JP6155204B2 - 硬質皮膜およびその形成方法 - Google Patents

硬質皮膜およびその形成方法 Download PDF

Info

Publication number
JP6155204B2
JP6155204B2 JP2014032280A JP2014032280A JP6155204B2 JP 6155204 B2 JP6155204 B2 JP 6155204B2 JP 2014032280 A JP2014032280 A JP 2014032280A JP 2014032280 A JP2014032280 A JP 2014032280A JP 6155204 B2 JP6155204 B2 JP 6155204B2
Authority
JP
Japan
Prior art keywords
layer
base material
film
thickness
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014032280A
Other languages
English (en)
Other versions
JP2015157975A (ja
Inventor
裕瑛 二井
裕瑛 二井
山本 兼司
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014032280A priority Critical patent/JP6155204B2/ja
Priority to US15/119,322 priority patent/US20170009333A1/en
Priority to CA2939318A priority patent/CA2939318A1/en
Priority to EP15752099.0A priority patent/EP3109341A4/en
Priority to PCT/JP2015/054694 priority patent/WO2015125898A1/ja
Publication of JP2015157975A publication Critical patent/JP2015157975A/ja
Application granted granted Critical
Publication of JP6155204B2 publication Critical patent/JP6155204B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、切削工具や金型などの治工具類、特に非鉄金属材料からなる治工具類の基材表面に形成される硬質皮膜およびその形成方法に関する。
治工具類の基材の表面には、切削加工等における耐摩耗性を向上させるために、例えば、TiB等からなる硬質皮膜を形成することが一般的に行われている。そして、このような硬質皮膜を形成する技術が特許文献1〜4に開示されている。
特許文献1には、基材と、少なくとも1層のTiB層を含む被膜と、を含む切削工具インサートが開示されている。また、特許文献2には、立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に硬質被覆層を蒸着形成した切削工具が開示され、その硬質被膜層がTiB層からなる下部層と、TiB層とTiN層との2相混合層からなる中間層と、TiとAlの複合窒化物層からなる上部層とで構成されることが開示されている。
特許文献3には、金属硼化物からなるA層と、炭素を含有するB層とを積層した皮膜が開示されている。また、特許文献4には、周期律表4a、5a、6a族元素、Al、Si、およびBから選択される1種以上の第1元素と、B、C、N、およびOから選択される1種以上の第2元素とを主成分とする少なくとも2種の化合物層からなる積層部と、周期律表4a、5a、および6a族元素から選択される1種以上の第3元素と、C、N、およびOから選択される1種以上の第4元素とからなる中間層とを含む積層体が開示されている。
特開2002−355704号公報 特開2010−228032号公報 特開2009−79266号公報 特開平8−127862号公報
しかしながら、特許文献1の切削工具インサートでは、超硬合金等からなる基材の上に成膜される被膜がTiB層を含む。TiB層は、基材と結晶構造の異なることから、基材との密着性が低下しやすいものである。そのため、特許文献1に記載された被膜は、切削加工時等における密着性に劣るという問題がある。
特許文献2の切削工具では、切削加工等の加工面となる硬質被膜層の上部層がTiAlNの組成を有する。TiAlNの組成を有する皮膜は、非鉄金属材料の切削加工等において摩耗しやすいものである。そのため、特許文献2に記載された硬質被覆層は、切削加工時等における耐摩耗性に劣るという問題がある。
特許文献3の皮膜では、皮膜が金属硼化物および炭化物からなり、その金属硼化物および炭化物は超硬合金等からなる基材との密着性が低いものである。そのため、特許文献3に記載された皮膜は、切削加工時等における密着性に劣るという問題がある。
特許文献4の積層体では、切削加工等の加工面となる積層部がTiNやAlNの組成を有する。TiNやAlNの組成を有する皮膜は、切削加工等において摩耗しやすいものである。そのため、特許文献4に記載された積層体は、切削加工時等における耐摩耗性が劣るという問題がある。
本発明は、前記状況に鑑みてなされたものであり、治工具類等の基材表面に形成され、切削加工時等における密着性および耐摩耗性に優れた硬質皮膜およびその形成方法を提供することを課題とする。
前記課題を解決するため、本発明に係る硬質皮膜は、基材の上に形成される硬質皮膜であって、組成が、Ti(B1−x−y1−wであり、0.2≦w≦0.6、0.1≦x≦0.8、0≦y≦0.5、0≦1−x−y≦0.5を満たすA層と、組成が、Ti1−aAl(C1−k)、AlCr1−b(C1−k)、Ti1−c−d−eCrAlSi(C1−k)およびTi1−fSi(C1−k)のいずれかであり、0.3≦a≦0.7、0.3≦b≦0.8、0.3≦d≦0.7、c≦0.3、0≦e≦0.3、1−c−d−e≦0.3、0.05≦f≦0.3、0.5≦k≦1を満たすB層とを備え、前記基材の上には前記B層からなる下地層が形成され、前記下地層の上には前記A層および前記B層が交互に繰り返し積層された密着強化層が形成され、前記密着強化層の厚さの増加に伴って、前記A層の厚さが前記下地層側に比べて増加して、前記A層の最大厚さが20〜50nmとなることを特徴とする。
前記した硬質皮膜は、所定の組成を有するA層およびB層を備えることによって、硬質皮膜の硬度が高くなると共に、硬質皮膜の耐摩耗性が向上する。また、前記の硬質皮膜は、B層からなる下地層を備えることによって、皮膜と基材との密着性が向上する。また、前記の硬質皮膜は、A層とB層とが交互に繰り返し積層された密着強化層を備え、かつ、密着強化層の厚さの増加に伴って、A層の厚さが下地層側に比べて増加して、その最大厚さが所定の厚さとなることによって、硬質皮膜の密着性が向上すると共に、切削性能が向上して耐摩耗性が向上する。
本発明に係る硬質皮膜は、前記密着強化層の上にC層がさらに形成され、前記C層の組成がTiBであり、前記C層の厚さが5.0μm以下であることが好ましい。
前記した硬質皮膜は、TiBからなるC層を備え、そのC層の厚さを所定範囲にすることによって、硬質皮膜の破壊(チッピング)が防止され、硬質皮膜の耐摩耗性が向上する。
本発明に係る硬質皮膜の形成方法は、前記基材を準備する基材準備工程と、前記基材を加熱する基材加熱工程と、前記基材の上に前記硬質皮膜を形成する皮膜形成工程とを含み、前記皮膜形成工程では、前記下地層および前記密着強化層をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で形成することを特徴とする。
前記した硬質皮膜の形成方法は、皮膜形成工程をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で行うことによって、所定組成のB層からなる下地層と、所定組成のA層と所定組成のB層とが交互に繰り返し積層された密着強化層とを備えた硬質皮膜が形成される。それによって、硬質皮膜の硬度が高くなると共に、硬質皮膜の耐摩耗性が向上する。また、第1の硬質皮膜の形成方法は、基材に所定のバイアス電圧を印加した状態でA層を形成することによって、硬質皮膜の耐摩耗性が向上する。
本発明に係る硬質皮膜の形成方法は、前記基材を準備する基材準備工程と、前記基材を加熱する基材加熱工程と、前記基材の上に前記硬質皮膜を形成する皮膜形成工程とを含み、前記皮膜形成工程では、前記下地層、前記密着強化層および前記C層をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で形成することを特徴とする。
前記した硬質皮膜の形成方法は、皮膜形成工程をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で行うことによって、所定組成のB層からなる下地層と、所定組成のA層と所定組成のB層とが交互に繰り返し積層された密着強化層と、TiBからなるC層とを備えた硬質皮膜が形成される。それによって、硬質皮膜の硬度が高くなると共に、硬質皮膜の耐摩耗性が向上する。また、第2の硬質皮膜の形成方法は、基材に所定のバイアス電圧を印加した状態でA層およびC層を形成することによって、硬質皮膜の耐摩耗性が向上する。
本発明に係る硬質皮膜によれば、治工具類の基材表面に形成され、皮膜硬度が高く、かつ、切削加工時等における密着性および耐摩耗性が優れたものとなる。また、本発明に係る硬質皮膜の形成方法によれば、硬度が高く、切削加工時等における密着性および耐摩耗性が優れた硬質皮膜を形成できる。
本発明に係る硬質皮膜の第1の実施形態を示す断面図である。 本発明に係る硬質皮膜の第2の実施形態を示す断面図である。 成膜装置を示す概略構成図である。
本発明に係る硬質皮膜の第1の実施形態について、図面を参照して説明する。
図1に示すように、硬質皮膜1は、密着性および耐摩耗性の向上のために基材10の上に形成される皮膜であって、下地層2と、下地層2の上に形成される密着強化層3とを備える。
<基材>
基材10としては、超硬合金、金属炭化物を有する鉄基合金、サーメット、高速度工具鋼等が挙げられる。しかし、基材10としては、これらに限定されるものではなく、チップ、ドリル、エンドミル等の切削工具、プレス用金型、鍛造用金型、成型用金型、打ち抜きパンチ等の治工具類であってもよい。
<下地層>
下地層2は、基材10の上に形成される皮膜であって、所定の組成を有するB層からなる。下地層2が形成されていることによって、基材10と硬質皮膜1との密着性が向上する。そのため、下地層2の厚さは、0.1〜5μmであることが好ましい。なお、B層の組成の詳細については、後記する。
<密着強化層>
密着強化層3は、下地層2の上に形成される皮膜であって、所定の組成を有するA層4と所定の組成を有するB層5とを交互に繰り返し積層することによって形成される。そして、密着強化層3の厚さが増加するに伴って、A層4の厚さが下地層2側に比べて増加して、A層4の最大厚さ、すなわち、密着強化層3内におけるA層4の最上層の厚さが20〜50nmとなるように密着強化層3を形成する。A層4の最小厚さ、すなわち、密着強化層3内における基材10と接するA層4の最下層の厚さは、特に限定されないが、0.1〜20nmが好ましい。なお、A層4は、積層する毎に(1層毎に)厚さが増加することが好ましいが、図示しないが2層以上毎に厚さが増加してもよい。例えば、1、2層は同一厚さで、3層目を1、2層に比べて厚さを増加させてもよい。また、密着強化層3内のB層5の厚さは、積層する毎に一定で、5〜50nmであることが好ましい。
密着強化層3は、基材10側がA層4となるようにA層4とB層5とを積層して、最表面側がA層4となることが好ましい。しかしながら、図示しないが、密着強化層3の最表面層側がB層5となってもよい。密着強化層3の厚さ、すなわち、積層されたA層4とB層5との合計厚さは、0.5〜10μmであることが好ましい。
A層4は、耐熱性、高硬度で耐摩耗性に優れる皮膜であるが、単層で用いた場合には基材10との密着性の問題、結晶配向性の問題により更なる耐摩耗性の向上に問題がある。B層5は、耐酸化性、高靱性の皮膜であるが、単独で用いた場合には耐摩耗性がA層4より劣るという問題がある。本発明においては、A層4とB層5とを交互に繰り返し積層した密着強化層3を形成し、密着強化層3の厚さが増加するに伴って、A層4の厚さが下地層2側に比べて増加して、その最大厚さが所定の厚さとなることで、A層4とB層5との結晶配向性を制御できる。すなわち、B層は粗大な結晶粒が一方向に成長するため、そのままでは上層部との密着性が低下する。したがって、A層の厚みを徐々に増加させることで、A層の厚みが薄い間はB層の結晶粒が一方向成長を続け、A層の厚みが増すごとにB層の一方向かつ粗大な結晶粒成長が阻害される。結果として、A層の厚みが増すごとに下の層(下地層2側の層)からのB層の一方向成長の影響が弱くなり、B層の結晶粒のサイズが微細化していく。それによって、A層4またはB層5の単層の構造である硬質皮膜に比べ、硬質皮膜1の密着性が向上すると共に、切削性能が飛躍的に向上して、硬質皮膜1の耐摩耗性が向上する。
密着強化層3内のA層4の厚さは、B層5の結晶粒径をコントロールするために、段階的に増加させることが好ましい。例えば、A層4の厚さは、積層する毎(1層毎、または、2層以上毎)に0.1〜20nmづつ増加させることが好ましい。密着強化層3内のA層4の最大厚さが20nm未満であると、密着強化層3の切削性能の向上が認められず、硬質皮膜1の耐摩耗性の向上が認められない。A層4の最大厚さが50nmを超えると、A層4の成膜の実施が難しく、コストも高くなる。なお、前記したA層4の厚さは、後記する硬質皮膜1の製造の際(A層形成時)のA層ターゲットの蒸発量等によって制御する。
(A層)
A層4は、組成がTi(B、C、N)1−wであり、0.2≦w≦0.6(0.4≦1−w≦0.8)を満たす皮膜である。
非金属成分(B、C、N)は、A層4に高硬度かつ耐摩耗性を付与するために添加する元素である。そして、金属成分(Ti)は、非金属成分(B、C、N)の含有量を調整するために添加する元素である。金属成分(Ti)の原子比(w)が0.6を超えると、非金属成分(B、C、N)の原子比(1−w)が0.4未満となり、A層4の硬度および耐摩耗性が低下する。また、金属成分(Ti)の原子比(w)が0.2未満であると、非金属成分(B、C、N)の原子比(1−w)が0.8を超え、A層4の硬度および耐熱性が低下する。
A層4は、非金属成分内の原子比が(B1−x−y)であり、0.1≦x≦0.8、0≦y≦0.5、0≦1−x−y≦0.5を満たす皮膜である。
A層4に高硬度かつ耐摩耗性を付与するためには、少なくともBの原子比(x)は0.1〜0.8でなければならない。好ましくは、Bの原子比(x)が0.25〜0.75である。また、A層4のさらなる高硬度化のために、Cの原子比(1−x−y)を0.50以下、Nの原子比(y)を0.50以下としてもよい。
(B層)
B層5は、組成が金属成分(Ti、Al、Cr、Si)と非金属成分(C、N)とからなり、以下の4種のいずれかである皮膜である。
(1)組成がTi1−aAl(C1−k)であり、0.3≦a≦0.7、0.5≦k≦1を満たす皮膜
B層5に高硬度かつ耐摩耗性を付与するためには、金属成分であるTiの原子比(1−a)は0.3〜0.7、Alの原子比(a)は0.3〜0.7でなければならない。また、B層5に高硬度かつ耐摩耗性を付与するためには、少なくとも非金属成分であるNの原子比(k)は0.5〜1でなければならない。また、B層5のさらなる高硬度化のために、非金属成分であるCの原子比(1−k)を0.5以下としてもよい。
(2)組成がAlCr1−b(C1−k)であり、0.3≦b≦0.8、0.5≦k≦1を満たす皮膜
B層5に高硬度かつ耐摩耗性を付与するためには、金属成分であるAlの原子比(b)は0.3〜0.8、Crの原子比(1−b)は0.2〜0.7でなければならない。また、B層5に高硬度かつ耐摩耗性を付与するためには、少なくとも非金属成分であるNの原子比(k)は0.5〜1でなければならない。また、B層5のさらなる高硬度化のために、非金属成分であるCの原子比(1−k)を0.5以下としてもよい。
(3)組成がTi1−c−d−eCrAlSi(C1−k)であり、c≦0.3、0.3≦d≦0.7、0≦e≦0.3、1−c−d−e≦0.3、0.5≦k≦1を満たす皮膜
B層5に高硬度かつ耐摩耗性を付与するためには、少なくとも金属成分であるTiの原子比(1−c−d−e)は0.3以下、Crの原子比(c)は0.3以下、Alの原子比(d)は0.3〜0.7でなければならない。また、B層5に高硬度かつ耐摩耗性を付与するためには、少なくとも非金属成分であるNの原子比(k)は0.5〜1でなければならない。また、B層5のさらなる耐摩耗性の付与のために、金属成分であるSiの原子比(e)を0.3以下としてもよい。また、B層5のさらなる高硬度化のために、非金属成分であるCの原子比(1−k)を0.5以下としてもよい。
(4)組成がTi1−fSi(C1−k)であり、0.05≦f≦0.3、0.5≦k≦1を満たす皮膜
B層5に高硬度かつ耐摩耗性を付与するためには、金属成分であるTiの原子比(1−f)は0.7〜0.95、Siの原子比(f)は0.05〜0.3でなければならない。また、B層5に高硬度かつ耐摩耗性を付与するためには、少なくとも非金属成分であるNの原子比(k)は0.5〜1でなければならない。また、B層5のさらなる高硬度化のために、非金属成分であるCの原子比(1−k)を0.5以下としてもよい。
前記した下地層2、A層4、B層5においてTi、B、C、N、Al、Cr、Siの原子比(w、x、y、a、b、c、d、e、f)は、後記する硬質皮膜1の製造の際(皮膜形成工程)、成膜装置100(図3参照)にセットされるターゲットの組成によって制御する。また、C、Nの原子比(x、y、k)については、成膜装置100内に導入される窒素、炭化水素等の不活性ガスの導入量によって制御してもよい。そして、下地層2、A層4、B層5の厚さは、皮膜形成時のターゲットの蒸発量等によって制御する。
本発明に係る硬質皮膜の第2の実施形態について、図面を参照して説明する。
図2に示すように、硬質皮膜1Aは、下地層2と、A層4およびB層5からなる密着強化層3と、密着強化層3の上に形成されるC層6とを備える。硬質皮膜1Aは、C層6を備えることによって、耐摩耗性がさらに向上する。
なお、下地層2、A層4およびB層5からなる密着強化層3については、前記した第1の実施形態の硬質皮膜1と同様であるので、説明を省略する。
(C層)
C層6は、組成がTiBからなり、その厚さが5.0μm以下、好ましくは3.0μm以下である。厚さが5.0μmを超えると、内部応力によりC層6の破壊(チッピング)が発生し、硬質皮膜1Aの耐摩耗性が低下する。また、厚さの下限値は、特に限定されないが、C層6が形成しやすい点で0.3μm以上が好ましい。なお、C層6の厚さは、硬質皮膜1Aの製造の際(皮膜形成工程)、成膜装置100(図2参照)にセットされるターゲット(TiB)の皮膜形成時の蒸発量によって制御する。
C層6は、X線回折にて測定したときの回折線の積分強度比、すなわち優先配向性によって、C層6の切削性能が異なる。C層6では、(100)面または(001)面の配向性を向上させることで、C層6の切削性能が向上する。C層6の優先配向性は、C層6の皮膜形成時に基材10に印加するバイアス電圧に依存し、負バイアス電圧が増加するに伴い、−50Vを境に(001)面配向から(100)面配向に変化する。
したがって、C層6は、θ−2θ法のX線回折にて測定したときの(100)面からの回折線の積分強度をI(100)、(001)面からの回折線の積分強度をI(001)とした際に、バイアス電圧−50V以上0V未満の時にはI(100)/I(001)<1、後記するようにスパッタ電源としてアンバランスドマグネトロンスパッタ(UBMS)電源を用いてバイアス電圧−150V以上−50V未満の時にはI(100)/I(001)≧1を満たすことが好ましい。なお、スパッタ電源として参考文献(尾山卓司,ドライコーティング技術の過去・現在・未来,旭硝子研究報告,57,2007,83−90頁)に記載されたデュアルマグネトロンスパッタ(DMS)電源を用いてバイアス電圧−100V以上−50V未満の時にはI(100)/I(001)≧1を満たすことが好ましい。このように、バイアス電圧によって積分強度比を所定値の範囲とすることで、C層6の硬度が高くなると共に、切削性能が向上して、硬質皮膜1Aの強度及び耐摩耗性が向上する。
次に、本発明に係る硬質皮膜の第1の形成方法、すなわち、第1の実施形態の硬質皮膜の形成方法について、説明する。なお、硬質皮膜1の構成については、図1を参照する。
硬質皮膜1の形成方法は、基材準備工程と、基材加熱工程と、皮膜形成工程とを含む。
(基材準備工程)
基材準備工程は、所定サイズの基材10を必要に応じて超音波等で洗浄して、準備する工程である。
(基材加熱工程)
基材加熱工程は、図3に示すような成膜装置100に導入した後、基材10を加熱する工程で、基材10が所定温度、例えば、500〜550℃に保持されるように加熱することが好ましい。基材10を加熱することによって、次工程において、基材10の上に硬質皮膜1を形成しやすくなる。
(皮膜形成工程)
皮膜形成工程は、アークイオンプレーティング法(AIP法)およびスパッタリング法(SP法)の少なくとも一方を用いて硬質皮膜1を基材10の上に形成する工程である。具体的には、AIP法またSP法で下地層2を基材10の上に形成し、SP法、または、AIP法とSP法の両方法を用いて密着強化層3を下地層2の上に形成する。そして、密着強化層3のA層4はSP法で形成し、密着強化層3のB層5はAIP法またはSP法で形成する。また、A層4をSP法で形成するときに、基材10に−200V以上0V未満のバイアス電圧を印加することが好ましい。
また、本発明の硬質皮膜1の形成方法は、前記工程に加えて、基材エッチング工程を基材加熱工程と皮膜形成工程との間に含んでもよい。基材エッチング工程は、基材10の表面をAr等の希ガスのイオンによってエッチングする工程である。
次に、硬質皮膜1の形成方法の一例として、図3に示す成膜装置100を使用した場合について、説明する。なお、成膜装置としては、これに限定されるものではない。
図3に示すように、成膜装置100は、真空排気する排気口と、成膜ガスおよび希ガスを供給するガス供給口104とを有するチャンバー103と、アーク蒸発源101に接続されたアーク電源109と、スパッタ蒸発源102に接続されたスパッタ電源108と、成膜対象である基材10を支持する基材ステージ105と、この基材ステージ105と前記チャンバー103との間で基材ステージ105を通して基材10に負のバイアス電圧を印加するバイアス電源107とを備えている。また、その他、ヒータ106、放電用直流電源112、フィラメント加熱用交流電源111等を備えている。
まず、成膜装置100のアーク蒸発源101またはスパッタ蒸発源102に、各種の金属、合金または金属化合物からなる下地層用ターゲット(図示省略)を取り付け、さらに、基材ステージ105の上に基材10を取り付け、チャンバー103内を真空引き(例えば、5×10−3Pa以下に排気)し、真空状態にする。その後、希ガスとしてArをチャンバー103内に導入し、チャンバー103内のヒータ106で基材10を所定温度に加熱し、フィラメント110からの熱電子放出によるイオン源により、Arイオンによるエッチングを所定時間実施する。
次に、必要に応じてチャンバー103内に成膜ガス(N、炭化水素等)を導入しながら、アーク電源109またはスパッタ電源108により下地層用ターゲットを蒸発させると共に、基材10を支持する基材ステージ105を回転させて、基材10の上に所定厚さの下地層2を形成させる。なお、下地層2の厚さは、アーク蒸発源101またはスパッタ蒸発源102への投入電力(下地層用ターゲットの蒸発量)や、基材ステージ105の回転速度、回転数によって制御する。なお、基材ステージ105の回転速度が速いほうが下地層2の厚さが薄くなる。
次に、各種の金属、合金または金属化合物からなるA層用ターゲット(図示省略)をスパッタ蒸発源102に、各種の金属、合金または金属化合物からなるB層用ターゲット(図示省略)をスパッタ蒸発源102またはアーク蒸発源101に取り付ける。また、必要に応じて、成膜ガスをチャンバー103内に導入しながら、スパッタ電源108、または、スパッタ電源108とアーク電源109とによりA層用ターゲットとB層用ターゲットを同時に蒸発させる。このとき、下地層2が形成された基材10(被処理体)を支持する基材ステージ105を回転させることによって、A層4とB層5とが交互に積層した密着強化層3が下地層の上に形成される。そして、密着強化層3内のA層4は、積層される毎に厚さが増加するように形成する。
被処理体は、基材ステージ105の回転に伴い、異なる組成のターゲットを取り付けた蒸発源の前を交互に通過する。そのときに、各々の蒸発源のターゲット組成に対応した皮膜が交互に形成されることで、A層4とB層5とが交互に積層した密着強化層3を形成することが可能である。また、A層4、B層5の各々の厚さ、および、A層4の厚さ増加量は、各蒸発源への投入電力(ターゲット蒸発量)や、基材ステージ105の回転速度、回転数にて制御する。なお、基材ステージ105の回転速度が速いほうが1層あたりの厚さは薄くなる。なお、A層用ターゲットとB層用ターゲットの蒸発は、同時に限定されず、A層形成後にB層用ターゲットの蒸発を行ってもよい。
A層形成時においては、基材10(下地層2が形成された基材10)に、−200V以上0V未満、好ましくは−150V以上−10V以下のバイアス電圧をバイアス電源107から基材ステージ105を通じて印加することが好ましい。基材10に所定範囲のバイアス電圧を印加することによって、硬質皮膜の切削性能が向上して、耐摩耗性が向上する。バイアス電圧の負電圧が大きくなると、成膜中の基材10の加熱や成膜レートの低下が生じることから、A層が均一に成膜されず、切削時に硬質皮膜1に破壊(チッピング)が起こりやすくなり、耐摩耗性が低下しやすくなる。
また、A層形成時に使用されるスパッタ電源108としては、神戸製鋼所製UBMS202等のUBMS電源(通常電源)、DMS電源等が使用できる。スパッタ電源108としてはDMS電源が好ましい。スパッタ電源108としてDMS電源を使用することで、通常電源(UBMS電源)よりも硬度および耐摩耗性を向上させることができる。DMSを使用すると硬度が上昇するのは、DMS電源によりA層用ターゲットのイオン照射が高くなるためと考えられる。
本発明に係る硬質皮膜の第2の形成方法、すなわち、第2の実施形態の硬質皮膜の形成方法について、説明する。なお、硬質皮膜1Aの構成については、図2を参照する。
硬質皮膜1Aの形成方法は、基材準備工程と、基材加熱工程と、皮膜形成工程とを含む。基材準備工程と基材加熱工程は、前記した第1の形成方法(図1に記載された硬質皮膜1の形成方法)と同様であるので、説明を省略する。また、硬質皮膜1Aの形成方法は、前記した基材エッチング工程を基材加熱工程と皮膜形成工程との間に含んでもよい。
(皮膜形成工程)
皮膜形成工程は、基材10の上に下地層2とA層4およびB層5の密着強化層3とを前記した第1の形成方法と同様にして形成し、その後、密着強化層3の上にSP法またはAIP法でC層6を形成する工程である。そして、C層6をSP法で形成するときには、スパッタ電源としてUBMS電源、DMS電源等を用い、DMS電源を用いることが好ましい。そして、C層形成時においては、基材10にバイアス電圧を印加することが好ましい。C層6をSP法で形成するときに、DMS電源を用いる場合には基材10に−100V以上0V未満のバイアス電圧を印加し、UBMS電源を用いる場合には基材10に−150V以上0V未満のバイアス電圧を印加することが好ましい。
図3の成膜装置100におけるC層6の形成方法は、スパッタ蒸発源102にTiBからなるC層用ターゲットを取り付け、スパッタ電源108によりC層用ターゲットを蒸発させると共に、下地層2および密着強化層3が形成された基材10(被処理体)を支持する基材ステージ105を回転させて、被処理体の密着強化層3の上に所定厚さのC層6を形成させる。なお、C層6の厚さは、スパッタ電源108への投入電力(C層用ターゲットの蒸発量)や、基材ステージ105の回転速度、回転数によって制御する。なお、基材ステージ105の回転速度が速いほうがC層6の厚さが薄くなる。
C層形成時においては、基材10(下地層2および密着強化層3が形成された基材10)に、DMS電源時には−100V以上0V未満、好ましくは−100V以上−10V未満、より好ましくは−90V以上−20V未満のバイアス電圧、UBMS電源時には−150V以上0V未満、好ましくは−120V以上−20V未満のバイアス電圧をバイアス電源107から基材ステージ105を通じて印加することが好ましい。
基材10に所定範囲のバイアス電圧を印加することによって、硬質皮膜1Aの硬度および耐摩耗性が向上する。バイアス電圧の負電圧が大きくなると、C層6の硬度が増加するが、成膜中の基材10の加熱や成膜レートの低下が生じることから、C層6が均一に成膜されず、切削時に硬質皮膜1Aに破壊(チッピング)が起こりやすくなり、耐摩耗性が低下する。また、バイアス電圧を印加すると硬度が上昇するのは、C層用ターゲットと基材10の電位差が大きくなりC層用ターゲットのイオン照射が高くなるためと考えられる。また、C層形成時に基板10に印加するバイアス電圧を所定範囲に制御した際、C層6の優先配向性、すなわち、X線回折にて測定される回折線の積分強度比を所定範囲とすることが好ましい。具体的には、バイアス電圧が−50V以上0V未満の時には(100)面の回折線の積分強度が(001)面の回折線の積分強度の1倍未満、UBMS電源を用いてバイアス電圧が−150V以上−50V未満の時には(100)面の回折線の積分強度が(001)面の回折線の積分強度の1.0倍以上、DMS電源を用いてバイアス電圧が−100V以上−50V未満の時には(100)面の回折線の積分強度が(001)面の回折線の積分強度の1.0倍以上とすることが好ましい。
以下、本発明に係る実施例について説明する。実施例においては、図3に示す成膜装置を用いて、硬質皮膜を形成した。なお、本発明は以下の実施例に限定されるものではない。
<第1実施例>
第1実施例では、A層、B層とも種々の組成で成膜を実施した。B層からなる下地層を厚さ1.5μmで成膜した後に、密着強化層を厚さ1.5μmで成膜した。密着強化層内のA層の成膜には、UBMS電源またはDMS電源を用いた。A層成膜時のバイアス電圧は−40Vに固定して成膜した。各々組成の異なるA、B層を形成し、密着強化層内のA層の厚さ(最下層の厚さ、厚さ増加量および最上層の厚さ(最大厚さ))を変化させ、硬度、密着性および耐摩耗性に及ぼす影響を検討した。また、比較例では、A層またはB層を厚さ3.0μmで単層に成膜することも行った。
具体的には、基材としての切削工具(チップ)および鏡面の超硬試験片(13mm□×5mm厚)をエタノール中にて超音波洗浄し、基材を基材ステージに取り付けた。また、下地層ターゲット(ターゲット径100mmφ)をアーク蒸発源に取り付けた。成膜装置内を5×10−3Paまで排気後、基材を500℃まで加熱後、Arイオンによるエッチングを5分間実施した。その後、基材ステージを回転速度5rpmで回転させると共に、窒素ガスや、必要に応じて炭素を含有するガスを窒素ガスに加えた混合ガスを4Paまで導入し、アーク蒸発源を放電電流150Aで運転して1.5μm厚さの下地層を形成した。
次に、A層ターゲット(ターゲット径152.4mmφ)をスパッタ蒸発源に取り付け、B層ターゲット(下地層ターゲットと同様)をアーク蒸発源に取り付け、基材ステージを回転速度5rpmで回転させる。まずはA層ターゲットのみ、前記した窒素ガス等の所定の雰囲気中で単独で短時間蒸発させ、基材にバイアス電圧−40V印加し、所定厚さのA層(最下層)を形成した。その後、Arガスを導入し、B層ターゲットを蒸発させ、A層ターゲットおよびB層ターゲットを同時に蒸発させ、基材にバイアス電圧を−40V印加しながら基材ステージを回転速度5rpmで回転させることで、A層とB層とが交互に積層した密着強化層を下地層の上に合計厚さ1.5μmとなるように形成した。また、A層の最下層の厚さ、厚さの増加量および最上層の厚さ、B層の厚さは、表1〜5に示すとおりとした。
成膜後、硬質皮膜中の成分組成を測定すると共に、硬度、密着性および耐摩耗性について評価を行った。その結果を表1〜5に示す。
(成分組成)
下地層、A層とB層とからなる密着強化層の成分組成を、EPMA(Electron Probe Micro Analyzer)により測定した。
(硬度)
硬度は、硬質皮膜が形成された超硬試験片を用いてナノインデンター試験によって測定した。ナノインデンターによる測定は、装置として「株式会社 エリオニクス製 ENT−1100」を用い、インデンターにはベルコビッチ型の三角錐圧子を使用した。まず、荷重2、5、7、10および20mNの5荷重で各々5点の荷重負荷曲線を測定した。そして、SAWAらにより提案された装置のコンプライアンスと圧子先端形状を補正する方法(J.Mater.Res.Vol.16,No.11,2001,3084)によりデータの補正を行った。硬度が25GPa以上のものを良好、硬度が25GPa未満のものを不良と評価した。
(密着性)
密着性は、硬質皮膜が形成された超硬試験片を用いてスクラッチ試験によって評価した。スクラッチ試験は、硬質皮膜に対し、200μmRのダイヤモンド圧子を荷重増加速度100N/分、圧子移動速度10mm/分という条件で移動させて行った。臨界荷重値としては、スクラッチ試験後に、光学顕微鏡にてスクラッチ部分の観察を行い、皮膜に損傷が起こった部分を臨界荷重として採用した。表1〜5ではこれを密着力(N)として記載し、密着力が35N以上のものを密着性が良好、密着力が35N未満のものを密着性が不良とした。
(耐摩耗性)
耐摩耗性は、硬質皮膜が形成された切削工具(チップ)を用いて以下の条件で切削試験を実施し、一定距離経過後の境界部摩耗量(フランク摩耗幅)を測定することによって評価した。フランク摩耗幅が50μm以下のものを耐摩耗性が良好、フランク摩耗幅が50μmを超えるものを耐摩耗性が不良とした。なお、チッピングの発生により測定不能のものは、フランク摩耗幅が50μmを超えるものとして耐摩耗性が不良とした。
[切削試験条件]
被削材:TiAl
チップ:TH10(タンガロイ社製超硬チップ)
ツール:正面フライス(住友電気工業社製:FPG4160R)、正面フライスにはチッ プは1個のみ取り付け
深さ切込み:1mm
送り速度:157mm/min
回転数:1570rpm
周速:100m/min
切削油:アルマレッジ10%
評価条件:7m切削後のフランク摩耗幅(境界部)
Figure 0006155204
Figure 0006155204
Figure 0006155204
Figure 0006155204
Figure 0006155204
表1に示すように、No.2、4〜11(実施例)は、硬質皮膜が本発明の要件を満足するため、硬度、密着性および耐摩耗性において良好であった。一方、No.1(比較例)は、下地層およびB層のTiが下限値未満、Alが上限値を超えるため、硬度および耐摩耗性が不良であった。No.3(比較例)は、A層の最上層の厚さ(最大厚さ)が下限値未満であるため、密着性および耐摩耗性が不良であった。No.12(比較例)は、下地層およびB層のTiが上限値を超え、Alが下限値未満であるため、硬度、密着性および耐摩耗性が不良であった。No.13(比較例)は、下地層およびB層のCが上限値を超えるため、硬度、密着性および耐摩耗性が不良であった。No.14(比較例)は、A層がBを含有していないため、硬度、密着性および耐摩耗性が不良であった。No.15(比較例)は、A層がBを含有していないため、密着性および耐摩耗性が不良であった。
表2に示すように、No.17〜21(実施例)は、硬質皮膜が本発明の要件を満足するため、硬度、密着性および耐摩耗性において良好であった。一方、No.16(比較例)は、下地層およびB層のAlが下限値未満、Crが上限値を超えるため、密着性および耐摩耗性が不良であった。No.22(比較例)は、下地層およびB層のAlが上限値を超えるため、耐摩耗性が不良であった。No.23(比較例)は、下地層およびB層のCが上限値を超えるため、耐摩耗性が不良であった。No.24(比較例)は、A層の最上層の厚さ(最大厚さ)が下限値未満であるため、硬度、密着性および耐摩耗性が不良であった。
表3に示すように、No.26〜31(実施例)は、硬質皮膜が本発明の要件を満足するため、硬度、密着性および耐摩耗性において良好であった。一方、No.25(比較例)は、下地層およびB層のCrが上限値を超えるため、耐摩耗性が不良であった。No.32(比較例)は、下地層およびB層のSiが上限値を超えるため、硬度および耐摩耗性が不良であった。No.33(比較例)は、下地層およびB層のAlが上限値を超えるため、硬度、密着性および耐摩耗性が不良であった。
表4に示すように、No.35〜38(実施例)は、硬質皮膜が本発明の要件を満足するため、硬度、密着性および耐摩耗性において良好であった。一方、No.34(比較例)は、下地層およびB層がSiを含有していないため、硬度、密着性および耐摩耗性が不良であった。No.39(比較例)は、下地層およびB層のTiが下限値未満、Siが上限値を超えるため、硬度および耐摩耗性が不良であった。
表5に示すように、No.40(比較例)は、硬質皮膜がB層のみで構成されているため、硬度および耐摩耗性が不良であった。No.41〜43(比較例)は、硬質皮膜がB層のみで構成されているため、耐摩耗性が不良であった。No.44(比較例)は、硬質皮膜がA層のみで構成されているため、硬度、密着性および耐摩耗性が不良であった。
<第2実施例>
第2実施例では、密着強化層の上にC層を形成し、C層の厚さを変化させた実験を行った。なお、下地層および密着強化層の皮膜組成および厚さを固定した。下地層を1.5μm成膜した後に、密着強化層の内、A層をB層20nmと交互に積層し、A層を2nm(最下層)から最大厚さ30nm(最上層)まで増加させ、密着強化層として1.5μmになるように成膜した。その後、C層を表6に示す厚さで成膜した。そして、C層の厚さが、硬度、密着性および耐摩耗性に及ぼす影響を検討した。
具体的には、前記第1実施例と同様にして、基材の上に下地層および密着強化層を形成した。次に、C層ターゲットであるTiBターゲット(ターゲット径152.4mmφ)をスパッタ蒸発源に取り付けた。基材ステージを回転速度5rpmで回転させると共に、基材にバイアス電圧−40V印加し、TiBターゲットを蒸発させ、所定厚さのC層を形成した。なお、A層成膜およびC層成膜には、UBMS電源またはDMS電源を使用した。また、下地層の上に密着強化層を形成せずに、基板にバイアス電圧−25V印加して、C層のみを形成した。
成膜終了後、硬質皮膜中の成分組成を測定すると共に、硬度、密着性および耐摩耗性について評価を行った。その結果を表6に示す。
成分組成の測定方法、硬度、密着性および耐摩耗性の評価方法は、前記第1実施例と同様である。なお、硬質皮膜中の成分組成のうち、下地層は「Ti0.50Al0.50N」、A層は「Ti0.50(B0.500.500.50」、B層は「Ti0.50Al0.50N」であった。
Figure 0006155204
表6に示すように、No.45〜51(実施例)は、硬質皮膜が本発明の要件を満足するため、硬度、密着性および耐摩耗性が良好であった。No.52(比較例)は、C層の厚さが上限値を超えるため、耐摩耗性が不良であった。No.53(比較例)は、硬質皮膜が下地層およびC層で構成され密着強化層が形成されていないため、密着性および耐摩耗性が不良であった。
1、1A 硬質皮膜
2 下地層
3 密着強化層
4 A層
5 B層
6 C層

Claims (4)

  1. 基材の上に形成される硬質皮膜であって、
    組成が、Ti(B1−x−y1−wであり、
    0.2≦w≦0.6
    0.1≦x≦0.8
    0≦y≦0.5
    0≦1−x−y≦0.5
    を満たすA層と、
    組成が、Ti1−aAl(C1−k)、AlCr1−b(C1−k)、Ti1−c−d−eCrAlSi(C1−k)およびTi1−fSi(C1−k)のいずれかであり、
    0.3≦a≦0.7
    0.3≦b≦0.8
    0.3≦d≦0.7
    c≦0.3
    0≦e≦0.3
    1−c−d−e≦0.3
    0.05≦f≦0.3
    0.5≦k≦1
    を満たすB層とを備え、
    前記基材の上には前記B層からなる下地層が形成され、前記下地層の上には前記A層および前記B層が交互に繰り返し積層された密着強化層が形成され、
    前記密着強化層の厚さの増加に伴って、前記A層の厚さが前記下地層側に比べて増加して、前記A層の最大厚さが20〜50nmとなることを特徴とする硬質皮膜。
  2. 前記密着強化層の上にC層がさらに形成され、前記C層の組成がTiBであり、前記C層の厚さが5.0μm以下であることを特徴とする請求項1に記載の硬質皮膜。
  3. 請求項1に記載の硬質皮膜の形成方法であって、前記基材を準備する基材準備工程と、前記基材を加熱する基材加熱工程と、前記基材の上に前記硬質皮膜を形成する皮膜形成工程とを含み、
    前記皮膜形成工程では、前記下地層および前記密着強化層をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で形成することを特徴とする硬質皮膜の形成方法。
  4. 請求項2に記載の硬質皮膜の形成方法であって、前記基材を準備する基材準備工程と、前記基材を加熱する基材加熱工程と、前記基材の上に前記硬質皮膜を形成する皮膜形成工程とを含み、
    前記皮膜形成工程では、前記下地層、前記密着強化層および前記C層をアークイオンプレーティング法およびスパッタリング法の少なくとも一方で形成することを特徴とする硬質皮膜の形成方法。
JP2014032280A 2014-02-21 2014-02-21 硬質皮膜およびその形成方法 Expired - Fee Related JP6155204B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014032280A JP6155204B2 (ja) 2014-02-21 2014-02-21 硬質皮膜およびその形成方法
US15/119,322 US20170009333A1 (en) 2014-02-21 2015-02-19 Hard coating film and method of forming same
CA2939318A CA2939318A1 (en) 2014-02-21 2015-02-19 Hard coating film and method of forming same
EP15752099.0A EP3109341A4 (en) 2014-02-21 2015-02-19 Hard coating film and method of forming same
PCT/JP2015/054694 WO2015125898A1 (ja) 2014-02-21 2015-02-19 硬質皮膜およびその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032280A JP6155204B2 (ja) 2014-02-21 2014-02-21 硬質皮膜およびその形成方法

Publications (2)

Publication Number Publication Date
JP2015157975A JP2015157975A (ja) 2015-09-03
JP6155204B2 true JP6155204B2 (ja) 2017-06-28

Family

ID=53878395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032280A Expired - Fee Related JP6155204B2 (ja) 2014-02-21 2014-02-21 硬質皮膜およびその形成方法

Country Status (5)

Country Link
US (1) US20170009333A1 (ja)
EP (1) EP3109341A4 (ja)
JP (1) JP6155204B2 (ja)
CA (1) CA2939318A1 (ja)
WO (1) WO2015125898A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163708B (zh) * 2014-04-10 2018-03-30 株式会社泰珂洛 包覆工具
JP6499949B2 (ja) * 2015-09-15 2019-04-10 Tpr株式会社 ピストンリング
JP2017110248A (ja) * 2015-12-15 2017-06-22 株式会社神戸製鋼所 硬質皮膜及び金型
CN108866491A (zh) * 2018-07-24 2018-11-23 山东大学 TiAlN/CrAlSiN纳米复合多层涂层及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3512986A1 (de) * 1985-04-11 1986-10-16 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Viellagige, hochverschleissfeste hartstoffschutzschicht fuer metallische, stark beanspruchte oberflaechen oder substrate
SE518134C2 (sv) * 1997-12-10 2002-09-03 Sandvik Ab Multiskiktbelagt skärverktyg
US6660133B2 (en) * 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
WO2006070509A1 (ja) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具および表面被覆切削工具の製造方法
US7879443B2 (en) * 2005-02-10 2011-02-01 Oc Oerlikon Trading Ag, Truebbach High wear resistant triplex coating for cutting tools
SE0602814L (sv) * 2006-12-27 2008-06-28 Sandvik Intellectual Property Skärverktyg med multiskiktbeläggning
EP2147132B1 (en) * 2007-04-18 2017-03-01 Sandvik Intellectual Property AB A coated cutting tool
EP2072636B1 (en) * 2007-12-21 2016-08-31 Sandvik Intellectual Property AB Method of making a coated cutting tool
JP5027760B2 (ja) * 2008-08-20 2012-09-19 株式会社神戸製鋼所 硬質皮膜形成部材
JP5382581B2 (ja) * 2009-07-01 2014-01-08 住友電工ハードメタル株式会社 表面被覆切削工具
JP5483067B2 (ja) * 2009-10-19 2014-05-07 住友電工ハードメタル株式会社 表面被覆切削工具
JP5402515B2 (ja) * 2009-10-19 2014-01-29 三菱マテリアル株式会社 表面被覆切削工具
CN102560346A (zh) * 2010-12-24 2012-07-11 鸿富锦精密工业(深圳)有限公司 硬质薄膜、具备硬质薄膜的产品及该产品的制作方法
JP5651712B2 (ja) * 2011-02-01 2015-01-14 オーエスジー株式会社 硬質積層被膜
US9109280B2 (en) * 2011-02-01 2015-08-18 Osg Corporation Hard laminar coating
JP5681093B2 (ja) * 2011-12-15 2015-03-04 株式会社神戸製鋼所 多層硬質皮膜

Also Published As

Publication number Publication date
US20170009333A1 (en) 2017-01-12
JP2015157975A (ja) 2015-09-03
CA2939318A1 (en) 2015-08-27
EP3109341A4 (en) 2017-11-01
EP3109341A1 (en) 2016-12-28
WO2015125898A1 (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
KR102326622B1 (ko) 내치핑성, 내마모성이 우수한 표면 피복 절삭 공구
JP4960211B2 (ja) 被覆された切削工具
JPWO2014025057A1 (ja) 被覆工具
JP6601692B2 (ja) 被覆切削工具
WO2016002861A1 (ja) 硬質皮膜
WO2019098363A1 (ja) 被覆切削工具
JP6155204B2 (ja) 硬質皮膜およびその形成方法
EP4292735A1 (en) Coated tool
JP2019038097A (ja) 被覆切削工具
JP5293330B2 (ja) 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
US10583494B2 (en) Coated drill
JP5730536B2 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
WO2016084939A1 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2012057000A1 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
JP6213269B2 (ja) 高硬度鋼の切削加工ですぐれた耐チッピング性を長期に亘って発揮する表面被覆切削工具
JP6267604B2 (ja) 硬質皮膜およびその形成方法、ならびに鋼板熱間成型用金型
JP5223743B2 (ja) 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
JP5065758B2 (ja) 被覆切削工具
JP5065757B2 (ja) 被覆切削工具
JP2008302439A (ja) 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
JP6172519B2 (ja) 高硬度鋼の切削加工ですぐれた耐チッピング性を長期に亘って発揮する表面被覆切削工具
JP5267790B2 (ja) 表面被覆切削工具
JP2014087915A (ja) 表面被覆切削工具
JP2008302438A (ja) 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
JP2015085444A (ja) 高硬度鋼の高速切削加工ですぐれた耐チッピング性を長期にわたって発揮する表面被覆切削工具

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6155204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees