JP6158364B2 - 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと - Google Patents

制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと Download PDF

Info

Publication number
JP6158364B2
JP6158364B2 JP2016001853A JP2016001853A JP6158364B2 JP 6158364 B2 JP6158364 B2 JP 6158364B2 JP 2016001853 A JP2016001853 A JP 2016001853A JP 2016001853 A JP2016001853 A JP 2016001853A JP 6158364 B2 JP6158364 B2 JP 6158364B2
Authority
JP
Japan
Prior art keywords
control
symbol
interfering cell
interference cancellation
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016001853A
Other languages
English (en)
Other versions
JP2016119676A (ja
Inventor
タオ・ルオ
テサン・ヨ
リュ・ジャオ
ヨンビン・ウェイ
ダーガ・プラサド・マラディ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2016119676A publication Critical patent/JP2016119676A/ja
Application granted granted Critical
Publication of JP6158364B2 publication Critical patent/JP6158364B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

関連出願に対する相互参照
本願は、2011年11月9日出願の「制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと」(HANDLING MISMATCH OF CONTROL SPANS BETWEEN SERVING CELL AND INTERFERING CELLS FOR CONTROL AND DATA CHANNEL INTERFERENCE CANCELLATION)と題された米国仮特許出願61/557,855号に対する35U.S.C.§119(e)の下の利益を主張する。その開示は、参照によってその全体が明示的に本明細書に組み込まれる。
本開示の態様は、一般に、無線通信システムに関し、さらに詳しくは、サービス提供セルと干渉元セルとの間の制御チャネルおよびデータ・チャネルの干渉除去に関する。
無線通信ネットワークは、例えば音声、ビデオ、パケット・データ、メッセージング、ブロードキャスト等のようなさまざまな通信サービスを提供するために広く開発された。これら無線ネットワークは、使用可能なネットワーク・リソースを共有することにより、複数のユーザをサポートすることができる多元接続ネットワークでありうる。無線通信ネットワークは、多くのユーザ機器(UE)のための通信をサポートしうる多くの基地局を含みうる。UEは、ダウンリンクおよびアップリンクによって基地局と通信しうる。ダウンリンク(すなわち順方向リンク)は、基地局からUEへの通信リンクを称し、アップリンク(すなわち逆方向リンク)は、UEから基地局への通信リンクを称する。
基地局は、ダウンリンクでUEへデータおよび制御情報を送信し、および/または、アップリンクでUEからデータおよび制御情報を受信しうる。ダウンリンクでは、基地局からの送信が、近隣の基地局からの、または、その他の無線ラジオ周波数(RF)送信機からの送信による干渉と遭遇しうる。アップリンクでは、UEからの送信が、近隣の基地局と通信する別のUEのアップリンク送信からの、または、別の無線RF送信機からの干渉と遭遇しうる。この干渉は、ダウンリンクとアップリンクとの両方のパフォーマンスを低下させうる。
モバイル・ブロードバンド・アクセスに対する需要が増加し続けているので、UEが長距離無線通信ネットワークにアクセスすることや、短距離無線システムがコミュニティにおいて展開されることにより、干渉や混雑したネットワークの可能性が高まる。研究開発は、モバイル・ブロードバンド・アクセスのための増加する需要を満たすためのみならず、モバイル通信とのユーザ経験を進化および向上させるために、UMTS技術を進化させ続けている。
1つの態様では、無線通信の方法が開示される。この方法は、サービス提供セルの制御スパンおよび干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理すること、を含む。この方法はさらに、決定された制御スパンに基づいて干渉を除去すること、を含む。
別の態様は、メモリと、メモリに接続された少なくとも1つのプロセッサとを有する無線通信を開示する。このプロセッサ(単数または複数)は、サービス提供セルの制御スパンを決定することと、干渉元セルの制御スパンを決定することとのために、サブフレームの最初のシンボルを処理するように構成される。このプロセッサ(単数または複数)はまた、決定された制御スパンに基づいて、干渉を除去するように構成される。
別の態様は、サービス提供セルの制御スパンおよび干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理する手段を含む装置を開示する。さらには、決定された制御スパンに基づいて干渉を除去する手段も含まれる。
別の態様では、非一時的なコンピュータ読取可能な媒体を有する、無線ネットワークにおける無線通信のためのコンピュータ・プログラム製品が開示される。このコンピュータ読取可能な媒体は、プロセッサ(単数または複数)によって実行された場合、プロセッサ(単数または複数)に対して、サービス提供セルの制御スパンおよび干渉元セルの制御スパンを決定するためにサブフレームの最初のシンボルを処理する動作を実行させるための、記録された非一時的なプログラム・コードを有する。プログラム・コードはまた、プロセッサ(単数または複数)に対して、決定された制御スパンに基づいて干渉を除去させるためのプログラム・コードを有する。
本開示のさらなる特徴および利点が以下に記載されるだろう。本開示は、本開示のものと同じ目的を実行するために、修正したり、その他の構成を設計するための基礎として容易に利用されうることが当業者によって理解されるべきである。このような等価な構成は、特許請求の範囲に記載された開示の教示から逸脱しないこともまた当業者によって理解されるべきである。さらなる目的および利点とともに、動作の方法と構成との両方に関し、本開示の特徴であると信じられている新規の特徴が、添付図面と関連して考慮された場合に、以下の記載から良好に理解されるであろう。しかしながら、図面のおのおのは、例示および説明のみの目的のために提供されており、本開示の限界の定義として意図されていないことが明確に理解されるべきである。
本開示の特徴、特性、および利点は、同一の参照符号が全体を通じて同一物を特定している図面とともに考慮された場合、以下の詳細な記載からより明らかになるだろう。
図1は、テレコミュニケーション・システムの例を概念的に例示するブロック図である。 図2は、テレコミュニケーション・システムにおけるダウンリンク・フレーム構造の例を概念的に例示する図である。 図3は、アップリンク通信におけるフレーム構造の例を概念的に例示するブロック図である。 図4は、本開示の1つの態様にしたがって構成された基地局/eノードBとUEとの設計を概念的に例示するブロック図である。 図5は、本開示の態様にしたがうヘテロジニアスなネットワークにおける適応リソース区分を概念的に例示するブロック図である。 図6Aは、干渉除去を実行するための方法を例示するブロック図である。 図6Bは、最初の制御シンボルを処理する方法を例示するブロック図である。 図7Aは、サービス提供セルおよび干渉元セルのための制御領域およびデータ領域を例示する図解である。 図7Bは、サービス提供セルおよび干渉元セルのための制御領域およびデータ領域を例示する図解である。 図7Cは、サービス提供セルおよび干渉元セルのための制御領域およびデータ領域を例示する図解である。 図8Aは、さまざまなサービス提供セルの制御スパンのための干渉除去を実行するための方法を例示するブロック図である。 図8Bは、さまざまなサービス提供セルの制御スパンのための干渉除去を実行するための方法を例示するブロック図である。 図8Cは、さまざまなサービス提供セルの制御スパンのための干渉除去を実行するための方法を例示するブロック図である。 図9Aは、干渉除去を実行する方法を例示するブロック図である。 図9Bは、干渉除去を実行する方法を例示するブロック図である。 図10は、典型的な装置における異なるモジュール/手段/構成要素間のデータ・フローを例示する概念的なデータ・フロー図である。 図11は、典型的なUE装置における別のモジュール/手段/構成要素を例示するブロック図である。
添付図面とともに以下に説明する詳細説明は、さまざまな構成の説明として意図されており、本明細書に記載された概念が実現される唯一の構成を表すことは意図されていない。この詳細説明は、さまざまな概念の完全な理解を提供することを目的とした具体的な詳細を含んでいる。しかしながら、これらの概念は、これら具体的な詳細無しで実現されうることが当業者に明らかになるであろう。いくつかの事例では、周知の構成および構成要素が、このような概念を曖昧にすることを避けるために、ブロック図形式で示されている。
本明細書で記載された技術は、例えば、符号分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交周波数分割多元接続(OFDMA)ネットワーク、シングル・キャリア周波数分割多元接続(SC−FDMA)ネットワーク、およびその他のネットワークのようなさまざまな無線通信ネットワークのために使用されうる。用語「ネットワーク」および「システム」は、しばしば置換可能に使用される。CDMAネットワークは、例えば、ユニバーサル地上ラジオ・アクセス(UTRA)、テレコミュニケーション・インダストリ・アソシエーション(TIA)のcdma2000(登録商標)等のようなラジオ技術を実現しうる。UTRA技術は、広帯域CDMA(WCDMA(登録商標))、およびCDMAのその他の変形を含んでいる。CDMA2000(登録商標)技術は、米国電子工業会(EIA)およびTIAからのIS−2000規格、IS−95規格、およびIS−856規格を含んでいる。TDMAネットワークは、例えばグローバル移動体通信システム(GSM(登録商標))のようなラジオ技術を実現しうる。OFDMAネットワークは、例えば、イボルブドUTRA(E−UTRA)、ウルトラ・モバイル・ブロードバンド(UMB)、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash−OFDM(登録商標)等のようなラジオ技術を実現しうる。UTRA技術およびE−UTRA技術は、ユニバーサル・モバイル・テレコミュニケーション・システム(UMTS)の一部である。3GPPロング・ターム・イボリューション(LTE)およびLTE−アドバンスト(LTE−A)は、E−UTRAを使用するUMTSの新たなリリースである。UTRA、E−UTRA、UMTS、LTE、LTE−A、およびGSMは、「第3世代パートシップ計画」(3GPP)と呼ばれる団体からの文書に記載されている。CDMA2000およびUMBは、「第3世代パートナシップ計画2」(3GPP2)と呼ばれる組織からの文書に記載されている。本明細書で記載された技術は、他の無線ネットワークおよびラジオ・アクセス技術のみならず、前述された無線ネットワークおよびラジオ・アクセス技術のためにも使用されうる。明確化のために、これら技術のある態様は、以下において、LTEまたはLTE−A(代わりに、これらはともに“LTE/−A”と称される)について記載されており、このようなLTE−A用語が以下の説明の多くで使用される。
図1は、LTE−Aネットワークでありうる無線通信ネットワーク100を示す。無線ネットワーク100は、多くのイボルブド・ノードB(eノードB)110およびその他のネットワーク・エンティティを含む。eノードBは、UEと通信する局であり、基地局、ノードB、アクセス・ポイント等とも称されうる。おのおののeノードB110は、特定の地理的エリアのために通信有効通信範囲を提供する。3GPPでは、用語「セル」は、この用語が使用される文脈に依存して、有効通信範囲エリアにサービス提供しているeノードBおよび/またはeノードBサブシステムからなる特定の地理的有効通信範囲エリアを称しうる。
eノードBは、マクロ・セル、ピコ・セル、フェムト・セル、および/または、その他のタイプのセルのために、通信有効通信範囲を提供しうる。マクロ・セルは、一般に、比較的大きな地理的エリア(例えば、半径数キロメータ)をカバーし、ネットワーク・プロバイダへのサービス加入を持つUEによる無制限のアクセスを許可しうる。ピコ・セルは、一般に、比較的小さな地理的エリアをカバーし、ネットワーク・プロバイダへのサービス加入を持つUEによる無制限のアクセスを許可しうる。フェムト・セルもまた一般に、比較的小さな地理的エリア(例えば、住宅)をカバーし、無制限のアクセスに加えて、フェムト・セルとの関連付けを持つUE(例えば、クローズド加入者グループ(CSG)内のUE、住宅内のユーザのためのUE等)による制限付のアクセスをも提供しうる。マクロ・セルのためのeノードBは、マクロeノードBと称されうる。ピコ・セルのためのeノードBは、ピコeノードBと称されうる。そして、フェムト・セルのためのeノードBは、フェムトeノードBまたはホームeノードBと称されうる。図1に示す例では、eノードB110a,110b,110cは、マクロ・セル102a,102b,102cそれぞれのためのマクロeノードBでありうる。eノードB110xは、ピコ・セル102xのためのピコeノードBでありうる。そして、eノードB110y,110zは、それぞれフェムト・セル102y,102zのためのフェムトeノードBである。eノードBは、1または複数(例えば2,3,4個等)のセルをサポートしうる。
無線ネットワーク100はさらに、中継局をも含みうる。中継局は、データおよび/またはその他の情報の送信を上流局(例えば、eノードB、UE等)から受信し、データおよび/またはその他の情報の送信を下流局(例えば、UEまたはeノードB)へ送信する局である。中継局はまた、他のUEのための送信を中継するUEでもありうる。図1に示す例では、中継局110rは、eノードB110aとUE120rとの間の通信を容易にするために、eノードB110aおよびUE120rと通信しうる。中継局はまた、リレーeノードB、リレー等とも称されうる。
無線ネットワーク100はまた、例えば、マクロeノードB、ピコeノードB、フェムトeノードB、リレー等のような異なるタイプのeノードBを含むヘテロジニアスなネットワークでもありうる。これら異なるタイプのeノードBは、異なる送信電力レベル、異なる有効通信範囲エリア、および、無線ネットワーク100内の干渉に対する異なるインパクトを有しうる。例えば、マクロeノードBは、高い送信電力レベル(例えば、20ワット)を有する一方、ピコeノードB、フェムトeノードB、およびリレーは、低い送信電力レベル(例えば、1ワット)を有しうる。
無線ネットワーク100は、同期動作または非同期動作をサポートしうる。同期動作のために、eノードBは、類似のフレーム・タイミングを有し、異なるeノードBからの送信は、時間的にほぼ揃えられうる。非同期動作の場合、eノードBは、異なるフレーム・タイミングを有し、異なるeノードBからの送信は、時間的に揃わない場合がある。本明細書に記載された技法は、干渉がサービス提供セルと同期化される、局在化された同期を用いたシステムにおいて、または、同期動作のために使用されうる。
1つの態様では、無線ネットワーク100は、周波数分割デュプレクス(FDD)動作モードまたは時分割デュプレクス(TDD)動作モードをサポートしうる。ここに記載された技術は、FDD動作モードまたはTDD動作モードのために使用されうる。
ネットワーク・コントローラ130は、eノードB110のセットに接続しており、これらeノードB110のための調整および制御を提供しうる。ネットワーク・コントローラ130は、バックホールを介してeノードB110と通信しうる。eノードB110はまた、例えば、ダイレクトに、または、無線バックホールまたは有線バックホールを介して非ダイレクトに、互いに通信しうる。
無線ネットワーク100の全体にわたって、UE120(例えば、UE120x、UE120y等)が分布しうる。そして、おのおののUEは、固定式または移動式でありうる。UEは、端末、ユーザ機器、移動局、加入者ユニット、局等とも称されうる。UEは、セルラ電話(例えば、スマート・フォン)、携帯情報端末(PDA)、無線モデム、無線通信デバイス、ハンドヘルド・デバイス、ラップトップ・コンピュータ、コードレス電話、無線ローカル・ループ(WLL)局、タブレット、ネットブック、スマート・ブック等でありうる。UEは、マクロeノードB、ピコeノードB、フェムトeノードB、リレー等と通信することができうる。図1では、両矢印の実線が、UEと、ダウンリンクおよび/またはアップリンクでUEにサービス提供するように指定されたeノードBであるサービス提供eノードBとの間の所望の送信を示す。両矢印の破線は、UEとeノードBとの間の干渉送信を示す。
LTEは、ダウンリンクで直交周波数分割多重(OFDM)を、アップリンクでシングル・キャリア周波数分割多重(SC−FDM)を利用する。OFDMおよびSC−FDMは、システム帯域幅を、一般にトーン、ビン等とも称される複数(K個)の直交サブキャリアに分割する。おのおののサブキャリアは、データとともに変調されうる。一般に、変調シンボルは、OFDMを用いて周波数領域で、SC−FDMを用いて時間領域で送信される。隣接するサブキャリア間の間隔は固定され、サブキャリアの総数(K個)は、システム帯域幅に依存しうる。例えば、サブキャリアの間隔は、15kHzでありうる。そして、(「リソース・ブロック」と呼ばれる)最小リソース割当は、12サブキャリア(または180kHz)でありうる。その結果、ノミナルFFTサイズは、1.25,2.5,5,10,または20メガヘルツ(MHz)の対応するシステム帯域幅についてそれぞれ128,256,512,1024,または2048に等しくなりうる。システム帯域幅はまた、サブ帯域へ分割されうる。例えば、サブ帯域は、1.08MHz(すなわち、6リソース・ブロック)をカバーし、1.25,2.5,5,10,15,または20MHzの対応するシステム帯域幅についてそれぞれ1,2,4,8,または16のサブ帯域が存在しうる。
図2は、LTEにおいて使用されるダウンリンクFDD構造を示す。ダウンリンクの送信タイムラインは、ラジオ・フレームの単位に分割されうる。おのおののラジオ・フレームは、(例えば10ミリ秒(ms)のような)予め定められた持続時間を有し、0乃至9のインデクスを付された10個のサブフレームへ分割されうる。おのおののサブフレームは、2つのスロットを含みうる。したがって、おのおののラジオ・フレームは、0乃至19のインデクスを付された20のスロットを含みうる。おのおののスロットは、L個のシンボル期間、(例えば、図2に示すような)通常のサイクリック・プレフィクスの場合、例えば、7つのシンボル期間を含み、拡張されたサイクリック・プレフィクスの場合、6つのシンボル期間を含みうる。おのおののサブフレームでは、2L個のシンボル期間が、0乃至2L−1のインデクスを割り当てられうる。利用可能な時間周波数リソースが、リソース・ブロックへ分割されうる。おのおののリソース・ブロックは、1つのスロットにおいてN個のサブキャリア(例えば、12のサブキャリア)をカバーしうる。
LTEでは、eノードBは、eノードBにおける各セルについて、一次同期信号(PSCまたはPSS)および二次同期信号(SSCまたはSSS)を送信しうる。FDD動作モードの場合、図2に示すように、一次同期信号および二次同期信号が、通常のサイクリック・プレフィクスを持つ各ラジオ・フレームのサブフレーム0およびサブフレーム5のおのおのにおいて、シンボル期間6およびシンボル期間5でそれぞれ送信されうる。これら同期信号は、セル検出および獲得のためにUEによって使用されうる。FDD動作モードの場合、eノードBは、サブフレーム0のスロット1におけるシンボル期間0乃至3で、物理ブロードキャスト・チャネル(PBCH)を送信しうる。PBCHは、あるシステム情報を伝送しうる。
図2において見られるように、eノードBは、各サブフレームの最初のシンボル期間で、物理制御フォーマット・インジケータ・チャネル(PCFICH)を送信しうる。PCFICHは、制御チャネルのために使用されるシンボル期間の数(M)を伝えうる。ここで、Mは、1,2または3に等しく、サブフレーム毎に変化しうる。Mはまた、例えば、10未満のリソース・ブロックのように、小さなシステム帯域幅に対して4に等しくなりうる。図2に示す例では、M=3である。eノードBは、おのおののサブフレームの最初のM個のシンボル期間において、物理HARQインジケータ・チャネル(PHICH)および物理ダウンリンク制御チャネル(PDCCH)を送信しうる。PDCCHおよびPHICHもまた、図2に示す例における最初の3つのシンボル期間に含まれる。PHICHは、ハイブリッド自動再送信(HARQ)をサポートするための情報を伝送しうる。PDCCHは、UEのためのアップリンクおよびダウンリンクのリソース割当に関する情報と、アップリンク・チャネルのための電力制御情報とを伝送しうる。eノードBはまた、おのおののサブフレームの残りのシンボル期間で、物理ダウンリンク共有チャネル(PDSCH)を送信しうる。PDSCHは、ダウンリンクで、データ送信のためにスケジュールされたUEのためのデータを伝送しうる。
eノードBは、eノードBによって使用されるシステム帯域幅の中央の1.08MHzでPSC、SSS、およびPBCHを送信しうる。eノードBは、これらのチャネルが送信される各シンボル期間において、システム帯域幅全体で、PCFICHおよびPHICHを送信しうる。eノードBは、システム帯域幅のある部分で、UEのグループにPDCCHを送信しうる。eノードBは、システム帯域幅の特定の部分で、UEのグループにPDSCHを送信しうる。eノードBは、すべてのUEへブロードキャスト方式でPSC、SSC、PBCH、PCFICH、およびPHICHを送信し、PDCCHを、ユニキャスト方式で、特定のUEへ送信しうる。さらに、特定のUEへユニキャスト方式でPDSCHをも送信しうる。
各シンボル期間において、多くのリソース要素が利用可能でありうる。おのおののリソース要素は、1つのシンボル期間において1つのサブキャリアをカバーしうる。そして、実数値または複素数値である1つの変調シンボルを送信するために使用されうる。制御チャネルのために使用されるシンボルのために、各シンボル期間において、基準信号のために使用されないリソース要素が、リソース要素グループ(REG)へ構成されうる。おのおののREGは、1つのシンボル期間内に、4つのリソース要素を含みうる。PCFICHは、シンボル期間0内に4つのREGを占有しうる。これらは、周波数にわたってほぼ均等に配置されうる。PHICHは、1または複数の設定可能なシンボル期間内に3つのREGを占有しうる。これらは、周波数にわたって分散されうる。例えば、PHICHのための3つのREGはすべて、シンボル期間0に属しうる。あるいは、シンボル期間0,1,2内に分散されうる。PDCCHは、最初のM個のシンボル期間内に、9,18,36,または72のREGを占有しうる。これらは、利用可能なREGから選択されうる。複数のREGからなるある組み合わせのみが、PDCCHのために許容されうる。
UEは、PHICHとPCFICHとのために使用される特定のREGを認識しうる。UEは、PDCCHを求めて、REGの異なる組み合わせを探索しうる。探索する組み合わせの数は、一般に、PDCCHにおいてすべてのUEのために許可された組み合わせ数よりも少ない。eノードBは、UEが探索する組み合わせのうちの何れかのUEにPDCCHを送信しうる。
UEは、複数のeノードBの有効通信範囲内に存在しうる。これらのeノードBのうちの1つが、UEにサービス提供するために選択されうる。サービス提供するeノードBは、例えば受信電力、経路喪失、信号対雑音比(SNR)等のようなさまざまな基準に基づいて選択されうる。
図3は、アップリンク・ロング・ターム・イボリューション(LTE)通信における典型的なFDDおよびTDD(特別ではないサブフレームのみの)サブフレーム構造を概念的に例示するブロック図である。アップリンクのために利用可能なリソース・ブロック(RB)は、データ・セクションおよび制御セクションに分割されうる。制御セクションは、システム帯域幅の2つの端部において形成され、設定可能なサイズを有しうる。制御セクションにおけるリソース・ブロックは、制御情報の送信のために、UEへ割り当てられうる。データ・セクションは、制御セクションに含まれていないすべてのリソース・ブロックを含みうる。図3における設計の結果、データ・セクションは、連続するサブキャリアを含むようになる。これによって、単一のUEは、連続するサブキャリアのすべてがデータ・セクション内に割り当てられるようになる。
UEは、eノードBへ制御情報を送信するために、制御セクション内にリソース・ブロックを割り当てられうる。UEはまた、eノードBへデータを送信するために、データ・セクション内にリソース・ブロックを割り当てられうる。UEは、制御セクションにおいて割り当てられたリソース・ブロックで、物理アップリンク制御チャネル(PUCCH)で制御情報を送信しうる。UEは、データ・セクションにおいて割り当てられたリソース・ブロックで、物理アップリンク共有チャネル(PUSCH)で、データのみ、または、データと制御情報との両方を送信しうる。アップリンク送信は、サブフレームからなる両スロットに及び、図3に示すように、周波数を越えてホップしうる。1つの態様によれば、緩和されたシングル・キャリア動作において、ULリソースで並列なチャネルが送信されうる。例えば、制御およびデータ・チャネル、並列制御チャネル、および並列データ・チャネルが、UEによって送信されうる。
PSC(一次同期キャリア)、SSC(二次同期キャリア)、CRS(共通基準信号)、PBCH、PUCCH、PUSCH、および、LTE/−Aで使用される他のこのような信号およびチャネルは、公的に利用可能な、「イボルブド・ユニバーサル地上ラジオ・アクセス(E−UTRA);物理チャネルおよび変調」(Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation)と題された3GPP TS 36.211に記載されている。
図4は、図1における基地局/eノードBのうちの1つ、およびUEのうちの1つでありうる、基地局/eノードB110とUE120との設計のブロック図を示す。例えば、基地局110は、図1におけるマクロeノードB110cでありうる。そして、UE120は、UE120yでありうる。基地局110はさらに、その他いくつかのタイプの基地局でもありうる。基地局110は、アンテナ434a乃至434tを備え、UE120は、アンテナ452a乃至452rを備えうる。
基地局110では、送信プロセッサ420が、データ・ソース412からデータを、コントローラ/プロセッサ440から制御情報を受信しうる。制御情報は、PBCH、PCFICH、PHICH、PDCCH等用でありうる。データは、PDSCH等用でありうる。プロセッサ420は、データ・シンボルおよび制御シンボルをそれぞれ取得するために、データおよび制御情報を処理(例えば、符号化およびシンボル・マップ)しうる。プロセッサ420はさらに、例えばPSS、SSSのための基準シンボルや、セル特有の基準信号を生成しうる。送信(TX)複数入力複数出力(MIMO)プロセッサ430は、適用可能であれば、データ・シンボル、制御シンボル、および/または基準シンボルに空間処理(例えば、プリコーディング)を実行し、出力シンボル・ストリームを変調器(MOD)432a乃至432tに提供しうる。おのおのの変調器432は、(例えば、OFDM等のために)それぞれの出力シンボル・ストリームを処理して、出力サンプル・ストリームを得る。おのおのの変調器432はさらに、出力サンプル・ストリームを処理(例えば、アナログ変換、増幅、フィルタ、およびアップコンバート)し、ダウンリンク信号を取得する。変調器432a乃至432tからのダウンリンク信号は、アンテナ434a乃至434tを介してそれぞれ送信されうる。
UE120では、アンテナ452a乃至452rが、基地局110からダウンリンク信号を受信し、受信した信号を、復調器(DEMOD)454a乃至454rへそれぞれ提供しうる。おのおのの復調器454は、受信したそれぞれの信号を調整(例えば、フィルタ、増幅、ダウンコンバート、およびデジタル化)して、入力サンプルを取得しうる。おのおのの復調器454はさらに、(例えば、OFDM等のため)これら入力サンプルを処理して、受信されたシンボルを取得しうる。MIMO検出器456は、すべての復調器454a乃至454rから受信したシンボルを取得し、適用可能である場合、これら受信されたシンボルに対してMIMO検出を実行し、検出されたシンボルを提供しうる。受信プロセッサ458は、検出されたシンボルを処理(例えば、復調、デインタリーブ、および復号)し、UE120のために復号されたデータをデータ・シンク460に提供し、復号された制御情報をコントローラ/プロセッサ480へ提供しうる。
アップリンクでは、UE120において、送信プロセッサ464が、データ・ソース462から(例えばPUSCHのための)データを、コントローラ/プロセッサ480から(例えばPUCCHのための)制御情報を受信し、これらを処理しうる。プロセッサ464はさらに、基準信号のための基準シンボルをも生成しうる。送信プロセッサ464からのシンボルは、適用可能であれば、TX MIMOプロセッサ466によってプリコードされ、さらに、(例えば、SC−FDM等のために)変調器454a乃至454rによって処理され、基地局110へ送信されうる。基地局110では、UE120からのアップリンク信号が、アンテナ434によって受信され、復調器432によって処理され、適用可能な場合にはMIMO検出器436によって検出され、さらに、受信プロセッサ438によって処理されて、UE120によって送信された復号されたデータおよび制御情報が取得されうる。プロセッサ438は、復号されたデータをデータ・シンク439に提供し、復号された制御情報をコントローラ/プロセッサ440へ提供しうる。基地局110は、例えばX2インタフェース441を介して、他の基地局へメッセージを送信しうる。
コントローラ/プロセッサ440,480は、基地局110およびUE120それぞれにおける動作を指示しうる。基地局110におけるプロセッサ440および/またはその他のプロセッサおよびモジュールは、本明細書に記載された技術のためのさまざまな処理の実行または実行の指示を行いうる。UE120におけるプロセッサ480および/またはその他のプロセッサおよびモジュールは、図6A,6B,7A−7C,8A−8C、および9に例示された機能ブロック、および/または、本明細書に記載された技法のためのその他の処理の実行または指示を行いうる。メモリ442,482は、基地局110およびUE120それぞれのためのデータおよびプログラム・コードを格納しうる。スケジューラ444は、ダウンリンクおよび/またはアップリンクでのデータ送信のためにUEをスケジュールしうる。
無線ネットワークは、異なる電力クラスのeノードBを有しうる。例えば、電力クラスが減少するに際し、マクロeノードB、ピコeノードB、およびフェムトeノードBのように、3つの電力クラスが定義されうる。このように異なる電力クラスのeノードBを特徴とするネットワークは、ヘテロジニアスなネットワークと称されうる。マクロeノードB、ピコeノードB、およびフェムトeノードBが同一チャネルに配置されている場合、マクロeノードB(攻撃eノードB)の電力スペクトル密度(PSD)は、ピコeノードBおよびフェムトeノードB(犠牲eノードBs)のPSDよりも大きく、ピコeノードBとフェムトeノードBとに多大な干渉をもたらしうる。保護サブフレームは、ピコeノードBおよびフェムトeノードBとの干渉を低減または最小化するために使用されうる。すなわち、保護サブフレームは、犠牲eノードBが、攻撃eノードBにおける禁止サブフレームに対応するようにスケジュールされうる。
図1に戻って示すように、ヘテロジニアスな無線ネットワーク100は、単位エリア毎のシステムのスペクトル効率を改善するために、eノードB110の多様なセット(すなわち、マクロeノードB、ピコeノードB、フェムトeノードB、およびリレー)を使用する。マクロeノードB110a−cは、通常、無線ネットワーク100のプロバイダによって、注意深く計画され、配置される。マクロeノードB110a−cは、一般に、高い電力レベル(例えば、5W−40W)で送信する。一般に、実質的に低い電力レベル(例えば、100mW−2W)で送信するピコeノードB110xおよびリレー110rは、マクロeノードB110a−cによって提供される有効通信範囲エリアにおける有効通信範囲ホールをなくすために、および、ホット・スポットにおける容量を改善するために、比較的無計画な方式で配置されうる。一般に、無線ネットワーク100から独立して配置されるフェムトeノードB110y−zはやはり、アドミニストレータ(単数または複数)によって許可されている場合には、無線ネットワーク100への潜在的なアクセス・ポイントとして、または、リソース調整および干渉管理の調整を実行するために、無線ネットワーク100の他のeノードB110と通信しうる、少なくともアクティブでアウェアなeノードBとして、の何れかとして、無線ネットワーク100の有効通信範囲エリアへ組み込まれうる。また、フェムトeノードB110y−zは、一般に、マクロeノードB110a−cよりも実質的に低い電力レベル(例えば、100mW−2W)でも送信する。
例えば無線ネットワーク100のようなヘテロジニアスなネットワークの動作では、おのおののUEは、通常、良好な信号品質のeノードB110によってサービス提供される一方、他のeノードB110から受信された、求められない信号は、干渉として取り扱われる。このような動作原理は、最適とはいえないパフォーマンスをもたらす一方、eノードB110間における高度なリソース調整、より良好なサーバ選択戦略、および、効率的な干渉管理のためのより進化した技術を用いることによって、無線ネットワーク100におけるネットワーク・パフォーマンスの向上が達成される。
例えばピコeノードB110xのようなピコeノードBは、例えばマクロeノードB110a−cのようなマクロeノードBと比較された場合、実質的に低い送信電力によって特徴付けられる。また、ピコeノードBは、通常、アド・ホック方式では、例えば無線ネットワーク100のようなネットワークの周囲に配置されるだろう。この無計画な配置によって、例えば無線ネットワーク100のような、ピコeノードB配置を伴う無線ネットワークは、低い信号対干渉条件を持つ広いエリアを有することが期待されうる。これは、有効通信範囲エリアまたはセルの端部のUE(「セル・エッジ」UE)への制御チャネル送信のためのよりチャレンジングなRF環境を生み出しうる。さらに、マクロeノードB110a−cと、ピコeノードB110xとの送信電力レベル間に潜在的に大きな相違(例えば、約20dB)があることは、混合された配置では、ピコeノードB110xのダウンリンク有効通信範囲エリアが、マクロeノードB110a−cのダウンリンク有効通信範囲エリアよりも格段に小さいであろうことを示唆している。
しかしながら、アップリンクの場合、アップリンク信号の信号強度はUEによって管理されるので、何れかのタイプのeノードB110によって受信された場合、類似するようになるであろう。大まかに同じ、または、類似しているeノードB110のアップリンク有効通信範囲エリアでは、アップリンク・ハンドオフ境界が、チャネル・ゲインに基づいて決定されるだろう。これは、ダウンリンク・ハンドオーバ境界とアップリンク・ハンドオーバ境界との間のミスマッチをもたらしうる。さらなるネットワーク適合が無ければ、このミスマッチは、無線ネットワーク100における、サーバ選択、または、eノードBに対するUEの関連付けを、ダウンリンクおよびアップリンクのハンドオーバ境界がより近く一致しているマクロeノードBのみのホモジニアス・ネットワークにおけるよりも、より困難にするであろう。
(範囲拡張)
LTEリリース8規格で提供されているように、サーバ選択が、ダウンリンク受信信号強度に支配的に基づくのであれば、例えば無線ネットワーク100のようなヘテロジニアスなネットワークの混成eノードB配置の有用性が大いに損なわれるだろう。これは、例えばマクロeノードB110a−cのような高電力マクロeノードBの有効通信範囲エリアが広くなると、例えばピコeノードB110xのようなピコeノードBを用いてセル有効通信範囲を分割する利点を制限するからである。なぜなら、マクロeノードB110a−cのダウンリンク受信信号強度が高くなると、利用可能なUEのすべてに対して魅力的である一方、ピコeノードB110xは、ダウンリンク送信電力がはるかに低いことによって、いずれのUEにもサービス提供しないからである。さらに、マクロeノードB110a−cは、これらのUEに対して効率的にサービス提供するために、十分なリソースを持たない可能性が高くなるであろう。したがって、無線ネットワーク100は、ピコeノードB110xの有効通信範囲エリアを拡大することによって、マクロeノードB110a−cとピコeノードB110xとの間の負荷をアクティブに平準化するように試みるであろう。この概念は範囲拡張と称される。
無線ネットワーク100は、サーバ選択が決定される方式を変更することによって、この範囲拡張を達成する。サーバ選択は、ダウンリンク受信信号強度に基づくのではなく、ダウンリンク信号の品質により基づく。1つのこのような品質ベースの決定では、サーバ選択は、UEに対して最小の経路喪失しかもたらさないeノードBを決定することに基づきうる。さらに、無線ネットワーク100は、マクロeノードB110a−cと、ピコeノードB110xとの間で固定されたリソース分割を等しく提供する。しかしながら、このようなアクティブな負荷平準化をもってしても、マクロeノードB110a−cからのダウンリンク干渉は、例えばピコeノードB110xのようなピコeノードBによってサービス提供されるUEのために緩和されねばならない。これは、UEにおける干渉除去、eノードB110間のリソース調整等を含むさまざまな方法によって達成されうる。
例えば無線ネットワーク100のように、範囲拡張されたヘテロジニアスなネットワークでは、例えばマクロeノードB110a−cのような高電力のeノードBから送信された、より強いダウンリンク信号の存在下において、例えばピコeノードB110xのような低電力のeノードBから、UEがサービスを得るために、ピコeノードB110xは、マクロeノードB110a−cのうちの支配的な干渉元との制御チャネルおよびデータ・チャネルの干渉の調整を行う。干渉を管理するために、干渉調整のための別の多くの技術が適用されうる。例えば、同一チャネル配置におけるセルからの干渉を低減するために、セル間干渉調整(ICIC)が使用されうる。1つのICICメカニズムは、適応的なリソース区分である。適応的なリソース分割は、あるeノードBにサブフレームを割り当てる。第1のeノードBに割り当てられたサブフレームでは、近隣のeノードBは送信しない。したがって、第1のeノードBによってサービス提供されるUEによってもたらされる干渉が低減される。サブフレーム割当は、アップリンク・チャネルとダウンリンク・チャネルとの両方で実行されうる。
(適応的なリソース区分)
例えば、サブフレームは、3つのクラスのサブフレーム、すなわち、保護サブフレーム(Uサブフレーム)、禁止サブフレーム(Nサブフレーム)、および共通サブフレーム(Cサブフレーム)の間で割り当てられる。保護サブフレームは、第1のeノードBによる限定的な使用のために第1のeノードBに割り当てられる。保護サブフレームはまた、近隣のeノードBからの干渉が無いことに基づいて、「クリーンな」サブフレームとも称される。禁止サブフレームは、近隣のeノードBに割り当てられたサブフレームであり、第1のeノードBは、禁止サブフレームの間、データを送信することを禁じられる。例えば、第1のeノードBの禁止サブフレームは、第2の干渉元のeノードBの保護サブフレームに対応しうる。したがって、第1のeノードBは、第1のeノードBの保護サブフレームの間にデータを送信している唯一のeノードBである。共通サブフレームは、複数のeノードBによるデータ送信のために使用されうる。共通サブフレームはまた、別のeノードBからの干渉の可能性があることから、「クリーンではない」サブフレームとも称されうる。
期間毎に、少なくとも1つの保護サブフレームが静的に割り当てられる。ある場合には、1つの保護サブフレームのみが静的に割り当てられる。例えば、期間が8ミリ秒である場合、1つの保護サブフレームが、毎8ミリ秒の間に、eノードBに静的に割り当てられうる。他のサブフレームは動的に割り当てられうる。
適応性のあるリソース分配情報(ARPI:Adaptive resource partitioning information)によって、非静的に割り当てられたサブフレームが、動的に割り当てられるようになる。保護サブフレーム、禁止サブフレーム、または共通サブフレーム(それぞれAUサブフレーム、ANサブフレーム、ACサブフレーム)の何れかが、動的に割り当てられうる。このような動的な割り当ては、例えば100ミリ秒毎またはそれ未満毎のように、迅速に変化しうる。
図5は、本開示の1つの態様にしたがうヘテロジニアスなネットワークにおけるTDM区分を例示するブロック図である。ブロックの第1行は、フェムトeノードBのためのサブフレーム割当を例示しており、ブロックの第2行は、マクロeノードBのためのサブフレーム割当を例示している。eノードBのおのおのは、静的な保護サブフレームを有する。この間、他のeノードBは、静的な禁止サブフレームを有する。例えば、フェムトeノードBは、サブフレーム0における禁止サブフレーム(Nサブフレーム)に対応する、サブフレーム0における保護サブフレーム(Uサブフレーム)を有する。同様に、マクロeノードBは、サブフレーム7における禁止サブフレーム(Nサブフレーム)に対応する、サブフレーム7における保護サブフレーム(Uサブフレーム)を有する。サブフレーム1−6は、保護サブフレーム(AU)、禁止サブフレーム(AN)、および共通サブフレーム(AC)の何れかとして動的に割り当てられる。動的に割り当てられたサブフレーム(AU/AN/AC)は、本明細書において集合的に「X」サブフレームと称される。サブフレーム5,6において動的に割り当てられた共通サブフレーム(AC)では、フェムトeノードBとマクロeノードBとの両方が、データを送信しうる。
攻撃eノードBは、送信することを禁止されているので、(例えばU/AUサブフレームのような)保護サブフレームは、干渉が低減され、高いチャネル品質を有する。(例えば、N/ANサブフレームのような)禁止サブフレームは、データ送信がないので、犠牲eノードBは、低い干渉レベルでデータを送信できるようになる。(例えば、C/ACサブフレームのような)共通サブフレームは、データを送信している近隣のeノードBの数に依存するチャネル品質を有する。例えば、近隣のeノードBが、共通サブフレームでデータを送信している場合、共通サブフレームのチャネル品質は、保護サブフレームよりも低くなりうる。共通サブフレームのチャネル品質はまた、攻撃eノードBによって強く影響を受ける拡張境界エリア(EBA)について低くなりうる。EBA UEは、第1のeノードBに属するのみならず、第2のeノードBの有効通信範囲エリア内に配置されうる。例えば、フェムトeノードB有効通信範囲の範囲限界近傍のマクロeノードBと通信するUEは、EBA UEである。
LTE/−Aにおいて適用されうる別の干渉管理スキームの例は、緩慢な適応干渉管理である。干渉管理に対してこのアプローチを使用することによって、リソースが、ネゴシエートされ、スケジューリング間隔よりもはるかに大きな時間スケールにわたって割り当てられる。このスキームの目的は、時間リソースまたは周波数リソースのすべてにわたって、ネットワークの全体有用性を最大化する、送信元のeノードBとUEとのすべての送信電力の組み合わせを見つけることである。「有用性」は、ユーザ・データ・レート、サービス品質(QoS)フローの遅れ、および公平メトリックに応じて定義されうる。このようなアルゴリズムは、最適化を解決するために使用されるすべての情報へのアクセスを有し、かつ、例えば、ネットワーク・コントローラ130(図1)のようなすべての送信エンティティに対する制御を有する、中央エンティティによって計算されうる。この中央エンティティは、必ずしも現実的ではないか、また、望ましくもないかもしれない。したがって、代替態様では、ノードのあるセットからのチャネル情報に基づいて、リソース利用量を決定する、分散アルゴリズムが使用されうる。したがって、緩慢な適応干渉アルゴリズムは、中央エンティティを用いて適用されるか、あるいは、ネットワーク内のノード/エンティティのさまざまなセットにわたってアルゴリズムを分散させることによって配置されうる。
例えば無線ネットワーク100のようなヘテロジニアスなネットワークの配置では、UEは、1または複数の干渉元のeノードBから高い干渉を観察しうる支配的な干渉シナリオで動作しうる。支配的な干渉シナリオは、制限された関連付けによって生じうる。例えば、図1では、UE120yが、フェムトeノードB110yの近くにあり、eノードB110yに関し高い受信電力を有しうる。しかしながら、制約された関連性によって、UE120yは、フェムトeノードB110yにアクセスすることができず、(図1に示すような)マクロeノードB110c、または、同様に低い受信電力を持つ(図1に示されていない)フェムトeノードB110zに接続しうる。UE120yは、その後、ダウンリンクで、フェムトeノードB110yからの高い干渉を観察し、アップリンクで、eノードB110yへ高い干渉を引き起こしうる。eノードB110cおよびフェムトeノードB110yは、調整された干渉管理を用いて、リソースをネゴシエートするために、バックホールを介して通信しうる。このネゴシエーションでは、フェムトeノードB110yは、チャネル・リソースのうちの1つにおける送信を停止することに合意する。これによって、UE120yは、同じチャネルを介してeノードB110cと通信する場合ほど、フェムト110yからの干渉を受けなくなるであろう。
このような支配的な干渉シナリオでは、同期システムにおいてでさえも、UEと複数のeノードBとの間の距離が異なることにより、UEで観察された信号電力の不一致に加えて、ダウンリンク信号のタイミング遅れもUEによって観察されうる。同期システムにおけるeノードBは、システムにわたって、推定に基づいて同期される。しかしながら、例えば、マクロeノードBから5kmの距離にあるUEを考慮すると、マクロeノードBから受信されたダウンリンク信号の伝搬遅れは、約16.67マイクロ秒(5km÷3×10、すなわち、光速’c’)の遅れとなるであろう。マクロeノードBからのダウンリンク信号を、より近いフェムトeノードBからのダウンリンク信号と比較すると、タイミング差は、時間トラッキング・ループ(TLL)誤差のレベルに近づきうる。
さらに、このタイミング差は、UEにおける干渉除去に悪影響を与えうる。干渉除去はしばしば、同じ信号の複数のバージョンの結合間の相互相関特性を用いる。同じ信号の複数のコピーを結合することによって、干渉は、より簡単に識別されうる。なぜなら、信号のおのおののコピーにおける干渉が存在するであろう間、干渉は、同じ場所にあることはないだろうからである。結合された信号の相互相関を用いて、実際の信号部分が判定され、干渉と区別されうる。これによって、干渉が除去されるようになる。
一般に、サービス提供セルの制御スパンは、干渉元セルの制御スパンとは異なりうる。制御チャネルは、制御スパン内に、1つの直交周波数分割多重(OFDM)シンボル、2つのシンボル、または3つのシンボルを有しうる。1.25MHz帯域幅のケースの場合、制御チャネルは、最大4つのシンボルを有しうる。したがって、サービス提供セルおよび干渉元セルからの制御領域は、揃っていない場合がありうる。本開示の1つの態様は、制御スパンのミスマッチによる干渉インパクトを低減または最小化する、制御チャネルおよびデータ・チャネルの干渉除去を提供する。
図6Aは、干渉除去の全体フロー図を例示する。ブロック610では、共通基準信号(CRS)において干渉除去が実行される。ブロック620では、最初の制御シンボルが処理される。ブロック630では、残りの任意の制御シンボルが処理される。次に、ブロック640において、物理ダウンリンク共有チャネル(PDSCH)干渉除去が適用される。最後に、ブロック650において、サービス提供セルPDSCHが復号される。
さらに詳しくは、図6Bは、本開示の1つの態様にしたがう、最初の制御シンボルの処理を例示するフロー図である。PCFICHは、サブフレームにおける最初のOFDMシンボルでのみ送信する。ブロック621において、UEは、干渉元セルにおける制御シンボルの数を決定するために、干渉元セルのPCFICHを復号する。
ブロック622において、UEは、干渉元セルのシンボル1におけるリソース要素グループ(REG)のためのトラフィック対パイロット比(TPR)を推定する。このトラフィック対パイロット比は、特定のリソース要素グループ内の干渉元セルからのトラフィックが存在するか否かを示し、もって、UEがそのリソース要素グループのために干渉除去を実行すべきか否かを示す。トラフィック対パイロット比の値が、ゼロに近いと推定されるのであれば、干渉元セルにはトラフィックは存在せず、干渉除去は実行されない。トラフィック対パイロット比の値が、あるしきい値よりも大きいのであれば、干渉元セルはその領域において送信しており、干渉除去が所望される。
ブロック623において、干渉(すなわち、高いトラフィック対パイロット比)があるとUEが判定すると、UEは、シンボル1におけるリソース要素グループのための制御チャネル(すなわち、PDCCH)干渉除去を実行する。リソース要素グループ(REG)は、共通基準信号(CRS)を含むシンボルのためにともにグループ化された6つの連続したトーンを有しうる。さらに、4つの連続したトーンが、CRSを含まないシンボルのためにともにグループ化されうる。干渉除去後、ブロック624において、UEは、サービス提供セルにおける制御信号の数を決定するために、サービス提供セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号する。
図6Aに戻って示すように、最初の制御シンボルがブロック620において処理された後、残りの任意の制御シンボルがブロック630において処理される。サービス提供セルと干渉元セルとの間の制御スパンにおける相違は、残りの制御シンボルの処理に影響を与える。特に、1つのシナリオでは、図7Aに例示されるように、サービス提供セル送信のサービス提供セル制御領域702aは、干渉元セル送信の制御領域704aよりも小さい。あるいは、サービス提供セル制御領域は、干渉元セルの制御領域よりも大きいことがありうる。図7Bに示すように、サービス提供セル送信の制御領域702bは、干渉元セル送信の制御領域704bよりも大きい。さらに、別の態様では、サービス提供セルおよび干渉元セルの制御領域は、サービス提供セル制御領域702cが干渉元セル制御領域704cと同じサイズである図7Cに例示されたものと同じでありうる。サービス提供セルと干渉元セルとの間の制御スパンの相違に依存して、UEは、サービス提供セルの制御およびデータ・チャネルの復調および復号における干渉インパクトを低減または最小化するための異なる動作オプションを有する。
図8Aは、(図7Aに例示されるように)サービス提供セル制御領域が干渉元セル制御領域よりも小さい場合において残りの制御シンボルを処理するための方法801を例示する。ブロック810において、シンボル2におけるリソース要素グループのためのトラフィック対パイロット比が推定される。次に、ブロック812において、高いトラフィック対パイロット比を有するシンボル2のリソース要素グループのために、制御チャネル(例えば、PDCCH)干渉除去が実行される。次に、ブロック814において、サービス提供セルPDCCH/PHICHが復号される。サービス提供セルPDCCHが知られると、サービス提供セル・データ領域(すなわち、RB割当)が知られる。次に、ブロック816において、シンボル3におけるリソース要素グループのためのトラフィック対パイロット比が推定される。次に、UEは、干渉元セルの制御領域によって引き起こされる干渉を除去する。したがって、ブロック818において、サービス提供セル・データ領域(すなわち、PDSCH RB割当)とオーバラップする干渉元セルのリソース要素グループについて、PDCCH干渉除去が実行される。1つの態様では、PDCCH干渉除去は、サービス提供セル・データ領域とオーバラップしない干渉元セルのリソース要素グループについて実行されない。
図8Bは、(図7Bに例示されるように)サービス提供セルが干渉元セルの制御領域よりも大きな制御領域を有する場合に、残りの制御シンボルを処理するための方法802を例示する。先ず、ブロック820において、シンボル2のリソース要素グループのトラフィック対パイロット比が推定される。干渉元データの制御領域からのいずれの干渉も除去される。したがって、ブロック822において、シンボル2のリソース要素グループについて、PDCCH干渉除去が実行される。
ブロック824において、シンボル3のすべてのリソース・ブロックについてトラフィック対パイロット比が推定される。サービス提供セルのPDSCH割当はまだ知られていないので、リソース・ブロックのすべてが処理される。ブロック826において、高いトラフィック対パイロット比を有する、シンボル3におけるリソース・ブロックについて、データ(すなわち、PDSCH)干渉除去が実行される。次に、ブロック828において、サービス提供セルPDCCH/PHICHが復号される。
別の構成では、ブロック824およびブロック826は、オプションの動作であり、実行されない。言い換えれば、別の構成では、ブロック822において、PDCCH干渉除去が実行された後、ブロック828において、サービス提供セルPDCCH/PHICHが復号される。
図8Cは、(図7Cに例示されるように)サービス提供セルの制御領域が、干渉元セルの制御領域と同じサイズを有する場合に、残りの制御シンボルを処理するための方法803を例示する。ブロック830において、シンボル2および3におけるリソース要素グループのためのトラフィック対パイロット比が推定される。次に、ブロック832において、高いトラフィック対パイロット比を有するシンボル2および/またはシンボル3におけるリソース要素グループについてPDCCH干渉除去が実行される。ブロック834では、サービス提供セルPDCCH/PHICHが復号される。
図9Aは、干渉除去を実行する方法900を例示する。ブロック910において、UEは、サービス提供セルと干渉元セルの制御スパンを決定するために、サブフレームの最初の制御シンボルを処理する。ブロック912において、UEは、決定された制御スパンに基づいて干渉を除去する。
1つの構成では、処理する手段と、干渉を除去する手段とを含む無線通信のためのUE120が構成される。1つの態様では、処理する手段は、前述した手段によって記載された機能を実行するように構成されたコントローラ・プロセッサ480および/またはメモリ482でありうる。別の態様では、前述された手段は、前述された手段によって記載された機能を実行するように構成された任意のモジュールまたは任意の装置でありうる。
オプションとして、方法900はまた、図9Bに例示されるように、基準信号トーンにおける干渉を除去することをも含みうる。特に、ブロック914では、UEは先ず、例えば共通基準信号(CRS)トーンまたはユーザ機器基準信号(UE−RS)トーンのような基準信号トーンにおける干渉を除去する。この干渉は、データおよび/または制御干渉でありうる。ブロック916において、UEは、他のシンボルにおける干渉除去を実行する。基準シンボルを含むシンボルにおける干渉除去は、まず、基準信号トーンに対してのみ適用されうる。この構成では、基準信号を含むシンボルにおいて、その他のシンボルにおけるその後の干渉除去が、基準信号の無いトーンへ適用される。
図10は、典型的な装置1000における異なるモジュール/手段/構成要素間のデータ・フローを例示する概念データ・フロー図である。装置1000は、信号を受信し、処理モジュール1002へ送信する受信モジュール1006を含む。処理モジュール1002は、サービス提供セルの制御スパンと、干渉元セルの制御スパンとを決定するために、受信信号からのサブフレームの最初のシンボルを処理する。装置1000はまた、決定された制御スパンに基づいて干渉を除去する除去モジュール1004を含む。前述したフローチャート図6A−B,8A−C,9A−Bにおける各要素は、モジュールによって実行され、装置は、これらモジュールのうちの1または複数を含みうる。これらモジュールは、前述した処理/アルゴリズムを実行するように特別に構成された1または複数のハードウェア構成要素であるか、前述した処理/アルゴリズムを実行するように構成されたプロセッサによって実行されうるか、プロセッサによる実施のためにコンピュータ読取可能な媒体内に格納されうるか、またはこれらのいくつかの組み合わせでありうる。
図11は、処理システム1114を適用する装置1100のハードウェア実装の例を例示する図解である。処理システム1114は、一般にバス1124によって表されるバス・アーキテクチャを用いて実現されうる。バス1124は、全体的な設計制約および処理システム1114の特定のアプリケーションに依存して、任意の数の相互接続バスおよびブリッジを含みうる。バス1124は、プロセッサ1104、処理モジュール1132、除去モジュール1132、およびコンピュータ読取可能な媒体1106によって表される1または複数のプロセッサおよび/またはハードウェア・モジュールを含むさまざまな回路をともにリンクする。バス1124はさらに、例えば、タイミング・ソース、周辺機器、電圧制御装置、および電力管理回路のようなその他さまざまな回路を接続しうる。これらは、当該技術分野で良く知られているので、さらなる説明はしない。
この装置は、トランシーバ1110に接続された処理システム1114を含む。トランシーバ1110は、1または複数のアンテナ1120に接続されうる。トランシーバ1110は、送信媒体を介したその他さまざまな装置との通信を可能にする。処理システム1114は、コンピュータ読取可能な媒体1106に接続されたプロセッサ1104を含む。
プロセッサ1104は、コンピュータ読取可能な媒体1106に格納されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ1104によって実行された場合、処理システム1114に対して、任意の特定の装置のために記述されたさまざまな機能を実行させる。コンピュータ読取可能な媒体1106はまた、ソフトウェアが実行されている場合に、プロセッサ1104によって操作されるデータを格納するためにも使用されうる。
処理システムは、処理モジュール1130および除去モジュール1132を含む。処理モジュール1130は、サービス提供セルの制御スパンと干渉元セルの制御スパンとを決定するために、サブフレームの最初のシンボルを処理しうる。除去モジュール1132は、決定された制御スパンに基づいて、干渉を除去しうる。これらモジュールは、プロセッサ1104において動作するソフトウェア・モジュールであるか、コンピュータ読取可能な媒体1106に常駐/格納されうるか、プロセッサ1104に接続された1または複数のハードウェア・モジュールであるか、または、これらのいくつかの組み合わせでありうる。処理システム1114は、例えば、メモリ482、受信プロセッサ458、変調器/復調器454a−r、アンテナ452a−r、および/または、コントローラ/プロセッサ480のようなUE120の構成要素でありうる。
当業者であればさらに、本明細書の開示に関連して記載されたさまざまな例示的な論理ブロック、モジュール、回路、およびアルゴリズム・ステップが、電子工学ハードウェア、コンピュータ・ソフトウェア、あるいはこれらの組み合わせとして実現されることを理解するであろう。ハードウェアとソフトウェアとの相互置換性を明確に説明するために、さまざまな例示的な構成要素、ブロック、モジュール、回路、およびステップが、これらの機能の観点から一般的に記載された。これら機能がハードウェアとしてまたはソフトウェアとして実現されるかは、特定の用途およびシステム全体に課せられている設計制約に依存する。当業者であれば、特定の用途のおのおのに応じて変化する方式で、前述した機能を実現しうる。しかしながら、この適用判断は、本発明の範囲からの逸脱をもたらすものと解釈されるべきではない。
本明細書の開示に関連して記述されたさまざまな例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)あるいはその他のプログラマブル論理デバイス、ディスクリート・ゲートあるいはトランジスタ・ロジック、ディスクリート・ハードウェア構成要素、または上述された機能を実現するために設計された上記何れかの組み合わせを用いて実現または実施されうる。汎用プロセッサは、マイクロ・プロセッサでありうるが、代替例では、このプロセッサは、従来のプロセッサ、コントローラ、マイクロ・コントローラ、またはステート・マシンでありうる。プロセッサは、例えばDSPとマイクロ・プロセッサとの組み合わせ、複数のマイクロ・プロセッサ、DSPコアと連携する1または複数のマイクロ・プロセッサ、またはその他任意のこのような構成であるコンピューティング・デバイスの組み合わせとして実現されうる。
本明細書の開示に関連して説明された方法またはアルゴリズムのステップは、ハードウェアでダイレクトに、プロセッサによって実行されるソフトウェア・モジュールで、またはこの2つの組合せで実施することができる。ソフトウェア・モジュールは、RAMメモリ、フラッシュ・メモリ、ROMメモリ、EPROMメモリ、EEPROM(登録商標)メモリ、レジスタ、ハード・ディスク、リムーバブル・ディスク、CD−ROM、あるいは当該技術分野で知られているその他の型式の記憶媒体に存在しうる。典型的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、また記憶媒体に情報を書き込むことができるようにプロセッサに結合される。あるいは、この記憶媒体は、プロセッサに統合されうる。このプロセッサと記憶媒体とは、ASIC内に存在しうる。ASICは、ユーザ端末内に存在しうる。あるいは、プロセッサおよび記憶媒体は、ユーザ端末内のディスクリートな構成要素として存在しうる。
1または複数の典型的な設計では、記載された機能は、ハードウェア、ソフトウェア、ファームウェア、あるいはそれらの任意の組み合わせによって実現されうる。ソフトウェアで実現される場合、これら機能は、コンピュータ読取可能な媒体上に格納されるか、あるいは、コンピュータ読取可能な媒体上の1または複数の命令群またはコードとして送信されうる。コンピュータ読取可能な媒体は、コンピュータ記憶媒体と通信媒体との両方を含む。これらは、コンピュータ・プログラムのある場所から別の場所への転送を容易にする任意の媒体を含む。記憶媒体は、汎用コンピュータまたは特別目的コンピュータによってアクセスされうる任意の利用可能な媒体でありうる。限定ではなく、一例として、このようなコンピュータ読取可能な媒体は、RAM、ROM、EEPROM、CD−ROMまたはその他の光ディスク記憶装置、磁気ディスク記憶装置またはその他の磁気記憶装置、あるいは、命令群またはデータ構造の形式で所望のプログラム・コード手段を伝送または格納するために使用され、かつ、汎用コンピュータまたは特別目的コンピュータ、あるいは、汎用プロセッサまたは特別目的プロセッサによってアクセスされうるその他任意の媒体を備えうる。さらに、いかなる接続も、コンピュータ読取可能な媒体として適切に称される。同軸ケーブル、光ファイバ・ケーブル、ツイスト・ペア、デジタル加入者線(DSL)、あるいは、例えば赤外線、無線およびマイクロ波のような無線技術を使用して、ウェブサイト、サーバ、あるいはその他の遠隔ソースからソフトウェアが送信される場合、同軸ケーブル、光ファイバ・ケーブル、ツイスト・ペア、DSL、あるいは、例えば赤外線、無線およびマイクロ波のような無線技術が、媒体の定義に含まれる。本明細書で使用されるディスク(diskおよびdisc)は、コンパクト・ディスク(disc)(CD)、レーザ・ディスク(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)、およびブルー・レイ・ディスク(disc)を含む。これらdiscは、レーザを用いてデータを光学的に再生する。それに対して、diskは、通常、データを磁気的に再生する。前述した組み合わせもまた、コンピュータ読取可能な媒体の範囲内に含まれるべきである。
本開示の上記記載は、当業者をして、本開示の製造または利用を可能とするように提供される。本開示に対するさまざまな変形は、当業者に容易に明らかであって、本明細書で定義された一般原理は、本開示の精神または範囲から逸脱することなく、他のバリエーションに適用されうる。このように、本開示は、本明細書で示された例および設計に限定されることは意図されておらず、本明細書で開示された原理および新規な特徴に一致した最も広い範囲に相当するとされている。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1]
無線通信の方法であって、
サービス提供セルの制御スパン、および、干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理することと、
前記決定されたこれら制御スパンに基づいて干渉を除去することと、
を備える方法。
[C2]
前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも大きいことを判定し、
前記除去することは、前記サービス提供セルの制御領域とオーバラップする前記干渉元セルのリソース要素グループに対して、データ・チャネル干渉除去を実行することを備える、C1に記載の方法。
[C3]
前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも小さいことを判定し、
前記除去することは、前記サービス提供セルのデータ領域とオーバラップする前記干渉元セルのリソース要素グループに対して、制御チャネル干渉除去を実行することを備える、C1に記載の方法。
[C4]
前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンと同じサイズであると判定し、
前記干渉を除去することは、各制御シンボルについて制御チャネルの干渉除去を実行することを備える、C1に記載の方法。
[C5]
前記最初の制御シンボルを処理することはさらに、
前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することと、
前記最初の制御シンボルにおけるリソース要素グループのトラフィック対パイロット比を推定することと、
前記最初の制御シンボルにおけるリソース要素グループの制御チャネル干渉除去を実行することと、
前記サービス提供セルのPCFICHを復号することと
を備える、C1に記載の方法。
[C6]
基準信号トーンを含むシンボルにおける干渉を除去することと、
前記基準信号トーンを含むシンボルにおける干渉を除去した後、その他のシンボルにおける干渉除去を実行することと、
をさらに備えるC1に記載の方法。
[C7]
前記干渉は、データ干渉および/または制御干渉を備える、C6に記載の方法。
[C8]
前記基準信号トーンは、共通基準信号(CRS)トーンおよび/またはユーザ機器基準信号(UE−RS)トーンを備える、C6に記載の方法。
[C9]
無線通信のための装置であって、
メモリと、
前記メモリに接続された少なくとも1つのプロセッサとを備え、
前記少なくとも1つのプロセッサは、
サービス提供セルの制御スパン、および、干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理し、
前記決定されたこれら制御スパンに基づいて干渉を除去する
ように構成された、装置。
[C10]
前記処理するように構成された少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも大きいことを判定し、
前記除去するように構成された少なくとも1つのプロセッサは、前記サービス提供セルの制御領域とオーバラップする前記干渉元セルのリソース要素グループに対して、データ・チャネル干渉除去を実行する、C9に記載の装置。
[C11]
前記処理するように構成された少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも小さいことを判定し、
前記除去するように構成された少なくとも1つのプロセッサは、前記サービス提供セルのデータ領域とオーバラップする前記干渉元セルのリソース要素グループに対して、制御チャネル干渉除去を実行する、C9に記載の装置。
[C12]
前記処理するように構成された少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンと同じサイズであると判定し、
前記干渉を除去することは、各制御シンボルについて制御チャネルの干渉除去を実行することを備える、C9に記載の装置。
[C13]
前記少なくとも1つのプロセッサはさらに、
前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することと、
前記最初の制御シンボルにおけるリソース要素グループのトラフィック対パイロット比を推定することと、
前記最初の制御シンボルにおけるリソース要素グループの制御チャネル干渉除去を実行することと、
前記サービス提供セルのPCFICHを復号することと、
によって処理するように構成された、C9に記載の装置。
[C14]
基準信号トーンを含むシンボルにおける干渉を除去し、
前記基準信号トーンを含むシンボルにおける干渉を除去した後、その他のシンボルにおける干渉除去を実行する
ように構成された少なくとも1つのプロセッサ、
をさらに備えるC9に記載の装置。
[C15]
前記干渉は、データ干渉および/または制御干渉を備える、C9に記載の装置。
[C16]
前記基準信号トーンは、共通基準信号(CRS)トーンおよび/またはユーザ機器基準信号(UE−RS)トーンを備える、C9に記載の装置。
[C17]
無線通信のための装置であって、
サービス提供セルの制御スパン、および、干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理する手段と、
前記決定されたこれら制御スパンに基づいて干渉を除去する手段と、
を備える装置。
[C18]
無線ネットワークにおける無線通信のためのコンピュータ・プログラム製品であって、
記録された非一時的なプログラム・コードを有する非一時的なコンピュータ読取可能な媒体を備え、前記プログラム・コードは、
サービス提供セルの制御スパン、および、干渉元セルの制御スパンを決定するために、サブフレームの最初のシンボルを処理するためのプログラム・コードと、
前記決定されたこれら制御スパンに基づいて干渉を除去するためのプログラム・コードとを備える、コンピュータ・プログラム製品。

Claims (16)

  1. 無線通信の方法であって、
    ユーザ機器(UE)において、干渉元セルの制御スパンを決定するために、前記干渉元セルのサブフレームの最初のシンボルを処理することと、前記最初のシンボルは、前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することにより処理され、
    前記最初のシンボルにおけるリソース要素グループのトラフィック対パイロット比を推定することと、
    前記推定されたトラフィック対パイロット比に基づいて、前記最初のシンボルにおけるリソース要素グループの制御チャネル干渉除去を実行することと、
    少なくとも前記干渉元セルの制御スパンとサービス提供セルの制御スパンとの間の相違に基づいて、残りの制御シンボル、データ・チャネル、又はそれらの組み合わせのうち、少なくとも1つの干渉除去を実行することと、
    を備える方法。
  2. 前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも大きいか否かを判定し、
    前記干渉除去を実行することは、前記サービス提供セルの制御領域とオーバラップする前記干渉元セルのリソース要素グループに対して、データ・チャネル干渉除去を実行することをさらに備える、請求項1に記載の方法。
  3. 前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも小さいか否かを判定し、
    前記干渉除去を実行することは、前記サービス提供セルのデータ領域とオーバラップする前記干渉元セルのリソース要素グループに対して、制御チャネル干渉除去を実行することをさらに備える、請求項1に記載の方法。
  4. 前記処理することは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンと同じサイズであるか否かを判定し、
    前記干渉除去を実行することは、各制御シンボルについて制御チャネルの干渉除去を実行することをさらに備える、請求項1に記載の方法。
  5. 基準信号トーンを含むシンボルにおける干渉を除去することと、
    前記基準信号トーンを含むシンボルにおける干渉を除去した後、その他のシンボルにおける干渉除去を実行することと、
    をさらに備える請求項1に記載の方法。
  6. 前記干渉は、データ干渉および/または制御干渉を備える、請求項に記載の方法。
  7. 前記基準信号トーンは、共通基準信号(CRS)トーンおよび/またはユーザ機器基準信号(UE−RS)トーンを備える、請求項に記載の方法。
  8. 無線通信のために構成されたユーザ機器(UE)であって、
    メモリと、
    前記メモリに接続された少なくとも1つのプロセッサとを備え、
    前記少なくとも1つのプロセッサは、
    干渉元セルの制御スパンを決定するために、前記干渉元セルのサブフレームの最初のシンボルを処理し、前記最初のシンボルは、前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することにより処理され、
    前記最初のシンボルにおけるリソース要素グループのトラフィック対パイロット比を推定し、
    前記推定されたトラフィック対パイロット比に基づいて、前記最初のシンボルにおけるリソース要素グループの制御チャネル干渉除去を実行し、
    少なくとも前記干渉元セルの制御スパンとサービス提供セルの制御スパンとの間の相違に基づいて、残りの制御シンボル、データ・チャネル、又はそれらの組み合わせのうち、少なくとも1つの干渉除去を実行する
    ように構成された、ユーザ機器。
  9. 前記少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも大きいことを判定し、
    前記サービス提供セルの制御領域とオーバラップする前記干渉元セルのリソース要素グループに対して、データ・チャネル干渉除去を実行するように構成された、請求項に記載のユーザ機器。
  10. 前記少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンよりも小さいことを判定し、
    前記サービス提供セルのデータ領域とオーバラップする前記干渉元セルのリソース要素グループに対して、制御チャネル干渉除去を実行するように構成された、請求項に記載のユーザ機器。
  11. 前記少なくとも1つのプロセッサは、前記サービス提供セルの制御スパンが、前記干渉元セルの制御スパンと同じサイズであると判定し、
    各制御シンボルについて制御チャネルの干渉除去を実行するように構成された、請求項に記載のユーザ機器。
  12. 前記少なくとも1つのプロセッサはさらに、
    基準信号トーンを含むシンボルにおける干渉を除去し、
    前記基準信号トーンを含むシンボルにおける干渉を除去した後、その他のシンボルにおける干渉除去を実行する
    ように構成された、請求項に記載のユーザ機器。
  13. 前記干渉は、データ干渉および/または制御干渉を備える、請求項12に記載のユーザ機器。
  14. 前記基準信号トーンは、共通基準信号(CRS)トーンおよび/またはユーザ機器基準信号(UE−RS)トーンを備える、請求項12に記載のユーザ機器。
  15. 無線通信のための装置であって、
    ユーザ機器(UE)において、干渉元セルの制御スパンを決定するために、前記干渉元セルのサブフレームの最初のシンボルを処理する手段と、前記最初のシンボルは、前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することにより処理され、
    前記UEにおいて、前記最初のシンボルにおけるリソース要素グループのトラフィック対パイロット比を推定する手段と、
    前記UEにおいて、前記推定されたトラフィック対パイロット比に基づいて、前記最初のシンボルにおけるリソース要素グループの制御チャネル干渉除去を実行する手段と、
    前記UEにおいて、少なくとも前記干渉元セルの制御スパンとサービス提供セルの制御スパンとの間の相違に基づいて、残りの制御シンボル、データ・チャネル、又はそれらの組み合わせのうち、少なくとも1つの干渉除去を実行する手段と、
    を備える装置。
  16. 無線ネットワークにおける無線通信のためのプログラム・コードを格納する非一時的なコンピュータ読取可能記憶媒体であって、
    前記プログラム・コードは、
    ユーザ機器(UE)において、干渉元セルの制御スパンを決定するために、前記干渉元セルのサブフレームの最初のシンボルを処理するためのプログラム・コードと、前記最初のシンボルは、前記干渉元セルの物理制御フォーマット・インジケータ・チャネル(PCFICH)を復号することにより処理され、
    前記UEにおいて、前記最初のシンボルにおけるリソース要素グループのトラフィック対パイロット比を推定するためのプログラム・コードと、
    前記UEにおいて、前記推定されたトラフィック対パイロット比に基づいて、前記最初のシンボルにおけるリソース要素グループの制御チャネル干渉除去を実行するためのプログラム・コードと、
    前記UEにおいて、少なくとも前記干渉元セルの制御スパンとサービス提供セルの制御スパンとの間の相違に基づいて、残りの制御シンボル、データ・チャネル、又はそれらの組み合わせのうち、少なくとも1つの干渉除去を実行するためのプログラム・コードとを備える、コンピュータ読取可能記憶媒体。
JP2016001853A 2011-11-09 2016-01-07 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと Expired - Fee Related JP6158364B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161557855P 2011-11-09 2011-11-09
US61/557,855 2011-11-09
US13/664,158 US9628214B2 (en) 2011-11-09 2012-10-30 Handling mismatch of control spans between serving cell and interfering cells for control and data channel interference cancellation
US13/664,158 2012-10-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014541103A Division JP5869141B2 (ja) 2011-11-09 2012-10-31 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと

Publications (2)

Publication Number Publication Date
JP2016119676A JP2016119676A (ja) 2016-06-30
JP6158364B2 true JP6158364B2 (ja) 2017-07-05

Family

ID=48223605

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014541103A Expired - Fee Related JP5869141B2 (ja) 2011-11-09 2012-10-31 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと
JP2016001853A Expired - Fee Related JP6158364B2 (ja) 2011-11-09 2016-01-07 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014541103A Expired - Fee Related JP5869141B2 (ja) 2011-11-09 2012-10-31 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと

Country Status (7)

Country Link
US (1) US9628214B2 (ja)
EP (1) EP2777189A1 (ja)
JP (2) JP5869141B2 (ja)
KR (1) KR101624491B1 (ja)
CN (1) CN104025486A (ja)
IN (1) IN2014CN03603A (ja)
WO (1) WO2013070469A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130336193A1 (en) 2012-06-19 2013-12-19 Qualcomm Incorporated Network information for assisting user equipment
US9264097B2 (en) 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
US8989121B2 (en) * 2011-11-02 2015-03-24 Qualcomm Incorporated Blindly decoding interfering cell PDCCH to acquire interfering cell PDSCH transmission information
WO2014123389A1 (ko) * 2013-02-08 2014-08-14 엘지전자 주식회사 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
US9351307B2 (en) * 2014-03-31 2016-05-24 Qualcomm Incorporated CSI report with different receiver capabilities
CN114524451B (zh) * 2021-12-17 2024-02-20 中国北方稀土(集团)高科技股份有限公司 一步式微波低温制备大粒度稀土氧化物的方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1654820A4 (en) * 2003-08-13 2011-01-19 Qualcomm Inc METHOD AND DEVICES FOR POWER CONTROL IN WIRELESS COMMUNICATION SYSTEMS
US8442441B2 (en) * 2004-12-23 2013-05-14 Qualcomm Incorporated Traffic interference cancellation
CN101238663A (zh) * 2005-08-05 2008-08-06 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法
US7920517B2 (en) * 2006-04-28 2011-04-05 Alcatel-Lucent Usa Inc. Uplink load control including individual measurements
US8725077B2 (en) * 2006-06-19 2014-05-13 Intellectual Ventures Holding 81 Llc Scheduling and coordination in a wireless network
US9420603B2 (en) 2006-09-08 2016-08-16 Qualcomm Incorporated Recovery from resource mismatch in a wireless communication system
US7796698B2 (en) * 2007-06-04 2010-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Interference suppression in a multicarrier receiver
US8442069B2 (en) * 2008-04-14 2013-05-14 Qualcomm Incorporated System and method to enable uplink control for restricted association networks
US20090280747A1 (en) 2008-05-07 2009-11-12 Motorola, Inc. Method and Apparatus for Interference Cancellation in a Wireless Communication System
US9867203B2 (en) * 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
US8130849B2 (en) * 2008-09-16 2012-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Maximum A posteriori interference estimation in a wireless communication system
RU2479928C2 (ru) * 2008-11-27 2013-04-20 Эл Джи Электроникс Инк. Устройство и способ передачи данных в системе беспроводной связи
US9084119B2 (en) 2009-01-07 2015-07-14 Qualcomm Incorporated Carrier reuse in a multicarrier wireless communication environment
US8908586B2 (en) * 2009-03-10 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for DL-OTDOA (downlink observed time difference of arrival) positioning in a LTE (long term evolution) wireless communications system
US8463191B2 (en) * 2009-04-02 2013-06-11 Qualcomm Incorporated Beamforming options with partial channel knowledge
US8494066B2 (en) * 2009-07-28 2013-07-23 Broadcom Corporation Method and system for low complexity channel estimation in OFDM communication networks using circular convolution
US8194603B2 (en) * 2009-08-18 2012-06-05 Motorola Mobility, Inc. Subframe component reduction and notification in a heterogeneous wireless communication system
CN101895813A (zh) * 2009-11-13 2010-11-24 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
MX2012006946A (es) 2009-12-16 2012-07-30 Nokia Siemens Networks Oy Analisis de conexion en sistemas de comunicacion.
US8897235B2 (en) 2009-12-18 2014-11-25 Qualcomm Incorporated Protection of broadcast signals in heterogeneous networks
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
US8953507B2 (en) 2010-02-11 2015-02-10 Qualcomm Incorporated Frequency and time domain range expansion
US9438366B2 (en) * 2010-02-19 2016-09-06 Qualcomm Incorporated System access for heterogeneous networks
US8694043B2 (en) * 2010-04-19 2014-04-08 Telefonaktiebolaget L M Ericsson (Publ) Interference-free neighbor cell measurements
EP3002888B1 (en) * 2010-06-23 2017-06-14 Telefonaktiebolaget LM Ericsson (publ) Reference signal interference management in heterogeneous network deployments
US20120052899A1 (en) * 2010-08-30 2012-03-01 Xiaoqiu Wang Wireless Communication System, Base Station Device, and Program
US9485749B2 (en) * 2010-11-10 2016-11-01 Google Technology Holdings LLC Idle state interference mitigation in wireless communication network
US9565655B2 (en) * 2011-04-13 2017-02-07 Google Technology Holdings LLC Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems
US8855000B2 (en) * 2011-04-28 2014-10-07 Qualcomm Incorporated Interference estimation using data traffic power and reference signal power
WO2012148076A1 (en) * 2011-04-29 2012-11-01 Lg Electronics Inc. Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
US9226185B2 (en) * 2011-07-01 2015-12-29 Lg Electronics Inc. Cell measurement method and terminal
KR20140044322A (ko) * 2011-07-31 2014-04-14 엘지전자 주식회사 무선 접속 시스템에서 채널 품질 측정 방법 및 이를 위한 장치
US8761323B2 (en) * 2011-09-28 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Impairment covariance and combining weight updates during iterative turbo interference cancellation reception
US9723496B2 (en) * 2011-11-04 2017-08-01 Qualcomm Incorporated Method and apparatus for interference cancellation by a user equipment using blind detection

Also Published As

Publication number Publication date
KR101624491B1 (ko) 2016-05-26
JP2015503269A (ja) 2015-01-29
WO2013070469A1 (en) 2013-05-16
US20130114449A1 (en) 2013-05-09
JP2016119676A (ja) 2016-06-30
US9628214B2 (en) 2017-04-18
EP2777189A1 (en) 2014-09-17
CN104025486A (zh) 2014-09-03
JP5869141B2 (ja) 2016-02-24
IN2014CN03603A (ja) 2015-07-03
KR20140099267A (ko) 2014-08-11

Similar Documents

Publication Publication Date Title
JP6333919B2 (ja) 同じ物理セル識別情報(pci)を有する遠隔ラジオ・ヘッド(rrh)のための位置決め
JP6009615B2 (ja) 共通基準信号干渉除去を用いた、システムにおけるチャネル状態フィードバックの計算
JP5840730B2 (ja) 無線通信システムにおけるユーザ機器への物理レイヤ・シグナリング
JP5837133B2 (ja) 増強された干渉調整および除去を用いたラジオ・リンク失敗の判定
JP5675970B2 (ja) 無線通信システムにおけるデータ・チャネルおよび制御チャネルのためのレート・マッチング
JP5973000B2 (ja) クロスデバイス干渉の緩和
JP5678182B2 (ja) ヘテロジニアスなネットワークのためのリソース利用量測定
JP6158364B2 (ja) 制御チャネルおよびデータ・チャネルの干渉除去のための、サービス提供セルと干渉元セルとの間の制御スパンのミスマッチを取り扱うこと
JP5646729B2 (ja) ヘテロジニアスなネットワークにおけるノイズ・パディング技術
JP5563151B2 (ja) 干渉シナリオにおけるアップリンク有効通信範囲の強化
JP5710774B2 (ja) 無線受信機における複数信号変換

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6158364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees