JP6129662B2 - Emergency stop device and elevator - Google Patents

Emergency stop device and elevator Download PDF

Info

Publication number
JP6129662B2
JP6129662B2 JP2013139390A JP2013139390A JP6129662B2 JP 6129662 B2 JP6129662 B2 JP 6129662B2 JP 2013139390 A JP2013139390 A JP 2013139390A JP 2013139390 A JP2013139390 A JP 2013139390A JP 6129662 B2 JP6129662 B2 JP 6129662B2
Authority
JP
Japan
Prior art keywords
friction material
emergency stop
guide rail
buffer member
stop device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013139390A
Other languages
Japanese (ja)
Other versions
JP2015013696A (en
Inventor
五郎 佐藤
五郎 佐藤
礒谷 仁
仁 礒谷
薫 平野
薫 平野
秀隆 座間
秀隆 座間
広基 遠藤
広基 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013139390A priority Critical patent/JP6129662B2/en
Priority to CN201410305313.8A priority patent/CN104276477B/en
Publication of JP2015013696A publication Critical patent/JP2015013696A/en
Application granted granted Critical
Publication of JP6129662B2 publication Critical patent/JP6129662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • B66B5/22Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces by means of linearly-movable wedges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Braking Arrangements (AREA)

Description

本発明はエレベーターの非常止め装置及びエレベーターに関する。   The present invention relates to an emergency stop device for an elevator and an elevator.

従来、エレベーターは、乗りかごが一定速度以上で下降した際に、適切な減速度で乗りかごを停止させるための安全装置として非常止め装置を設置している。   Conventionally, an elevator is provided with an emergency stop device as a safety device for stopping the car at an appropriate deceleration when the car descends at a certain speed or higher.

非常止め装置は、乗りかごが所定の速度以上に達した場合、昇降路の壁に設置されたレールを2個の台形型の摩擦材を配した制動子で挟み込んでばねで押し付け、そのばねの弾性変形によって生じる力で制動力を発生させるものであり、制動子は適度な摩擦係数と耐摩耗性を有する鋳鉄や銅系焼結合金等の材料により形成されることが一般的であった。   When the car reaches a predetermined speed or more, the emergency stop device sandwiches the rail installed on the wall of the hoistway between two brakes with trapezoidal friction materials and presses them with a spring. A braking force is generated by a force generated by elastic deformation, and the braking element is generally formed of a material such as cast iron or a copper-based sintered alloy having an appropriate friction coefficient and wear resistance.

また、エレベーターは高速,大容量化しており、非常止め装置は、制動子とガイドレール間に発生する摩擦熱による高温環境下でも安定した制動力を発生することが要求されている。   In addition, the elevator has a high speed and a large capacity, and the emergency stop device is required to generate a stable braking force even in a high temperature environment due to frictional heat generated between the brake and the guide rail.

さらに、耐熱性のあるセラミックス摩擦材が複数備えられた制動子をガイドレールに押し付けたときに摩擦材とガイドレールの面当たりに偏りが生じないように摩擦材とこれを支持する支持体の間に軟金属を挿入することが知られ、例えば、特許文献1に記載されている。   Furthermore, when a brake with a plurality of heat-resistant ceramic friction materials is pressed against the guide rail, there is no bias between the friction material and the guide rail surface between the friction material and the support that supports it. It is known to insert a soft metal into the metal, and is described in, for example, Patent Document 1.

特開2000−191252号公報JP 2000-191252 A

上記従来技術では、摩擦材とガイドレールの面あたりの偏りを抑えて制動力を安定的に発揮できる構成となっているが、高速、大容量エレベーターにおいては非常止めが動作し、制動が開始されて徐々に減速して停止するまでの減速度が必ずしも一定ではない。これは、摩擦材とガイドレール間に発生する摩擦力に速度依存性があるためである。停止間際は制動開始に比べ摩擦係数が大きくなる結果、摩擦力が大きくなり、これに比例して減速度も大きくなってしまう。減速度が過大になると乗客へ身体的負担を及ぼす懸念がある。   In the above prior art, it is configured to be able to stably exert the braking force by suppressing the deviation of the friction material and the guide rail around the surface, but in a high-speed, large-capacity elevator, the emergency stop operates and braking is started. The deceleration until it stops gradually and stops is not always constant. This is because the friction force generated between the friction material and the guide rail has a speed dependency. As a result of the increase in the coefficient of friction compared with the start of braking immediately before stopping, the frictional force increases, and the deceleration increases in proportion to this. There is concern that passengers will be physically burdened if the deceleration becomes excessive.

本発明の目的は、摩擦材とガイドレールの面当たりを均一にしつつ、通常のエレベーターはもとより高速、大容量の仕様でも安定して制動力を発生し、停止間際の過大減速度を抑えて乗客の負担を与えないようにすることができる高い信頼性の非常止め装置及びエレベーターを得ることにある。   The object of the present invention is to generate a braking force stably even in a high-speed and large-capacity specification as well as a normal elevator while maintaining uniform contact between the friction material and the guide rail, and suppressing excessive deceleration immediately before stopping the passenger The object is to obtain a highly reliable emergency stop device and an elevator that can prevent the burden of the elevator.

上記の目的を達成するために、本発明は、昇降路に設置されたガイドレールに制動子を押し付けて摺動することで制動力を発生させ、エレベーターの乗りかごを停止させるエレベーター用非常止め装置及びエレベーターにおいて、前記制動子にガイドレールへの押付力を与える弾性部材と、前記制動子に前記ガイドレールに対向して配された摩擦材と、前記摩擦材を支持する支持体と、前記摩擦材と前記支持体との間に配置された緩衝部材を備え、前記緩衝部材は温度と力を受けた際の変形量の変化の関係において、所定の温度で変曲点を有することを特徴とする。   In order to achieve the above object, the present invention provides an emergency stop device for an elevator that generates braking force by sliding a brake member against a guide rail installed in a hoistway to stop the elevator car. And an elevator, an elastic member that applies a pressing force against the guide rail to the brake element, a friction material disposed on the brake element so as to oppose the guide rail, a support that supports the friction material, and the friction Comprising a buffer member disposed between a material and the support, wherein the buffer member has an inflection point at a predetermined temperature in relation to a change in deformation when subjected to temperature and force. To do.

本発明によれば、摩擦材とガイドレールの面当たりを均一にしつつ、通常のエレベーターはもとより高速、大容量の仕様でも安定して制動力を発生し、停止間際の過大減速度を抑えて乗客の負担を与えないようにすることができる高い信頼性の非常止め装置及びエレベーターを得ることができる。   According to the present invention, the friction material and the guide rail have a uniform surface contact, and the braking force is stably generated even in a high-speed and large-capacity specification as well as a normal elevator, and an excessive deceleration immediately before stopping is suppressed and the passenger is suppressed. Thus, it is possible to obtain a highly reliable emergency stop device and an elevator that can prevent the burden on the elevator.

本発明による一実施の形態の制動子を示す斜視図。The perspective view which shows the brake element of one Embodiment by this invention. 本発明による一実施の形態の非常止め装置(動作前)を示す正面図である。It is a front view which shows the emergency stop apparatus (before operation | movement) of one Embodiment by this invention. 本発明による一実施の形態の非常止め装置(動作後)を示す正面図である。It is a front view which shows the emergency stop apparatus (after operation | movement) of one Embodiment by this invention. 本発明による一実施の形態の非常止め装置(動作後、二段)を示す正面図である。It is a front view showing an emergency stop device (after operation, two steps) of one embodiment by the present invention. 本発明による一実施の形態のエレベーターの概要を示す部分斜視図である。It is a fragmentary perspective view which shows the outline | summary of the elevator of one Embodiment by this invention. 一実施の形態の摩擦材、緩衝部材のガイドレール側から見た相対寸法を示す側面図である。It is a side view which shows the relative dimension seen from the guide rail side of the friction material of one embodiment, and a buffer member. 一実施の形態における摩擦材・ガイドレール間の面圧分布を示す図である。It is a figure which shows the surface pressure distribution between the friction material and guide rail in one Embodiment. 一実施の形態における緩衝部材の弾性率温度依存度を示す斜視図である。It is a perspective view which shows the elastic modulus temperature dependence of the buffer member in one embodiment. 一実施の形態の非常止め装置(動作後)を示す部分正面図である。It is a partial front view which shows the emergency stop apparatus (after operation | movement) of one Embodiment. 一実施の形態の速度変化に対する制動特性を示す図。The figure which shows the braking characteristic with respect to the speed change of one Embodiment. 一実施の形態における制動子の伝熱計算結果を示す図。The figure which shows the heat transfer calculation result of the brake element in one embodiment. 一実施の形態における制動中の樹脂材のゴム状領域変化量を示す図。The figure which shows the rubber-like area | region variation | change_quantity of the resin material in braking in one embodiment.

以下、一実施の形態について図を参照して説明する。   Hereinafter, an embodiment will be described with reference to the drawings.

図1は、非常止め装置の制動子1を示し、図1(a)は斜視図である。上端側43が短辺、下端側44が長辺となる断面台形状の四角柱となっている。制動子1は、鋳鉄からなる支持体2の図示されないガイドレール7対向面にブロック状の摩擦材3が複数個(図では9個)所定の間隔で埋設されている。   FIG. 1 shows a brake 1 of an emergency stop device, and FIG. 1 (a) is a perspective view. It is a quadrangular prism having a trapezoidal cross section in which the upper end side 43 is a short side and the lower end side 44 is a long side. In the brake 1, a plurality of (9 in the figure) block-like friction materials 3 are embedded at a predetermined interval on a surface of the support 2 made of cast iron facing the guide rail 7 (not shown).

摩擦材3は、例えばセラミックス繊維を圧縮焼結したもので構成され、摩擦材3と支持体2は、摩擦材3の先端部を制動子1の表面からわずかに突出した状態で結合されている。ガイドレール7とは、摩擦材3が摺動する。摩擦材3同士の間には、摩擦材3を固定するための締結板4が埋め込まれている。   The friction material 3 is made of, for example, a compression-sintered ceramic fiber, and the friction material 3 and the support 2 are coupled with the tip of the friction material 3 protruding slightly from the surface of the brake 1. . The friction material 3 slides on the guide rail 7. A fastening plate 4 for fixing the friction material 3 is embedded between the friction materials 3.

図1(b)は図1(a)のA-A断面図である。支持体2の摩擦材3を備える側は凹状に掘り込まれている。その凹状部25に摩擦材3が入れられていて、摩擦材3と支持体2との間には緩衝部材5が嵌め込まれている。そして、緩衝部材5の摩擦材3との接触面及びその反対側の支持体2との接触面を除き、支持体2の凹状部25と緩衝部材5の周囲には隙間12が備えられている。   FIG. 1B is a cross-sectional view taken along the line AA in FIG. The side provided with the friction material 3 of the support 2 is dug into a concave shape. The friction material 3 is placed in the concave portion 25, and the buffer member 5 is fitted between the friction material 3 and the support 2. And the clearance gap 12 is provided in the circumference | surroundings of the recessed part 25 and the buffer member 5 of the support body 2 except the contact surface with the friction material 3 of the buffer member 5, and the contact surface with the support body 2 of the other side. .

図2は、非常止め装置の縦断面図であり、非常止め装置6は、ガイドレール7を挟んで左右対称に構成されている。一対の制動子1は、ガイドレール7を挟持可能にガイドレール7と僅かな隙間を持って略平行に配置されている。制動子1の背面は上方が狭くなるくさび状の平滑な傾斜面になっている。   FIG. 2 is a longitudinal sectional view of the safety device, and the safety device 6 is configured symmetrically with the guide rail 7 interposed therebetween. The pair of brake elements 1 are arranged substantially parallel to the guide rail 7 with a slight gap so that the guide rail 7 can be clamped. The rear surface of the brake element 1 is a wedge-shaped smooth inclined surface that narrows upward.

制動子1が所定位置に移動するように、移動を案内する案内板8がガイド部材11に設けられている。ガイド部材11は、内側が制動子1の傾斜面と平行な傾斜面を成し、外側は垂直面となっている。ガイド部材11の外周部は、ガイドレール7に対向する側が開放されたU字状(図5)に形成された弾性体10に囲まれている。この構成により図2に示す左右のガイド部材11の垂直面を弾性体10で挟み込んでいるため、結果的に片側の制動子1はガイド部材11を介して弾性体10とガイドレール7とによって挟み込まれる構成となっている。制動子1、および案内板8、ガイド部材11、弾性体10は、筐体9内に収容され、制動子1の一端には、非常止め装置6を駆動させる図示しない駆動手段が有する引き上げ棒が接続されている。   A guide plate 8 for guiding the movement is provided on the guide member 11 so that the brake element 1 moves to a predetermined position. As for the guide member 11, the inner side comprises the inclined surface parallel to the inclined surface of the brake 1, and the outer side is a vertical surface. The outer peripheral portion of the guide member 11 is surrounded by an elastic body 10 formed in a U shape (FIG. 5) in which the side facing the guide rail 7 is opened. With this configuration, the vertical surfaces of the left and right guide members 11 shown in FIG. 2 are sandwiched between the elastic bodies 10. As a result, the brake element 1 on one side is sandwiched between the elastic bodies 10 and the guide rails 7 via the guide members 11. It is the composition which becomes. The brake 1, the guide plate 8, the guide member 11, and the elastic body 10 are accommodated in the housing 9. At one end of the brake 1, a lifting rod included in a driving unit (not shown) that drives the emergency stop device 6 is provided. It is connected.

図3は、非常止め装置が動作した状態を示し、非常止め装置が動作したときは、制動子1が案内板8に沿ってガイド部材11に対して引き上げられると、制動子1は互いの距離が狭まるように移動する。このときに制動子1はガイド部材11、弾性体10を矢印13の方向に押し広げる。ガイド部材11、弾性体10が押し広げられた反力が制動子1に作用してガイドレール7を挟み込む。よって、弾性体の押し広げ量によって制動子がガイドレールを挟み込む力が変化する。   FIG. 3 shows a state in which the safety device is operated. When the safety device is operated, when the brake element 1 is pulled up with respect to the guide member 11 along the guide plate 8, the brake elements 1 are separated from each other. Move to narrow. At this time, the brake element 1 pushes the guide member 11 and the elastic body 10 in the direction of the arrow 13. The reaction force generated by the guide member 11 and the elastic body 10 being spread acts on the brake 1 to sandwich the guide rail 7. Therefore, the force with which the brake element sandwiches the guide rail varies depending on the amount of expansion of the elastic body.

非常止め装置は、エレベーターの仕様によっては複数組み設置する。所定の減速度でかごを停止させるための必要な制動力Fは、
F=αμN=m(a+g)
ここで、α:ガイドレールに摺動する制動子の数、μ:制動子・レール間摩擦係数,N:弾性体の押付力(N),m:落下質量(kg),a:減速度(m/s2),g:重力加速度(9.8m/s2)である。
Multiple sets of emergency stop devices are installed depending on the specifications of the elevator. The braking force F required to stop the car at a predetermined deceleration is:
F = αμN = m (a + g)
Where α: number of brakes sliding on the guide rail, μ: coefficient of friction between brakes and rails, N: pressing force of elastic body (N), m: falling mass (kg), a: deceleration ( m / s 2 ), g: gravitational acceleration (9.8 m / s 2 ).

1段組みの非常止め装置の場合は、制動子の数は、図3に示す例ではガイドレール7一本に対して2個であり、通常図5に示すように乗りかご46に対してガイドレール7が左右二本設けられる場合、合計で4個(2個/レール×レール2本)となる。したがって、α=4となり、制動力Fは各制動子の制動力μNの4倍になる。また制動力Fは落下質量に正比例する。製造上、弾性体が発生できる力に限界があるため、落下質量が重くなると非常止めを上下に複数段化して制動子の数を増加し、制動力を確保する。また、定格速度が高くなると、制動子とレール間の摩擦係数が小さくなるので、高速域ほど軽い落下質量でも多段化しなければならない。よって、乗りかごが上下2階建てとなるダブルデッキエレベーターや高層ビル向けのエレベーターは多段化されている。例えば、落下質量25,000kgの仕様で5.88m/s2の減速度で停止するのに必要な制動力は、392kNになる。μ=0.2、押付力Nが400kNとすると1段組みでは72kN不足し、2段化が必要である。なお、市場の台数が最も多い低層ビル向けの30〜240m/minの速度域では、1段組みがほとんどである。 In the case of a one-stage emergency stop device, the number of brakes is two for one guide rail 7 in the example shown in FIG. 3, and normally guides for a car 46 as shown in FIG. When two rails 7 are provided on the left and right, the total number of rails is four (2 / rail × 2 rails). Therefore, α = 4, and the braking force F is four times the braking force μN of each brake element. The braking force F is directly proportional to the falling mass. Since there is a limit to the force that can be generated by the elastic body in manufacturing, when the falling mass becomes heavy, the emergency stop is arranged in a plurality of stages up and down to increase the number of brakes and to secure the braking force. Also, as the rated speed increases, the coefficient of friction between the brake and the rail becomes smaller, so it is necessary to increase the number of stages even with a lighter drop mass at higher speeds. Therefore, double deck elevators and elevators for high-rise buildings with two-story elevators are multi-tiered. For example, the braking force required to stop at a deceleration of 5.88 m / s 2 with a drop mass of 25,000 kg is 392 kN. If μ = 0.2 and the pressing force N is 400 kN, 72 kN is insufficient for the one-stage assembly, and two stages are required. In the speed range of 30 to 240 m / min for low-rise buildings with the largest number of units in the market, the one-stage assembly is mostly used.

図4は、2段組み非常止め装置の縦断面図である。図2に示した非常止め装置を上下方向に重ねた構成とし、締結ねじ34で筐体9同士を締結する。上下の制動子1の一端には、2段組み非常止め装置33を駆動させる図示しない駆動手段が有する引き上げ棒が接続されており、ほぼ同時に上下の制動子が引上げられてガイドレール7を挟み組む。よって、1段組みの場合と比較すると制動子1の数は2倍となるので、α=8となり、制動力Fは各制動子の制動力μNの約8倍の制動力を得ることができ、高速,大容量エレベーターに対応できる。   FIG. 4 is a longitudinal sectional view of a two-stage safety device. The emergency stop devices shown in FIG. 2 are stacked in the vertical direction, and the casings 9 are fastened with fastening screws 34. One end of the upper and lower brake members 1 is connected to a lifting rod (not shown) that drives a two-stage set emergency stop device 33, and the upper and lower brake members are pulled up almost simultaneously to sandwich the guide rail 7 between them. . Therefore, since the number of brake elements 1 is doubled as compared with the case of the one-stage assembly, α = 8, and the braking force F can be obtained as approximately 8 times the braking force μN of each brake element. High speed, large capacity elevator.

図5は非常止め装置を備えたエレベーター乗りかごの概略を示す斜視図である。乗客を乗せる乗りかご46は、ロープ45によって建物最上階にある図示しない駆動系に連結されている。本図ではドア開閉機、外枠の詳細等は図示していない。昇降路の両側には、乗りかご46の昇降をガイドするガイドレール7が設置されている。乗りかご46の下端部には、非常止め装置6が、ガイドレール7を挟むように設置されている。非常止め装置6は、図示しないが反対側のガイドレールにも備えてあり両者は図示されていない接続機構によって連結されている。なお本図における非常止め装置6では、簡略化のため筐体等の詳細を省略して記載している。   FIG. 5 is a perspective view schematically showing an elevator car equipped with an emergency stop device. A passenger car 46 on which passengers are placed is connected to a drive system (not shown) on the top floor of the building by a rope 45. In this figure, details of the door opener and outer frame are not shown. On both sides of the hoistway, guide rails 7 that guide the raising and lowering of the car 46 are installed. An emergency stop device 6 is installed at the lower end of the car 46 so as to sandwich the guide rail 7. The emergency stop device 6 is also provided on the opposite guide rail (not shown), and both are connected by a connection mechanism (not shown). In the emergency stop device 6 in this figure, the details of the housing and the like are omitted for simplicity.

非常止め装置の動作について図3、図4を用いて説明する。乗りかごの移動速度が定格速度を超える設定速度に達すると、最上階に設置された図示しない速度感知装置が動作し、制動子1が引き上げられ、制動子1は乗りかごの両側の昇降路壁に設置されたガイドレール7を挟み込む。そして、制動子1はU字状の弾性体10を押し広げて弾性変形させることでガイドレール7と制動子1の間に摩擦力を発生させ、乗りかごを停止させる。   The operation of the emergency stop device will be described with reference to FIGS. When the moving speed of the car reaches a set speed exceeding the rated speed, a speed sensing device (not shown) installed on the top floor operates to raise the brake 1, and the brake 1 is a hoistway wall on both sides of the car. The guide rail 7 installed in is sandwiched. And the brake element 1 expands the U-shaped elastic body 10 and elastically deforms it, thereby generating a frictional force between the guide rail 7 and the brake element 1 and stopping the car.

図6は、摩擦材3をガイドレール側から見た図である。摩擦材3の裏面には緩衝部材5が埋め込まれている。緩衝部材5はブロック状の摩擦材3に比べて縦、横ともに所定寸法だけ小さい。これは、緩衝部材5が図示されない支持体2の凹部内で変形するための空隙12を確保するためである。緩衝部材5には、例えば樹脂が適用できる。   FIG. 6 is a view of the friction material 3 as viewed from the guide rail side. A buffer member 5 is embedded in the back surface of the friction material 3. The buffer member 5 is smaller than the block-shaped friction material 3 by a predetermined dimension in both the vertical and horizontal directions. This is for securing the space | gap 12 for the buffer member 5 to deform | transform in the recessed part of the support body 2 which is not shown in figure. For example, a resin can be applied to the buffer member 5.

図7は、制動子をガイドレールに所定の力で押し付けた場合の各摩擦材3の面圧分布の比率を示したものである。試算条件は、図1に示した制動子の摩擦材3(縦3個×横3個)の配置として、制動子の背面に等分布で荷重を加えた。その際に、中央列の摩擦材3の支持体2からの突き出し量を左右の摩擦材3のそれよりも低くした条件で実施した。破線14は、摩擦材3と支持体2の間に緩衝部材5が無い場合であり、実線15は間に緩衝部材5(樹脂)を入れた場合である。   FIG. 7 shows the ratio of the surface pressure distribution of each friction material 3 when the brake element is pressed against the guide rail with a predetermined force. The trial calculation conditions were such that the brake friction material 3 (3 vertical × 3 horizontal) shown in FIG. In that case, it implemented on the conditions which made the protrusion amount from the support body 2 of the friction material 3 of the center row | line lower than that of the friction material 3 on either side. A broken line 14 indicates a case where the buffer member 5 is not provided between the friction material 3 and the support body 2, and a solid line 15 indicates a case where the buffer member 5 (resin) is interposed therebetween.

緩衝部材5が無い場合は、中央列の摩擦材3とガイドレールは接触せず、その結果、左右の摩擦材3がガイドレールに強く(平均面圧の約1.5倍)押し付けられる結果となった。これに対して、緩衝部材5がある場合は、中央列と左右の摩擦材3ともにほぼ均一な面圧となった。これは、摩擦材3の剛性よりも緩衝部材5の剛性を低くすることによって、所定の押付力を与えたときに緩衝部材5のほうが大きく変形(圧縮)して各摩擦材3同士の表面凹凸段差を吸収できるからである。本試算では、摩擦材3同士の段差の平面研磨作業を実施した場合の凹凸段差レベルとして10μm、摩擦材3に対して支持体2の剛性を同等、緩衝部材5の剛性を約1/30に設定した。緩衝部材5にはエンジニアプラスチックなどが適用でき、たとえばPEEK(ポリエーテルエーテルケトン)樹脂、PPS(ポリフェニレンサルファイド)樹脂などがある。   When the buffer member 5 is not provided, the friction material 3 and the guide rail in the center row are not in contact with each other, and as a result, the left and right friction materials 3 are strongly pressed against the guide rail (approximately 1.5 times the average surface pressure). . On the other hand, when the buffer member 5 is provided, the surface pressure is almost uniform for both the central row and the left and right friction members 3. This is because the buffer member 5 has a lower rigidity than that of the friction material 3 so that the buffer member 5 is deformed (compressed) more greatly when a predetermined pressing force is applied. This is because the steps can be absorbed. In this trial calculation, the uneven step level when the level polishing work between the friction materials 3 is performed is 10 μm, the rigidity of the support 2 is equal to the friction material 3, and the rigidity of the buffer member 5 is about 1/30. Set. Engineer plastic or the like can be applied to the buffer member 5, and examples thereof include PEEK (polyether ether ketone) resin and PPS (polyphenylene sulfide) resin.

以上のように摩擦材3の裏面に低剛性の緩衝部材5を設けることで摩擦材3同士に凹凸段差があってもガイドレール7との面当たりはほぼ均一に出来る。もちろん面当たり均一化のみを目的とすれば緩衝部材5に摩擦材よりも軟らかい金属材料を適用しても同様の効果を得られる組み合わせはある。しかし、本発明の目的のようにガイドレールとの面当たり均一化と停止間際の減速度過大の抑止を同時に解決することは、金属材料では困難になる。   As described above, by providing the low-rigidity buffer member 5 on the back surface of the friction material 3, even if there are uneven steps between the friction materials 3, the surface contact with the guide rail 7 can be made almost uniform. Of course, there are combinations that can obtain the same effect even if a metal material softer than the friction material is applied to the shock-absorbing member 5 for the purpose of making the contact per surface uniform only. However, it is difficult to simultaneously solve the problem of uniform contact with the guide rail and suppression of excessive deceleration immediately before stopping as in the object of the present invention.

図8は、緩衝部材5に適用したPEEK樹脂の弾性率の温度変化を示したものである。一般的に樹脂材料は、ガラス転移点を有している。ガラス転移点とは、ポリマー分子の相対的な位置は変化しないが分子主鎖が回転や振動を始める(または停止する)温度である。すなわち、ガラス転移点を越えると熱運動が活発になるために容積は急に膨張し剛性が小さくなる。PEEK材のガラス転移点は約140℃と言われており、図の実線17に示すように140℃を超えると急激に弾性率が約1/10まで低下する特性を持つ。急激とは図8に示すように変曲点を有することを言う。よって、樹脂に一定の押付力を与えた場合に樹脂の変形量は、樹脂温度がガラス転移点(140℃)を越えると急激に大きくなる。   FIG. 8 shows the temperature change of the elastic modulus of the PEEK resin applied to the buffer member 5. Generally, a resin material has a glass transition point. The glass transition point is a temperature at which the relative position of the polymer molecule does not change, but the molecular main chain starts (or stops) rotating or vibrating. That is, when the glass transition point is exceeded, the thermal motion becomes active, so the volume suddenly expands and the rigidity decreases. The glass transition point of the PEEK material is said to be about 140 ° C., and has a characteristic that the elastic modulus rapidly decreases to about 1/10 when the temperature exceeds 140 ° C. as indicated by the solid line 17 in the figure. Abrupt means having an inflection point as shown in FIG. Therefore, when a constant pressing force is applied to the resin, the amount of deformation of the resin increases rapidly when the resin temperature exceeds the glass transition point (140 ° C.).

一方、軟らかい金属として銅材の弾性率の温度依存特性を破線16で示す。25℃と200℃では弾性率が約5%の変化に留まる。そして、急激な変化は見られない。   On the other hand, the temperature dependence characteristic of the elastic modulus of the copper material as a soft metal is shown by a broken line 16. At 25 ° C. and 200 ° C., the elastic modulus only changes by about 5%. And a sudden change is not seen.

図9は、本実施例を適用した場合の非常止め装置の動作を詳細に示した図である。図9(a)は、非常止め装置が作動して制動を開始して徐々に減速していく途中の非常止めの状態を示す(レールを対称軸として非常止め装置の右側半分を図示する)。制動子1はU字状の弾性体10を押し広げて弾性変形させることでガイドレール7と制動子1の間に摩擦力を発生させる。その際に摩擦部で発生した摩擦熱の一部が摩擦材3へと流入する。本実施例では摩擦材3には耐熱性のあるセラミックスを用いているため熱によって剛性低下することが無く磨耗も殆どしない。そして、摩擦熱は摩擦材3内を伝導して樹脂である緩衝部材5へと流れ徐々に昇温し始める。しかし、樹脂温度がガラス転移点を超えない状態を保持している間は、弾性体10を所定量弾性変形させるので所定の押付力が発揮できる。図9(b)は減速が継続されて停止間際になったときの非常止め装置6の状態を示す。摩擦熱が摩擦材3を介して緩衝部材5に流れ続けて樹脂材温度がガラス転移点を超える。すると、図8で説明したように緩衝部材5は柔らかくなり、その結果変形量(圧縮量)が大きくなって潰れて支持体2の凹部に設けた隙間12が小さくなる。よって、緩衝部材5の圧縮量に反比例して弾性体10を押し広げる量が減少し押付力が小さくなる。   FIG. 9 is a diagram showing in detail the operation of the safety device when the present embodiment is applied. FIG. 9A shows a state of emergency stop while the emergency stop device is activated to start braking and gradually decelerate (the right half of the emergency stop device is illustrated with the rail as the axis of symmetry). The brake element 1 generates a frictional force between the guide rail 7 and the brake element 1 by expanding and elastically deforming the U-shaped elastic body 10. At that time, a part of the frictional heat generated in the friction part flows into the friction material 3. In this embodiment, since the heat-resistant ceramic is used for the friction material 3, the rigidity is not lowered by heat and the wear is hardly caused. Then, the frictional heat is conducted through the friction material 3 and flows to the buffer member 5 which is a resin, and gradually begins to rise in temperature. However, since the elastic body 10 is elastically deformed by a predetermined amount while the state where the resin temperature does not exceed the glass transition point, a predetermined pressing force can be exhibited. FIG. 9B shows the state of the emergency stop device 6 when the deceleration is continued and just before stopping. The frictional heat continues to flow to the buffer member 5 through the friction material 3 and the resin material temperature exceeds the glass transition point. Then, as described with reference to FIG. 8, the buffer member 5 becomes soft, and as a result, the amount of deformation (compression amount) increases and is crushed and the gap 12 provided in the recess of the support 2 is reduced. Therefore, the amount by which the elastic body 10 is expanded in inverse proportion to the compression amount of the buffer member 5 is reduced, and the pressing force is reduced.

図10は、図9で説明した非常止め動作中の各特性の速度に対する変化をグラフで示したものである。図10(a)は摩擦係数変化を示す。ガイドレール7と摩擦材間の摩擦係数は、速度が高いときに比べて速度が低いときのほうが一般的には大きくなる傾向を示す。これは摩擦材材料によって変化量に違いはあるが摩擦係数の大小関係は同じ傾向を示すことが実験で確認できている。図10(b)は速度に対するばね力変化を示す。摩擦材3にセラミックスを適用して制動子1に緩衝部材5を備えない場合は、摩擦材3の摩耗が殆どないので一定のばね力を発揮する(破線18)。これに対して、実線19で示した制動子に樹脂からなる緩衝部材5を備えると図9で説明したように停止間際では、樹脂の熱変形が急激に大きくなりばね力が低下する。図10(c)は速度に対する減速度の変化を示す。減速度は、摩擦力、すなわち摩擦係数×押付力に比例する。よって、緩衝部材5を備えない場合は破線20で示すように停止間際で減速度が大きくなってしまう。これに対して、樹脂からなる緩衝部材5を備えた場合は、実線21で示すように樹脂がガラス転移点を越えたタイミング22以降の過大減速度の度合いを抑えることができる。一方、図8で説明したように金属の緩衝部材5を備えた場合は、剛性低下の温度依存度合いが樹脂に比べてかなり小さく、急激な変化は伴わないので停止間際の過大減速度を抑止する効果は少ない。   FIG. 10 is a graph showing the change of each characteristic with respect to the speed during the emergency stop operation described in FIG. FIG. 10A shows the change in the friction coefficient. The friction coefficient between the guide rail 7 and the friction material generally tends to increase when the speed is low compared to when the speed is high. It has been confirmed by experiments that although the amount of change varies depending on the friction material, the magnitude relationship of the friction coefficient shows the same tendency. FIG. 10B shows a change in spring force with respect to speed. When ceramics is applied to the friction material 3 and the brake member 1 is not provided with the buffer member 5, the friction material 3 is hardly worn, so that a constant spring force is exhibited (dashed line 18). On the other hand, if the brake member indicated by the solid line 19 is provided with the buffer member 5 made of resin, as described with reference to FIG. 9, the thermal deformation of the resin suddenly increases and the spring force decreases immediately before stopping. FIG. 10C shows the change in deceleration with respect to speed. The deceleration is proportional to the friction force, that is, the friction coefficient × the pressing force. Therefore, when the buffer member 5 is not provided, the deceleration increases just before stopping as indicated by the broken line 20. On the other hand, when the buffer member 5 made of resin is provided, as shown by the solid line 21, the degree of excessive deceleration after the timing 22 when the resin exceeds the glass transition point can be suppressed. On the other hand, when the metal buffer member 5 is provided as described with reference to FIG. 8, the degree of temperature dependence of the rigidity reduction is considerably smaller than that of the resin, and there is no sudden change, so excessive deceleration immediately before stopping is suppressed. Less effective.

図11は、制動子の1次元伝熱計算を行った結果を示す。計算は、制動子のガイドレールから離れる側への非定常熱伝導計算である。制動時間が約4.5秒として平均減速度が規定の1.96〜9.8m/s2の範囲内となるように制動開始速度を決定した。摩擦材3は窒化珪素として熱伝導率30W/m・K、厚さ3mmとした。緩衝部材5は高熱伝導のPEEK樹脂として熱伝導率30W/m・K、厚さ2mmとした。支持材は鋳鉄として熱伝導率40W/m・K、厚さ20mmとした(グラフ上では6mm以降を省略)。 FIG. 11 shows the result of one-dimensional heat transfer calculation of the brake. The calculation is a calculation of unsteady heat conduction to the side away from the guide rail of the brake. The braking start speed was determined so that the braking time was about 4.5 seconds and the average deceleration was within the specified range of 1.96 to 9.8 m / s 2 . The friction material 3 was made of silicon nitride with a thermal conductivity of 30 W / m · K and a thickness of 3 mm. The buffer member 5 was made of PEEK resin having high thermal conductivity and had a thermal conductivity of 30 W / m · K and a thickness of 2 mm. The support material was cast iron and had a thermal conductivity of 40 W / m · K and a thickness of 20 mm (6 mm and after are omitted on the graph).

本計算では、発生した摩擦熱のうち2割が摩擦材3側へ流入したと仮定すると、摩擦材3の最高表面温度は約1100℃であった。図より制動時間が経つにつれて摩擦材3、緩衝部材5の温度が上昇しているのがわかる。制動開始からの各時間における緩衝部材5である樹脂材の摩擦材3側表面温度は、摩擦材3の厚さが3mmであることから、図11における厚さ方向3mmを示す直線と各時間における温度−厚さ曲線との交点を見ることで知ることができる。図11より、緩衝部材5の摩擦材3側表面温度は、制動開始2秒程度までは樹脂のガラス転移点23である140℃を越えない。   In this calculation, assuming that 20% of the generated frictional heat flows into the friction material 3 side, the maximum surface temperature of the friction material 3 was about 1100 ° C. It can be seen from the figure that the temperature of the friction material 3 and the buffer member 5 increases as the braking time elapses. The friction material 3 side surface temperature of the resin material that is the buffer member 5 at each time from the start of braking is that the thickness of the friction material 3 is 3 mm. Therefore, the straight line indicating the thickness direction of 3 mm in FIG. This can be determined by looking at the intersection with the temperature-thickness curve. From FIG. 11, the friction member 3 side surface temperature of the buffer member 5 does not exceed 140 ° C. which is the glass transition point 23 of the resin until about 2 seconds after the start of braking.

また、図11によれば厚さ方向3mmを示す直線とガラス転移点23の直線、及び、各時間における温度−厚さ曲線によって囲まれた領域を見ることで緩衝部材5のガラス転移温度を超えた領域がどの程度であるかを知ることができる。そして制動開始2秒からさらに制動時間が経つと緩衝部材5の温度はさらに高くなってガラス転移点を越えてゴム状に柔らかくなる厚さ(領域)が大きくなってくることが理解できる。しかし、停止の4.5秒のタイミングでの樹脂の表面温度は、耐熱限界温度24の340℃を超えない結果であった。よって、樹脂の組織構造が熱によって破壊されることは無い。   Moreover, according to FIG. 11, the glass transition temperature of the buffer member 5 is exceeded by looking at the straight line indicating the thickness direction of 3 mm, the straight line of the glass transition point 23, and the region surrounded by the temperature-thickness curve at each time. You can see how much the area is. It can be understood that as the braking time further elapses from 2 seconds from the start of braking, the temperature of the buffer member 5 further increases, and the thickness (region) that becomes softer and rubbery beyond the glass transition point increases. However, the surface temperature of the resin at the timing of 4.5 seconds after the stop was a result of not exceeding the heat-resistant limit temperature 24 of 340 ° C. Therefore, the resin structure is not destroyed by heat.

図12は、図11の伝熱計算より、制動時間に対する樹脂のガラス転移点を越えてゴム状になった領域の全樹脂厚さに対する比率を示す図である。制動開始から2秒後に表面がゴム状になり、停止時には約20%の領域がゴム状になる結果である。ここで、制動子1をガイドレール7に押し付けるための弾性体10の変位量が、ゴム状領域になった厚さの半分に相当する厚みだけ減少すると、通常の1段組み非常止め装置を例に挙げて考えた場合、停止摩擦係数≒4×制動開始摩擦係数、ばね定数100〜150kN/mmの弾性体10を適用した場合で停止間際の最大減速度は約15%程度抑止できる試算結果を得た。   FIG. 12 is a diagram showing a ratio of the region of the rubber-like region exceeding the glass transition point of the resin to the braking time with respect to the total resin thickness based on the heat transfer calculation of FIG. As a result, the surface becomes rubbery 2 seconds after the start of braking, and about 20% of the area becomes rubbery when stopped. Here, when the amount of displacement of the elastic body 10 for pressing the brake element 1 against the guide rail 7 is reduced by a thickness corresponding to half the thickness of the rubber-like region, an example of a normal one-stage emergency stop device is taken as an example. When the elastic body 10 having a stopping friction coefficient ≈ 4 x braking start friction coefficient and a spring constant of 100 to 150 kN / mm is applied, the maximum deceleration immediately before stopping can be suppressed by about 15%. Obtained.

以上のように、熱によって変形量が急激に変化する緩衝部材5を摩擦材3の裏面に備えた制動子1にすることで、摩擦材3とガイドレール7の面当たりを均一にして安定した制動力を発揮しながら停止間際には緩衝部材5が大きく変形してばね力を抑え過大減速度を抑えて停止できる信頼性の高いものとすることができる。   As described above, by using the shock absorber 1 provided on the back surface of the friction material 3 as the shock absorber 5 whose deformation amount is rapidly changed by heat, the contact between the friction material 3 and the guide rail 7 is made uniform and stable. While exhibiting the braking force, the shock-absorbing member 5 is greatly deformed just before stopping, and the spring force is suppressed and excessive deceleration is suppressed, so that it can be highly reliable.

なお、緩衝部材5である樹脂材がガラス転移点を越えてゴム状になった領域は、変形が発生し、非常停止後にその変形が残る可能性がある。しかし本実施例ではこの変形が戻らなくてもさらに1回またはそれ以上の性能を確保できる。上述のように、緩衝部材5の全領域で変形が発生しているわけではないので、再度非常止め装置6が動作した場合でも一度変形した領域がガラス転移点を越えた場合には再度ゴム状になることができる上、変形により厚さが変化し、新たに未変形の部分までガラス転移点を越えた場合には、この未変形の部分もゴム状となって上述の効果を奏することができるからである。このように本発明では非常止め装置が2回以上動作可能に構成することが好適である。   In addition, the region where the resin material that is the buffer member 5 becomes rubbery beyond the glass transition point may be deformed, and the deformation may remain after an emergency stop. However, in this embodiment, even if this deformation does not return, one or more performances can be secured. As described above, since deformation does not occur in the entire region of the buffer member 5, even when the emergency stop device 6 is operated again, if the region once deformed exceeds the glass transition point, it is again rubber-like. In addition, when the thickness changes due to deformation and the glass transition point is newly exceeded to the undeformed portion, the undeformed portion also becomes rubbery and exhibits the above-described effects. Because it can. Thus, in the present invention, it is preferable that the emergency stop device is configured to be operable twice or more.

また、上述のような動作を行い得る性能を確保するために、摩擦材3としては制動開始初期には緩衝部材5のガラス転移温度を超える温度を緩衝部材5までには伝えず、制動後期に緩衝部材5のガラス転移温度を超える温度を緩衝部材5に伝えるような熱伝導率を有する材料を選定し、上述の機能を発揮可能な厚さに調整するのがよい。   Further, in order to ensure the performance capable of performing the above-described operation, the friction material 3 does not transmit the temperature exceeding the glass transition temperature of the buffer member 5 to the buffer member 5 at the beginning of braking, but in the late stage of braking. It is preferable to select a material having a thermal conductivity that transmits a temperature exceeding the glass transition temperature of the buffer member 5 to the buffer member 5 and to adjust the thickness so that the above function can be exhibited.

さらに、上述のような動作を行い得る性能を確保するために、緩衝部材5としてはガラス転移温度を超える温度が摩擦材3から伝えられても、1度の非常停止動作中に全領域にガラス転移温度を超える温度が伝わらないような熱伝導率を有する材料を選定し、上述の機能を発揮可能な厚さに調整するのがよい。   Further, in order to ensure the performance capable of performing the above-described operation, even if a temperature exceeding the glass transition temperature is transmitted from the friction material 3 as the buffer member 5, the glass is applied to the entire region during one emergency stop operation. It is preferable to select a material having a thermal conductivity such that a temperature exceeding the transition temperature is not transmitted, and to adjust the thickness so as to exhibit the above-described function.

なお、図7を用いて摩擦材3とガイドレール7の面当たりの均一化について、緩衝部材5の弾性変形により対応することを説明した。しかし本実施形態では、もし緩衝部材5弾性変形のみで十分な均一化が図れないほど大きな不均一が生じたものであっても、強く当たる摩擦材3の摩擦による温度上昇が大きくなり、強く当たる摩擦材3に当接する緩衝部材5からガラス転移温度を超えて行き、このような変形によっても摩擦材3とガイドレールの面あたりを均一化に貢献できる。したがって、本実施形態によれば、より良好な摩擦材3とガイドレールの面当たりの均一化を図ることができる。   It has been described with reference to FIG. 7 that the frictional member 3 and the guide rail 7 are made uniform per surface by elastic deformation of the buffer member 5. However, in this embodiment, even if the buffer member 5 has a large non-uniformity that cannot be sufficiently uniformed only by elastic deformation, the temperature rise due to the friction of the friction material 3 that strikes strongly increases and strikes strongly. The buffer member 5 in contact with the friction material 3 goes beyond the glass transition temperature, and such deformation can also contribute to uniformizing the friction material 3 and the surface of the guide rail. Therefore, according to the present embodiment, it is possible to make the friction material 3 and the guide rail per surface more uniform.

以上説明したように、緩衝部材5は温度と力を受けた際の変形量の変化の関係において、所定の温度で変曲点を有するため、摩擦材3とガイドレール7の面当たりを均一にしつつ、通常のエレベーターはもとより高速、大容量の仕様でも安定して制動力を発生し、停止間際の過大減速度を抑えて乗客の負担を与えないようにすることができる高い信頼性の非常止め装置及びエレベーターを得ることができる。   As described above, since the buffer member 5 has an inflection point at a predetermined temperature in the relationship between the change in deformation amount when subjected to temperature and force, the contact between the friction material 3 and the guide rail 7 is made uniform. On the other hand, high-speed, large-capacity specifications as well as normal elevators can generate stable braking force and suppress excessive deceleration just before stopping so that passengers are not burdened with high reliability. Equipment and elevators can be obtained.

また、緩衝部材5は温度と弾性率の変化の関係において、所定の温度で弾性率の変化に変曲点を有するものであれば、上述の効果に加え、元に戻ろうとする力も保持できるため複数回の非常止め動作の性能確保により良好に貢献できる。   In addition to the above-described effects, the buffer member 5 can retain the force to return to the original as long as it has an inflection point in the change in elastic modulus at a predetermined temperature in the relationship between the change in temperature and the elastic modulus. It can contribute well by securing the performance of multiple emergency stop actions.

さらに緩衝部材5は、ガラス転移点を有する樹脂材であり、ガラス転移点が変曲点となる所定の温度であれば、物性の変化により上述の効果を得ることができる上、樹脂が破壊される融点等ではないので、性能が劣化を抑えることができる。   Further, the buffer member 5 is a resin material having a glass transition point. If the glass transition point is a predetermined temperature at which the inflection point is obtained, the above-described effects can be obtained by changes in physical properties, and the resin is destroyed. Since the melting point is not, for example, the performance can be prevented from deteriorating.

1 制動子
2 支持体
3 摩擦材
4 締結板
5 緩衝部材
6 非常止め装置
7 ガイドレール
DESCRIPTION OF SYMBOLS 1 Braking element 2 Support body 3 Friction material 4 Fastening plate 5 Buffer member 6 Emergency stop device 7 Guide rail

Claims (3)

昇降路に設置されたガイドレールに制動子を押し付けて摺動することで制動力を発生さ
せ、エレベーターの乗りかごを停止させるエレベーター用非常止め装置において、
前記制動子にガイドレールへの押付力を与える弾性部材と、前記制動子に前記ガイドレ
ールに対向して配された摩擦材と、前記摩擦材を支持する支持体と、前記摩擦材と前記支
持体との間に配置された緩衝部材を備え、
前記緩衝部材は温度と力を受けた際の変形量の変化の関係において、所定の温度で変曲
点を有し、
前記緩衝部材と前記支持体との間に空隙を備え、前記緩衝部材の剛性は前記摩擦材の剛性よりも低い
ことを特徴とするエレベーター用非常止め装置。
In the emergency stop device for elevators, which generates braking force by sliding the brakes against the guide rails installed in the hoistway to stop the elevator car,
An elastic member that applies a pressing force to the guide rail to the brake element; a friction material that is disposed on the brake element so as to oppose the guide rail; a support that supports the friction material; and the friction material and the support Comprising a cushioning member disposed between the body and
The buffer member has an inflection point at a predetermined temperature in the relationship of change in deformation amount when subjected to temperature and force,
An elevator emergency stop device comprising a gap between the cushioning member and the support, wherein the stiffness of the cushioning member is lower than the stiffness of the friction material .
請求項1に記載のエレベーター用非常止め装置において、
前記緩衝部材は前記摩擦材の面の内前記ガイドレールに対抗する面の背面に設けられ、
前記緩衝部材は前記摩擦材よりも小さい、
ことを特徴とするエレベーター用非常止め装置。
The elevator emergency stop device according to claim 1,
The buffer member is provided on the back surface of the surface of the friction material facing the guide rail,
The buffer member is smaller than the friction material,
An emergency stop device for elevators.
請求項2に記載のエレベーター用非常止め装置において、前記制動子は前記摩擦材と前記緩衝部材をそれぞれ複数備えることを特徴とするエレベーター用非常止め装置。 3. The elevator emergency stop device according to claim 2, wherein the brake element includes a plurality of the friction members and the buffer members .
JP2013139390A 2013-07-03 2013-07-03 Emergency stop device and elevator Active JP6129662B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013139390A JP6129662B2 (en) 2013-07-03 2013-07-03 Emergency stop device and elevator
CN201410305313.8A CN104276477B (en) 2013-07-03 2014-06-30 Emergency braking apparatus and elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139390A JP6129662B2 (en) 2013-07-03 2013-07-03 Emergency stop device and elevator

Publications (2)

Publication Number Publication Date
JP2015013696A JP2015013696A (en) 2015-01-22
JP6129662B2 true JP6129662B2 (en) 2017-05-17

Family

ID=52251903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139390A Active JP6129662B2 (en) 2013-07-03 2013-07-03 Emergency stop device and elevator

Country Status (2)

Country Link
JP (1) JP6129662B2 (en)
CN (1) CN104276477B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422396B2 (en) * 2015-05-21 2018-11-14 三菱電機株式会社 Elevator emergency stop device
CN107311007B (en) * 2017-08-02 2023-11-24 广东英伦快客电梯有限责任公司 Safety tongs and elevator assembly
JP7061056B2 (en) * 2018-11-29 2022-04-27 株式会社日立製作所 Emergency stop device
CN115258875A (en) * 2022-07-25 2022-11-01 苏州德奥电梯有限公司 Elevator safety gear and using method
US20240101392A1 (en) * 2022-09-27 2024-03-28 Otis Elevator Company Elevator system safety brake

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351434A (en) * 1986-08-20 1988-03-04 Mitsubishi Petrochem Co Ltd Prepreg for printed circuit board
JPH06320696A (en) * 1993-05-14 1994-11-22 Matsushita Electric Works Ltd Manufacture of epoxy resin laminated plate
JP3370141B2 (en) * 1993-06-19 2003-01-27 英介 山田 Epoxy resin composition and method for producing the same
JP2803974B2 (en) * 1993-07-30 1998-09-24 三菱電機株式会社 Elevator emergency stop device
JPH11217167A (en) * 1997-11-06 1999-08-10 Otis Elevator Co Safety brake of elevator
US6371261B1 (en) * 1997-11-06 2002-04-16 Otis Elevator Company Molybdenum alloy elevator safety brakes
JP3945927B2 (en) * 1998-12-25 2007-07-18 東芝エレベータ株式会社 Brake shoe for elevator emergency stop device, emergency stop device for elevator and elevator with emergency stop function
JP2001192184A (en) * 2000-01-11 2001-07-17 Toshiba Corp Elevator emergency stop device
US20070240941A1 (en) * 2005-12-21 2007-10-18 Daniel Fischer Brake shoe for use in elevator safety gear
JP5361696B2 (en) * 2009-12-18 2013-12-04 三菱電機株式会社 Elevator emergency stop device
JP2012188246A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Emergency stop device for elevator
JP5374541B2 (en) * 2011-04-28 2013-12-25 株式会社日立製作所 Elevator emergency stop brake, elevator emergency stop device and elevator

Also Published As

Publication number Publication date
CN104276477B (en) 2017-07-18
JP2015013696A (en) 2015-01-22
CN104276477A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP6129662B2 (en) Emergency stop device and elevator
JP5361696B2 (en) Elevator emergency stop device
CN101200259B (en) Braking device for holding and braking a lift cabin in a lift facility and method for holding and braking a lift facility
CN102756961B (en) An emergency stop device for elevators, a brake component, and an elevator
JPWO2007102211A1 (en) Elevator emergency stop device
JP2014065591A (en) Elevator including emergency stop device
JP5818810B2 (en) Elevator brake device
JP6505249B2 (en) Safety device for elevator car
JP2015009981A (en) Elevator
JP2008297108A (en) Emergency stop device for elevator
JP2015168486A (en) Elevator emergency stop device
CN104271485A (en) Customized friction for brakes
JP5603755B2 (en) Elevator equipment
JP2012066908A (en) Emergency stop device and elevator using the same
JP3611543B2 (en) Elevator emergency stop device
WO2013186869A1 (en) Elevator emergency stop device
JP4594803B2 (en) Elevator emergency stop device
JP2017030940A (en) Brake device, hoisting machine and elevator device
TW200932652A (en) Rear-end collision brake for two independently proceeding elevators
JP4779629B2 (en) Elevator and emergency stop device used for it
JP2016064893A (en) Emergency stop device for elevator
JP5810015B2 (en) Elevator with safety device
CN111392542B (en) Bidirectional safety tongs
JP2007045587A (en) Elevator emergency stop device
JP3945927B2 (en) Brake shoe for elevator emergency stop device, emergency stop device for elevator and elevator with emergency stop function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150