈着を破壊するように設計されている衝撃波療法は、放射衝撃波源から特定の距離において最も効果的であることが、分かっている。これは、特に、発生源が反射体を伴わない点源である場合である。概して、衝撃波の有効性は、発生源からの距離の二乗に応じて低下または減少する。   The distance between the catheter shock wave generator (electrode) and leaflets described above is variable and uncontrolled. Shock wave therapy designed to destroy calcification has been found to be most effective at specific distances from the radiant shock source. This is especially the case when the source is a point source without a reflector. In general, the effectiveness of shock waves decreases or decreases with the square of the distance from the source.

弁形成術バルーンおよび衝撃波発生器が上記で説明されているように組み合わせられるとき、衝撃波発生器とバルーン壁との間の距離は、概して、効果的な処置および弁形成術圧力によって引き起こされたバルーン拡張によって弁が開かれると増加する。距離が変化してより大きくなるにつれて、治療の有効性は、減少する。これは、完全かつ有効な処置に必要とされる衝撃波の時間および数の両方を増加させる。したがって、処置されている弁が所望の量だけ拡張させられるまで、所望のレベルで治療有効性を維持する衝撃波弁形成術カテーテルの必要性が、存在する。   When the valvuloplasty balloon and shock wave generator are combined as described above, the distance between the shock wave generator and the balloon wall is generally the balloon caused by effective treatment and valvuloplasty pressure. Increased when the valve is opened by expansion. As the distance changes and becomes larger, the effectiveness of the treatment decreases. This increases both the time and number of shock waves required for a complete and effective treatment. Accordingly, there is a need for a shock wave annuloplasty catheter that maintains therapeutic effectiveness at a desired level until the valve being treated is expanded by the desired amount.

米国特許出願公開第2010/0114020号A1明細書US Patent Application Publication No. 2010/0114020 A1

本明細書で示されて説明される実施形態によると、例えば、弁形成術での使用を見出し得るカテーテルは、細長い本体と、細長い本体によって運ばれる膨張式バルーンとを含む。バルーンは、内表面および外表面を有する。カテーテルはさらに、膨張式バルーン内の少なくとも1つの衝撃波源と、バルーンの内表面から実質的に固定された距離で少なくとも1つの衝撃波源を維持する従動部配列(follower arrangement)とを含む。   According to the embodiments shown and described herein, for example, a catheter that may find use in valvuloplasty includes an elongate body and an inflatable balloon carried by the elongate body. The balloon has an inner surface and an outer surface. The catheter further includes at least one shock wave source within the inflatable balloon and a follower arrangement that maintains the at least one shock wave source at a substantially fixed distance from the inner surface of the balloon.

従動部配列は、膨張式バルーン内の少なくとも1つの衝撃波源によって運ばれ得る。少なくとも1つの衝撃波源は、電極対を含むアーク発生器であり得る。   The follower arrangement may be carried by at least one shock wave source within the inflatable balloon. The at least one shock wave source may be an arc generator that includes a pair of electrodes.

従動部配列は、電極対から延びる少なくとも1つのスタンドオフ(stand−off)を含み得る。スタンドオフは、可撓性材料で形成され得る。   The follower arrangement may include at least one stand-off extending from the electrode pair. The standoff can be formed of a flexible material.

アーク発生器は、細長いリード線を含み得る。電極対は、細長いリード線によって運ばれ得、細長いリード線は、膨張式バルーンの内表面に向かう方向へ付勢され得る。細長いリード線は、膨張式バルーンの内表面に向かって細長いリード線を付勢する少なくとも1つの屈曲を含み得る。   The arc generator may include an elongated lead. The electrode pair can be carried by an elongated lead, which can be biased in a direction toward the inner surface of the inflatable balloon. The elongate lead may include at least one bend that biases the elongate lead toward the inner surface of the inflatable balloon.

カテーテルはさらに、膨張式バルーンの内表面に向かって細長いリード線を付勢する細長いリード線によって運ばれる付勢部材を含み得る。付勢部材は、ばねであり得る。   The catheter may further include a biasing member carried by the elongated lead that biases the elongated lead toward the inner surface of the inflatable balloon. The biasing member can be a spring.

少なくとも1つの衝撃波源は、アーク発生器を含み得る。従動部配列は、アーク発生器によって運ばれるスタンドオフを含み得、アーク発生器は、膨張式バルーンの内表面に向かって付勢され得る。   The at least one shock wave source may include an arc generator. The follower arrangement can include a standoff carried by the arc generator, which can be biased toward the inner surface of the inflatable balloon.

カテーテルはさらに、少なくとも1つの衝撃波源を運ぶフレーム構造を含み得る。フレーム構造は、バルーンの内表面から実質的に固定された距離で少なくとも1つの衝撃波源を維持するように、膨張式バルーンの膨張とともに拡張するように配列され得る。フレーム構造は、バルーンの内表面から実質的に固定された距離で少なくとも1つの衝撃波源を維持するように、少なくとも1つの衝撃波源に隣接する少なくとも1つのスタンドオフを含み得る。   The catheter may further include a frame structure that carries at least one shock wave source. The frame structure may be arranged to expand with the inflation of the inflatable balloon so as to maintain at least one shock wave source at a substantially fixed distance from the inner surface of the balloon. The frame structure may include at least one standoff adjacent to the at least one shock source so as to maintain the at least one shock source at a substantially fixed distance from the inner surface of the balloon.

他の実施形態において、方法は、細長い本体と、細長い本体によって運ばれ、内表面および外表面を有する膨張式バルーンと、膨張式バルーン内の少なくとも1つの衝撃波源とを含むカテーテルを提供することを含む。本方法はさらに、カテーテルを患者の静脈または動脈に挿入し、処置されるべき解剖学的構造に隣接してバルーンを配置することと、液体でバルーンを膨張させることと、解剖学的構造を治療するように、衝撃波源に、液体を通って伝搬する衝撃波をバルーンにおいて提供させることと、衝撃波が少なくとも1つの衝撃波源によって提供されている間に、バルーンの内表面から実質的に固定された距離で少なくとも1つの衝撃波源を維持することとを含む。   In another embodiment, a method provides a catheter comprising an elongate body, an inflatable balloon carried by the elongate body and having an inner surface and an outer surface, and at least one shock wave source in the inflatable balloon. Including. The method further includes inserting a catheter into the patient's vein or artery, placing the balloon adjacent to the anatomy to be treated, inflating the balloon with fluid, and treating the anatomy. And causing the shock wave source to provide a shock wave propagating through the liquid at the balloon and a substantially fixed distance from the inner surface of the balloon while the shock wave is provided by the at least one shock wave source. Maintaining at least one shock wave source.

カテーテルはさらに、衝撃波発生器によって運ばれる従動部を含み得、維持することは、バルーンの内壁に対して従動部を付勢することを含み得る。   The catheter may further include a follower carried by the shock wave generator, and maintaining may include biasing the follower against the inner wall of the balloon.

カテーテルは、少なくとも1つの衝撃波源を運ぶフレーム構造を含み得る。維持することは、バルーンの内表面から実質的に固定された距離で少なくとも1つの衝撃波源を維持するように、膨張式バルーンの膨張とともにフレーム構造を拡張することを含み得る。
本発明は、例えば、以下を提供する。
(項目1)
カテーテルであって、前記カテーテルは、
細長い本体と、
前記細長い本体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、
前記膨張式バルーン内の少なくとも1つの衝撃波源と、
前記バルーンの前記内表面から実質的に固定された距離で前記少なくとも1つの衝撃波源を維持する従動部配列と
を備える、カテーテル。
(項目2)
前記従動部配列は、前記膨張式バルーン内の前記少なくとも1つの衝撃波源によって運ばれる、項目1に記載のカテーテル。
(項目3)
前記少なくとも1つの衝撃波源は、アーク発生器である、項目1に記載のカテーテル。
(項目4)
前記アーク発生器は、電極対を備える、項目3に記載のカテーテル。
(項目5)
前記従動部配列は、前記電極対から延びる少なくとも1つのスタンドオフを含む、項目4に記載のカテーテル。
(項目6)
前記スタンドオフは、可撓性材料で形成される、項目5に記載のカテーテル。
(項目7)
前記アーク発生器は、細長いリード線を含み、前記電極対は、前記細長いリード線によって運ばれ、前記細長いリード線は、前記膨張式バルーンの前記内表面に向かう方向に付勢される、項目5に記載のカテーテル。
(項目8)
前記細長いリード線は、前記膨張式バルーンの前記内表面に向かって前記細長いリード線を付勢する少なくとも1つの屈曲を含む、項目7に記載のカテーテル。
(項目9)
前記膨張式バルーンの前記内表面に向かって前記細長いリード線を付勢する前記細長いリード線によって運ばれる付勢部材をさらに含む、項目7に記載のカテーテル。
(項目10)
前記付勢部材は、ばねを備える、項目9に記載のカテーテル。
(項目11)
前記少なくとも1つの衝撃波源は、アーク発生器を備え、前記従動部配列は、前記アーク発生器によって運ばれるスタンドオフを含み、前記アーク発生器は、前記膨張式バルーンの前記内表面に向かって付勢される、項目1に記載のカテーテル。
(項目12)
前記カテーテルは、前記少なくとも1つの衝撃波源を運ぶフレーム構造をさらに含み、前記フレーム構造は、前記膨張式バルーンの膨張とともに拡張することにより、前記バルーンの前記内表面から前記実質的に固定された距離で前記少なくとも1つの衝撃波源を維持する、項目1に記載のカテーテル。
(項目13)
前記フレーム構造は、前記少なくとも1つの衝撃波源に隣接する少なくとも1つのスタンドオフを含むことにより、前記バルーンの前記内表面から実質的に固定された距離で前記少なくとも1つの衝撃波源を維持する、項目12に記載のカテーテル。
(項目14)
方法であって、前記方法は、
カテーテルを提供することであって、前記カテーテルは、細長い本体と、前記細長い本
体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、前記膨張式バルーン内の少なくとも1つの衝撃波源とを含む、ことと、
前記カテーテルを患者の静脈または動脈に挿入し、処置されるべき解剖学的構造に隣接するように前記バルーンを配置することと、
液体で前記バルーンを膨張させることと、
前記衝撃波源に、前記液体を通って伝搬する前記バルーン内の衝撃波を提供させることにより、前記解剖学的構造を処置することと、
前記衝撃波が前記少なくとも1つの衝撃波源によって提供されている間に、前記バルーンの前記内表面から実質的に固定された距離で前記少なくとも1つの衝撃波源を維持することと
を含む方法。
(項目15)
前記カテーテルは、前記衝撃波発生器によって運ばれる従動部をさらに含み、前記維持することは、前記バルーンの前記内壁に対して前記従動部を付勢することを含む、項目14に記載の方法。
(項目16)
前記カテーテルは、前記少なくとも1つの衝撃波源を運ぶフレーム構造をさらに含み、前記維持することは、前記膨張式バルーンの膨張とともにフレーム構造を拡張することにより、前記バルーンの前記内表面から実質的に固定された距離で前記少なくとも1つの衝撃波源を維持することを含む、項目14に記載の方法。
(項目17)
カテーテルであって、前記カテーテルは、
細長い本体と、
前記細長い本体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、
前記膨張式バルーン内に位置する少なくとも1つの衝撃波源を運ぶ細長いリード線と、
前記リード線に取り付けられたスタンドオフであって、前記スタンドオフは、前記バルーンの前記内表面から前記衝撃波源を離間するように構成される、スタンドオフと
を備える、カテーテル。
(項目18)
前記スタンドオフは、可撓性材料から形成される、項目17に記載のカテーテル。
(項目19)
前記少なくとも1つの衝撃波源は、アーク発生器である、項目17に記載のカテーテル。
(項目20)
前記アーク発生器は、電極対を備える、項目19に記載のカテーテル。
The catheter may include a frame structure that carries at least one shock wave source. Maintaining may include expanding the frame structure with inflation of the inflatable balloon to maintain at least one shock source at a substantially fixed distance from the inner surface of the balloon.
For example, the present invention provides the following.
(Item 1)
A catheter, wherein the catheter is
An elongated body;
An inflatable balloon carried by said elongated body, said balloon having an inner surface and an outer surface;
At least one shock wave source in the inflatable balloon;
A follower arrangement for maintaining the at least one shock wave source at a substantially fixed distance from the inner surface of the balloon;
A catheter.
(Item 2)
The catheter of claim 1, wherein the follower array is carried by the at least one shock wave source in the inflatable balloon.
(Item 3)
The catheter of claim 1, wherein the at least one shock wave source is an arc generator.
(Item 4)
Item 4. The catheter of item 3, wherein the arc generator comprises an electrode pair.
(Item 5)
Item 5. The catheter of item 4, wherein the follower array includes at least one standoff extending from the electrode pair.
(Item 6)
Item 6. The catheter of item 5, wherein the standoff is formed of a flexible material.
(Item 7)
The arc generator includes an elongated lead, the electrode pair is carried by the elongated lead, and the elongated lead is biased in a direction toward the inner surface of the inflatable balloon. The catheter according to 1.
(Item 8)
8. The catheter of item 7, wherein the elongate lead includes at least one bend that biases the elongate lead toward the inner surface of the inflatable balloon.
(Item 9)
8. The catheter of item 7, further comprising a biasing member carried by the elongate lead that biases the elongate lead toward the inner surface of the inflatable balloon.
(Item 10)
Item 10. The catheter according to Item 9, wherein the biasing member comprises a spring.
(Item 11)
The at least one shock wave source includes an arc generator, the follower arrangement includes a standoff carried by the arc generator, the arc generator being attached toward the inner surface of the inflatable balloon. The catheter of item 1, wherein the catheter is activated.
(Item 12)
The catheter further includes a frame structure that carries the at least one shock wave source, the frame structure expanding with expansion of the inflatable balloon, thereby causing the substantially fixed distance from the inner surface of the balloon. The catheter of claim 1, wherein the at least one shock source is maintained.
(Item 13)
The frame structure maintains the at least one shock source at a substantially fixed distance from the inner surface of the balloon by including at least one standoff adjacent to the at least one shock source. 13. The catheter according to 12.
(Item 14)
A method, the method comprising:
Providing a catheter, the catheter comprising an elongated body and the elongated book
An inflatable balloon carried by the body, the balloon having an inner surface and an outer surface, and including a balloon and at least one shock wave source in the inflatable balloon;
Inserting the catheter into a patient's vein or artery and positioning the balloon adjacent to the anatomy to be treated;
Inflating the balloon with liquid;
Treating the anatomy by causing the shock wave source to provide a shock wave in the balloon that propagates through the liquid;
Maintaining the at least one shock wave source at a substantially fixed distance from the inner surface of the balloon while the shock wave is provided by the at least one shock wave source;
Including methods.
(Item 15)
15. The method of item 14, wherein the catheter further includes a follower carried by the shock wave generator, and the maintaining includes biasing the follower against the inner wall of the balloon.
(Item 16)
The catheter further includes a frame structure that carries the at least one shock wave source, and the maintaining is substantially secured from the inner surface of the balloon by expanding the frame structure with expansion of the inflatable balloon. 15. The method of item 14, comprising maintaining the at least one shock source at a measured distance.
(Item 17)
A catheter, wherein the catheter is
An elongated body;
An inflatable balloon carried by said elongated body, said balloon having an inner surface and an outer surface;
An elongated lead carrying at least one shock wave source located within the inflatable balloon;
A standoff attached to the lead wire, wherein the standoff is configured to separate the shock wave source from the inner surface of the balloon; and
A catheter.
(Item 18)
Item 18. The catheter of item 17, wherein the standoff is formed from a flexible material.
(Item 19)
18. A catheter according to item 17, wherein the at least one shock wave source is an arc generator.
(Item 20)
20. A catheter according to item 19, wherein the arc generator comprises an electrode pair.

新規であると考えられる本発明の特徴は、特に添付の特許請求の範囲に記載される。本発明の種々の説明される実施形態は、それの代表的な特徴および利点と一緒に、添付図面と併せて解釈される下記の説明への参照によって、最も良く理解され得、それらのうちのいくつかの図中で、類似の参照数字は、同一の要素を識別する。   The features of the invention believed to be novel are set forth with particularity in the appended claims. Various described embodiments of the present invention, together with exemplary features and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings, of which In some figures, like reference numerals identify identical elements.

図1は、心臓、および、心臓の大動脈弁内で本発明の局面を具現化するカテーテルの部分切断図である。FIG. 1 is a partial cutaway view of a catheter embodying aspects of the present invention within the heart and the aortic valve of the heart.

図2は、図1のカテーテル内で利益をもたらすために使用され得、かつ、本発明の局面を具現化する衝撃波発生器の側面図である。FIG. 2 is a side view of a shock wave generator that can be used to benefit within the catheter of FIG. 1 and that embodies aspects of the present invention.

図3は、処置を心臓の大動脈弁に送達しているときのカテーテルを図示する、図1の心臓の部分切断図である。FIG. 3 is a partial cutaway view of the heart of FIG. 1 illustrating the catheter when delivering treatment to the aortic valve of the heart.

図4は、心臓の大動脈弁への治療の完了時のカテーテルを図示する、図1の心臓の部分切断図である。FIG. 4 is a partial cutaway view of the heart of FIG. 1 illustrating the catheter upon completion of treatment for the aortic valve of the heart.

図5は、別の心臓、および、心臓の大動脈弁内で本発明のさらなる側面を具現化する別のカテーテルの部分切断図である。FIG. 5 is a partial cutaway view of another heart and another catheter embodying a further aspect of the present invention within the aortic valve of the heart.

図6は、図5のカテーテルの特定の局面を図示する、分解縮尺(exploded scale)に対する部分図である。6 is a partial view to an expanded scale illustrating certain aspects of the catheter of FIG.

ここで図1を参照すると、これは、心臓の大動脈50、および、心臓の大動脈弁52内で本発明の局面を具現化するカテーテル10の部分切断図である。カテーテル10は、概して、細長い本体12と、細長い本体12によって運ばれる膨張式バルーン14と、膨張式バルーン14内の少なくとも1つの衝撃波源20と、従動部配列30とを含む。バルーンは、内表面16および外表面18を含む。従動部配列30は、衝撃波源20によって運ばれる。後で分かるように、従動部配列は、バルーンの内表面16から実質的に固定された距離で少なくとも1つの衝撃波源20を維持する。   Reference is now made to FIG. 1, which is a partial cutaway view of a catheter 10 embodying aspects of the present invention within a cardiac aorta 50 and cardiac aortic valve 52. Catheter 10 generally includes an elongate body 12, an inflatable balloon 14 carried by the elongate body 12, at least one shock wave source 20 within the inflatable balloon 14, and a follower array 30. The balloon includes an inner surface 16 and an outer surface 18. The follower arrangement 30 is carried by the shock wave source 20. As will be seen later, the follower arrangement maintains at least one shock source 20 at a substantially fixed distance from the inner surface 16 of the balloon.

バルーン14は、例えば生理食塩水等の流体で、細長い本体12を通して膨張可能である。バルーンは、大動脈弁52内に位置付けられるときに、その外表面18が、大動脈弁尖54およびその上の石灰化56に実質的に合致し、かつ、それらに直に隣接または接触するように、構成される。   Balloon 14 is inflatable through elongate body 12 with a fluid, such as saline. When the balloon is positioned within the aortic valve 52, its outer surface 18 substantially conforms to the aortic leaflet 54 and calcification 56 thereon, and is immediately adjacent or in contact with them. Composed.

衝撃波源20は、好ましくは、バルーン14内で急速に拡張し収縮するスチームの泡を形成する電気アークを生成するアーク発生器である。急速に拡張し収縮するスチームの泡は、バルーン内の流体を通って伝搬し、バルーン14の内表面16と石灰化56とに作用する衝撃波をバルーン14内で形成する。繰り返される衝撃波の後、石灰化は、大動脈弁52が機能することを可能にするように粉砕される。従動部配列30は、衝撃波印加手技中に衝撃波の完全な有効性を維持するように、バルーン14の内表面16から、したがって、弁尖54から実質的に固定された距離で、衝撃波源を維持する。   The shock wave source 20 is preferably an arc generator that produces an electric arc that forms a steam bubble that rapidly expands and contracts within the balloon 14. Rapidly expanding and contracting steam bubbles propagate through the fluid in the balloon, creating a shock wave in the balloon 14 that acts on the inner surface 16 and calcification 56 of the balloon 14. After repeated shock waves, the calcification is crushed to allow the aortic valve 52 to function. The follower arrangement 30 maintains the shock wave source at a substantially fixed distance from the inner surface 16 of the balloon 14 and thus from the leaflet 54 so as to maintain the full effectiveness of the shock wave during the shock wave application procedure. To do.

図1はまた、カテーテル10がガイドワイヤ70を受け入れるように配列されることを示す。ガイドは、ガイドワイヤ管腔72を通過し、カテーテルを動脈または静脈の中へ誘導することにより、大動脈弁等の処置されるべき解剖学的構造に隣接してバルーンを配置する働きをする。バルーンは、このようにして位置付けられると、膨張させられ得、衝撃波療法が開始され得る。   FIG. 1 also shows that the catheter 10 is arranged to receive a guidewire 70. The guide serves to place the balloon adjacent to the anatomy to be treated, such as the aortic valve, by passing through the guidewire lumen 72 and guiding the catheter into the artery or vein. Once positioned, the balloon can be inflated and shock wave therapy can be initiated.

図2から分かり得るように、衝撃波源または発生器20は、細長いリード線22と、リード線22によって運ばれる電極対24とを含む。電極対24は、リング電極26と中心電極28とを含む、同軸に配置された一対の電極によって形成される。電圧パルスが、衝撃波を生成するアークを引き起こすように、リード線22を通して電極26、28にわたって印加される。   As can be seen from FIG. 2, the shock wave source or generator 20 includes an elongated lead 22 and an electrode pair 24 carried by the lead 22. The electrode pair 24 is formed by a pair of coaxially arranged electrodes including a ring electrode 26 and a center electrode 28. A voltage pulse is applied across the electrodes 26, 28 through the lead 22 to cause an arc that generates a shock wave.

図1のカテーテル10は、2つの衝撃波源20、20’を含む。衝撃波源20’は、衝撃波源20と同一であり得る。各衝撃波源は、従動部配列を運ぶ。図1の実施形態において、ばね38が、衝撃波源20のリード線22に、衝撃波源20’のリード線22’に、かつ、それらの間に取り付けられる。ばね38は、バルーン14の内表面16に向かってバルーン14の中心軸15から外れるように、衝撃波源の電極対および従動部配列を押し動かすための付勢部材として働く。   The catheter 10 of FIG. 1 includes two shock wave sources 20, 20 '. The shock wave source 20 ′ may be the same as the shock wave source 20. Each shock source carries a follower array. In the embodiment of FIG. 1, a spring 38 is attached to the lead wire 22 of the shock wave source 20, to the lead wire 22 'of the shock wave source 20', and between them. The spring 38 serves as a biasing member for pushing and moving the electrode pair of the shock wave source and the follower arrangement so as to move away from the central axis 15 of the balloon 14 toward the inner surface 16 of the balloon 14.

代替として、または、加えて、図2から分かり得るように、リード線22は、その中に形成された永久屈曲34、35を有し得る。屈曲は、バルーン14の内表面16に向かって矢印36によって示される方向に電極対24を付勢する。   Alternatively or additionally, as can be seen in FIG. 2, the lead 22 may have permanent bends 34, 35 formed therein. The flexure biases the electrode pair 24 in the direction indicated by the arrow 36 toward the inner surface 16 of the balloon 14.

したがって、図1は、中に配置された2つの電極(電極対24)を伴う弁形成術バルーン14を含む、本発明のいくつかの実施形態によるカテーテル10を有する弁形成術システムを示す。本システムは、弁尖54上の石灰化56を処置するために、大動脈弁52内に示されている。電極は、ばね部材38によって、バルーン14の周囲に向かってバルーン14の中心軸15から離れるように押される。理解され得るように、ばね部材は、電極を外向きに運ぶリード線22、22’をばね荷重または付勢することによって置き換えられ得る。バルーン14は、重度の狭窄弁52内に示されている。電極上で運ばれるスタンドオフ32は、電極とバルーン14の壁との間で、したがって、電極と弁尖54との間で実質的に一定の距離を維持する。   Accordingly, FIG. 1 illustrates a valvuloplasty system having a catheter 10 according to some embodiments of the present invention, including a valvuloplasty balloon 14 with two electrodes (electrode pairs 24) disposed therein. The system is shown in aortic valve 52 to treat calcification 56 on leaflet 54. The electrode is pushed away from the central axis 15 of the balloon 14 by the spring member 38 toward the periphery of the balloon 14. As can be appreciated, the spring member can be replaced by spring loading or biasing the leads 22, 22 'that carry the electrodes outward. Balloon 14 is shown within a severe stenosis valve 52. The standoff 32 carried on the electrode maintains a substantially constant distance between the electrode and the wall of the balloon 14 and thus between the electrode and the leaflet 54.

さらに、図2は、1つの電極対24およびそのリード線22の詳細な図を示す。スタンドオフ32は、バルーン材料に接触しない関係で電極対24をバルーン壁から離して保持するように設計されている軟質の可撓性アームによって形成される。それらはまた、バルーン壁から、実質的に一定の距離で、例えば1〜2mmで、電極対24の先端を保持するようにも設計されている。同時に、本実施形態によると、細長いリード線22は、バルーンの外側に向かって(中心軸から離れるように)所定の付勢を提供するための屈曲34、35を有する。   In addition, FIG. 2 shows a detailed view of one electrode pair 24 and its leads 22. The standoff 32 is formed by a soft flexible arm that is designed to hold the electrode pair 24 away from the balloon wall in a non-contacting manner with the balloon material. They are also designed to hold the tip of the electrode pair 24 at a substantially constant distance from the balloon wall, for example 1-2 mm. At the same time, according to this embodiment, the elongated lead 22 has bends 34, 35 to provide a predetermined bias towards the outside of the balloon (away from the central axis).

図3は、大動脈弁52の中に配置され、弁尖52上のカルシウム沈着56を粉砕または切断するようにいくらかの処置を提供した後の弁形成術バルーン14を示す部分断面図である。電極対24は、電気水圧衝撃療法の開始以降、スタンドオフによって組織から実質的に一定の距離で、例えば1〜2mmで保持されている。衝撃波がカルシウムを破壊すると、弁52における開口部60がゆっくりと拡大する。弁がより広く開かれていたとしても、電極対24と弁尖54の組織との間の距離は、スタンドオフ32、および、電極リード線における屈曲34、35によって制御され、実質的に一定のままである。   FIG. 3 is a partial cross-sectional view of the valvuloplasty balloon 14 after it has been placed in the aortic valve 52 and provided with some treatment to break or cut the calcification 56 on the leaflets 52. The electrode pair 24 is held at a substantially constant distance from the tissue by standoff, for example, 1 to 2 mm after the start of the electrohydraulic shock therapy. When the shock wave destroys calcium, the opening 60 in the valve 52 slowly expands. Even though the valve is more open, the distance between the electrode pair 24 and the leaflet 54 tissue is controlled by the standoff 32 and the bends 34, 35 in the electrode lead, and is substantially constant. It remains.

図4は、弁形成術バルーン14および衝撃波療法の組み合わせによって拡張された、弁52の完全に開いた開口部60を示す。カテーテルにおける付勢とスタンドオフとは、処置されている弁の組織から実質的に一定の距離で電極対を保持する。単純にするために、ただ2つの電極対が示されている。しかしながら、実際の実践では、3〜9個もの電極対が、典型的に、使用され得る。電極対24は、交互に、または、同時に発火させる(アーク形成電圧を提供する)ことができる。ここで、弁52上、および、その軟化させられた弁尖54(および弁カスプ(valve cusp))上のカルシウムが破砕され、TAVI(経カテーテル大動脈弁インプランテーション)弁の配置のために、弁をはるかに良好に整える。加えて、天然弁52は、置き換えなしでも自然に機能し得る。   FIG. 4 shows the fully open opening 60 of the valve 52 expanded by a combination of the valvuloplasty balloon 14 and shock wave therapy. The bias and standoff in the catheter holds the electrode pair at a substantially constant distance from the tissue of the valve being treated. For simplicity, only two electrode pairs are shown. However, in practical practice, as many as 3-9 electrode pairs may typically be used. The electrode pairs 24 can be fired alternately (providing an arc forming voltage) alternately or simultaneously. Here, calcium on the valve 52 and on its softened leaflet 54 (and valve cusp) is crushed and the valve is placed for placement of the TAVI (transcatheter aortic valve implantation) valve. A much better arrangement. In addition, the natural valve 52 can function naturally without replacement.

図5は、代替的な実施形態を示す。ここで、カテーテル110は、以前の実施形態のように、細長い本体112と、膨張式バルーン114とを含む。しかしながら、ここで、電極対であり得る衝撃波源120は、バスケットアームまたはフレーム要素124を有するバスケットまたはフレーム構造122に搭載される。バスケットアーム124は、Nitinolで形成され得、治療されている大動脈弁の狭窄が衝撃波によって軟化および拡張させられると、バルーン114とともに拡張するように設定され得る。   FIG. 5 shows an alternative embodiment. Here, the catheter 110 includes an elongate body 112 and an inflatable balloon 114 as in previous embodiments. Here, however, the shock source 120, which may be an electrode pair, is mounted on a basket or frame structure 122 having a basket arm or frame element 124. The basket arm 124 can be formed of Nitinol and can be set to expand with the balloon 114 when the stenosis of the aortic valve being treated is softened and expanded by a shock wave.

図6は、衝撃波源120に関してさらに詳細にNitinolアーム124を示す。ここで、アーム124は、衝撃波処置中に実質的に固定された距離でバルーンおよび組織から離れるように衝撃波源120を保持するために、バンプまたはスタンドオフ132を伴って構成され得ることが、分かり得る。   FIG. 6 shows the Nitinol arm 124 in more detail with respect to the shock source 120. Here, it can be seen that the arm 124 can be configured with bumps or standoffs 132 to hold the shock source 120 away from the balloon and tissue at a substantially fixed distance during the shock wave procedure. obtain.

図6はまた、以前の実施形態のように、カテーテル112がガイドワイヤ170を収め得ることを示す。ガイドワイヤ170は、ガイドワイヤ管腔172内に受け取られ得、以前に説明されたように、カテーテルを適正な位置に誘導するために使用され得る。   FIG. 6 also shows that the catheter 112 can accommodate a guidewire 170 as in previous embodiments. Guidewire 170 may be received within guidewire lumen 172 and may be used to guide the catheter to the proper position, as previously described.

本発明の特定の実施形態が示されて説明されているが、改変が行われ得、したがって、本発明の真の精神および範囲内にある全てのそのような変更および改変を添付の特許請求の範囲にカバーすることが、意図される。   While particular embodiments of the present invention have been shown and described, modifications may be made and all such variations and modifications within the true spirit and scope of the invention are therefore claimed. It is intended to cover the range.

Claims (20)

カテーテルであって、前記カテーテルは、
細長い本体と、
前記細長い本体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、
前記膨張式バルーン内の少なくとも1つの衝撃波源であって、前記衝撃波源は、前記バルーンが膨張させられるとき、前記バルーンの前記内表面に向かって付勢される、衝撃波源と、
タンドオフであって、前記スタンドオフは、前記バルーンが膨張させられるとき、前記バルーンの前記内表面から定された距離で前記少なくとも1つの衝撃波源を維持する、スタンドオフ
を備える、カテーテル。
A catheter, wherein the catheter is
An elongated body;
An inflatable balloon carried by said elongated body, said balloon having an inner surface and an outer surface;
At least one shock wave source in the inflatable balloon, wherein the shock wave source is biased toward the inner surface of the balloon when the balloon is inflated;
A scan standoff, the standoff when the balloon is inflated to maintain the at least one shockwave source in said fixed distance from the surface of the balloon, and a standoff, a catheter.
前記スタンドオフは、前記膨張式バルーン内の前記少なくとも1つの衝撃波源によって運ばれる、請求項1に記載のカテーテル。 The catheter of claim 1, wherein the standoff is carried by the at least one shock wave source in the inflatable balloon. 前記少なくとも1つの衝撃波源は、アーク発生器である、請求項1に記載のカテーテル。   The catheter of claim 1, wherein the at least one shock wave source is an arc generator. 前記アーク発生器は、電極対を備える、請求項3に記載のカテーテル。   The catheter of claim 3, wherein the arc generator comprises an electrode pair. 前記スタンドオフは、前記電極対から延びる、請求項4に記載のカテーテル。   The catheter of claim 4, wherein the standoff extends from the electrode pair. 前記スタンドオフは、可撓性材料で形成される、請求項5に記載のカテーテル。   The catheter of claim 5, wherein the standoff is formed of a flexible material. 前記アーク発生器は、細長いリード線を含み、前記電極対は、前記細長いリード線によって運ばれ、前記細長いリード線は、前記膨張式バルーンの前記内表面に向かう方向に付勢される、請求項5に記載のカテーテル。   The arc generator includes an elongate lead, and the electrode pair is carried by the elongate lead, and the elongate lead is biased in a direction toward the inner surface of the inflatable balloon. 5. The catheter according to 5. 前記細長いリード線は、前記膨張式バルーンの前記内表面に向かって前記細長いリード線を付勢する少なくとも1つの屈曲を含む、請求項7に記載のカテーテル。   The catheter of claim 7, wherein the elongate lead includes at least one bend that biases the elongate lead toward the inner surface of the inflatable balloon. 前記膨張式バルーンの前記内表面に向かって前記細長いリード線を付勢する前記細長いリード線によって運ばれる付勢部材をさらに含む、請求項7に記載のカテーテル。   The catheter of claim 7, further comprising a biasing member carried by the elongated lead that biases the elongated lead toward the inner surface of the inflatable balloon. 前記付勢部材は、ばねを備える、請求項9に記載のカテーテル。   The catheter of claim 9, wherein the biasing member comprises a spring. 前記少なくとも1つの衝撃波源は、アーク発生器を備え、前記スタンドオフは、前記アーク発生器によって運ばれ、前記アーク発生器は、前記膨張式バルーンの前記内表面に向かって付勢される、請求項1に記載のカテーテル。   The at least one shock source comprises an arc generator, the standoff is carried by the arc generator, and the arc generator is biased toward the inner surface of the inflatable balloon. Item 10. The catheter according to Item 1. 前記カテーテルは、前記少なくとも1つの衝撃波源を運ぶフレーム構造をさらに含み、前記フレーム構造は、前記膨張式バルーンの膨張とともに拡張することにより、前記バルーンの前記内表面から前記定された距離で前記少なくとも1つの衝撃波源を維持する、請求項1に記載のカテーテル。 The catheter wherein further comprising a frame structure carrying at least one shockwave source, said frame structure, said by expanding with the expansion of the inflatable balloon, said at the fixed distance from the inner surface of said balloon The catheter of claim 1, wherein the catheter maintains at least one shock wave source. 前記フレーム構造は、前記少なくとも1つの衝撃波源に隣接する前記スタンドオフを含むことにより、前記バルーンの前記内表面から定された距離で前記少なくとも1つの衝撃波源を維持する、請求項12に記載のカテーテル。 Said frame structure, said by including the standoff adjacent to at least one shockwave source, maintaining said at least one shock wave source in said fixed distance from the surface of the balloon, according to claim 12 Catheter. カテーテルであって、前記カテーテルは、
細長い本体と、
前記細長い本体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、
前記膨張式バルーン内の少なくとも1つの衝撃波源と
を含み、
前記カテーテルは、患者の静脈または動脈に挿入されるように構成されており、前記バルーンは、処置されるべき解剖学的構造に隣接して配置されるように構成されており、
前記バルーンは、液体で膨張させられ、
前記衝撃波源は、前記バルーンの前記内表面に向かって付勢されるように構成されており、
前記衝撃波源は、前記解剖学的構造を処置するために、前記液体を通って伝搬す衝撃波を前記バルーン内で提供するように構成されており、
前記少なくとも1つの衝撃波源は、前記衝撃波が前記少なくとも1つの衝撃波源によって提供されている間に、前記バルーンの前記内表面から定された距離で維持されるように構成されている、カテーテル。
A catheter, wherein the catheter is
An elongated body;
An inflatable balloon carried by said elongated body, said balloon having an inner surface and an outer surface;
And at least one shock wave source in the inflatable balloon,
The catheter is configured to be inserted into a patient's vein or artery, and the balloon is configured to be positioned adjacent to the anatomy to be treated;
The balloon is inflated with a liquid;
The shock wave source is configured to be biased toward the inner surface of the balloon;
The shockwave source is to treat the anatomical structure, is configured to provide a shock wave you propagate through the liquid in the balloon,
Wherein the at least one shockwave source, the shock wave while being provided by the at least one shockwave source, and is configured to be maintained at fixed distance from the inner surface of the balloon, catheter.
前記衝撃波発生器によって運ばれるスタンドオフをさらに含み、前記スタンドオフは、前記バルーンの前記内表面に対して付勢されるように構成されている、請求項14に記載のカテーテル。 The catheter of claim 14, further comprising a standoff carried by the shock wave generator, the standoff configured to be biased against the inner surface of the balloon. 前記少なくとも1つの衝撃波源を運ぶフレーム構造をさらに含み、前記フレーム構造は、前記バルーンの前記内表面から定された距離で前記少なくとも1つの衝撃波源を維持するように、前記膨張式バルーンの膨張とともに拡張されるように構成されている、請求項14に記載のカテーテル。 Wherein further comprising a frame structure carrying at least one shockwave source, said frame structure, said at fixed distance from the inner surface of the balloon so as to maintain at least one shockwave source, expansion of the inflatable balloon The catheter of claim 14, wherein the catheter is configured to be expanded together. カテーテルであって、前記カテーテルは、
細長い本体と、
前記細長い本体によって運ばれる膨張式バルーンであって、前記バルーンは、内表面および外表面を有する、バルーンと、
前記膨張式バルーン内に位置する少なくとも1つの衝撃波源を運ぶ細長いリード線であって、前記リード線は、前記バルーンが膨張させられるとき、前記バルーンの前記内表面に向かって付勢される、リード線と、
前記リード線に取り付けられたスタンドオフであって、前記スタンドオフは、前記バルーンが膨張させられるとき、前記バルーンの前記内表面から前記衝撃波源を離間するように構成されている、スタンドオフと
を備える、カテーテル。
A catheter, wherein the catheter is
An elongated body;
An inflatable balloon carried by said elongated body, said balloon having an inner surface and an outer surface;
An elongate lead carrying at least one shock source located within the inflatable balloon, wherein the lead is biased toward the inner surface of the balloon when the balloon is inflated. Lines and,
A standoff attached to the lead wire, wherein the standoff is configured to separate the shock wave source from the inner surface of the balloon when the balloon is inflated. A catheter.
前記スタンドオフは、可撓性材料から形成される、請求項17に記載のカテーテル。   The catheter of claim 17, wherein the standoff is formed from a flexible material. 前記少なくとも1つの衝撃波源は、アーク発生器である、請求項17に記載のカテーテル。   The catheter of claim 17, wherein the at least one shock wave source is an arc generator. 前記アーク発生器は、電極対を備える、請求項19に記載のカテーテル。   The catheter of claim 19, wherein the arc generator comprises an electrode pair.
JP2015526587A 2012-08-06 2013-08-01 Shock wave catheter Active JP6164705B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261679911P 2012-08-06 2012-08-06
US61/679,911 2012-08-06
PCT/US2013/053292 WO2014025620A1 (en) 2012-08-06 2013-08-01 Shockwave catheter

Publications (3)

Publication Number Publication Date
JP2015528329A JP2015528329A (en) 2015-09-28
JP2015528329A5 JP2015528329A5 (en) 2016-08-12
JP6164705B2 true JP6164705B2 (en) 2017-07-19

Family

ID=48980353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526587A Active JP6164705B2 (en) 2012-08-06 2013-08-01 Shock wave catheter

Country Status (6)

Country Link
US (1) US9220521B2 (en)
EP (1) EP2879597B1 (en)
JP (1) JP6164705B2 (en)
CN (1) CN104736073A (en)
CA (1) CA2881184C (en)
WO (1) WO2014025620A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2727429C (en) 2008-06-13 2016-01-26 Daniel Hawkins Shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
CA2881211A1 (en) 2012-08-08 2014-02-13 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US9320530B2 (en) 2013-03-13 2016-04-26 The Spectranetics Corporation Assisted cutting balloon
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
CN104367367B (en) * 2014-11-12 2016-08-17 陈良龙 Percutaneous aortic valve cutter
US20160135828A1 (en) * 2014-11-14 2016-05-19 Shockwave Medical, Inc. Shock wave valvuloplasty device and methods
EP3240603B1 (en) 2014-12-30 2019-05-01 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
EP3240600B1 (en) 2014-12-30 2019-05-08 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
US10456283B2 (en) 2016-07-13 2019-10-29 Boston Scientific Scimed, Inc. Apparatus and method for maintaining patency in a vessel adjacent to nearby surgery
CN109788965B (en) 2016-10-06 2022-07-15 冲击波医疗公司 Aortic leaflet repair using shock wave applicator
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US10966737B2 (en) * 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
NL2019807B1 (en) 2017-10-26 2019-05-06 Boston Scient Scimed Inc Shockwave generating device
US11071557B2 (en) 2017-10-19 2021-07-27 Medtronic Vascular, Inc. Catheter for creating pulse wave within vasculature
US10765440B2 (en) * 2017-11-14 2020-09-08 Sonic Vascular, Inc. Focused intraluminal lithectomy catheter device and methods
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
EP3870092A1 (en) 2018-10-24 2021-09-01 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US11464658B2 (en) 2018-10-25 2022-10-11 Medtronic Vascular, Inc. Implantable medical device with cavitation features
US11357958B2 (en) 2018-10-25 2022-06-14 Medtronic Vascular, Inc. Devices and techniques for cardiovascular intervention
US11266817B2 (en) 2018-10-25 2022-03-08 Medtronic Vascular, Inc. Cavitation catheter
EP3685772A1 (en) * 2019-01-24 2020-07-29 Aorticlab Sarl Device for the treatment of tissue calcification
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US20200406009A1 (en) 2019-06-26 2020-12-31 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11992232B2 (en) 2020-10-27 2024-05-28 Shockwave Medical, Inc. System for treating thrombus in body lumens
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
CN115363689A (en) * 2021-05-21 2022-11-22 上海微创心通医疗科技有限公司 Medical catheter and medical device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11957369B2 (en) 2021-08-05 2024-04-16 Nextern Innovation, Llc Intravascular lithotripsy systems and methods
US11877761B2 (en) 2021-08-05 2024-01-23 Nextern Innovation, Llc Systems, devices and methods for monitoring voltage and current and controlling voltage of voltage pulse generators
US11801066B2 (en) 2021-08-05 2023-10-31 Nextern Innovation, Llc Systems, devices and methods for selection of arc location within a lithoplasty balloon spark gap
US11896248B2 (en) 2021-08-05 2024-02-13 Nextern Innovation, Llc Systems, devices and methods for generating subsonic pressure waves in intravascular lithotripsy
US12023098B2 (en) 2021-10-05 2024-07-02 Shockwave Medical, Inc. Lesion crossing shock wave catheter
DE112022005004T5 (en) 2021-10-19 2024-08-01 Shockwave Medical, Inc. INTRAVASCULAR LITHOTRIPSY CATHETER WITH INTERFERING SHOCK WAVES
CN113842190A (en) * 2021-10-27 2021-12-28 上海微创旋律医疗科技有限公司 Electrode balloon catheter
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
US12035932B1 (en) 2023-04-21 2024-07-16 Shockwave Medical, Inc. Intravascular lithotripsy catheter with slotted emitter bands

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT309663B (en) 1971-05-14 1973-08-27 Phil Heinz Schmidt Kloiber Dr Device for destroying stones in the bladder, ureter, kidney and the like. like
US3902499A (en) 1974-01-02 1975-09-02 Hoffman Saul Stone disintegrator
US4027674A (en) 1975-06-06 1977-06-07 Tessler Arthur N Method and device for removing concretions within human ducts
US4030505A (en) 1975-11-28 1977-06-21 Calculus Instruments Ltd. Method and device for disintegrating stones in human ducts
DE3038445A1 (en) 1980-10-11 1982-05-27 Dornier Gmbh, 7990 Friedrichshafen Pressure wave generator for diagnosis and therapy - has spark gap in inflatable balloon at end of catheter
US4685458A (en) 1984-03-01 1987-08-11 Vaser, Inc. Angioplasty catheter and method for use thereof
JPS61135648A (en) * 1984-12-05 1986-06-23 オリンパス光学工業株式会社 Discharge stone crushing probe
US5176675A (en) 1985-04-24 1993-01-05 The General Hospital Corporation Use of lasers to break down objects for removal from within the body
DE3543881C1 (en) 1985-12-12 1987-03-26 Dornier Medizintechnik Underwater electrode for non-contact lithotripsy
JPS62275446A (en) 1986-05-21 1987-11-30 オリンパス光学工業株式会社 Discharge stone crushing apparatus
US4662126A (en) 1986-05-23 1987-05-05 Fike Corporation Vibration resistant explosion control vent
US5154722A (en) 1988-05-05 1992-10-13 Circon Corporation Electrohydraulic probe having a controlled discharge path
EP0355177A1 (en) 1988-08-17 1990-02-28 Siemens Aktiengesellschaft Apparatus for the contactless desintegration of concrements in a living thing body
US4955377A (en) 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US5246447A (en) 1989-02-22 1993-09-21 Physical Sciences, Inc. Impact lithotripsy
US5425735A (en) 1989-02-22 1995-06-20 Psi Medical Products, Inc. Shielded tip catheter for lithotripsy
US5281231A (en) 1989-02-22 1994-01-25 Physical Sciences, Inc. Impact lithotrypsy
US5078717A (en) 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5046503A (en) 1989-04-26 1991-09-10 Advanced Cardiovascular Systems, Inc. Angioplasty autoperfusion catheter flow measurement method and apparatus
US5002085A (en) 1990-02-12 1991-03-26 Bs&B Safety Systems, Inc. Low pressure non-fragmenting rupture disks
DE4016054A1 (en) 1990-05-18 1991-11-21 Dornier Medizintechnik SPARK RANGE FOR LITHOTRIPSY
US5103804A (en) 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5152767A (en) 1990-11-23 1992-10-06 Northgate Technologies, Inc. Invasive lithotripter with focused shockwave
US5324255A (en) 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
US5152768A (en) 1991-02-26 1992-10-06 Bhatta Krishna M Electrohydraulic lithotripsy
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5395335A (en) 1991-05-24 1995-03-07 Jang; G. David Universal mode vascular catheter system
CA2120516A1 (en) 1991-10-03 1993-04-15 Ralph De La Torre Apparatus and method for vasodilation
US6406486B1 (en) 1991-10-03 2002-06-18 The General Hospital Corporation Apparatus and method for vasodilation
EP0571306A1 (en) 1992-05-22 1993-11-24 LASER MEDICAL TECHNOLOGY, Inc. Apparatus and method for removal of deposits from the walls of body passages
JPH06125915A (en) 1992-10-21 1994-05-10 Inter Noba Kk Catheter type medical instrument
CA2114988A1 (en) 1993-02-05 1994-08-06 Matthew O'boyle Ultrasonic angioplasty balloon catheter
CA2118886C (en) 1993-05-07 1998-12-08 Dennis Vigil Method and apparatus for dilatation of a stenotic vessel
US5417208A (en) 1993-10-12 1995-05-23 Arrow International Investment Corp. Electrode-carrying catheter and method of making same
US8025661B2 (en) 1994-09-09 2011-09-27 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
EP0781447B1 (en) 1994-09-21 1999-06-02 Hmt High Medical Technologies Entwicklungs- Und Vertriebs Ag Device for generating shock waves for medical treatment, in particular for electro-hydraulic lithotripsy
US5603731A (en) 1994-11-21 1997-02-18 Whitney; Douglass G. Method and apparatus for thwarting thrombosis
DE19504261A1 (en) 1995-02-09 1996-09-12 Krieg Gunther Angioplasty catheter for dilating and / or opening blood vessels
US5582578A (en) 1995-08-01 1996-12-10 Duke University Method for the comminution of concretions
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
US5846218A (en) 1996-09-05 1998-12-08 Pharmasonics, Inc. Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US6352535B1 (en) 1997-09-25 2002-03-05 Nanoptics, Inc. Method and a device for electro microsurgery in a physiological liquid environment
US6083232A (en) 1996-09-27 2000-07-04 Advanced Cardivascular Systems, Inc. Vibrating stent for opening calcified lesions
DE19717790A1 (en) 1997-04-26 1998-10-29 Convergenza Ag Device with a therapeutic catheter
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
KR20010031350A (en) 1997-10-21 2001-04-16 추후제출 Photoacoustic removal of occlusions from blood vessels
ATE362163T1 (en) 1997-10-24 2007-06-15 Mts Europ Gmbh METHOD FOR AUTOMATICALLY ADJUSTING THE ELECTRODE DISTANCE OF A SPARK GAP IN ELECTROHYDRAULIC SHOCK WAVE SYSTEMS
US6083239A (en) * 1998-11-24 2000-07-04 Embol-X, Inc. Compliant framework and methods of use
US6755821B1 (en) 1998-12-08 2004-06-29 Cardiocavitational Systems, Inc. System and method for stimulation and/or enhancement of myocardial angiogenesis
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6277138B1 (en) 1999-08-17 2001-08-21 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame
US6398792B1 (en) 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
DE19929112A1 (en) 1999-06-24 2001-01-11 Ferton Holding Sa Medical instrument for the treatment of biological tissue and method for transmitting pressure waves
US6652547B2 (en) 1999-10-05 2003-11-25 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode
US20040249401A1 (en) 1999-10-05 2004-12-09 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with a non-compliant balloon
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6371971B1 (en) 1999-11-15 2002-04-16 Scimed Life Systems, Inc. Guidewire filter and methods of use
US6589253B1 (en) 1999-12-30 2003-07-08 Advanced Cardiovascular Systems, Inc. Ultrasonic angioplasty transmission wire
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
US7744595B2 (en) 2000-08-01 2010-06-29 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US6367203B1 (en) 2000-09-11 2002-04-09 Oklahoma Safety Equipment Co., Inc. Rupture panel
US6638246B1 (en) 2000-11-28 2003-10-28 Scimed Life Systems, Inc. Medical device for delivery of a biologically active material to a lumen
US6514203B2 (en) 2001-02-12 2003-02-04 Sonata Technologies Ltd. Method for ultrasonic coronary thrombolysis
US6607003B1 (en) 2001-04-23 2003-08-19 Oklahoma Safety Equipment Co, Gasket-lined rupture panel
US7674258B2 (en) 2002-09-24 2010-03-09 Endoscopic Technologies, Inc. (ESTECH, Inc.) Electrophysiology electrode having multiple power connections and electrophysiology devices including the same
US6740081B2 (en) 2002-01-25 2004-05-25 Applied Medical Resources Corporation Electrosurgery with improved control apparatus and method
US7815596B2 (en) 2002-02-28 2010-10-19 Cordis Corporation Localized fluid delivery having a porous applicator and methods for using the same
US6989009B2 (en) 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
US7829029B2 (en) 2002-05-29 2010-11-09 NanoVibronix, Inv. Acoustic add-on device for biofilm prevention in urinary catheter
US7153315B2 (en) 2002-06-11 2006-12-26 Boston Scientific Scimed, Inc. Catheter balloon with ultrasonic microscalpel blades
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
JP2004081374A (en) 2002-08-26 2004-03-18 Dairin Kk Instrument for removing sediment in tubular organ
JP2004357792A (en) 2003-06-02 2004-12-24 Keio Gijuku Vascular restenosis preventive therapeutic apparatus by sound pressure wave induced by irradiation of high strength pulse light
US7628785B2 (en) 2003-06-13 2009-12-08 Piezo Technologies Endoscopic medical treatment involving acoustic ablation
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
US7247269B2 (en) 2003-07-21 2007-07-24 Biosense Webster, Inc. Method for making a spiral array ultrasound transducer
JP4072580B2 (en) 2003-09-25 2008-04-09 ケイセイ医科工業株式会社 Thrombectomy catheter
MXPA06007623A (en) 2003-12-31 2007-01-30 Johnson & Johnson Circumferential ablation device assembly with an expandable member.
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
CN101043914A (en) 2004-07-14 2007-09-26 旁路公司 Material delivery system
JP2008506447A (en) 2004-07-14 2008-03-06 バイ−パス, インコーポレイテッド Material delivery system
CA3005526C (en) 2004-10-02 2019-10-22 Edwards Lifesciences Cardiaq, Llc Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060184076A1 (en) 2004-12-01 2006-08-17 Gill Robert P Ultrasonic device and method for treating stones within the body
EP1819304B1 (en) 2004-12-09 2023-01-25 Twelve, Inc. Aortic valve repair
US20060241524A1 (en) 2005-03-11 2006-10-26 Qi Yu Intravascular ultrasound catheter device and method for ablating atheroma
US8162859B2 (en) 2005-06-09 2012-04-24 General Patent , LLC Shock wave treatment device and method of use
US20070088380A1 (en) 2005-10-14 2007-04-19 Endocross Ltd. Balloon catheter system for treating vascular occlusions
US20070239082A1 (en) 2006-01-27 2007-10-11 General Patent, Llc Shock Wave Treatment Device
CA2638012A1 (en) 2006-02-02 2007-08-09 Releaf Medical Ltd. Shock-wave generating device, such as for the treatment of calcific aortic stenosis
US20080077165A1 (en) * 2006-02-24 2008-03-27 National University Of Ireland, Galway Minimally Invasive Intravascular Treatment Device
US8221303B2 (en) * 2006-04-24 2012-07-17 Yoel Ovil Intra-ventricular cardiac assist device and related method of use
US7950397B2 (en) * 2006-05-12 2011-05-31 Vytronus, Inc. Method for ablating body tissue
US20080097251A1 (en) 2006-06-15 2008-04-24 Eilaz Babaev Method and apparatus for treating vascular obstructions
JP2009540954A (en) 2006-06-20 2009-11-26 エーオーテックス, インコーポレイテッド Prosthetic valve implantation site preparation technology
CA2655391C (en) 2006-06-21 2016-11-08 Intrapace, Inc. Endoscopic device delivery system
EP2219723A2 (en) 2007-10-22 2010-08-25 Endocross Ltd. Balloons and balloon catheter systems for treating vascular occlusions
WO2009121017A1 (en) 2008-03-27 2009-10-01 The Regents Of The University Of California Balloon catheter for reducing restenosis via irreversible electroporation
US20100036294A1 (en) 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
CA2727429C (en) * 2008-06-13 2016-01-26 Daniel Hawkins Shockwave balloon catheter system
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US20130030431A1 (en) 2008-06-13 2013-01-31 Adams John M Shock wave balloon catheter system with off center shock wave generator
ES2659322T3 (en) 2008-07-27 2018-03-14 Pi-R-Squared Ltd. Calcification fractures in heart valves
US7951111B2 (en) 2008-10-10 2011-05-31 Intervalve, Inc. Valvuloplasty catheter and methods
ES2394197T3 (en) * 2008-10-31 2013-01-23 Ferton Holding Sa Instrument for generating pressure waves as a shock wave for the treatment of biological tissue
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
DK3117784T3 (en) 2009-07-08 2019-04-08 Sanuwave Inc USE OF INTRACORPORAL PRESSURE SHOCK WAVES IN MEDICINE
WO2011069025A1 (en) 2009-12-05 2011-06-09 Pi-R-Squared Ltd. Fracturing calcifications in heart valves
EP2568905A4 (en) 2010-05-12 2017-07-26 Shifamed Holdings, LLC Low profile electrode assembly
US20120116289A1 (en) 2010-11-09 2012-05-10 Daniel Hawkins Shockwave valvuloplasty device with guidewire and debris basket
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
CN104582621B (en) 2012-08-06 2017-04-12 冲击波医疗公司 Low profile electrodes for an angioplasty shock wave catheter
CA2881211A1 (en) 2012-08-08 2014-02-13 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control

Also Published As

Publication number Publication date
JP2015528329A (en) 2015-09-28
US9220521B2 (en) 2015-12-29
WO2014025620A1 (en) 2014-02-13
EP2879597B1 (en) 2016-09-21
US20140163592A1 (en) 2014-06-12
CN104736073A (en) 2015-06-24
CA2881184A1 (en) 2014-02-13
CA2881184C (en) 2019-06-04
EP2879597A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6164705B2 (en) Shock wave catheter
JP7414786B2 (en) Aortic cusp valve repair using shock wave applicator
US11696799B2 (en) Shock wave balloon catheter with multiple shock wave sources
EP2326264B1 (en) Fracturing calcifications in heart valves
US20160135828A1 (en) Shock wave valvuloplasty device and methods
AU2013299562B2 (en) Shockwave valvuloplasty with multiple balloons
US20150238209A1 (en) Shockwave valvuloplasty catheter system
JP2015528329A5 (en)
ES2675932T3 (en) Improved device to go through vessel occlusions
CN117481744A (en) Shock wave treatment device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6164705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250