CN114524451B - 一步式微波低温制备大粒度稀土氧化物的方法 - Google Patents

一步式微波低温制备大粒度稀土氧化物的方法 Download PDF

Info

Publication number
CN114524451B
CN114524451B CN202111550187.9A CN202111550187A CN114524451B CN 114524451 B CN114524451 B CN 114524451B CN 202111550187 A CN202111550187 A CN 202111550187A CN 114524451 B CN114524451 B CN 114524451B
Authority
CN
China
Prior art keywords
rare earth
microwave
temperature
heating
granularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111550187.9A
Other languages
English (en)
Other versions
CN114524451A (zh
Inventor
李婷婷
刘威
崔建国
桑晓云
徐占宇
***
高媛
张文斌
张永华
尹少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Northern Rare Earth Group High Tech Co ltd
Baotou Rare Earth Research Institute
Original Assignee
China Northern Rare Earth Group High Tech Co ltd
Baotou Rare Earth Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Northern Rare Earth Group High Tech Co ltd, Baotou Rare Earth Research Institute filed Critical China Northern Rare Earth Group High Tech Co ltd
Priority to CN202111550187.9A priority Critical patent/CN114524451B/zh
Publication of CN114524451A publication Critical patent/CN114524451A/zh
Application granted granted Critical
Publication of CN114524451B publication Critical patent/CN114524451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种一步式微波低温制备大粒度稀土氧化物的方法,包括:将稀土盐放入微波反应炉中,设定烧结保温终点温度,设定温升速率,开启微波辐射;以5~15℃/min的升温速率微波升温,升至400~700℃进行烧结保温;自然冷却至室温,得到稀土品位>99%的大粒度稀土氧化物。本发明利用微波反应炉烧结分解,可实现一步式连续升温,在低温区微波烧结,直至分解完全;从而克服了现有微波加热技术中的分阶段升温保温、耗时长、烧结温度高、耗能等缺点。

Description

一步式微波低温制备大粒度稀土氧化物的方法
技术领域
本发明属于稀土氧化物制备技术领域,具体涉及一种一步式微波低温制备大粒度稀土氧化物的方法。
背景技术
稀土氧化物在合成稀土功能性陶瓷、光功能材料的方面有着突出的表现。利用微波制备稀土氧化物可形成优秀的晶体结构,这种稀土氧化物无光学各向异性,应用于各种陶瓷、光学玻璃或光功能材料的合成工艺中,如制备透明陶瓷时,掺入稀土氧化物后透明度要比Al2O3高,在远红外区仍有80%的直线透光率,因此已经用于高温测孔、红外检测窗、红外元件、高温透镜和放电灯管等场合;此外,在稀土陶瓷釉中稀土氧化物也有广泛的应用,例如镧可使乳白色釉面光泽度增强,铈能够减少釉面龟裂,镨和钕可用于高温变色釉。另外,这种稀土氧化物可提升隔热涂料反射近红外波段的能力,进而提高热量反射率,是制备反射隔热涂料的优良候选。
微波烧结是基于材料本身的介质损耗而发热,可以做到表里一致均匀加热。微波加热主要通过电场强度和材料的介电性能来实现烧结结果,在烧结过程中,电场参量并不直接受温度影响,而材料的介电性能却随温度会有很大的变化,从而影响整个烧结过程。在低温时介电损耗随温度的变化小,当温度达到某一临界温度后,材料的晶体软化和趋于非晶体而引起的局部导电性增加,介电损耗随温度的上升而呈指数急剧增加,这对烧结是有利的。但是如果介电损耗随着温度上升增加过大会导致热失控,这是在微波烧结中应该注意和避免的。微波烧结的优点在于加热和烧结速度快、均匀,可以降低烧结温度,控制烧结速度,控制晶粒的大小,从而产生不同粒度的稀土氧化物,高效节能。
中国公开号CN 109399689 A公开了一种利用微波技术制备稀土氧化物的方法,将草酸稀土和碳酸稀土放入微波设备中,分三个阶段升温分别完成以25~30℃/min升温至120~150℃,烘干10min;以15~20℃/min升温至300~500℃,预热20min;以5~10℃/min升温至700~1000℃,灼烧30min;完成反应阶段后梯度风冷降温。该文献中微波灼烧是分阶段完成,灼烧温度控制在700~1000℃,属于高温灼烧,所得的稀土氧化物产品纯度≥99.99%,D50为0.5~2.0μm,比表面积4~7m2/g。
专利CN 111592028 A公开了一种稀土氧化物超细粉体的微波煅烧制备方法,用0.5~2.0mol/L的稀土氯化物溶液调节呈碱性,加入表面助剂混合均匀后滴加碳酸氢铵溶液,在该溶液中加入浓度35~70%的过氧化氢溶液过氧陈化4~10小时,过滤洗涤,得到过氧碳酸稀土沉淀物;将沉淀物放入微波反应器中煅烧。该文献中灼烧的物质是通过表面助剂和过氧处理后的过氧碳酸稀土沉淀物,灼烧温度为800~1000℃,属于高温灼烧,得到的是氧化镧或氧化铒的超细粉体。
专利CN 108585015 A公开了一种微波煅烧制备氧化镧的方法,用碳酸镧或者草酸镧分三段升温至1050-1250℃,分三个阶段升温,一阶段升温至200~350℃烘干水分,二阶段升温至700~850℃优化粒度分布,三阶段升温至1050~1250℃充分灼烧,分解完全;升到每一个阶段的设定温度后分别保温30~60min。该文献中微波加热技术是分阶段完成,灼烧温度控制在1050~1250℃,属于高温灼烧,所得的稀土氧化镧产品粒度小于100目,水分含量小于5wt%。
目前在稀土湿法冶金行业中,利用微波加热技术在烧结低温区制备大粒度、品位高的稀土氧化物的工艺方法尚无报道。
发明内容
本发明的目的在于提供一种一步式低温微波法制备大粒度稀土氧化物的方法,利用微波反应炉烧结分解,可实现一步式连续升温,在低温区微波烧结,直至分解完全;从而克服了现有微波加热技术中的分阶段升温保温、耗时长、烧结温度高、耗能等缺点。
为达到上述目的,本发明使用的技术解决方案是:
一步式微波低温制备大粒度稀土氧化物的方法,包括:
将稀土盐放入微波反应炉中,设定烧结保温终点温度,设定温升速率,开启微波辐射;
以5~15℃/min的升温速率微波升温,升至400~700℃进行烧结保温;
自然冷却至室温,得到稀土品位>99%的大粒度稀土氧化物。
进一步,稀土盐选用碳酸稀土盐或草酸稀土盐。
进一步,碳酸稀土盐为碳酸镧、碳酸铈、碳酸镧铈、碳酸镨、碳酸钕、碳酸镨钕中的一种。
进一步,草酸稀土盐为草酸镧、草酸铈、草酸镧铈、草酸镨、草酸钕、草酸镨钕中的一种。
进一步,碳酸稀土盐或草酸稀土盐在400~700℃分解得到稀土氧化物。
进一步,微波烧结保温过程中,升至400~700℃后保温1~2小时。
进一步,大粒度稀土氧化物的平均粒度D50=25~45μm。
进一步,微波输出频率为2.45GHz。
本发明技术效果包括:
本发明利用微波反应炉烧结分解,可实现一步式连续升温,在低温区微波烧结,直至分解完全。本发明克服了现有微波加热技术中的分阶段升温保温、耗时长、烧结温度高、耗能等缺点,本发明通过独特技术手段,工艺控制简单,采用低温烧结,具有低能耗、高效率,一步式工业化生产质量稳定的稀土氧化物。
1、微波加热升温速率快,加热效率高,且加热是内部与表面同步加热,温度分布均匀。
微波加热是一种依靠物体吸收微波能将其转换成热能,使自身整体同时升温的加热方式而完全区别于其他常规加热方式。通过被加热体内部偶极分子高频往复运动,产生“内摩擦热”而使被加热物料温度升高,不需任何热传导过程,就能使物料内外部同时加热、同时升温,加热速度快且均匀。
2、一步式微波升温烧结碳酸稀土和草酸稀土,避免了分阶段升温所造成的时间浪费、人力资源浪费等缺点。
采用连续性一步式升温,在灼烧低温区即可得到稀土品位>99%,D50=25~45μm的大粒度、稀土品位高的稀土氧化物。
3、本发明微波烧结反应在低温区即可反应完全,进一步达到节能降耗的目的。
本发明中采用连续性一步式升温,在灼烧低温区即可得到稀土品位>99%,D50=25~45μm的大粒度、稀土品位高的稀土氧化物。由于微波加热的高效性,本发明在低温区即可获得优质产品。
4、同常规加热方式相比,更能在节能降耗,热源其本身不产生任何气体,是实现清洁生产的有效途径之一。
无燃料燃烧供能释放二氧化碳造成污染的过程,对比隧道窑、其他天然气窑,能够实现发展低碳工艺,实现利用风能、水能等清洁能源产生的电能烧结分解制备稀土氧化物。,微波能源供给可采取风能、水能蓄能供电等绿色能源,同常规加热方式相比,更能在节能降耗。
5、可瞬间得到或失去热量来源,易于自动控制。
本发明利用微波低温烧结制备稀土氧化物,加热方式具有即时性、整体性、选择性、高效性。
6、本发明工艺操作简单,重复性好,可得到稀土品位>99%,D50=25~45μm的大粒度、稀土品位高的稀土氧化物,产品质量稳定,易于实现工业化及自动化连续操作。
附图说明
图1是本发明实施例1中所制备的大粒度氧化镧的XRD图谱。
图2是本发明实施例2中所制备的大粒度氧化镨钕的扫描电镜图。
具体实施方式
以下描述充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践和再现。
一步式微波低温制备大粒度稀土氧化物的方法,具体技术步骤如下:
(1)、将稀土盐(碳酸稀土盐或草酸稀土盐)放入微波反应炉中,设定烧结保温终点温度,设定温升速率,开启微波辐射;
碳酸稀土盐为碳酸镧、碳酸铈、碳酸镧铈、碳酸镨、碳酸钕、碳酸镨钕的一种。
草酸稀土盐为草酸镧、草酸铈、草酸镧铈、草酸镨、草酸钕、草酸镨钕的一种。
微波输出频率为2.45GHz。
(2)、微波升温:以5~15℃/min的升温速率,升至400~700℃;
(3)、微波烧结保温:升至400~700℃后保温1~2小时;
烧结反应在低温区反应,碳酸稀土盐或草酸稀土盐分解得到稀土氧化物。碳酸稀土盐或草酸稀土盐在400~700℃分解得到稀土氧化物。
(4)、自然冷却至室温,得到稀土品位>99%,D50(平均粒度)=25~45μm的大粒度稀土氧化物。
实施例1
将碳酸镧放入微波反应炉中,设定烧结保温终点温度450℃,设定微波反应炉自动调节功能以10℃/min的升温速率,开启微波辐射;升温至450℃后,保温1小时。自然冷却至室温,得到产品氧化镧。经分析检测,RE0=99.65%,D50=36μm。
如图1所示,是本发明实施例1中所制备的大粒度氧化镧的XRD图谱。
图谱中显示衍射强度高,峰型完整,峰位清晰,产品纯度高。
实施例2
将碳酸镨钕放入微波反应炉中,设定烧结保温终点温度700℃,设定微波反应炉自动调节功能以6℃/min的升温速率,开启微波辐射;
升温至700℃后,保温2小时。自然冷却至室温,得到产品氧化镨钕。经分析检测,REO=99.38%,D50=29μm。
如图2所示,是本发明实施例2中所制备的大粒度氧化镨钕的扫描电镜图。
图中可见大粒度氧化镨钕的晶体结构清晰,均由规则的片状晶片组成球状晶体,且晶体大小均一。
实施例3
将草酸镧铈放入微波反应炉中,设定烧结保温终点温度550℃,设定微波反应炉自动调节功能以8℃/min的升温速率,开启微波辐射;升温至550℃后,保温1小时。自然冷却至室温,得到产品氧化镧铈。经分析检测,REO=99.72%,D50=31μm。
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离技术方案的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (4)

1.一种一步式微波低温制备大粒度稀土氧化物的方法,其特征在于,包括:
将稀土盐放入微波反应炉中,稀土盐选用碳酸稀土盐或草酸稀土盐,设定烧结保温终点温度,设定温升速率,开启微波辐射;
以5~15℃/min的升温速率微波升温,升至400~700℃进行烧结保温1~2小时,碳酸稀土盐或草酸稀土盐在400~700℃分解得到稀土氧化物;
自然冷却至室温,得到稀土品位>99%的大粒度稀土氧化物,大粒度稀土氧化物的平均粒度D50=25~45μm。
2.如权利要求1所述的一步式微波低温制备大粒度稀土氧化物的方法,其特征在于,碳酸稀土盐为碳酸镧、碳酸铈、碳酸镧铈、碳酸镨、碳酸钕、碳酸镨钕中的一种。
3.如权利要求1所述的一步式微波低温制备大粒度稀土氧化物的方法,其特征在于,草酸稀土盐为草酸镧、草酸铈、草酸镧铈、草酸镨、草酸钕、草酸镨钕中的一种。
4.如权利要求1所述的一步式微波低温制备大粒度稀土氧化物的方法,其特征在于,微波输出频率为2.45GHz。
CN202111550187.9A 2021-12-17 2021-12-17 一步式微波低温制备大粒度稀土氧化物的方法 Active CN114524451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111550187.9A CN114524451B (zh) 2021-12-17 2021-12-17 一步式微波低温制备大粒度稀土氧化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111550187.9A CN114524451B (zh) 2021-12-17 2021-12-17 一步式微波低温制备大粒度稀土氧化物的方法

Publications (2)

Publication Number Publication Date
CN114524451A CN114524451A (zh) 2022-05-24
CN114524451B true CN114524451B (zh) 2024-02-20

Family

ID=81619638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111550187.9A Active CN114524451B (zh) 2021-12-17 2021-12-17 一步式微波低温制备大粒度稀土氧化物的方法

Country Status (1)

Country Link
CN (1) CN114524451B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132731A (ja) * 1985-12-03 1987-06-16 Seitetsu Kagaku Co Ltd 酸化希土の製造方法
US4880578A (en) * 1988-08-08 1989-11-14 The United States Of America As Represented By The United States Department Of Energy Method for heat treating and sintering metal oxides with microwave radiation
US5332558A (en) * 1990-11-22 1994-07-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide powder and method for the preparation thereof
JP2011042512A (ja) * 2009-08-19 2011-03-03 Fuji Kagaku Kk 希土類炭酸塩粒子の製造方法
RU2009149781A (ru) * 2009-12-31 2011-07-27 Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук (RU) Способ получения перовскитов
JP2012067200A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp ポリエステルの解重合方法
CN104340968A (zh) * 2013-07-25 2015-02-11 青岛广星电子材料有限公司 一种去除杂质SiO2和Al2O3提纯石墨的方法
CN112194166A (zh) * 2020-09-23 2021-01-08 昆明理工大学 一种常规-微波联合煅烧制备稀土氧化物的设备及方法
AU2020103465A4 (en) * 2020-11-16 2021-01-28 Kunming University Of Science And Technology Method for preparing high-purity spherical ruthenium powder by microwave one-step method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060014626A1 (en) * 2004-07-15 2006-01-19 Biljana Mikijelj Tunable lossy dielectric ceramic material having ZrC as a dispersed second phase
US9212100B2 (en) * 2009-07-31 2015-12-15 General Electric Company Environmental barrier coatings for high temperature ceramic components
US9628214B2 (en) * 2011-11-09 2017-04-18 Qualcomm Incorporated Handling mismatch of control spans between serving cell and interfering cells for control and data channel interference cancellation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132731A (ja) * 1985-12-03 1987-06-16 Seitetsu Kagaku Co Ltd 酸化希土の製造方法
US4880578A (en) * 1988-08-08 1989-11-14 The United States Of America As Represented By The United States Department Of Energy Method for heat treating and sintering metal oxides with microwave radiation
US5332558A (en) * 1990-11-22 1994-07-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide powder and method for the preparation thereof
JP2011042512A (ja) * 2009-08-19 2011-03-03 Fuji Kagaku Kk 希土類炭酸塩粒子の製造方法
RU2009149781A (ru) * 2009-12-31 2011-07-27 Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук (RU) Способ получения перовскитов
JP2012067200A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp ポリエステルの解重合方法
CN104340968A (zh) * 2013-07-25 2015-02-11 青岛广星电子材料有限公司 一种去除杂质SiO2和Al2O3提纯石墨的方法
CN112194166A (zh) * 2020-09-23 2021-01-08 昆明理工大学 一种常规-微波联合煅烧制备稀土氧化物的设备及方法
AU2020103465A4 (en) * 2020-11-16 2021-01-28 Kunming University Of Science And Technology Method for preparing high-purity spherical ruthenium powder by microwave one-step method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Decomposition Study of Praseodymium Oxalate as a Precursor for Praseodymium Oxide in the Microwave Field;peng lv et al;《ACS Omega》;摘要、介绍、4.2小节和2.1小节 *
Effect of temperature on the preparation of yttrium oxide in microwave field;kaihua chen et al;《journal of alloys and compounds》;摘要、介绍、2.2小节和3.1小节 *
Facile preparation and characterization of lanthanum oxide powders by the calcination of lanthanum carbonate hydrate in microwave field;kaihua chen et al;《ceramics international》;摘要、介绍和2.2小节、3.1小节 *
study on the calcination experiments of rare earth carbonates using microwave heating;guo lin et al;《green process synth》;全文 *
灼烧过程对稀土氧化物中氯元素的影响;王博;李梅;张晓伟;;有色金属(冶炼部分)(08);全文 *

Also Published As

Publication number Publication date
CN114524451A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
US20220250987A1 (en) Process for producing microcrystalline alpha-alumina by microwave calcination
CN111995397A (zh) 一种荧光陶瓷及其制备方法与应用
CN105755541A (zh) 一种利用微波诱发燃烧合成反应合成氧化锌晶须的方法
CN106190119A (zh) 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法
CN114524451B (zh) 一步式微波低温制备大粒度稀土氧化物的方法
CN106084902B (zh) 一种高红外辐射粉体及其制备方法
CN101249978A (zh) 一种yag纳米粉体的制备方法
CN105060898A (zh) 一种制备高发射率红外节能材料的方法
CN101113009A (zh) 稀土氧化物纳米颗粒的制备方法
Zhai et al. Hydrothermal synthesis, characterization and luminescence properties of orange–red-emitting phosphors SnO 2: Eu
CN106379934A (zh) 一种制备Ho2TiO5粉体的方法
Xu et al. Effect of Y: Zn ratio on microstructure and emission of Er3+/Yb3+ codoped Y2O3–ZnO ceramic phosphors
CN105502400A (zh) 一种b4c晶须的制备方法
WO2018024015A1 (zh) 一种Ce掺杂YAG发光陶瓷的制备方法
CN113912116A (zh) 微波沉淀法合成超细m相二氧化钒纳米粉体的方法
CN114292640A (zh) 一种在连续激光激发下发射宽谱白光的多孔材料及其制备方法和应用
CN107573071B (zh) 一种单分散球形Y2O3和Al2O3粉制备(Y1-xYbx)AG透明陶瓷的方法
Sonobe Microwave material processing for green technology
CN102258965B (zh) 具有核壳异质结构的红外辐射节能材料及其制备方法
CN109749741A (zh) 一种含近红外荧光粉的荧光薄膜及应用
CN111302802A (zh) 一种上转换发光陶瓷及其制备方法
CN111100633A (zh) 一种由激光驱动产生白光的发光介质及其制备方法
CN110357466B (zh) 一种水泥熟料制备方法
CN116161968B (zh) 一种具有智能开关可切换的透波材料的制备方法及用途
CN111302801B (zh) 一种上转换发光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant