JP6150565B2 - 圧力センサ - Google Patents

圧力センサ Download PDF

Info

Publication number
JP6150565B2
JP6150565B2 JP2013046586A JP2013046586A JP6150565B2 JP 6150565 B2 JP6150565 B2 JP 6150565B2 JP 2013046586 A JP2013046586 A JP 2013046586A JP 2013046586 A JP2013046586 A JP 2013046586A JP 6150565 B2 JP6150565 B2 JP 6150565B2
Authority
JP
Japan
Prior art keywords
pressure
cantilever
cavity
outside
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013046586A
Other languages
English (en)
Other versions
JP2014173988A (ja
Inventor
勲 下山
下山  勲
潔 松本
松本  潔
高橋 英俊
英俊 高橋
ミン ジューン グェン
ミン ジューン グェン
篠原 陽子
陽子 篠原
内山 武
武 内山
大海 学
学 大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
University of Tokyo NUC
Original Assignee
Seiko Instruments Inc
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc, University of Tokyo NUC filed Critical Seiko Instruments Inc
Priority to JP2013046586A priority Critical patent/JP6150565B2/ja
Publication of JP2014173988A publication Critical patent/JP2014173988A/ja
Application granted granted Critical
Publication of JP6150565B2 publication Critical patent/JP6150565B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、圧力差に基づいて、微細な圧力変動を検出する圧力センサに関する。
従来、圧力変動を検出する圧力センサ(「差圧センサ」ともいう)として、例えば、透孔又は凹部を有する基板と、通気孔を有する収納容器と、収納容器内に配設され、透孔又は凹部内で振動可能に基板に片持ち支持された圧電素子と、を具備した圧力センサが知られている(例えば、特許文献1参照。)。
上記構成とされた圧力センサによれば、通気孔を介して収納容器内に伝わる圧力変動と、該圧力変動に遅れて追従する透孔又は凹部内部の圧力との差圧の大きさに応じて圧電素子が振動する。その結果、上記圧力センサは、圧電素子に生ずる電圧変化に基づいて、収納容器に伝わる圧力変動を検出することが可能となる。
特開平4−208827号公報
ところで、この種の圧力センサ(特許文献1に開示された圧力センサを含む)では、その用途に応じて仕様が決定され、該仕様を満たすべくセンサが設計される。このとき、圧力センサの仕様を決定する要因としては、例えば、圧電素子の形状、透孔又は凹部の容積、圧電素子と透孔又は凹部との隙間の形状、透孔又は凹部内部と外部との間を出入りする流量等が挙げられる。
圧力センサの性能を定める一つの要素としては、例えば、圧力変動を検知可能な周波数帯域がある。圧力センサが検出可能な圧力変動の上限周波数は、圧電素子の共振周波数近傍であると考えられる。
一方、下限周波数については、透孔又は凹部の容積を大きく、また透孔又は凹部内部と外部との間を出入りする流量を小さくするほど、低周波数化しやすいことが分かっている。
すなわち、このような透孔又は凹部の容積が大きな構成にすると、当該透孔又は凹部外部の圧力変動に対して、透孔又は凹部内部の圧力変動の遅れ時間が長くなる。
つまり、透孔又は凹部外部が非常にゆっくりと圧力変動しても、該圧力変動以上に透孔又は凹部内部の圧力が遅れて変動すると、外部の圧力と透孔又は凹部内部の圧力との差圧が得られ、圧力センサの出力を得ることができる。
ただし、このように非常にゆっくりとした圧力変動を検出できる構成の圧力センサは、急激な圧力変動や大きな圧力変化を受けた場合に問題が生じる。
例えば、透孔又は凹部外部が急激に圧力変動した場合、外部の圧力変動に追従して、透孔又は凹部内部の圧力も遅れて変化する。
また、急激な圧力変動が加わった直後は、透孔又は凹部外部の圧力と内部の圧力との差圧は非常に大きく、該差圧は徐々に小さくなっていく。この差圧が減少する過程において、圧力センサは、外部の圧力が変動しない定圧状態であるにもかかわらず、センサ出力が得られる状態を形成する。
したがって、急激な圧力変動直後の圧力センサの出力が、実際に透孔又は凹部外部の圧力変動によるものなのか、或いは、急激な圧力変動で生じた透孔又は凹部内部の圧力と外部の圧力との差圧によるものなのか判別できなくなるという課題があった。
そこで、本発明は、急激な圧力変動が生じた直後においても微細な圧力変化を検出可能な圧力センサを提供することを目的とする。
本発明は、前記課題を解決するために以下の手段を提供する。
(1)本発明に係る圧力センサは、圧力変動を検出する圧力センサであって、圧力変動を検出する圧力センサであって、キャビティを有するセンサ本体と、前記キャビティと対向するように配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する気圧計測用カンチレバーと、前記気圧計測用カンチレバーの撓み変形に応じた変位を測定する変位測定部と、前記キャビティ内外の空気を流通させることで、前記キャビティ内の圧力を調整する圧力調整機構と、を有し、前記圧力調整機構は、前記気圧計測用カンチレバーの周囲に配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する圧力調整用カンチレバーを含むことを特徴とする。
本発明に係る圧力センサによれば、キャビティ内外の空気を流通させることで、キャビティ内の圧力を調整する圧力調整機構を有することにより、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合においても、キャビティ内外の差圧をほとんど無くす(言い換えれば、ゼロに復帰させる)ことが可能となる。
これにより、キャビティ外部の急激もしくは非常に大きな圧力変動直後における微小な圧力変動を正確に検出することができる。
また、気圧計測用カンチレバーの周囲に配置され、片持ち状に支持されると共に、キャビティの内部と該キャビティの外部との圧力差により撓み変形する圧力調整用カンチレバーを有することにより、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ内外の空気を流通させて、キャビティ内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
また、気圧計測用カンチレバーの周囲に圧力調整用カンチレバーを配置することで、気圧計測用カンチレバー及び圧力調整用カンチレバーを一括形成することが可能となるので、圧力センサの製造工程を簡略化することができる。
(2)上記本発明に係る圧力センサにおいて、前記圧力調整用カンチレバーは、前記キャビティを介して、前記気圧計測用カンチレバーと対向するように配置されていてもよい。
このように、キャビティを介して、気圧計測用カンチレバーと圧力調整用カンチレバーとを対向するように配置させることで、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ内外の空気を流通させて、キャビティ内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
また、センサ本体の同じ側に、気圧計測用カンチレバーと圧力調整用カンチレバーとを配置させた場合と比較して、圧力センサの小型化を図ることができる。
(3)上記本発明に係る圧力センサにおいて、前記圧力調整機構は、前記センサ本体上に配置された蓋部を貫通する第1及び第2の連通開口と、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形することで、前記第1の連通開口を開閉する第1のプリロード用カンチレバーと、前記キャビティの外部に配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形することで、前記第2の連通開口を開閉する第2のプリロード用カンチレバーと、を有し、前記第1のプリロード用カンチレバーは、前記キャビティの外部の圧力が該キャビティの内部の圧力よりも高くなり、前記キャビティ内外の圧力差が所定の値を超えた際、前記第1の連通開口を開け、前記第2のプリロード用カンチレバーは、前記キャビティの内部の圧力が該キャビティの外部の圧力よりも高くなり、前記キャビティ内外の圧力差が所定の値を超えた際、前記第2の連通開口を開けてもよい。
このように、キャビティの外部の圧力が該キャビティの内部の圧力よりも高くなり、キャビティ内外の圧力差が所定の値を超えた際、第1の連通開口を開ける第1のプリロード用カンチレバーと、キャビティの内部の圧力が該キャビティの外部の圧力よりも高くなり、キャビティ内外の圧力差が所定の値を超えた際、第2の連通開口を開ける第2のプリロード用カンチレバーと、を有することにより、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ内外の空気を流通させて、キャビティ内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
(4)上記本発明に係る圧力センサにおいて、前記第1のプリロード用カンチレバーは、前記第1の連通開口を塞ぐ先端部を有し、前記第2のプリロード用カンチレバーは、前記第2の連通開口を塞ぐ先端部を有してもよい。
このように、第1のプリロード用カンチレバーが第1の連通開口を塞ぐ先端部を有し、第2のプリロード用カンチレバーが第2の連通開口を塞ぐ先端部を有することにより、外気の圧力が急上昇した場合に第1のプリロード用カンチレバーを使用し、外気の圧力が急低下した場合に第2のプリロード用カンチレバーを利用することが可能となるので、外気の圧力が正負どちらに変動した場合でも所定の動作を行うことができる。
(5)上記本発明に係る圧力センサにおいて、前記第2のプリロード用カンチレバーの内側に、前記気圧計測用カンチレバーを配置してもよい。
このように、第2のプリロード用カンチレバーの内側に、気圧計測用カンチレバーを配置させることで、第2のプリロード用カンチレバー及び気圧計測用カンチレバーを一括形成することが可能となるので、圧力センサの製造工程を簡略化することができる。
(6)上記本発明に係る圧力センサにおいて、前記圧力調整用カンチレバーの外形は、前記気圧計測用カンチレバーの外形よりも大きくしてもよい。
このように、圧力調整用カンチレバーの外形を気圧計測用カンチレバーの外形よりも大きくすることで、大きな圧力を圧力調整用カンチレバーが受けた場合のみ、圧力調整用カンチレバーを変形させて、キャビティの内外の差圧を解消することができる。
(7)上記本発明に係る圧力センサにおいて、前記圧力調整用カンチレバーに、圧電薄膜を設けてもよい。
このように、圧力調整用カンチレバーに圧電薄膜を設けることで、圧力調整用カンチレバーにアクチュエータの機能を付与することができる。
(8)上記本発明に係る圧力センサにおいて、前記第1及び第2のプリロード用カンチレバーの外形は、前記気圧計測用カンチレバーの外形よりも大きくてもよい。
このように、第1及び第2のプリロード用カンチレバーの外形を気圧計測用カンチレバーの外形よりも大きくすることで、大きな圧力を第1及び第2のプリロード用カンチレバーが受けた場合のみ、第1及び第2のプリロード用カンチレバーのうち、いずれか一方のプリロード用カンチレバーを変形させて、キャビティの内外の差圧を解消することができる。
(9)上記本発明に係る圧力センサにおいて、前記第1及び第2のプリロード用カンチレバーは、圧電薄膜を含んでもよい。
このように、第1及び第2のプリロード用カンチレバーが圧電薄膜を含むことで、第1及び第2のプリロード用カンチレバーに反り(言い換えれば、プリロード)を付与することができる。
(10)本発明に係る圧力センサは、圧力変動を検出する圧力センサであって、キャビティを有するセンサ本体と、前記キャビティと対向するように配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する気圧計測用カンチレバーと、前記気圧計測用カンチレバーの撓み変形に応じた変位を測定する変位測定部と、前記キャビティ内外の空気を流通させることで、前記キャビティ内の圧力を調整する圧力調整機構と、を有し、前記圧力調整機構は、前記センサ本体を貫通する連通開口と、前記連通開口を開閉する開閉器と、を有してもよい。
本発明に係る圧力センサによれば、キャビティ内外の空気を流通させることで、キャビティ内の圧力を調整する圧力調整機構を有することにより、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合においても、キャビティ内外の差圧をほとんど無くす(言い換えれば、ゼロに復帰させる)ことが可能となる。
これにより、キャビティ外部の急激もしくは非常に大きな圧力変動直後における微小な圧力変動を正確に検出することができる。
また、センサ本体を貫通する連通開口と、連通開口を開閉する開閉器と、を有することにより、キャビティ外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ内外の空気を流通させて、キャビティ内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
(11)上記本発明に係る圧力センサにおいて、前記圧力調整機構は、前記開閉器の開閉動作を制御する開閉制御部を有してもよい。
このように、開閉器の開閉動作を制御する開閉制御部を有することで、開閉制御部により、開閉器の開閉動作を実行するタイミングを適宜に制御することができる。
(12)上記本発明に係る圧力センサにおいて、前記開閉制御部は、前記変位測定部の出力が所定の範囲を超えた際に、前記開閉器の開動作を行う制御信号を出力してもよい。
このように、変位測定部の出力が所定の範囲を超えた際に、開閉器の開動作を行う制御信号を開閉制御部が出力することにより、所定の範囲以上の圧力変動を検知した際に、センサ出力をリセットすることが可能となるため、所定の範囲以上の圧力変動の検知直後において微小な圧力変動を正確に検出することができる。
また、開閉器を開閉してセンサ出力をリセットする圧力範囲を自在に設定することができる。
(13)上記本発明に係る圧力センサにおいて、前記開閉制御部は、前記キャビティ外部の圧力を検出する検知器を含み、前記開閉制御部は、前記キャビティ外部の圧力が所定の値を超えたことを前記検知器が検知した際に、前記開閉器の開動作を行う制御信号を出力してもよい。
このように、キャビティ外部の圧力が所定の値を超えたことを検知器が検知した際に、開閉器の開動作を行う制御信号を出力することにより、実際のキャビティ外部の圧力変動の変化量に基づいて圧力センサの出力をリセットすることが可能となるため、微細な圧力変動を正確に検出できる。
(14)上記本発明に係る圧力センサにおいて、前記開閉制御部は、前記開閉器の開動作を行う制御信号を出力した時点から所定時間経過後、前記開閉器の閉動作を行う制御信号を出力してもよい。
このように、開閉器の開動作を行う制御信号を出力した時点から所定時間経過後、開閉器の閉動作を行う制御信号を出力することで、開閉制御器の制御信号により開閉器の開閉動作を制御可能となる。これにより、確実にキャビティ内外の差圧を解消可能となるため、圧力変動直後の微小な気圧を正確に検出できる。
(15)上記本発明に係る圧力センサにおいて、前記開閉制御部は、前記開閉器の開動作を行う制御信号を出力した後、前記変位測定部の出力信号に基づいて、前記開閉器の閉動作を行う制御信号を出力してもよい。
このように、開閉器の開動作を行う制御信号を出力した後、変位測定部の出力信号に基づいて、開閉器の閉動作を行う制御信号を出力することで、変位測定部の出力信号に基づいて開閉器の開閉動作を制御することが可能となるため、急激もしくは非常に大きな圧力変動が印加された場合でも、確実にキャビティ内外の差圧を解消できる。
これにより、急激もしくは非常に大きな圧力変動の直後でも、微小な気圧を正確に検出できる。
(16)上記本発明に係る圧力センサにおいて、前記変位測定部は、前記気圧計測用カンチレバーの基端部に設けられたピエゾ抵抗を有してもよい。
このように、カンチレバーの基端部に、カンチレバーの基端部に加わる応力を電気抵抗値の変化に変換可能なピエゾ抵抗を有することにより、ピエゾ抵抗の電気抵抗値を検出することで、簡易にカンチレバーの変位を検出することが可能となるので、圧力変動を正確に検出できる。
(17)上記本発明に係る圧力センサにおいて、前記変位測定部は、前記気圧計測用カンチレバーの基端部に設けられた圧電薄膜を有してもよい。
このように、カンチレバーの基端部に、カンチレバーの基端部に加わる応力を起電力に変換可能な圧電薄膜を有することにより、圧電薄膜の起電力を検出して、簡易にカンチレバーの変位を検出ですることが可能となる。これにより、圧力変動を正確に検出することができる。
本発明の圧力センサによれば、低周波数帯域におけるゆっくりとした圧力変動を検出できると共に、急激な圧力変動直後の出力をリセットすることで、急激な圧力変動直後の微細な圧力変化を検知できる。
本発明の第1の実施の形態に係る圧力センサの概略構成を示す平面図である。 図1に示すA−A線に沿った圧力センサの断面図である。 図1に示す圧力センサの出力の一例を模式的に示す図であり、(A)はキャビティ内外の圧力の経時変化を示す図であり、(B)は圧力センサの出力の経時変化を示す図である。 図1に示す圧力センサの動作の一例を模式的に示す断面図であり、(A)は初期状態の圧力センサの断面図を示しており、(B)はキャビティ外部の圧力が内部の圧力より高い場合の圧力センサの断面図を示しており、(C)はキャビティ内外の圧力が等圧に戻ったときの圧力センサの断面図を示している。 図1に示す圧力センサに急激な圧力変動が生じた場合の出力の一例を模式的に示す図であり、(A)はキャビティ内外の圧力の経時変化を示す図であり、(B)は圧力センサの出力の経時変化を示す図であり、(C)は開閉制御部の出力信号の経時変化を示す図である。 本発明の第1の実施の形態の変形例に係る圧力センサの概略構成を示す断面図である。 本発明の第2の実施の形態に係る圧力センサの概略構成を示す断面図である。 図7に示す圧力センサの主要部の平面図であり、気圧計測用カンチレバー及び圧力調整用カンチレバーの位置関係を説明するための図である。 本発明の第3の実施の形態に係る圧力センサの概略構成を示す断面図である。 本発明の第4の実施の形態に係る圧力センサの概略構成を示す斜視図である。 図11に示すB−B線に沿った圧力センサの断面図である。 キャビティ外の圧力とキャビティ内の圧力との圧力差が大きくなった際の第1のプリロード用カンチレバー及び気圧計測用カンチレバーの変位を模式的に示す図である。 本発明の第4の実施の形態の変形例に係る圧力センサを分解させた斜視図である。 図13に示すJ−J線に沿った圧力センサの断面図である。 本発明の第5の実施の形態に係る圧力センサの概略構成を示す断面図である。 図16に示す圧力センサの主要部の平面図であり、気圧計測用カンチレバー及び第2のプリロード用カンチレバーの位置関係を説明するための図である。 プリロード用カンチレバーの他の例を示す断面図(その1)である。 プリロード用カンチレバーの他の例を示す断面図(その2)である。 プリロード用カンチレバーの他の例を示す断面図(その3)である。
以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施の形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の圧力センサの寸法関係とは異なる場合がある。
(第1の実施の形態)
<第1の実施の形態に係る圧力センサの構成の説明>
図1は、本発明の第1の実施の形態に係る圧力センサの概略構成を示す平面図である。図2は、図1に示すA−A線に沿った圧力センサの断面図である。
図1及び図2を参照するに、第1の実施の形態の圧力センサ1は、所定の周波数帯域(例えば、0.05Hz〜10kHz)の圧力変動を検出するセンサであって、センサ本体3と、気圧計測用カンチレバー4と、蓋部12と、変位測定部5と、連通開口11b、開閉器6、及び開閉制御部7を含む圧力調整機構8と、を有する。
圧力調整機構8は、キャビティ10(空気室)内外の空気を流通させることで、キャビティ10内の圧力を調整するため(具体的には、キャビティ10内外の圧力差をほとんど無くすため)の機構である。
センサ本体3は、キャビティ10を有する。センサ本体3は、例えば、キャビティ10を区画し、かつ樹脂よりなる第1の部分3−1と、第1の部分3−1上に配置され、かつシリコン支持層2a、及びシリコン酸化膜等の酸化層2bよりなる第2の部分3−2と、を有する。
気圧計測用カンチレバー4は、例えば、シリコン支持層2a、シリコン酸化膜等の酸化層2b、およびシリコン活性層2cを熱的に張り合わせたSOI基板2を加工することで形成することができる。
気圧計測用カンチレバー4は、SOI基板2におけるシリコン活性層2cよりなり、平板状のシリコン活性層2cより、平面視コ字状に形成されたギャップ13を切り出すことで形成される。
これにより、気圧計測用カンチレバー4は、基端部4aを固定端とし、先端部4bを自由端とした片持ち梁構造とされている。
また、気圧計測用カンチレバー4は、センサ本体3に形成されたキャビティ10の上面を囲うよう配置される。つまり、気圧計測用カンチレバー4は、キャビティ10の開口を略閉塞している。
気圧計測用カンチレバー4は、基端部4aを介してセンサ本体3に第2の部分3−2上に対して一体的に固定されることで、片持ち支持される。
これにより、気圧計測用カンチレバー4は、基端部4aを中心としてキャビティ10の内部と外部との圧力差に応じた撓み変形が可能となる。
気圧計測用カンチレバー4の基端部4aには、平面視コ字状の貫通孔15が形成されており、該気圧計測用カンチレバー4が撓み変形しやすい設計としている。ただし、この貫通孔15の形状は、上記コ字状に限定されるものではなく、気圧計測用カンチレバー4の撓み変形を容易にする形状へ変更が適宜可能である。
蓋部12は、ギャップ13を介して、気圧計測用カンチレバー4の周囲に配置されている。蓋部12は、シリコン活性層2cで構成されている。蓋部12は、キャビティ10の上方に配置されている。
変位測定部5は、気圧計測用カンチレバー4の基端部4a上面に設けられたピエゾ抵抗20と、ピエゾ抵抗20の上部に接続された配線部21と、気圧計測用カンチレバー4の変位を検出する検出回路22と、を有する。
ピエゾ抵抗20は、気圧計測用カンチレバー4の撓み量(変位量)に応じて電気抵抗値が変化する抵抗素子である。図1に示すように、ピエゾ抵抗20は、気圧計測用カンチレバー4の短手方向において、貫通孔15を挟んだ両側に対となって配置されている。
これら一対のピエゾ抵抗20は、導電性材料からなる配線部21を介して相互に電気的に接続されている。
この配線部21及びピエゾ抵抗20を含む全体的な形状は、例えば、平面視U字状とすることができる。また、ピエゾ抵抗20には、ピエゾ抵抗20の電気抵抗値変化に基づいて気圧計測用カンチレバー4の変位を測定する検出回路22が電気的に接続されている。
上記構成とされた変位測定部5において、検出回路22を通じてピエゾ抵抗20に所定電圧が印加された際に発生する電流は、貫通孔15を回り込むようにして、一方のピエゾ抵抗20から配線部21を経由して他方のピエゾ抵抗20に流れる。
このため、検出回路22は、気圧計測用カンチレバー4の変位(撓み変形)に応じて変化するピエゾ抵抗20の電気抵抗値変化を電気的な出力信号として取り出すことが可能となる。
したがって、変位測定部5は、この出力信号(センサ出力)に基づいて、気圧計測用カンチレバー4の変位を測定することが可能であるので、キャビティ10の内部と外部との差圧を検出することができる。
なお、上記ピエゾ抵抗20は、例えば、イオン注入法や拡散法等の各種の方法により、リン等のドープ剤(不純物)をシリコン活性層2cにドーピングすることで形成される。
また、一対のピエゾ抵抗20は、配線部21のみで電気的導通するよう構成されている。このため、図示していないが、気圧計測用カンチレバー4の周囲に位置するシリコン活性層2cは、配線部21以外でピエゾ抵抗20双方が導通しないようにエッチングされている。
また、上記ピエゾ抵抗20に替えて、圧電薄膜を用いてもよい。
この場合、気圧計測用カンチレバー4の基端部4bに加わる応力に応じて、起電力が発生し、該起電力を検出することで、気圧計測用カンチレバー4の変位を検出することが可能となる。
連通開口11bは、気圧計測用カンチレバー4のギャップ13と別体に設けられている。連通開口11bは、センサ本体3の底部を貫通するように設けられている。連通開口11bは、その一端が外気に接触すると共に、他端がキャビティ10と連通する筒状の外気流通口である。
連通開口11bの口径は、ギャップ13の開口面積よりも開口面積が大きくなるように設定するとよい。このように、ギャップ13の開口面積よりも開口面積が大きくなるように、連通開口11bの口径を構成することにより、キャビティ10と外気間の圧力差が加わった場合でも、ギャップ13より連通開口11bのほうが、キャビティ10と外気と間の空気流量を大きくすることができる。
開閉器6は、センサ本体3に設けられた連通開口11bに取り付けられており、連通開口11bを開閉する機能を有する。開閉器6としては、例えば、小型のソレノイドバルブを用いることができる。
開閉制御部7は、変位測定部5の検出回路22及び開閉器6と電気的に接続されている。開閉制御部7は、開閉器6へ制御信号を出力し、開閉器6に開動作/閉動作を逐次実行させる。なお、具体的な開閉制御部7による開閉器6の動作制御は、後ほど詳細に説明する。
<第1の実施の形態に係る圧力センサの動作の説明>
図3は、図1に示す圧力センサの出力の一例を模式的に示す図であり、(A)はキャビティ内外の圧力の経時変化を示す図であり、(B)は圧力センサの出力の経時変化を示す図である。
図4は、図1に示す圧力センサの動作の一例を模式的に示す断面図であり、(A)は初期状態の圧力センサの断面図を示しており、(B)はキャビティ外部の圧力が内部の圧力より高い場合の圧力センサの断面図を示しており、(C)はキャビティ内外の圧力が等圧に戻ったときの圧力センサの断面図を示している。
図4においいて、図2に示す圧力センサ1と同一構成部分には、同一符号を付す。また、図4では、圧力センサ1を構成する開閉制御部7及び検出回路22の図示を省略する。
次に、図3及び図4を参照して、上述した圧力センサ1を利用して、微小な圧力変動を検出する場合の圧力センサ1の動作について説明する。
初めに、図3(A)に示す期間Aのように、キャビティ10の外部の圧力(以下、「外圧Pout」という)と、キャビティ10内部の圧力(以下、「内圧Pin」という)との圧力差がゼロである場合には、図4(A)に示すように、気圧計測用カンチレバー4は撓み変形しない。
ここで、図3(A)に示す時刻t1以降の期間Bのように、例えば、外圧Poutがステップ状に上昇すると、キャビティ10の外部と内部との間に差圧が生じるため、図4(B)に示すように、気圧計測用カンチレバー4はキャビティ10内部に向けて撓み変形する。
すると、気圧計測用カンチレバー4の撓み変形に応じてピエゾ抵抗20に歪が生じ、電気抵抗値が変化するので、図3(B)に示すように、圧力センサ1の出力信号が増大する。
また、外圧Poutの上昇以降において、ギャップ13を介してキャビティ10の外部から内部へと圧力伝達媒体が流動する。このため、図3(A)に示すように、内圧Pinは時間の経過とともに、外圧Poutよりも遅れながら、かつ外圧Poutの変動よりも緩やかな応答で上昇する。
その結果、内圧Pinが外圧Poutに徐々に近づくので、キャビティ10の外部と内部との圧力が均衡状態になり始め、気圧計測用カンチレバー4の撓みが徐々に小さくなり、図3(B)に示すように上記出力信号が徐々に低下する。
そして、図3(A)に示す時刻t2以降の期間Cのように、内圧Pinが外圧Poutに等しくなると、図4(C)に示すように、気圧計測用カンチレバー4の撓み変形が解消されて元の状態に復帰し、図3(B)に示すように、圧力センサ1の出力信号が再びゼロになる。
このように、気圧計測用カンチレバー4の変位に基づいた出力信号の変動をモニタすることで、キャビティ10の外部の圧力変動を検出することができる。
特に、SOI基板2のシリコン活性層2cを利用して半導体プロセス技術により気圧計測用カンチレバー4を形成できるので、従来の圧電素子に比べて薄型化(例えば、数十〜数百nm)し易い。したがって、微小な圧力変動の検出を精度よく行うことができる。
図5は、図1に示す圧力センサに急激な圧力変動が生じた場合の出力の一例を模式的に示す図であり、(A)はキャビティ内外の圧力の経時変化を示す図であり、(B)は圧力センサの出力の経時変化を示す図であり、(C)は開閉制御部の出力信号の経時変化を示す図である。
なお、図5(B)において、開閉器6および開閉制御部7を動作させた場合の圧力センサ1の出力信号を実線で、開閉器6および開閉制御部7が動作しない場合(つまり、従来の圧力センサ)の出力信号を破線で示す。
次に、図5を参照して、急激な圧力変動が加わった場合の圧力センサ1の動作について説明する。
まず、開閉器6及び開閉制御部7を動作させる場合について説明する。図5(A)に示す時刻t3のように、外圧Poutが非常に大きく上昇すると、前述と同様に、キャビティ10の外部と内部との差圧が発生して気圧計測用カンチレバー4が変形し、図5(B)に示すように、圧力センサ1の出力信号が増大する。
ここで、圧力センサ1の出力信号が閾値Vcを超えると、開閉制御部7が開閉器6へ制御信号を出力し、開閉器6を所定の時間(期間t3c〜t4)だけ開放させる。すると、キャビティ10内には、連通開口11bを介して外気が導入される。
そして、上述の通り連通開口11bの開口面積がギャップ13の開口面積よりも大きいため、開閉器6の流動量(言い換えれば、連通開口11bの流動量)は、気圧計測用カンチレバー4周囲のギャップ13の流動量よりも大きくなり、キャビティ10の外部と内部との差圧がほぼゼロに戻る。
このため、気圧計測用カンチレバー4の変形が解消され、出力信号もゼロに復帰するので、圧力センサ1は再び微小な圧力変動の検出が可能な状態となる。
ここで、上記出力信号の閾値Vcや開閉器6を開放する所定の時間は、圧力センサ1の基本性能(例えば、圧力分解能等)や、圧力センサ1を構成するキャビティ10の容積、気圧計測用カンチレバー4の剛性、ギャップ13の幅の寸法、開閉器6を経由する空気流量等によって適宜に定まる値である。
例えば、圧力センサ1が、1Paの圧力差で先端が0.1μm変位する気圧計測用カンチレバー4と、幅5μmのギャップ13と、容積1mLのキャビティ10と、口径1mmの連通開口11bを経由して接続された開閉器6と、から構成され、閾値Vcを1Vとした場合に、キャビティ10内外で30Paの圧力差が生じているとする。
この場合、圧力差30Paで連通開口11b及び開閉器6を流動する空気流量は、約5.5mL/secとなる。すると、キャビティ10内外の圧力差30Paを相殺し、圧力差をゼロにするには、約0.3μLの空気がキャビティ10に出入りする必要がある。
このため、開閉器6が1msec程度の開動作をすることで、キャビティ10内外の数十Pa程度の圧力差を相殺することができる。よって、所定の時間は、数msec程度となる。
なお、キャビティ10の容積をさらに大きくすると、圧力差を相殺する空気量が大きくなるので、所定の時間を長くする必要がある。また、連通開口11bの口径や開閉器6の空気流量が大きくすれば、所定の時間を数msecより短くしても圧力差を相殺することができる。
また、当該閾値Vcや所定の時間は、開閉制御部7に予め設定された値であってもよいし、圧力センサ1に表示部や操作入力部(図示せず)を設け、必要に応じてユーザが入力/設定できるものとしてもよい。
この後、図5(A)に示す時刻t5のように、外圧Poutが微小に減少すると、再び、キャビティ10外部と内部との間に差圧が発生する。この差圧により、気圧計測用カンチレバー4がキャビティ10外部方向へ変形し、圧力センサ1の出力信号が減少することとなる。
次に、開閉器6が開閉動作しない場合について説明する。この場合、図5(A)の時刻t3における大きな圧力上昇後、図5(B)の期間Bにおいて、センサ出力信号が緩やかに減少する。
このため、差圧が減少する過程において、圧力センサ1は、外圧Poutが変動しない状態であるにもかかわらず、センサ出力が得られる状態となるので、微小な圧力変動の検出を正確に検出することができない。
また、図5(A)の時刻t5において、外圧Poutが微小に減少すると、センサ出力信号の減少勾配が変化する。このときの減少勾配の変化をとらえても、外圧Poutが減少したことは判別できるが、どの程度圧力減少したかを正確に検出することが困難となる。また、外圧Poutの変化が急激かつ大きいほど、センサ出力信号が減少する期間Bが長いため、正確な検出ができない期間が長くなる。
第1の実施の形態の圧力センサによれば、キャビティ10を有するセンサ本体3と、キャビティ10と対向するように配置され、片持ち状に支持されると共に、キャビティ10の内部と該キャビティ10の外部との圧力差により撓み変形する気圧計測用カンチレバー4と、気圧計測用カンチレバー4の撓み変形に応じた変位を測定する変位測定部5と、キャビティ10内外の空気を流通させることでキャビティ10内の圧力を調整し、連通開口11b、開閉器6、及び開閉制御部7を含む圧力調整機構8と、を有することにより、開閉器6及び開閉制御部7が動作することで、キャビティ10外部の圧力が急激もしくは非常に大きく圧力変動した場合においても、キャビティ10内外の差圧をほとんど無くす(言い換えれば、ゼロに復帰させる)ことが可能となる。
これにより、外圧Poutが極端に急激かつ大きな変動があっても、変動直後の微細な圧力変化を圧力センサ1は正確に検出することができる。
また、ギャップ13の幅を小さくする(例えば、数μm以下とする)ことで、キャビティ10と外気と間の空気流量を非常に小さく制限することが可能となる。
これにより、キャビティ10と外気間との圧力差を長時間維持することが可能となるので、低周波数帯域の圧力変動を検出できる。
なお、第1の実施の形態では、一例として、開閉器6が所定時間だけ開放する方式を例に挙げて説明したが、開閉制御部7が、変位測定部5の測定値に基づいて、差圧を解消し得ると判断した場合に、開放している開閉器6を閉動作する制御信号を出力するように構成してもよい。
この構成では、必ずしも設定された開放時間を待たなくとも差圧が解消され、変形した気圧計測用カンチレバー4が復元して開閉器6が閉塞するので、再び圧力変動を検出することができる。
そして、第1の実施の形態の圧力センサ1は、以下の各種用途に適用することができる。 第1の実施の形態の圧力センサ1は、例えば、自動車用ナビゲーション装置に適用することが可能である。
この場合、例えば、圧力センサ1を利用して高低差に基づく圧力差を検出することが可能となるので、高架道路と高架下道路とを正確に判断してナビゲーション結果に反映させることができる。さらに、立体駐車場から出庫した直後のスロープ等も正確に検出することができる。
第1の実施の形態の圧力センサ1は、例えば、携帯用ナビゲーション装置に適用することも可能である。この場合、例えば、圧力センサ1を利用して高低差に基づく圧力差を検出することが可能となるので、ユーザが建物内の何階に位置しているのかを正確に判別してナビゲーション結果に反映させることができる。
また、エレベーターで複数階移動した直後の段差昇降、空調制御されたビル出入り直後の階段昇降等も正確に検出することが可能となる。
さらには、室内の圧力変化を検出することが可能であるので、例えば、建物や自動車の扉開閉を検出する防犯装置に適用することもできる。
このように、第1の実施の形態の圧力センサ1は、各種用途に適用することが可能であり、このような用途に適用した場合において、使用時に生じる不測の急激な圧力変化が加わった場合でも、直後にリセットして再び微細な圧力変化を検出することができる。
図6は、本発明の第1の実施の形態の変形例に係る圧力センサの概略構成を示す断面図である。図6において、第1の実施の形態の圧力センサ1と同一構成部分には、同一符号を付す。
図6を参照するに、第1の実施の形態の変形例に係る圧力センサ25は、第1の実施の形態の圧力センサ10を構成する開閉制御部7に替えて、検出器である絶対圧センサ26を含む開閉制御部27を有すること以外は、圧力センサ1と同様に構成される。
絶対圧センサ26は、検出回路22と電気的に接続されている。絶対圧センサ26は、真空のキャビティ(図示せず)の一面を薄膜で覆い、該薄膜の変形量で外圧(絶対圧)を検出するセンサである。一般的に、絶対圧は、ピエゾ抵抗を形成した半導体薄膜、歪ゲージを形成した金属薄膜、水晶やシリコンの発振器を内蔵した薄膜によって検出する方法が知られている。
このような絶対圧センサ26は、真空との差圧である絶対圧を検出可能であり、検出できる圧力範囲が広い。
ここで、開閉制御部7は、外圧Poutが急激に変化した場合、絶対圧センサ26の出力変化が所定の閾値を超えたと判断した際、開閉器6に対して制御信号を出力し、開閉器6を、所定の時間(例えば数〜数十msecの期間)だけ開放する。
そして、開閉器6が開放されると、キャビティ10の外部と内部との差圧がほぼゼロになり、圧力センサ25の出力がゼロ近傍に復帰する。その後、外圧Poutが微小に変化したとしても、圧力センサ25は、正確に当該微小な変化を検出することができる。
このように、第1の実施の形態の変形例に係る圧力センサ25によれば、大幅な圧力変化が加わっても、絶対圧センサ26の出力を元に、圧力センサ25の出力を復帰可能となるので、大幅な圧力変化直後の微細な圧力変化を正確に検出することができる。
(第2の実施の形態)
図7は、本発明の第2の実施の形態に係る圧力センサの概略構成を示す断面図である。図8は、図7に示す圧力センサの主要部の平面図であり、気圧計測用カンチレバー及び圧力調整用カンチレバーの位置関係を説明するための図である。
なお、図7及び図8では、第2の実施の形態の圧力センサ30を構成する図1に示す変位測定部5の図示を省略する。
図7及び図8を参照するに、第2の実施の形態の圧力センサ30は、第1の実施の形態の圧力センサ1を構成する圧力調整機構8に替えて、圧力調整機構31を有すること以外は圧力センサ1と同様に構成される。
圧力調整機構31は、圧力調整用カンチレバー32と、ギャップ33と、を有する。圧力調整用カンチレバー32は、気圧計測用カンチレバー4の周囲に配置され、片持ち状に支持されると共に、キャビティ10の内部と該キャビティ10の外部との圧力差により撓み変形する。圧力調整機構31は、気圧計測用カンチレバー4を収容する貫通部35を有する。
圧力調整用カンチレバー32の外形は、気圧計測用カンチレバー4の外形よりも大きくなるように構成されている。このように、圧力調整用カンチレバー32の外形を気圧計測用カンチレバー4の外形よりも大きくすることで、大きな圧力を圧力調整用カンチレバー32が受けた場合のみ、圧力調整用カンチレバー32を変形させて、キャビティ10の内外の差圧を解消することができる。
また、圧力調整用カンチレバー32と蓋部12との間に配置されるギャップ33の幅W2は、圧力調整用カンチレバー32と気圧計測用カンチレバー4との間に配置されるギャップ13の幅W1よりも小さくする(できるだけ小さい値にする)とよい。
圧力調整用カンチレバー32及び気圧計測用カンチレバー4の変形が小さい場合、ギャップ13よりもギャップ33の方が、キャビティ10と外気との間の空気流量を小さくすることが可能となる。これにより、気圧計測用カンチレバー4の検出可能範囲の圧力変動では、外気とキャビティ10との間の空気流量を小さく制限することが可能となるため、低周波数帯域の圧力変動を検出することができる。
一方で、大きな圧力変動が生じた場合、圧力調整用カンチレバー32は、気圧計測用カンチレバー4より大きく変形するので、ギャップ33の幅W2はギャップ13の幅W1より非常に大きくなり、外気とギャップ10との間の空気流量が大きくなるため、外気とキャビティ10との間の差圧を短時間で解消することができる。
また、圧力調整用カンチレバー32に圧電薄膜を設けてもよい。このように、圧力調整用カンチレバー32に圧電薄膜を設けることで、圧力調整用カンチレバー32にアクチュエータの機能を付与することができる。
第2の実施の形態の圧力センサによれば、気圧計測用カンチレバー4の周囲に配置され、片持ち状に支持されると共に、キャビティ10の内部と該キャビティ10の外部との圧力差により撓み変形する圧力調整用カンチレバー32を有することにより、キャビティ10外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ10内外の空気を流通させて、キャビティ10内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
また、気圧計測用カンチレバー4及び圧力調整用カンチレバー32を同一平面上に配置することで、気圧計測用カンチレバー4及び圧力調整用カンチレバー32を一括形成することが可能となるので、圧力センサ30の製造工程を簡略化することができる。
さらに、第1の実施の形態で説明した開閉器6及び開閉制御部7が不要となるため、圧力センサ30の構成を簡略化することができる。
(第3の実施の形態)
図9は、本発明の第3の実施の形態に係る圧力センサの概略構成を示す断面図である。図9において、図7に示す第2の実施の形態の圧力センサ30と同一構成部分には、同一符号を付す。
なお、図9では、第3の実施の形態の圧力センサ40を構成する図1に示す変位測定部5の図示を省略する。
図9を参照するに、第3の実施の形態の圧力センサ40は、第2の実施の形態の圧力センサ30を構成する圧力調整機構31に替えて、圧力調整機構41を有すること以外は、圧力センサ30と同様に構成される。
圧力調整機構41は、圧力調整機構31を構成する圧力調整用カンチレバー32に替えて、キャビティ10を介して、気圧計測用カンチレバー4と対向配置される圧力調整用カンチレバー43を有すること以外は、圧力調整機構31と同様に構成される。
圧力調整用カンチレバー43は、圧力調整用カンチレバー32に形成された貫通部35(図8参照)を有していないこと以外は、圧力調整用カンチレバー32と同様に構成される。
第3の実施の形態の圧力センサによれば、キャビティ10を介して、気圧計測用カンチレバー4と対向するように配置され、かつキャビティ10の内部と該キャビティ10の外部との圧力差により撓み変形する圧力調整用カンチレバー43を有することにより、キャビティ10外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ10内外の空気を流通させて、キャビティ10内外の差圧をほとんど無くすことが可能となる。これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
また、圧力調整用カンチレバー43と気圧計測用カンチレバー4とを対向配置させることで、圧力調整用カンチレバー43と気圧計測用カンチレバー4とを同一平面上に配置させた場合と比較して、圧力センサ40の小型化を図ることができる。
(第4の実施の形態)
図10は、本発明の第4の実施の形態に係る圧力センサの概略構成を示す斜視図である。図11は、図12に示すB−B線に沿った圧力センサの断面図である。図10及び図11において、図2に示す第1の実施の形態の圧力センサ1と同一構成部分には、同一符号を付す。
なお、図10及び図11では、第4の実施の形態の圧力センサ50を構成する図1に示す変位測定部5の図示を省略する。また、図10では、第4の実施の形態の圧力センサ50を構成する第1の支持部材54、及び第1のプリロード用カンチレバー56の図示を省略する。
図10及び図11を参照するに、第4の実施の形態の圧力センサ50は、第1の実施の形態の圧力センサ1を構成する圧力調整機構8に替えて、圧力調整機構51を有すること以外は圧力センサ1と同様に構成される。
圧力調整機構51は、第1の連通開口52と、第2の連通開口53と、第1の支持部材54と、第2の支持部材55と、第1のプリロード用カンチレバー56と、第2のプリロード用カンチレバー57と、を有する。
第1及び第2の連通開口52、53は、蓋部12を貫通するように設けられている。第1及び第2の連通開口52、53は、気圧計測用カンチレバー4を介して、対向するように配置されている。第1及び第2の連通開口52、53の形状は、例えば、溝形状とすることができる。第1及び第2の連通開口52、53は、キャビティ10の内外に空気を流通させるための開口として機能する。
第1の支持部材54は、キャビティ10内であって、端に位置するセンサ本体3の底部上に固定されている。第1の支持部材54としては、例えば、接着剤、或いは、第1のプリロード用カンチレバー56の母材となるSOI基板を用いることができる。
第2の支持部材55は、第1の支持部材54の配設位置とは反対側に位置する蓋部12の端上に固定されている。第2の支持部材55としては、例えば、接着剤、或いは、第2のプリロード用カンチレバー57の母材となるSOI基板を用いることができる。
第1のプリロード用カンチレバー56は、その基端部56aが第1の支持部材54に対して固定、或いは第1の支持部材54と一体とされている。第1のプリロード用カンチレバー56は、プリロードに起因する反りを有した形状とされており、キャビティ10内外の圧力差がない場合には、その先端部56bが蓋部12の内面に当接されている(図11参照。)。
第1のプリロード用カンチレバー56は、例えば、SOI基板を加工することで形成されるカンチレバー本体(図示せず)と、該カンチレバー本体の一面を覆う圧電薄膜(図示せず)と、で構成することができる。
第1のプリロード用カンチレバー56の外形は、気圧計測用カンチレバー4の外形よりも大きくなるように構成されている。これにより、キャビティ10の外部から大きな圧力が印加された場合のみ、第1のプリロード用カンチレバー56を変位させることができる。
図12は、キャビティ外の圧力とキャビティ内の圧力との圧力差が大きくなった際の第1のプリロード用カンチレバー及び気圧計測用カンチレバーの変位を模式的に示す図である。
図12において、Dは、プリロードが無いカンチレバーの変位の推移を示しており、Cは、第1のプリロード用カンチレバー56の変位の推移を示している。
また、図12において、Eは、第1のプリロード用カンチレバー56が存在しない場合の気圧計測用カンチレバー4の変位の推移を示しており、Fは、第1のプリロード用カンチレバー56が存在する場合の気圧計測用カンチレバー4の変位を示している。
ここで、図12を参照して、キャビティ10外の圧力とキャビティ10内の圧力との差が大きくなった際の第1のプリロード用カンチレバー56及び気圧計測用カンチレバー4の変位について説明する。なお、第1のプリロード用カンチレバー56は、キャビティ10外の圧力がキャビティ内の圧力の場合よりも大きくなった際に変位するので、この場合について説明する。
図12を参照するに、キャビティ10外の圧力とキャビティ10内の圧力との圧力差が小さい初期段階(図12に示す領域Gの範囲、言い換えれば、圧力差が所定の値Hよりも小さい段階)では、第1のプリロード用カンチレバー56が有するプリロードにより、先端部56aと蓋体12とが接触した状態にある。よって、図12のCに示すように、第1のプリロード用カンチレバー56は、上記圧力差により変位しない。
一方、気圧計測用カンチレバー4は、第1のプリロード用カンチレバー56よりも外形が小さいため、上記差圧により変位させられる。しかしながら、上記差圧が小さい場合は、該差圧に起因する気圧計測用カンチレバー4の変位が小さいため、問題なく、微細な圧力変動を検出することができる。
その後、第1のプリロード用カンチレバー56は、キャビティ10内外の圧力差が所定の値Hを超えると、キャビティ10の外部からの圧力により押圧されて、下方に押し下げられる。これにより、蓋体12から先端部56bが離間し、第1の連通開口52が開けられ、キャビティ10内外の空気が流通し、キャビティ10内外の圧力差(差圧)がほとんど無くなる。
これにより、図12のFに示すように、気圧計測用カンチレバー4の変位は、徐々に小さくなり、ほとんど変位はなくなるため、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
一方、第1のプリロード用カンチレバー56が存在しない場合には、Eに示すように、気圧計測用カンチレバー4の変位がどんどん大きくなるため、微細な圧力変化を検出することはできない。
図11を参照するに、第2のプリロード用カンチレバー57は、その基端部57aが第2の支持部材55に対して固定、或いは第2の支持部材55と一体とされている。第2のプリロード用カンチレバー57は、先に説明した第1のプリロード用カンチレバー56と同様な構成とされている。
第2のプリロード用カンチレバー57は、図11に示す第1のプリロード用カンチレバー56を左に180度回転させた状態で、先端部57bが第2の連通開口53を塞ぐように配置されている。
第2のプリロード用カンチレバー57は、キャビティ10の内部の圧力がキャビティ10の外部の圧力よりも高くなり、キャビティ10内外の圧力差が所定の値H(図12参照)を超えた際、先端部57bが蓋体12から離間し、第2の連通開口53を開けること以外は、先に図12を参照して説明した第1のプリロード用カンチレバー56と同様な変位を行う。
第4の実施の形態の圧力センサによれば、センサ本体3上に配置された蓋部12を貫通する第1及び第2の連通開口52、53と、キャビティ10の外部の圧力が該キャビティ10の内部の圧力よりも高くなり、キャビティ10内外の圧力差が所定の値Hを超えた際、第1の連通開口52を開ける第1のプリロード用カンチレバー56と、キャビティ10の内部の圧力が該キャビティ10の外部の圧力よりも高くなり、キャビティ10内外の圧力差が所定の値を超えた際、第2の連通開口53を開ける第2のプリロード用カンチレバー57と、を有することにより、キャビティ10外部の圧力が急激もしくは非常に大きく圧力変動した場合において、キャビティ10内外の空気を流通させて、キャビティ10内外の差圧をほとんど無くすことが可能となる。
これにより、低周波数帯域において圧力変動を検出できると共に、急激な圧力変動が生じた直後においても微細な圧力変化を検出することができる。
図13は、本発明の第4の実施の形態の変形例に係る圧力センサの分解させた斜視図である。図14は、図13に示すJ−J線に沿った圧力センサの断面図である。
なお、図13及び図14において、図10及び図11に示す第4の実施の形態の圧力センサ50と同一構成部分には、同一符号を付す。
また、図13及び図14では、第4の実施の形態の変形例に係る圧力センサ60を構成する図1に示す変位測定部5の図示を省略する。さらに、図13では、圧力センサ60を構成する第1の支持部材64、及び第1のプリロード用カンチレバー66の図示を省略する。
図13及び図14を参照するに、第4の実施の形態の変形例に係る圧力センサ60は、第4の実施の形態の圧力センサ50を構成する圧力調整機構51に替えて、圧力調整機構61を有すること以外は圧力センサ50と同様に構成される。
圧力調整機構61は、第1の連通開口62と、第2の連通開口63と、第1の支持部材64と、第2の支持部材65と、第1のプリロード用カンチレバー66と、第2のプリロード用カンチレバー67と、を有する。
第1の連通開口62は、センサ本体の一方の壁を貫通するように設けられている。第2の連通開口63は、第1の連通開口62と対向する他方の壁を貫通するように設けられている。
第1の支持部材64は、キャビティ10内であって、端に位置するセンサ本体3の底部上に固定されている。第1の支持部材64の材料としては、先に説明した第1の支持部材54と同様な材料を用いることができる。
第2の支持部材65は、キャビティ10の外側で、かつ第1の支持部材64の配設位置とは反対側に配置されている。第2の支持部材65の材料としては、先に説明した第2の支持部材55と同様な材料を用いることができる。
第1のプリロード用カンチレバー66は、その基端部66aが第1の支持部材64に対して固定、或いは第1の支持部材64と一体とされている。第1のプリロード用カンチレバー66は、第1の連通開口62を塞ぐ先端部66bを有すること以外は、先に説明した第1のプリロード用カンチレバー56と同様な構成とされている。
第2のプリロード用カンチレバー67は、その基端部67aが第2の支持部材65に対して固定、或いは第2の支持部材65と一体とされている。第2のプリロード用カンチレバー67は、第2の連通開口63を塞ぐ先端部67bを有すること以外は、先に説明した第2のプリロード用カンチレバー56と同様な構成とされている。
上記構成とされた第4の実施の形態の変形例に係る圧力センサ60は、第1の連通開口62を塞ぐ先端部66bを有する第1のプリロード用カンチレバー66と、第2の連通開口63を塞ぐ先端部67bを有する第2のプリロード用カンチレバー67と、を有することで、外気の圧力が急上昇した場合に第1のプリロード用カンチレバー66を使用し、外気の圧力が急低下した場合に第2のプリロード用カンチレバー67を利用することが可能となるので、外気の圧力が正負どちらに変動した場合でも所定の動作を行うことができる。
(第5の実施の形態)
図15は、本発明の第5の実施の形態に係る圧力センサの概略構成を示す断面図である。図16は、図15に示す圧力センサの主要部の平面図であり、気圧計測用カンチレバー及び第2のプリロード用カンチレバーの位置関係を説明するための図である。
図15及び図16において、図11に示す第4の実施の形態の圧力センサ50と同一構成部分には、同一符号を付す。
なお、図15及び図16では、第5の実施の形態の圧力センサ70を構成する図1に示す変位測定部5の図示を省略する。
図15及び図16を参照するに、第5の実施の形態の圧力センサ70は、第4の実施の形態の圧力センサ50の圧力調整機構51を構成する第2の連通開口53、及び第2のプリロード用カンチレバー57に替えて、第2の連通開口72、及び第2のプリロード用カンチレバー73を備えた圧力調整機構71を有すること以外は圧力センサ50と同様に構成される。
第2の連通開口72は、蓋部12を貫通しており、気圧計測用カンチレバー4を収容可能な大きさとされている。
第2のプリロード用カンチレバー73は、気圧計測用カンチレバー4を収容可能な貫通部75を有すること以外は、先に説明した第2のプリロード用カンチレバー57と同様に構成されている。気圧計測用カンチレバー4は、第2のプリロード用カンチレバー73に対して一体とさている。
第5の実施の形態の圧力センサによれば、気圧計測用カンチレバー4と第2のプリロード用カンチレバー73とを体的に構成することで、気圧計測用カンチレバー4及び第2のプリロード用カンチレバー73を一括形成することが可能となるので、圧力センサ70の製造工程を簡略化することができる。
また、上記構成とされた圧力センサ70は、第4の実施の形態の圧力センサ50と同様な効果を得ることができる。
以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
具体的には、例えば、第1の実施の形態の圧力センサ1、及び第1の実施の形態の変形例に係る圧力センサ25では、一例として、センサ本体3の底部に1つの連通開口11bのみ設けた場合を例に挙げて説明したが、連通開口11bの配設位置及び数は、図2及び図6に示す構成に限定されない。例えば、連通開口11bは、複数設けてもよいし、センサ本体3の側壁に設けてもよい。
ただし、複数の連通開口11bを設ける場合には、各連通開口11bに対して開閉器6を設ける必要がある。
また、上記説明した圧力センサ1、25では、連通開口11bの一例として、筒状の部材に配置された円筒状の開口を例に挙げて説明したが、連通開口11bのうち、キャビティ10側に位置する部分の形状を拡径した湾曲形状(漏斗状)にしてもよい。
このような形状とされた連通開口11bを設けることで、圧力センサ1、25は、開閉器6の開放時にキャビティ10への外気の導入を促進させることが可能となるので、開閉器6の開放時間(具体的には、急激な圧力変動後、再び微小な圧力変動の検出が可能となるまでに要する時間)をより短縮することができる。
なお、上記説明した圧力センサ1、25のように、連通開口11bをセンサ本体3の底に設ける場合、連通開口11bは、気圧計測用カンチレバー4の長手方向において、基端部4a寄りに配置される方が、圧力センサ1、25の過渡応答を防止する観点から好ましい。
さらに、第1の実施の形態では、開閉器6の一例として、ソレノイドバルブを例示したが、開閉器6は、電磁的に開閉動作する弁に限られるものではない。
開閉器6として、例えば、外圧Poutと内圧Pinとの差圧に応じてスプリングが伸縮し、開閉が機械的に切り替わる機械弁などを用いてもよい。この場合、圧力センサ1、25は、開閉制御部7を設けることなく、急激な圧力変動直後の出力をリセットすることが可能となるため、圧力センサ1、25の小型化(構成の簡素化)、省電力化、製造コスト低減等の効果が期待できる。
また、第4及び第5の実施の形態の圧力センサ50、70を構成する第1のプリロード用カンチレバー56、66、及び第2のプリロード用カンチレバー57、67として、後述する図17〜図18に示す構造を適用してもよい。
図17〜図18は、プリロード用カンチレバーの他の例を示す断面図である。図17〜図18において、図11に示す圧力センサ50と同一構成部分には、同一符号を付す。また、図18において、図17に示す構造体と同一構成部分には、同一符号を付す。
図17(A)に示すように、第2の支持部材55と一体とされ、かつSOI基板を加工して得られるカンチレバー本体82の一面に圧電薄膜83を備えたプリロード用カンチレバー81を準備し、その後、図17(B)に示すように、プリロード用カンチレバー81が第2の連通開口53と対向するように、第2の支持部材55を蓋部12に取り付け、プリロード用カンチレバー81がまっすぐになるように支持する支持部材85により、プリロード用カンチレバー81の先端部81aを支持してもよい。
また、第2の支持部材55に対する支持部材85の厚さを調整することで、第2の連通開口53が開閉される際の圧力を調整することができる。
図18(A)に示すように、第2の支持部材55と一体とされ、カンチレバー本体82よりなるプリロード用カンチレバー90(この段階では、プリロードがない状態であり、かつ図17に示すカンチレバー本体82と同様な構成とされたカンチレバー)を準備し、その後、図18(B)に示すように、プリロード用カンチレバー90が第2の連通開口53と対向するように、第2の支持部材55を蓋部12に取り付け、プリロード用カンチレバー90が上方に反るように支持する支持部材91(第2の支持部材55よりも厚さの厚い部材)により、プリロード用カンチレバー90の先端部90aを支持してもよい。
このような構成とすることで、プリロードを付与することが可能となる。
また、第2の支持部材55に対する支持部材91の厚さを調整することで、第2の連通開口53が開閉される際の圧力を調整することができる。
図19(A)に示すように、カンチレバー本体96と、カンチレバー本体96と一体とされ、離間した状態で、カンチレバー本体96を挟み込む枠体97と、カンチレバー本体96の両側に配置され、かつカンチレバー本体96と枠体97とを接続するバネ部98と、突出した先端部99と、を有するプリロード用カンチレバー95を準備し、図19(B)に示すように、蓋部12の上面よりも上方に延在する支持部材102に形成された連通開口101を先端部99が塞ぐように、第2の支持部材55を蓋部12に配置させてもよい。
このような構造とすることで、バネ部98により、第2の連通開口53が開閉される際の圧力を調整することができる。
なお、図17〜図19に示す構造を組み合わせて、圧力センサ50、60、70を構成してもよい。
本発明は、圧力差に基づいて、微細な圧力変動を検出する圧力センサに適用できる。
1、25、30、40、50、60、70…圧力センサ、2…SOI基板、2a…シリコン支持層、2b…酸化層、2c…シリコン活性層、3…センサ本体、3−1…第1の部分、3−2…第2の部分、4…気圧計測用カンチレバー、4a、56a、57a、66a、67a…基端部、4b、56b、57b、66b、67b、81a、90a、99…先端部、5…変位測定部、6…開閉器、7、27…開閉制御部、8、31、41、51、61、71…圧力調整機構、10…キャビティ、11b…連通開口、12…蓋部、13、33…ギャップ、15…貫通孔、20…ピエゾ抵抗、21…配線部、22…検出回路、26…絶対圧センサ、32、43…圧力調整用カンチレバー、35、75…貫通部、52、62…第1の連通開口、53、63、72…第2の連通開口、54、64…第1の支持部材、55、65…第2の支持部材、56、66…第1のプリロード用カンチレバー、57、67、73…第2のプリロード用カンチレバー、81、90、95…プリロード用カンチレバー、82、96…カンチレバー本体、83…圧電薄膜、85、91、102…支持部材、97…枠体、98…バネ部、101…連通開口、G…領域、W1、W2…幅

Claims (17)

  1. 圧力変動を検出する圧力センサであって、
    キャビティを有するセンサ本体と、
    前記キャビティと対向するように配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する気圧計測用カンチレバーと、
    前記気圧計測用カンチレバーの撓み変形に応じた変位を測定する変位測定部と、
    前記キャビティ内外の空気を流通させることで、前記キャビティ内の圧力を調整する圧力調整機構と、
    を有し、
    前記圧力調整機構は、前記気圧計測用カンチレバーの周囲に配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する圧力調整用カンチレバーを含むことを特徴とする圧力センサ。
  2. 記圧力調整用カンチレバーは、前記キャビティを介して、前記気圧計測用カンチレバーと対向するように配置されていることを特徴とする請求項1に記載の圧力センサ。
  3. 前記圧力調整機構は、前記センサ本体上に配置された蓋部を貫通する第1及び第2の連通開口と、
    片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形することで、前記第1の連通開口を開閉する第1のプリロード用カンチレバーと、
    前記キャビティの外部に配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形することで、前記第2の連通開口を開閉する第2のプリロード用カンチレバーと、
    を有し、
    前記第1のプリロード用カンチレバーは、前記キャビティの外部の圧力が該キャビティの内部の圧力よりも高くなり、前記キャビティ内外の圧力差が所定の値を超えた際、前記第1の連通開口を開け、
    前記第2のプリロード用カンチレバーは、前記キャビティの内部の圧力が該キャビティの外部の圧力よりも高くなり、前記キャビティ内外の圧力差が所定の値を超えた際、前記第2の連通開口を開けることを特徴とする請求項1に記載の圧力センサ。
  4. 前記第1のプリロード用カンチレバーは、前記第1の連通開口を塞ぐ先端部を有し、
    前記第2のプリロード用カンチレバーは、前記第2の連通開口を塞ぐ先端部を有することを特徴とする請求項に記載の圧力センサ。
  5. 前記第2のプリロード用カンチレバーの内側に、前記気圧計測用カンチレバーを配置することを特徴とする請求項またはに記載の圧力センサ。
  6. 前記圧力調整用カンチレバーの外形は、前記気圧計測用カンチレバーの外形よりも大きいことを特徴とする請求項またはに記載の圧力センサ。
  7. 前記圧力調整用カンチレバーに、圧電薄膜を設けることを特徴とする請求項1、2、6のうち、いずれか1項に記載の圧力センサ。
  8. 前記第1及び第2のプリロード用カンチレバーの外形は、前記気圧計測用カンチレバーの外形よりも大きいことを特徴とする請求項ないしのうち、いずれか1項に記載の圧力センサ。
  9. 前記第1及び第2のプリロード用カンチレバーは、圧電薄膜を含むことを特徴とする請求項ないし5、8のうち、いずれか1項に記載の圧力センサ。
  10. 圧力変動を検出する圧力センサであって、
    キャビティを有するセンサ本体と、
    前記キャビティと対向するように配置され、片持ち状に支持されると共に、前記キャビティの内部と該キャビティの外部との圧力差により撓み変形する気圧計測用カンチレバーと、
    前記気圧計測用カンチレバーの撓み変形に応じた変位を測定する変位測定部と、
    前記キャビティ内外の空気を流通させることで、前記キャビティ内の圧力を調整する圧力調整機構と、
    を有し、
    前記圧力調整機構は、前記センサ本体を貫通する連通開口と、前記連通開口を開閉する開閉器と、を有することを特徴とする圧力センサ。
  11. 前記圧力調整機構は、前記開閉器の開閉動作を制御する開閉制御部を有することを特徴とする請求項10に記載の圧力センサ。
  12. 前記開閉制御部は、前記変位測定部の出力が所定の範囲を超えた際に、前記開閉器の開動作を行う制御信号を出力することを特徴とする請求項10に記載の圧力センサ。
  13. 前記開閉制御部は、前記キャビティ外部の圧力を検出する検知器を含み、
    前記開閉制御部は、前記キャビティ外部の圧力が所定の値を超えたことを前記検知器が検知した際に、前記開閉器の開動作を行う制御信号を出力することを特徴とする請求項11に記載の圧力センサ。
  14. 前記開閉制御部は、前記開閉器の開動作を行う制御信号を出力した時点から所定時間経過後、前記開閉器の閉動作を行う制御信号を出力することを特徴とする請求項11ないし13のうち、いずれか1項に記載の圧力センサ。
  15. 前記開閉制御部は、前記開閉器の開動作を行う制御信号を出力した後、前記変位測定部の出力信号に基づいて、前記開閉器の閉動作を行う制御信号を出力することを特徴とする請求項10または12に記載の圧力センサ。
  16. 前記変位測定部は、前記気圧計測用カンチレバーの基端部に設けられたピエゾ抵抗を有することを特徴とする請求項10、12、15のうち、いずれか1項に記載の圧力センサ。
  17. 前記変位測定部は、前記気圧計測用カンチレバーの基端部に設けられた圧電薄膜を有することを特徴とする請求項10、12、15のうち、いずれか1項に記載の圧力センサ。
JP2013046586A 2013-03-08 2013-03-08 圧力センサ Active JP6150565B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046586A JP6150565B2 (ja) 2013-03-08 2013-03-08 圧力センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046586A JP6150565B2 (ja) 2013-03-08 2013-03-08 圧力センサ

Publications (2)

Publication Number Publication Date
JP2014173988A JP2014173988A (ja) 2014-09-22
JP6150565B2 true JP6150565B2 (ja) 2017-06-21

Family

ID=51695334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046586A Active JP6150565B2 (ja) 2013-03-08 2013-03-08 圧力センサ

Country Status (1)

Country Link
JP (1) JP6150565B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090096A (ja) * 2015-11-04 2017-05-25 株式会社フジクラ 差圧検出素子
JP6584297B2 (ja) * 2015-11-11 2019-10-02 セイコーインスツル株式会社 脈波測定装置及び脈波測定方法
JP6815910B2 (ja) * 2017-03-21 2021-01-20 セイコーインスツル株式会社 圧力センサ
CN114761143B (zh) * 2019-11-25 2023-07-21 株式会社村田制作所 压电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071215B2 (ja) * 1990-10-31 1995-01-11 住友金属鉱山株式会社 空気圧変化検出器
KR100908124B1 (ko) * 2007-07-09 2009-07-16 삼성전자주식회사 혈압측정용 압력 센서 및 그 제조방법
EP2669648A4 (en) * 2011-01-28 2017-03-01 The University of Tokyo Differential pressure sensor

Also Published As

Publication number Publication date
JP2014173988A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
US5909078A (en) Thermal arched beam microelectromechanical actuators
US6662663B2 (en) Pressure sensor with two membranes forming a capacitor
JP6150565B2 (ja) 圧力センサ
JP6168952B2 (ja) 圧力センサ
US9126826B2 (en) Micro-electromechanical semiconductor component and method for the production thereof
JP5778619B2 (ja) 圧力センサ
US7305890B2 (en) Micro-electromechanical sensor
CN106488366B (zh) 具有位置传感器的mems扬声器
US20200018413A1 (en) Piezoelectric-element-driven valve and flow rate control device
JP5650360B1 (ja) 圧力変化測定装置及び圧力変化測定方法
JP6144540B2 (ja) 圧力センサ
US10013002B2 (en) Fluid flow regulator device, comprising a valve member and a valve seat defining a fluid flow surface area, as well as method of using the same
WO2019021073A1 (en) ELECTROMECHANICAL PRESSURE DETECTOR
JP6144594B2 (ja) 圧力センサ
JP6184006B2 (ja) 圧力センサ
JP6041308B2 (ja) 圧力センサ
JP2006520536A (ja) Iii族窒化物半導体からなるカンチレバー構造を有するセンサ素子
US9896329B2 (en) Integrated semiconductor device and manufacturing method
JP6041309B2 (ja) 圧力センサ
JP2016125980A (ja) 圧力センサ
JP6521442B2 (ja) 圧力センサ
JP6164881B2 (ja) 弾力計及び弾力測定装置
JP6815910B2 (ja) 圧力センサ
JP6521441B2 (ja) 圧力センサ
JP2017166828A (ja) 傾斜計測装置、傾斜計測システム、及び気圧変動センサの調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250