JP6159630B2 - Gold collection method - Google Patents

Gold collection method Download PDF

Info

Publication number
JP6159630B2
JP6159630B2 JP2013194446A JP2013194446A JP6159630B2 JP 6159630 B2 JP6159630 B2 JP 6159630B2 JP 2013194446 A JP2013194446 A JP 2013194446A JP 2013194446 A JP2013194446 A JP 2013194446A JP 6159630 B2 JP6159630 B2 JP 6159630B2
Authority
JP
Japan
Prior art keywords
gold
acidic solution
strongly acidic
metal
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013194446A
Other languages
Japanese (ja)
Other versions
JP2014080682A (en
Inventor
一箭 健治
健治 一箭
哲平 内田
哲平 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Eco System Recycling Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Eco System Recycling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50785134&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6159630(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Eco Systems Co Ltd, Eco System Recycling Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2013194446A priority Critical patent/JP6159630B2/en
Publication of JP2014080682A publication Critical patent/JP2014080682A/en
Application granted granted Critical
Publication of JP6159630B2 publication Critical patent/JP6159630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、金(Au)及び金以外の金属を含む強酸性溶液から金を回収する金の回収方法に関する。   The present invention relates to a gold recovery method for recovering gold from a strongly acidic solution containing gold (Au) and a metal other than gold.

使用済の各種廃棄電子部品には、金、銀等の貴金属、銅、鉄等のベースメタル、レアメタルなどの有用な金属が多く含まれており、これらの有用な金属を回収して再利用することが試みられている。これらの金属の中でも、金は有価な金属であるため積極的に回収が行われている。
各種廃棄電子部品から金を回収する方法として、例えば、各種廃棄電子部品を粉砕し、酸で金属成分を浸出させる酸溶解法などがある。しかし、金は酸で溶解し難いため、金が溶解する条件では鉄、銅、アルミニウム等の金属も一緒に溶解してしまう。このように雑多な金属を含む強酸性溶液を用いて金の回収を行うと金以外の金属も同伴され、金を分離するための処理工程数が増大してしまうという問題がある。
Various types of used waste electronic components contain many precious metals such as gold and silver, base metals such as copper and iron, and rare metals, and these useful metals are collected and reused. It has been tried. Among these metals, gold is a valuable metal and is being actively collected.
Examples of a method for recovering gold from various waste electronic components include an acid dissolution method in which various waste electronic components are pulverized and a metal component is leached with an acid. However, since gold is difficult to dissolve with an acid, metals such as iron, copper, and aluminum are dissolved together under conditions where gold is dissolved. When gold is recovered using such a strong acidic solution containing various metals, there is a problem that metals other than gold are accompanied and the number of processing steps for separating gold is increased.

そこで、例えば、貴金属及び貴金属以外の金属を含む強酸性(pH<1)の廃液から貴金属を回収する方法として、中和剤の添加により廃液のpHを2〜12に調整し、生成した沈殿物を回収した後、残液に還元剤を添加し、生成した還元物を回収し、回収した沈殿物及び還元物を溶融することにより、貴金属を回収する方法が提案されている(特許文献1参照)。しかし、この提案の技術は、中和剤を添加してpH調整を行うため、中和剤の添加を行う手間や中和剤を購入するためのコストがかかるという課題がある。
したがって、金及び金以外の金属を含む強酸性溶液から簡便かつ安価に高品位の金を選択的に回収することができる金の回収方法の提供が望まれている。
Therefore, for example, as a method of recovering noble metal from a strongly acidic (pH <1) waste liquid containing noble metal and a metal other than the noble metal, the pH of the waste liquid is adjusted to 2 to 12 by adding a neutralizing agent, and the generated precipitate Is recovered, the reducing agent is added to the residual liquid, the resulting reduced product is recovered, and the recovered precipitate and the reduced product are melted to recover the noble metal (see Patent Document 1). ). However, since the proposed technique adjusts the pH by adding a neutralizing agent, there is a problem that it takes time to add the neutralizing agent and cost to purchase the neutralizing agent.
Therefore, it is desired to provide a gold recovery method that can selectively recover high-grade gold easily and inexpensively from a strongly acidic solution containing gold and a metal other than gold.

特開2009−102722号公報JP 2009-102722 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、金及び金以外の金属を含む強酸性溶液から簡便かつ安価に高品位の金を選択的に回収することができる金の回収方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a gold recovery method capable of selectively recovering high-grade gold easily and inexpensively from a strongly acidic solution containing gold and a metal other than gold.

前記課題を解決するために本発明者らが鋭意検討を重ねた結果、金及び金以外の金属を含む強酸性溶液の酸化還元電位(銀−塩化銀電極)が400mV以上700mV未満になるように還元剤を添加することにより、簡便かつ安価に高品位の金を選択的に回収できることを知見し、本発明を完成するに至った。   As a result of intensive studies by the present inventors in order to solve the above problems, the oxidation-reduction potential (silver-silver chloride electrode) of a strongly acidic solution containing gold and a metal other than gold is 400 mV or more and less than 700 mV. The inventors have found that high-grade gold can be selectively recovered simply and inexpensively by adding a reducing agent, and the present invention has been completed.

本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 金及び金以外の金属を含むpHが1以下の強酸性溶液に、酸化還元電位(銀−塩化銀電極)が400mV以上700mV未満になるように還元剤を添加して、金を還元析出することを特徴とする金の回収方法である。
<2> 前記強酸性溶液に還元剤を添加する前において、酸化還元電位(銀−塩化銀電極)が700mV以上である前記<1>に記載の金の回収方法である。
<3> 前記還元剤が、ヒドラジン、炭酸ヒドラジン、及び硫酸ヒドラジンから選択される少なくとも1種である前記<1>から<2>のいずれかに記載の金の回収方法である。
<4> 前記金以外の金属が、鉄、銅、アルミニウム、及びニッケルから選択される少なくとも1種である前記<1>から<3>のいずれかに記載の金の回収方法である。
<5> 前記強酸性溶液が、前記金以外の金属を金の含有量の2倍以上含む高不純物強酸性溶液である前記<1>から<4>のいずれかに記載の金の回収方法である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> Reduce gold by adding a reducing agent to a strongly acidic solution containing gold and a metal other than gold with a pH of 1 or less so that the oxidation-reduction potential (silver-silver chloride electrode) is 400 mV or more and less than 700 mV. This is a gold recovery method characterized by precipitation.
<2> The gold recovery method according to <1>, wherein the redox potential (silver-silver chloride electrode) is 700 mV or more before the reducing agent is added to the strongly acidic solution.
<3> The gold recovery method according to any one of <1> to <2>, wherein the reducing agent is at least one selected from hydrazine, hydrazine carbonate, and hydrazine sulfate.
<4> The gold recovery method according to any one of <1> to <3>, wherein the metal other than gold is at least one selected from iron, copper, aluminum, and nickel.
<5> The method for recovering gold according to any one of <1> to <4>, wherein the strongly acidic solution is a high-impurity strongly acidic solution containing a metal other than gold twice or more the content of gold. is there.

本発明によると、従来における問題を解決することができ、金及び金以外の金属を含む強酸性溶液から簡便かつ安価に高品位(高純度)の金を選択的に回収することができる金の回収方法を提供することができる。   According to the present invention, the conventional problems can be solved, and gold of high quality (high purity) can be selectively recovered easily and inexpensively from a strongly acidic solution containing gold and a metal other than gold. A recovery method can be provided.

図1は、実施例1の金の回収方法の工程フローを示す図である。FIG. 1 is a diagram illustrating a process flow of the gold recovery method according to the first embodiment. 図2は、実施例2の金の回収方法の工程フローを示す図である。FIG. 2 is a diagram illustrating a process flow of the gold recovery method according to the second embodiment. 図3は、実施例3の金の回収方法の工程フローを示す図である。FIG. 3 is a diagram illustrating a process flow of the gold recovery method according to the third embodiment.

(金の回収方法)
本発明の金の回収方法は、金及び金以外の金属を含むpHが1以下の強酸性溶液に、酸化還元電位(銀−塩化銀電極)が400mV以上700mV未満になるように還元剤を添加して金を還元析出することを特徴とする。
(Gold collection method)
In the gold recovery method of the present invention, a reducing agent is added to a strongly acidic solution containing gold and a metal other than gold so that the pH is 1 or less so that the oxidation-reduction potential (silver-silver chloride electrode) is 400 mV or more and less than 700 mV. Then, gold is reduced and precipitated.

<強酸性溶液>
前記強酸性溶液は、金及び金以外の金属を含む強酸性の溶液であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、各種廃棄電子部品を粉砕し、酸で金属成分を浸出させた強酸性溶液、各種廃棄電子部品を粉砕又はそのままで酸化処理し、酸で金属成分を浸出させた強酸性溶液、各種工業の過程で得られる金及び金以外の金属を含む強酸性溶液、貴金属の精錬工場からの廃液、などが挙げられる。これらの中でも、各種廃棄電子部品を粉砕し、酸で金属成分を浸出させた強酸性溶液が好適である。
<Strongly acidic solution>
The strong acid solution is not particularly limited as long as it is a strong acid solution containing gold and a metal other than gold, and can be appropriately selected according to the purpose. Strong acid solution leached with components, strong acid solution crushed or oxidized as it is with various waste electronic components, and leached metal components with acid, strong acid containing gold and metals other than gold obtained in various industrial processes And liquid waste from a precious metal smelting plant. Among these, a strongly acidic solution obtained by pulverizing various discarded electronic components and leaching a metal component with an acid is preferable.

前記各種廃棄電子部品を粉砕し、酸で金属成分を浸出させた強酸性溶液の調製について説明する。
前記各種廃棄電子部品とは、使用済の廃棄処分となった各種電子部品をいう。前記各種電子部品は、ICチップ、抵抗、コンデンサー、各種センサー、積層基板等を含む部品であり、パソコン、テレビ、洗濯機、電子レンジ、冷蔵庫、産業機器の制御等に用いられる。このため、各種廃棄電子部品から浸出される金属成分は、前記電子部品毎に構成比は異なるが、金、銀、銅、鉛、亜鉛、ニッケル、アルミニウム、コバルトなどが含まれている。
前記各種廃棄電子部品を粉砕し、粉末状にする。前記各種廃棄電子部品の粉砕方法としては、特に制限はなく、公知の粉砕機を用いて行うことができる。前記粉砕機としては、例えば、コーヒーミル、ジョークラッシャー、ボールミル、ハンマーミル、多軸回転破砕機、ヘンシェル、竪型粉砕機などが挙げられる。
前記金属成分を酸で浸出後、浸出液を固液分離することにより、金及び金以外の金属を含むpHが1以下の強酸性溶液が得られる。
The preparation of a strongly acidic solution in which the various discarded electronic components are pulverized and the metal component is leached with an acid will be described.
The various waste electronic components refer to various electronic components that have been used and disposed of. The various electronic components are components including an IC chip, a resistor, a capacitor, various sensors, a laminated substrate, and the like, and are used for control of personal computers, televisions, washing machines, microwave ovens, refrigerators, industrial equipment, and the like. For this reason, the metal component leached out from various types of discarded electronic components includes gold, silver, copper, lead, zinc, nickel, aluminum, cobalt, and the like, although the composition ratio differs for each electronic component.
The various discarded electronic components are pulverized into powder. There is no restriction | limiting in particular as the grinding method of the said various waste electronic components, It can carry out using a well-known grinder. Examples of the pulverizer include a coffee mill, a jaw crusher, a ball mill, a hammer mill, a multi-axis rotary crusher, a Henschel, and a vertical pulverizer.
After leaching the metal component with an acid, the leachate is subjected to solid-liquid separation to obtain a strongly acidic solution having a pH of 1 or less containing gold and a metal other than gold.

前記金及び金以外の金属を含むpHが1以下の強酸性溶液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、金を十分に溶解できる点から、王水(塩酸と硝酸の混合液)が好ましく、市販薬品を用いることができる。
前記強酸性溶液は、pHが1以下であり、0.1以下が好ましい。前記pHが1を超えると、金以外の金属の塩が発生して、回収後の金に取り込まれてしまい、金品位が低下してしまうことがある。
前記pHは、例えば、市販のpHメーターを用いて測定することができる。
前記金(Au)以外の金属としては、例えば、銅(Cu)、鉄(Fe)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、白金(Pt)、パラジウム(Pd)、チタン(Ti)などが挙げられる。前記強酸性溶液は、前記金以外の金属が2種以上含まれており、これらの中でも、鉄(Fe)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)を含んでいる場合でもよい。
The strongly acidic solution containing gold and a metal other than gold having a pH of 1 or less is not particularly limited and may be appropriately selected depending on the intended purpose. (A mixture of hydrochloric acid and nitric acid) is preferable, and commercially available chemicals can be used.
The strongly acidic solution has a pH of 1 or less, preferably 0.1 or less. If the pH exceeds 1, a metal salt other than gold is generated and taken into the recovered gold, which may lower the gold quality.
The pH can be measured, for example, using a commercially available pH meter.
Examples of the metal other than gold (Au) include copper (Cu), iron (Fe), nickel (Ni), zinc (Zn), aluminum (Al), platinum (Pt), palladium (Pd), titanium ( Ti) and the like. The strong acid solution contains two or more kinds of metals other than gold, and among them, iron (Fe), copper (Cu), aluminum (Al), nickel (Ni) may be included. .

本発明の金の回収方法においては、前記強酸性溶液に還元剤を添加する前において、酸化還元電位(銀−塩化銀電極)が高電位の強酸性溶液を用いることが、金の溶解を促進する点から好ましい。
前記強酸性溶液に還元剤を添加する前の酸化還元電位(ORP)は、特に制限はなく、目的に応じて適宜選択することができるが、700mV以上が好ましく、1,000mV以上がより好ましい。前記還元剤を添加する前の強酸性溶液の酸化還元電位を高電位とすることにより、金の含有量を1,000mg/L以上、好ましくは2,000mg/L以上、より好ましくは金の溶解度まで高くすることができる。
前記酸化還元電位(ORP)が700mV以上である高電位の強酸性溶液に還元剤を添加して、酸化還元電位(ORP)を400mV以上700mV未満まで降下させる。前記酸化還元電位(ORP)は、450mV以上650mV以下まで降下させることが好ましい。前記酸化還元電位(ORP)が、700mV以上であると、金が安定に還元されず、金が溶存してしまうことがあり、400mV未満であると、金以外の金属が還元析出して、金以外の金属の分離が必要となることがある。
前記酸化還元電位は、例えば、銀−塩化銀電極を基準電極とした酸化還元電位測定器を用いて測定することができる。なお、本発明において、酸化還元電位(ORP)は、銀−塩化銀電極を基準電極として測定した値を示す。
In the gold recovery method of the present invention, the use of a strong acidic solution having a high oxidation-reduction potential (silver-silver chloride electrode) before adding a reducing agent to the strongly acidic solution promotes dissolution of gold. This is preferable.
The oxidation-reduction potential (ORP) before adding the reducing agent to the strongly acidic solution is not particularly limited and can be appropriately selected according to the purpose, but is preferably 700 mV or more, more preferably 1,000 mV or more. By setting the redox potential of the strongly acidic solution before adding the reducing agent to a high potential, the gold content is 1,000 mg / L or more, preferably 2,000 mg / L or more, more preferably gold solubility. Can be as high as
A reducing agent is added to a high-potential strongly acidic solution having an oxidation-reduction potential (ORP) of 700 mV or more to lower the oxidation-reduction potential (ORP) to 400 mV or more and less than 700 mV. The oxidation-reduction potential (ORP) is preferably lowered from 450 mV to 650 mV. If the oxidation-reduction potential (ORP) is 700 mV or more, gold is not stably reduced and gold may be dissolved. If it is less than 400 mV, metals other than gold are reduced and precipitated, Separation of other metals may be necessary.
The oxidation-reduction potential can be measured using, for example, an oxidation-reduction potential measuring device using a silver-silver chloride electrode as a reference electrode. In the present invention, the oxidation-reduction potential (ORP) indicates a value measured using a silver-silver chloride electrode as a reference electrode.

<還元剤>
前記還元剤としては、特に制限はなく、目的に応じて適宜選択することができるが、ヒドラジン系還元剤が好ましい。
前記ヒドラジン系還元剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン、抱水ヒドラジンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジンが特に好ましく、これらは、市販薬品を使用可能である。
前記還元剤は、前記強酸性溶液を攪拌しながら酸化還元電位(ORP)の変化が緩やかに進むように添加量を制御しながら添加することが好ましく、前記還元剤は少量ずつ添加することがより好ましい。
前記還元剤は、特に制限はなく、目的に応じて適宜選択することができるが、前記強酸性溶液の酸化還元電位(ORP)が400mV以上700mV未満となるように添加することが好ましく、450mV以上650mV以下となるように添加することがより好ましい。
<Reducing agent>
There is no restriction | limiting in particular as said reducing agent, Although it can select suitably according to the objective, A hydrazine type reducing agent is preferable.
The hydrazine-based reducing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine carbonate, and hydrazine hydrate. These may be used individually by 1 type and may use 2 or more types together.
Among these, hydrazine, hydrazine sulfate, and hydrazine carbonate are particularly preferable, and commercially available chemicals can be used for these.
The reducing agent is preferably added while controlling the amount of addition so that the oxidation-reduction potential (ORP) changes gradually while stirring the strongly acidic solution, and the reducing agent may be added in small amounts. preferable.
The reducing agent is not particularly limited and may be appropriately selected depending on the purpose, but is preferably added so that the oxidation-reduction potential (ORP) of the strongly acidic solution is 400 mV or more and less than 700 mV, and 450 mV or more. It is more preferable to add so that it may become 650 mV or less.

<攪拌>
前記還元剤の添加終了後、強酸性溶液を所定の時間攪拌する。これにより、還元反応が進行し、金が還元析出する。
前記攪拌は、還元剤の添加終了後以外にも、還元剤を添加開始前、及び還元剤を添加中の少なくともいずれかでも行うことが好ましい。
前記攪拌に用いる攪拌手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マグネチックスターラー、攪拌羽、攪拌棒などが挙げられる。
前記攪拌時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上が好ましい。
<Stirring>
After the addition of the reducing agent, the strongly acidic solution is stirred for a predetermined time. Thereby, the reduction reaction proceeds and gold is reduced and deposited.
The stirring is preferably performed not only after the addition of the reducing agent but also at least one of before the addition of the reducing agent and during the addition of the reducing agent.
There is no restriction | limiting in particular as a stirring means used for the said stirring, According to the objective, it can select suitably, For example, a magnetic stirrer, a stirring blade, a stirring rod, etc. are mentioned.
There is no restriction | limiting in particular as said stirring time, Although it can select suitably according to the objective, 1 hour or more is preferable.

<固液分離>
前記攪拌により還元析出した金を固液分離する。
前記固液分離としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜濾過、吸引濾過、減圧濾過、加圧濾過、沈降分離、遠心分離などが挙げられる。これらの中でも、減圧濾過が特に好ましい。
なお、前記固液分離で固液分離された沈殿物は、高品位(高純度)の金であるため、金の精製は特に行う必要がない。
<Solid-liquid separation>
The gold that has been reduced and precipitated by the stirring is subjected to solid-liquid separation.
The solid-liquid separation is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include membrane filtration, suction filtration, vacuum filtration, pressure filtration, sedimentation separation, and centrifugal separation. Of these, vacuum filtration is particularly preferred.
In addition, since the deposit solid-liquid separated by the solid-liquid separation is high-grade (high-purity) gold, it is not particularly necessary to purify the gold.

前記強酸性溶液から金を回収すると、金の含有量が低下して低濃度の金含有強酸性溶液となる。また、前記強酸性溶液の原料である各種廃棄電子部品の量が少ない場合、及び各種廃棄電子部品中の金の含有量が少ない場合には、低濃度の金含有強酸性溶液が生じる。
前記強酸性溶液における金の含有量は、高濃度であれば1度の処理で回収できる金の量が増量されるため、生産効率が高い。しかし、高濃度の液から1度に処理すると反応が急激であり、金以外の金属も同伴されるおそれがあるが、本発明においては、1,000mg/L以上の高濃度であっても可能である。しかし、上述したように低濃度の金含有強酸性溶液も発生するので、金の含有量が300mg/L未満の低濃度の金含有強酸性溶液からも金の回収を行えることが好ましい。
When gold | metal | money is collect | recovered from the said strong acid solution, gold content will fall and it will become a low concentration gold-containing strong acid solution. In addition, when the amount of various discarded electronic components that are the raw materials of the strong acid solution is small, and when the content of gold in the various discarded electronic components is small, a low concentration gold-containing strong acidic solution is generated.
If the content of gold in the strongly acidic solution is high, the amount of gold that can be recovered in one treatment is increased, so that the production efficiency is high. However, if the treatment is performed once from a high-concentration liquid, the reaction is rapid, and metals other than gold may be accompanied, but in the present invention, even a high concentration of 1,000 mg / L or more is possible. It is. However, as described above, a gold-containing strongly acidic solution having a low concentration is also generated. Therefore, it is preferable that gold can be recovered from a gold-containing strongly acidic solution having a gold concentration of less than 300 mg / L.

本発明の金の回収方法は、金の含有量が300mg/L未満の低濃度の金含有強酸性溶液であっても高濃度の金含有強酸性溶液と比べて、金品位を劣化することなく金を回収することができる。また、金以外の金属が溶液中に金と同程度の濃度に含まれたとしても、金品位を劣化することなく金を回収することができるという優れた選択性を有するので、前記金以外の金属の質量濃度(総含有量)の総和が金質量濃度(含有量)より2倍以上多い高不純物強酸性溶液を用いることも可能である。また、金の含有量が低濃度の場合であっても分離が可能であることから、金以外の金属の総含有量が金の含有量の400倍までの高不純物強酸性溶液を用いることが可能である。これは、本発明で用いるヒドラジン系還元剤が、強酸性溶液中での金イオンから金粒子の生成に有利に作用して、金粒子の形成を促進するため、金イオン以外の金属イオンの同伴を抑制でき、高品位(高純度)の金の回収が可能となるからである。
なお、本発明の金の回収方法によれば、強酸性溶液における金の含有量が0.1mg/L以下のICP発光分光分析法での定量下限以下まで金以外の金属が同伴することがなく、高純度の金を回収できる。
The gold recovery method of the present invention does not deteriorate the gold quality even when the gold content is a low concentration gold-containing strong acid solution having a gold content of less than 300 mg / L compared to the high concentration gold-containing strong acid solution. Gold can be recovered. In addition, even if a metal other than gold is contained in the solution at the same concentration as gold, it has excellent selectivity that gold can be recovered without deteriorating the gold quality. It is also possible to use a highly-impurity strongly acidic solution in which the total mass concentration (total content) of the metal is twice or more than the gold mass concentration (content). In addition, since separation is possible even when the gold content is low, a highly-impurity strongly acidic solution in which the total content of metals other than gold is up to 400 times the content of gold should be used. Is possible. This is because the hydrazine-based reducing agent used in the present invention favors the formation of gold particles from gold ions in a strongly acidic solution and promotes the formation of gold particles. This is because high-grade (high purity) gold can be recovered.
In addition, according to the gold recovery method of the present invention, metals other than gold are not accompanied up to the lower limit of quantification in the ICP emission spectroscopic analysis method in which the gold content in the strongly acidic solution is 0.1 mg / L or less. High-purity gold can be recovered.

ここで、図1は、本発明の金の回収方法の一例を示す工程フロー図である。この図1では、例えば、金及び金以外の金属を含有する強酸性溶液(王水)(pHは−0.85、酸化還元電位(ORP)は850mV)をビーカーに入れ、マグネチックスターラーによって攪拌しながら、還元剤としての70質量%の炭酸ヒドラジン水溶液を少量ずつ添加し、強酸性溶液の酸化還元電位(ORP)が650mVとなったところで炭酸ヒドラジンの添加を終了する。還元剤添加終了後1時間後に、攪拌を止める。攪拌終了後の酸化還元電位(ORP)は540mVである。還元終了後の強酸性溶液から減圧濾過によって還元殿物を分離し、金を回収することができる。   Here, FIG. 1 is a process flow diagram showing an example of the gold recovery method of the present invention. In FIG. 1, for example, a strongly acidic solution (aqua regia) containing gold and a metal other than gold (pH is −0.85, oxidation-reduction potential (ORP) is 850 mV) is placed in a beaker and stirred by a magnetic stirrer. However, 70% by mass of a hydrazine carbonate aqueous solution as a reducing agent was added little by little, and the addition of hydrazine carbonate was terminated when the oxidation-reduction potential (ORP) of the strongly acidic solution reached 650 mV. Stirring is stopped 1 hour after the addition of the reducing agent. The redox potential (ORP) after stirring is 540 mV. The reduced residue can be separated from the strongly acidic solution after the reduction by filtration under reduced pressure, and gold can be recovered.

本発明の金の回収方法によれば、金及び金以外の金属を含む強酸性溶液から簡便かつ安価に高品位の金を選択的に回収することができる。   According to the gold recovery method of the present invention, high-grade gold can be selectively recovered easily and inexpensively from a strongly acidic solution containing gold and a metal other than gold.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
金の含有量が5,700mg/Lであり、金以外の金属としてCu、Fe、Ni、Zn、Al、Pd等を含む強酸性溶液(王水)1Lをビーカーに用意した。金属元素の分析値(ICP発光分光分析法)を表1に示した(回収処理前)。なお、金の含有量と金以外の金属の含有量の総和を比べると、金の含有量の2倍以上の含有量があることがわかった。
前記強酸性溶液のpHは−0.85、酸化還元電位(ORP)(銀−塩化銀電極)は850mVであった。なお、pH及び酸化還元電位(ORP)は、pH/ORPメーター(東亜DKK社製、HM−30R)で測定した。
Example 1
A beaker was prepared with 1 L of a strongly acidic solution (aqua regia) having a gold content of 5,700 mg / L and containing Cu, Fe, Ni, Zn, Al, Pd or the like as a metal other than gold. Analytical values of metal elements (ICP emission spectroscopic analysis) are shown in Table 1 (before recovery processing). In addition, when the total of the content of gold | metal | money and the content of metals other than gold | metal | money was compared, it turned out that there exists content more than twice the content of gold | metal | money.
The pH of the strongly acidic solution was −0.85, and the redox potential (ORP) (silver-silver chloride electrode) was 850 mV. The pH and oxidation-reduction potential (ORP) were measured with a pH / ORP meter (manufactured by Toa DKK, HM-30R).

次に、図1に示す工程フローに基づき金の回収を行った。
前記強酸性溶液をマグネチックスターラーによって攪拌しながら、還元剤としての70質量%の炭酸ヒドラジン水溶液を少量ずつ添加し、強酸性溶液の酸化還元電位(ORP)が650mVとなったところで炭酸ヒドラジン水溶液の添加を終了した。炭酸ヒドラジンの添加量は10gであった。還元剤添加終了後1時間後に、攪拌を止めた。攪拌終了後の酸化還元電位(ORP)は540mVであった。還元終了後の強酸性溶液から減圧濾過によって還元殿物を回収した。
得られた還元殿物を蛍光X線分析法(XRF)(Olympus Innov−X社製、DP−2000)、ろ液をICP発光分光分析法(SIIナノテクノロジー株式会社製、SPS−5100)により分析を行った。その結果、還元殿物の金品位は100%(99.9%以上)、ろ液の金の含有量は20mg/Lであった。金属元素の分析値(ICP発光分光分析法)を表1に示した(回収処理後)。
Next, gold was collected based on the process flow shown in FIG.
While stirring the strongly acidic solution with a magnetic stirrer, a 70% by mass aqueous solution of hydrazine carbonate as a reducing agent was added little by little. When the oxidation-reduction potential (ORP) of the strongly acidic solution reached 650 mV, The addition was complete. The amount of hydrazine carbonate added was 10 g. Stirring was stopped 1 hour after the addition of the reducing agent. The oxidation-reduction potential (ORP) after the stirring was 540 mV. The reduced residue was recovered from the strongly acidic solution after the reduction by vacuum filtration.
The obtained reduced product was analyzed by X-ray fluorescence analysis (XRF) (Olympus Innov-X, DP-2000), and the filtrate was analyzed by ICP emission spectroscopy (SII Nanotechnology, SPS-5100). Went. As a result, the gold quality of the reduced residue was 100% (99.9% or more), and the gold content of the filtrate was 20 mg / L. Analytical values of metal elements (ICP emission spectroscopic analysis) are shown in Table 1 (after recovery processing).

Figure 0006159630
表1の結果から、金以外の金属がほとんど強酸性溶液(ろ液)中に残ったままであり、金のみを選択的に回収できることがわかった。
酸化還元電位(ORP)が650mV以下になるように還元剤を強酸性溶液に添加することによって、金のみを還元析出させることができ、Pt、Pdを同時に析出させないことがわかった。
Figure 0006159630
From the results in Table 1, it was found that almost all metals other than gold remained in the strongly acidic solution (filtrate), and only gold could be selectively recovered.
It was found that by adding a reducing agent to the strongly acidic solution so that the oxidation-reduction potential (ORP) is 650 mV or less, only gold can be reduced and precipitated, and Pt and Pd are not simultaneously precipitated.

(実施例2)
金の含有量が210mg/Lであり、金以外の金属としてCu、Fe、Ni、Zn、Al、Pd等を含む強酸性溶液(王水)1Lをビーカーに用意した。金属元素の分析値(ICP発光分光分析法)を表2に示した(回収処理前)。
前記強酸性溶液のpHは−0.7、酸化還元電位(ORP)(銀−塩化銀電極)は880mVであった。
(Example 2)
A beaker was prepared with 1 L of a strongly acidic solution (aqua regia) having a gold content of 210 mg / L and containing Cu, Fe, Ni, Zn, Al, Pd or the like as a metal other than gold. The analytical values (ICP emission spectroscopic analysis method) of the metal elements are shown in Table 2 (before recovery processing).
The pH of the strongly acidic solution was −0.7, and the redox potential (ORP) (silver-silver chloride electrode) was 880 mV.

次に、図2に示す工程フローに基づき金の回収を行った。この強酸性溶液をマグネチックスターラーによって攪拌しながら、還元剤としての70質量%の炭酸ヒドラジン水溶液を少量ずつ添加し、酸化還元電位(ORP)が650mVとなったところで炭酸ヒドラジン水溶液の添加を終了した。炭酸ヒドラジンの添加量は3gであった。還元剤添加終了後1時間後、攪拌を止めた。攪拌終了後の酸化還元電位(ORP)は500mVであった。還元終了後の強酸性溶液から減圧濾過によって還元殿物を回収した。
得られた還元殿物を蛍光X線分析法(XRF)、ろ液をICP発光分光分析法により分析を行った。その結果、還元殿物の金品位は100%(99.9%以上)、ろ液の金の含有量は1mg/L未満であった。金属元素の分析値(ICP発光分光分析法)を表2に示した(回収処理後)。
Next, gold was collected based on the process flow shown in FIG. While stirring this strongly acidic solution with a magnetic stirrer, a 70% by mass aqueous hydrazine carbonate solution as a reducing agent was added little by little, and the addition of the aqueous hydrazine carbonate solution was completed when the oxidation-reduction potential (ORP) reached 650 mV. . The amount of hydrazine carbonate added was 3 g. Stirring was stopped 1 hour after the addition of the reducing agent. The oxidation-reduction potential (ORP) after the stirring was 500 mV. The reduced residue was recovered from the strongly acidic solution after the reduction by vacuum filtration.
The obtained reduced residue was analyzed by X-ray fluorescence analysis (XRF), and the filtrate was analyzed by ICP emission spectrometry. As a result, the gold quality of the reduced residue was 100% (99.9% or more), and the gold content of the filtrate was less than 1 mg / L. Analytical values of the metal elements (ICP emission spectroscopic analysis) are shown in Table 2 (after recovery processing).

Figure 0006159630
表2の結果から、金以外の金属がほとんど強酸性溶液(ろ液)中に残ったままであり、金のみを選択的に回収できることがわかった。
酸化還元電位(ORP)が650mV以下になるように還元剤を強酸性溶液に添加することによって、金の含有量が210mg/Lの低濃度であっても金のみを還元析出させることができ、Pt、Pdを同時に析出させないことがわかった。
Figure 0006159630
From the results in Table 2, it was found that almost all metals other than gold remained in the strongly acidic solution (filtrate) and only gold could be selectively recovered.
By adding a reducing agent to the strongly acidic solution so that the oxidation-reduction potential (ORP) is 650 mV or less, only gold can be reduced and precipitated even if the gold content is as low as 210 mg / L, It was found that Pt and Pd are not deposited simultaneously.

(実施例3)
金の含有量が2,270mg/Lであり、金以外の金属としてCu、Fe、Ni、Zn、Al、Pd等を含む強酸性溶液(王水)1Lをビーカーに用意した。
前記強酸性溶液のpHは−0.45、酸化還元電位(ORP)(銀−塩化銀電極)は820mVであった。
(Example 3)
A beaker was prepared with 1 L of a strongly acidic solution (aqua regia) having a gold content of 2,270 mg / L and containing Cu, Fe, Ni, Zn, Al, Pd or the like as a metal other than gold.
The pH of the strongly acidic solution was −0.45, and the redox potential (ORP) (silver-silver chloride electrode) was 820 mV.

次に、図3に示す工程フローに基づき、実施例1及び2と同様にして金の回収を行った。還元剤としての70質量%の炭酸ヒドラジン水溶液を少量ずつ添加する途中、表3に示す各酸化還元電位(ORP)において強酸性溶液をサンプリングし、ICP発光分光分析法により金の含有量を分析した。各酸化還元電位(ORP)における金の含有量を表3に示した。   Next, gold was collected in the same manner as in Examples 1 and 2 based on the process flow shown in FIG. While adding 70% by mass of a hydrazine carbonate aqueous solution as a reducing agent little by little, a strongly acidic solution was sampled at each oxidation-reduction potential (ORP) shown in Table 3, and the gold content was analyzed by ICP emission spectroscopy. . Table 3 shows the gold content at each oxidation-reduction potential (ORP).

Figure 0006159630
表3の結果から、酸化還元電位(ORP)が700mVにおいて金がほぼ全量還元されたことがわかった。また、攪拌を停止した酸化還元電位(ORP)が560mVではICP発光分光分析法で、0.1mg/Lの定量下限以下の金の含有量となることがわかった。また、酸化還元電位(ORP)を650mV以下にすることで安定的に金を回収できることがわかった。
Figure 0006159630
From the results in Table 3, it was found that almost all of the gold was reduced at an oxidation-reduction potential (ORP) of 700 mV. Further, it was found by the ICP emission spectroscopic analysis method that the gold content was 0.1 mg / L or less of the lower limit of quantification when the redox potential (ORP) at which stirring was stopped was 560 mV. It was also found that gold can be stably recovered by setting the oxidation-reduction potential (ORP) to 650 mV or less.

(実施例4)
実施例1において、強酸性溶液の金含有量を1,200mg/Lとし、還元剤を硫酸ヒドラジンに代えた以外は、実施例1と同様にして、金を回収した。
硫酸ヒドラジンの添加量は8gであり、最終電位580mV、処理後の液の金の含有量は5mg/Lであり、ほとんどの金を回収できた。得られた金の品位は、99.99%以上であった。
Example 4
In Example 1, gold | metal | money was collect | recovered like Example 1 except having changed the gold content of the strongly acidic solution into 1,200 mg / L, and having replaced the reducing agent with the hydrazine sulfate.
The amount of hydrazine sulfate added was 8 g, the final potential was 580 mV, and the gold content of the liquid after the treatment was 5 mg / L, and most of the gold could be recovered. The quality of the obtained gold was 99.99% or more.

(実施例5)
実施例4において、還元剤をヒドラジンに代えた以外は、実施例4と同様にして、金を回収した。
硫酸ヒドラジンの添加量は6gであり、最終電位600mV、処理後の液の金の含有量は10mg/Lであり、ほとんどの金を回収できた。得られた金の品位は、99.99%以上であった。
(Example 5)
In Example 4, gold was recovered in the same manner as in Example 4 except that the reducing agent was replaced with hydrazine.
The amount of hydrazine sulfate added was 6 g, the final potential was 600 mV, and the gold content of the liquid after the treatment was 10 mg / L, and most of the gold could be recovered. The quality of the obtained gold was 99.99% or more.

(実施例6)
金の含有量が3,880mg/Lであり、金以外の金属としてCu、Fe、Ni、Zn、Al、Pd等を含む強酸性溶液(王水)1Lをビーカーに用意した。
前記強酸性溶液のpHは−0.45、酸化還元電位(ORP)(銀−塩化銀電極)は820mVであった。
(Example 6)
A beaker was prepared with 1 L of a strongly acidic solution (aqua regia) having a gold content of 3,880 mg / L and containing Cu, Fe, Ni, Zn, Al, Pd or the like as a metal other than gold.
The pH of the strongly acidic solution was −0.45, and the redox potential (ORP) (silver-silver chloride electrode) was 820 mV.

次に、還元剤として99質量%の硫酸ヒドラジン(粉末)を用いた以外は、実施例3と同様にして、金の回収を行った。硫酸ヒドラジンを少量ずつ添加する途中、表4に示す各酸化還元電位(ORP)において強酸性溶液をサンプリングし、ICP発光分光分析法により金の含有量を分析した。各酸化還元電位(ORP)における金の含有量を表4に示した。   Next, gold was recovered in the same manner as in Example 3 except that 99% by mass of hydrazine sulfate (powder) was used as the reducing agent. During the addition of hydrazine sulfate in small portions, a strongly acidic solution was sampled at each oxidation-reduction potential (ORP) shown in Table 4, and the gold content was analyzed by ICP emission spectroscopy. Table 4 shows the gold content at each oxidation-reduction potential (ORP).

Figure 0006159630
表4の結果から、実施例3の炭酸ヒドラジンだけでなく、硫酸ヒドラジンにおいても、
酸化還元電位(ORP)が400mV以上700mV未満において、金がほぼ回収できることがわかった。
また、酸化還元電位(ORP)を650mV以下にすることで安定的に金を回収できることがわかった。
Figure 0006159630
From the results in Table 4, not only hydrazine carbonate in Example 3 but also hydrazine sulfate,
It was found that gold can be almost recovered when the oxidation-reduction potential (ORP) is 400 mV or more and less than 700 mV.
It was also found that gold can be stably recovered by setting the oxidation-reduction potential (ORP) to 650 mV or less.

Claims (4)

金及び金以外の金属を含むpHが1以下の強酸性溶液に、酸化還元電位(銀−塩化銀電極)が400mV以上700mV未満になるように還元剤を添加して、金を還元析出し、
前記強酸性溶液が、前記金以外の金属を金の含有量の2倍以上含む高不純物強酸性溶液であることを特徴とする金の回収方法。
To a strongly acidic solution containing gold and a metal other than gold having a pH of 1 or less, a reducing agent is added so that the oxidation-reduction potential (silver-silver chloride electrode) is 400 mV or more and less than 700 mV, and gold is reduced and precipitated .
The method for recovering gold, wherein the strongly acidic solution is a highly-impurity strongly acidic solution containing a metal other than gold more than twice the content of gold .
前記強酸性溶液に還元剤を添加する前において、酸化還元電位(銀−塩化銀電極)が700mV以上である請求項1に記載の金の回収方法。   The method for recovering gold according to claim 1, wherein an oxidation-reduction potential (silver-silver chloride electrode) is 700 mV or more before adding a reducing agent to the strongly acidic solution. 前記還元剤が、ヒドラジン、炭酸ヒドラジン、及び硫酸ヒドラジンから選択される少なくとも1種である請求項1から2のいずれかに記載の金の回収方法。   The method for recovering gold according to claim 1, wherein the reducing agent is at least one selected from hydrazine, hydrazine carbonate, and hydrazine sulfate. 前記金以外の金属が、鉄、銅、アルミニウム、及びニッケルから選択される少なくとも1種である請求項1から3のいずれかに記載の金の回収方法。   The method for recovering gold according to claim 1, wherein the metal other than gold is at least one selected from iron, copper, aluminum, and nickel.
JP2013194446A 2012-09-27 2013-09-19 Gold collection method Active JP6159630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194446A JP6159630B2 (en) 2012-09-27 2013-09-19 Gold collection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012214644 2012-09-27
JP2012214644 2012-09-27
JP2013194446A JP6159630B2 (en) 2012-09-27 2013-09-19 Gold collection method

Publications (2)

Publication Number Publication Date
JP2014080682A JP2014080682A (en) 2014-05-08
JP6159630B2 true JP6159630B2 (en) 2017-07-05

Family

ID=50785134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194446A Active JP6159630B2 (en) 2012-09-27 2013-09-19 Gold collection method

Country Status (1)

Country Link
JP (1) JP6159630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117717B (en) * 2019-06-19 2021-04-06 江西铜业股份有限公司 Method for reducing gold from low-gold high-impurity solution
CN114669754A (en) * 2022-03-04 2022-06-28 金川集团股份有限公司 Method for efficiently purifying gold from alloyed gold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657348A (en) * 1992-08-07 1994-03-01 Sumitomo Metal Mining Co Ltd Production of high-purity gold
JPH11229053A (en) * 1998-02-20 1999-08-24 Sumitomo Metal Mining Co Ltd Production of high purity gold
JP2013181181A (en) * 2012-02-29 2013-09-12 Jx Nippon Mining & Metals Corp Method for recovering gold

Also Published As

Publication number Publication date
JP2014080682A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5786895B2 (en) Scandium recovery method
JP5399510B2 (en) High-purity platinum recovery method
JP6780448B2 (en) How to recover high-grade rhodium powder
US10526682B2 (en) Methods, materials and techniques for precious metal recovery
RU2567414C2 (en) Method of extraction of metals and metal compounds from produced ore and other sources of metal-bearing raw materials
US10563283B2 (en) Methods, materials and techniques for precious metal recovery
JP2016040412A (en) Method for treating zinc sulfate-containing solution
JPWO2012132962A1 (en) Tantalum recovery method
JP6159630B2 (en) Gold collection method
JP2012246198A (en) Method for purifying selenium by wet process
JP5351747B2 (en) Gold reduction recovery method
JP5835961B2 (en) Metal leaching method
EP3802890A1 (en) Hydrometallurgical method for the recovery of base metals and precious metals from a waste material
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP2012246197A (en) Method for purifying selenium by wet process
WO2014069463A1 (en) Method for collecting silver
JP2009235513A (en) Method for recovering ruthenium
JP7006332B2 (en) How to make gold powder
CN110484744B (en) Method for recovering precious metal from waste chip capacitor
WO2019187407A1 (en) Extraction agent for metals and extraction method using same
JP6756235B2 (en) How to collect bismuth
JP2017014572A (en) Method for producing platinum group salt dissolved solution
RU2204620C2 (en) Method of reprocessing iron oxide based sediments containing precious metals
JP3690989B2 (en) Methods for removing antimony from tantalum, niobium, and other collection and purification solutions
JP4914976B2 (en) Method for removing thallium from zinc sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250