JP6126061B2 - Distributed plant cultivation system and method - Google Patents

Distributed plant cultivation system and method Download PDF

Info

Publication number
JP6126061B2
JP6126061B2 JP2014211049A JP2014211049A JP6126061B2 JP 6126061 B2 JP6126061 B2 JP 6126061B2 JP 2014211049 A JP2014211049 A JP 2014211049A JP 2014211049 A JP2014211049 A JP 2014211049A JP 6126061 B2 JP6126061 B2 JP 6126061B2
Authority
JP
Japan
Prior art keywords
led
circuit
dimming
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014211049A
Other languages
Japanese (ja)
Other versions
JP2016081684A (en
Inventor
博之 渡邊
博之 渡邊
仁英 宇佐見
仁英 宇佐見
雄三 村井
雄三 村井
啓二 佐藤
啓二 佐藤
山口 哲司
哲司 山口
萩谷 宏三
宏三 萩谷
泰平 大嶋
泰平 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMAGAWA ACADEMY & UNIVERSITY
Nishimatsu Construction Co Ltd
Original Assignee
TAMAGAWA ACADEMY & UNIVERSITY
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMAGAWA ACADEMY & UNIVERSITY, Nishimatsu Construction Co Ltd filed Critical TAMAGAWA ACADEMY & UNIVERSITY
Priority to JP2014211049A priority Critical patent/JP6126061B2/en
Publication of JP2016081684A publication Critical patent/JP2016081684A/en
Application granted granted Critical
Publication of JP6126061B2 publication Critical patent/JP6126061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、植物工場における植物栽培用LED照明に適用可能な分散型植物栽培システム及び方法に関する。   The present invention relates to a distributed plant cultivation system and method applicable to LED lighting for plant cultivation in a plant factory.

従来の植物工場における栽培システムの構成を図15に示す。同図に示すように、従来の栽培システムは、電源回路としての直流安定化電源と、照明回路としての複数の栽培用LEDと、栽培用LEDを調光する調光回路を備えて構成されている。   The structure of the cultivation system in the conventional plant factory is shown in FIG. As shown in the figure, the conventional cultivation system is configured to include a direct current stabilized power supply as a power supply circuit, a plurality of cultivation LEDs as lighting circuits, and a dimming circuit for dimming the cultivation LEDs. Yes.

直流安定化電源は、図16に示すようにスイッチング方式の電源回路であって、商用電源から入力された交流電圧を整流平滑回路で整流し、電解コンデンサで脈流を平滑化する。そして、スイッチング回路、高周波トランス、整流平滑回路からなる安定化回路で電圧変動を取り除き、安定化した直流電圧を栽培用LEDに出力してLEDを点灯させるようになっている。   The DC stabilized power supply is a switching type power supply circuit as shown in FIG. 16, and rectifies an AC voltage input from a commercial power supply by a rectifying and smoothing circuit and smoothes a pulsating current by an electrolytic capacitor. And a voltage fluctuation is removed with the stabilization circuit which consists of a switching circuit, a high frequency transformer, and a rectification smoothing circuit, the stabilized DC voltage is output to LED for cultivation, and LED is lighted.

調光回路は、図17に示すようにD/A変換回路と電流制御回路からなり、調光回路に入力されたデジタルの調光信号をD/A変換回路でアナログに変換して出力する。また、出力されたアナログの調光信号に基づいて、電流制御回路でLED両端の直流電圧を変換することでLEDの光量を制御し、栽培用LEDを調光するようになっている。   As shown in FIG. 17, the dimming circuit includes a D / A conversion circuit and a current control circuit. The digital dimming signal input to the dimming circuit is converted into analog by the D / A conversion circuit and output. Further, based on the output analog dimming signal, the current control circuit converts the direct current voltage across the LED to control the light quantity of the LED, thereby dimming the cultivation LED.

なお、このような直流安定化電源を使用した栽培システムとして、下記の特許文献に開示された植物栽培用LED照明システムが知られている。   In addition, the LED lighting system for plant cultivation disclosed by the following patent document is known as a cultivation system using such a direct-current stabilized power supply.

特開2009−171857号公報JP 2009-171857 A

ところが、前記のような従来の栽培システムによると、以下のような問題点があった。   However, the conventional cultivation system as described above has the following problems.

電源回路において、電解コンデンサや安定化回路等多くの部品を使用したスイッチング方式の直流安定化電源を使用しているため、電源が高価であり、かつ、寿命が短くなる。また、電源回路にジュール熱が発生するため、図16に示すように冷却ファン等の設備が別途必要となり、システム全体が大型化する。さらに、電源回路が集中型であるため、電源回路と負荷の栽培用LEDとの間の距離が長くなり、しかも電源回路が故障した場合にはシステム全体を停止しなければならず、生産性に支障を来す恐れがある。   In the power supply circuit, a switching type DC stabilized power supply using many components such as an electrolytic capacitor and a stabilization circuit is used. Therefore, the power supply is expensive and the life is shortened. Further, since Joule heat is generated in the power supply circuit, a facility such as a cooling fan is separately required as shown in FIG. 16, and the entire system is enlarged. Furthermore, since the power supply circuit is a centralized type, the distance between the power supply circuit and the load cultivation LED becomes long, and if the power supply circuit breaks down, the entire system must be stopped. There is a risk of hindrance.

調光回路において、LED両端の直流電圧を変換して調光しているため、変換による調光ロスが発生するとともに、消費電力が減少すると変換効率が悪くなってしまう。また、LED両端の電圧が直流であるため、負荷の栽培用LEDに流れる電流を検出するのが難しく、植物工場全体の管理をシステム化することができない。   In the dimming circuit, dimming is performed by converting the DC voltage across the LED, so dimming loss due to the conversion occurs and conversion efficiency deteriorates when power consumption decreases. In addition, since the voltage across the LED is a direct current, it is difficult to detect the current flowing through the load cultivation LED, and the management of the entire plant factory cannot be systemized.

栽培は光量ONの時間帯と光量OFFの時間帯の組み合わせで構成されているが、光量OFFの時間帯はメインの電源スイッチをOFFせずに調光回路により光量をOFFしているため、待機電力ロスが発生する。また、栽培工場内の空調は、暖房時は栽培用LEDの発熱でまかなえるが、冷房時には電源の変換ロス、調光ロス、待機電力ロス、LED発熱等の要因により空調電力の増加を招いている。   Cultivation is composed of a combination of a light intensity ON time period and a light intensity OFF time period, but in the light intensity OFF time period, the light intensity is turned off by the dimming circuit without turning off the main power switch. A power loss occurs. In addition, the air conditioning in the cultivation factory can be covered by the heat generated by the cultivation LED during heating, but during cooling the air conditioning power is increased due to factors such as power conversion loss, dimming loss, standby power loss, and LED heat generation. .

そこで、本発明はこのような問題を解決するためになされたものであり、その目的とするところは、低コストかつ高寿命で植物工場全体の管理を効率良くシステム化することができる分散型植物栽培システム及び方法を提供することにある。   Therefore, the present invention has been made to solve such problems, and the object of the present invention is to provide a distributed plant capable of efficiently systemizing management of the entire plant factory at a low cost and with a long life. It is to provide a cultivation system and method.

前記の目的を達成するため、本発明は、一定のエリアごとに分散して配置される複数の電源調光ユニットを備え、各電源調光ユニットによりパルス調光されたLED光を照射して植物を栽培する分散型植物栽培システムであって、前記電源調光ユニットは、三相交流電源の各相に接続され、絶縁トランスを介して入力された各相の交流電圧を全波整流する三相全波整流回路と、前記三相全波整流回路に接続され、全波整流された脈流により点灯する赤色LED、緑色LED、及び青色LEDからなる3色LED照明回路と、前記3色LED照明回路に接続され、PWM制御された調光信号に基づいて前記3色LED照明回路に出力される電流をON/OFFし、前記赤色LED、前記緑色LED、及び前記青色LEDを個別にパルス調光するパルス調光回路と、を備えて構成されていることを特徴とする。   In order to achieve the above object, the present invention includes a plurality of power supply dimming units arranged in a distributed manner for each predetermined area, and irradiates LED light pulse-dimmed by each power supply dimming unit to produce a plant. Is a distributed plant cultivation system, wherein the power supply dimming unit is connected to each phase of a three-phase AC power source, and three-phase rectifies the AC voltage of each phase input via an insulation transformer. A full-wave rectifier circuit, a three-color LED illumination circuit connected to the three-phase full-wave rectifier circuit and lit by a full-wave rectified pulsating current, and composed of a red LED, a green LED, and a blue LED; Based on a PWM-controlled dimming signal, the current output to the three-color LED lighting circuit is turned on / off, and the red LED, the green LED, and the blue LED are individually pulsed dimmed Do Characterized in that it is configured with a pulse dimming circuit.

また、前記構成からなる分散型植物栽培システムにおいて、前記3色LED照明回路と前記パルス調光回路との間に配置された検出コイルにより、前記赤色LED、前記緑色LED、及び前記青色LEDに流れる電流を非接触で検出する電流検出回路を更に備えていても良い。   Moreover, in the distributed plant cultivation system having the above-described configuration, the detection coil disposed between the three-color LED illumination circuit and the pulse dimming circuit flows through the red LED, the green LED, and the blue LED. You may further provide the electric current detection circuit which detects an electric current non-contactingly.

また、前記構成からなる分散型植物栽培システムにおいて、前記調光信号の周波数が10Hz〜2kHzの範囲内に制限されていることが好ましい。   In the distributed plant cultivation system having the above-described configuration, it is preferable that the frequency of the dimming signal is limited to a range of 10 Hz to 2 kHz.

また、前記構成からなる分散型植物栽培システムにおいて、前記3色LED照明回路に流れる最大電流を制限する電流制限回路を更に備えていても良い。   Moreover, the distributed plant cultivation system having the above-described configuration may further include a current limiting circuit that limits a maximum current flowing through the three-color LED lighting circuit.

また、前記構成からなる分散型植物栽培システムにおいて、前記三相交流電源の各相の交流電圧を分割、低電圧化して出力する三相電圧分割トランスを更に備えていても良い。   The distributed plant cultivation system having the above-described configuration may further include a three-phase voltage dividing transformer that divides and lowers the AC voltage of each phase of the three-phase AC power source and outputs the divided voltage.

また、本発明は、複数の電源調光ユニットを一定のエリアごとに分散して配置し、前記複数の電源調光ユニットの各々により、三相交流電源から絶縁トランスを介して入力された各相の交流電圧を全波整流し、前記全波整流された脈流により点灯する赤色LED、緑色LED、及び青色LEDからなる3色LED照明回路を駆動し、前記3色LED照明回路を駆動する電流をPWM制御された調光信号に基づいてON/OFFすることにより、前記赤色LED、前記緑色LED、及び前記青色LEDを個別にパルス調光したLED光を照射して植物を栽培することを特徴とする分散型植物栽培方法を提供するものである。   Further, the present invention provides a plurality of power supply dimming units distributed in a certain area, and each phase input from a three-phase AC power supply via an isolation transformer by each of the plurality of power supply dimming units. Current of the three-color LED lighting circuit is driven by driving the three-color LED lighting circuit composed of the red LED, the green LED, and the blue LED that are lit by the full-wave rectified pulsating current. The plant is cultivated by irradiating LED light obtained by individually pulse-modulating the red LED, the green LED, and the blue LED by turning on / off a PWM-controlled dimming signal. A distributed plant cultivation method is provided.

本発明の分散型植物栽培システム及び方法によれば、以下のような効果が得られる。   According to the distributed plant cultivation system and method of the present invention, the following effects can be obtained.

電源調光ユニットを分散することにより、電源を標準化することができ、設備のコストダウンを図ることができる。また、電源を分散・標準化することにより、予備電源を用意しておくことが可能になり、栽培規模の拡大や栽培種の追加等にも迅速に対応することができる。   By distributing the power supply dimming units, the power supply can be standardized, and the cost of the equipment can be reduced. Further, by distributing and standardizing the power supply, it becomes possible to prepare a standby power supply, and it is possible to quickly cope with the expansion of cultivation scale, addition of cultivated species, and the like.

電源回路において、絶縁トランスとダイオードを使用し、従来のような電解コンデンサや安定化回路等の高価な部品を使用していないため、低コストかつ高寿命なシステムを提供することができる。また、電源回路にジュール熱が発生しないため、冷却ファン等の設備が不要になり、システム全体を小型化することができ、電源の移動や設置場所の制約が少なくなる。   Since the power supply circuit uses an insulating transformer and a diode and does not use expensive parts such as conventional electrolytic capacitors and stabilization circuits, a low-cost and long-life system can be provided. Further, since no Joule heat is generated in the power supply circuit, equipment such as a cooling fan is not required, the entire system can be reduced in size, and restrictions on the movement of the power supply and the installation location are reduced.

調光回路において、絶縁トランスで降圧してパルス調光するため、従来のような変換による調光ロスが発生しない。また、パルス調光することにより、回路各部やLEDに流れる電流を非接触で検出することが可能になり、電流や光量等を制御しやすくなり、全体をシステム化することができる。さらに、光量データ等から栽培植物の生育状態等を全体としてコンピュータ制御することにより、植物工場全体の省エネ化、省人化を図ることができる。   In the dimming circuit, the pulse dimming is performed by stepping down with an insulating transformer, so that there is no dimming loss due to the conventional conversion. Further, by performing pulse dimming, it becomes possible to detect the current flowing in each part of the circuit and the LED in a non-contact manner, and it becomes easy to control the current, the light amount, etc., and the entire system can be systemized. Further, by controlling the growth state of the cultivated plant as a whole from the light amount data and the like, energy saving and manpower saving of the whole plant factory can be achieved.

本発明に係る分散型植物栽培システムの一例を示す概略図である。It is the schematic which shows an example of the distributed plant cultivation system which concerns on this invention. 同システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the system. 同システムにおける電源調光ユニットの構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply light control unit in the system. 同システムにおける調光信号発生器の構成を示す回路図である。It is a circuit diagram which shows the structure of the light control signal generator in the same system. 同システムにおける調光信号発生器の出力波形図である。It is an output waveform figure of the light control signal generator in the system. 同システムにおける電源回路の変形例を示す機能ブロック図である。It is a functional block diagram which shows the modification of the power supply circuit in the system. 同システムにおける電圧分割トランスの構成を示す回路図である。It is a circuit diagram which shows the structure of the voltage division | segmentation transformer in the same system. 栽培実験におけるEVD電源とDC電源の消費電力を比較した表である。It is the table | surface which compared the power consumption of EVD power supply and DC power supply in a cultivation experiment. 栽培実験1におけるEVD試験区の苗とDC試験区の苗の様子を示す写真である。It is a photograph which shows the mode of the seedling of the EVD test section in the cultivation experiment 1, and the seedling of the DC test section. 栽培実験1における草丈、根長、株の最大径、新鮮重量、SPAD値の測定結果を示す表である。It is a table | surface which shows the measurement result of the plant height in the cultivation experiment 1, a root length, the maximum diameter of a strain | stump | stock, a fresh weight, and a SPAD value. 栽培実験1における可食部新鮮重量を比較したグラフ図である。It is the graph which compared the edible part fresh weight in the cultivation experiment 1. FIG. 栽培実験2におけるEVD試験区の苗の様子を示す写真である。It is a photograph which shows the mode of the seedling of the EVD test section in the cultivation experiment 2. FIG. 栽培実験2における草丈、根長、株の最大径、新鮮重量、SPAD値の測定結果を示す表である。It is a table | surface which shows the measurement result of the plant height in the cultivation experiment 2, a root length, the maximum diameter of a strain | stump | stock, a fresh weight, and a SPAD value. 栽培実験2における可食部新鮮重量を比較したグラフ図である。It is the graph which compared the edible part fresh weight in the cultivation experiment 2. FIG. 従来の植物栽培システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the conventional plant cultivation system. 従来のシステムにおける直流安定化電源の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the direct current | flow stabilized power supply in the conventional system. 従来のシステムにおける調光回路の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the light control circuit in the conventional system.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の分散型植物栽培システム1は、閉鎖型の植物工場における植物栽培用LED照明に適用可能なシステムであり、複数個の電源調光ユニット2,2,…を備えていることが特徴である。電源調光ユニット2は、一定のエリアごと、例えば多段型の栽培棚3の一列に1個ずつ分散して配置されており、それぞれの電源調光ユニット2で調光されたLED光を照射し、各段の棚上に植栽された植物を栽培するように構成されている。なお、図1では本システム1を薄膜水耕(NFT)の栽培棚3に適用したが、これに代えて、湛液型水耕(DFT)装置に適用することも可能である。   As shown in FIG. 1, the distributed plant cultivation system 1 of this embodiment is a system applicable to LED lighting for plant cultivation in a closed type plant factory, and includes a plurality of power source dimming units 2, 2,. It is characterized by having. The power source dimming units 2 are arranged in a certain area, for example, one in a row in the multi-stage cultivation shelf 3, and irradiate the LED light dimmed by each power source dimming unit 2. It is configured to cultivate plants planted on each stage shelf. In FIG. 1, the present system 1 is applied to the thin-film hydroponics (NFT) cultivation shelf 3, but it is also possible to apply the system 1 to a submerged hydroponic (DFT) apparatus.

この分散型植物栽培システム1によれば、複数個の電源調光ユニット2,2,…を分散配置することで電源装置を標準化することが可能になる。また、電源装置を分散・標準化することによって、設備のコストダウンを図ることができるとともに、予備電源を用意しておくことが可能になり、栽培規模の拡大や栽培種の追加等にも迅速に対応することができる。   According to this distributed plant cultivation system 1, it is possible to standardize a power supply device by distributing a plurality of power supply light control units 2, 2,. In addition, by decentralizing and standardizing the power supply device, it is possible to reduce the cost of the equipment and to prepare a spare power supply. Can respond.

図2に示すように、分散型植物栽培システム1は三相交流電源4に接続されており、三相交流電源4からの交流電圧が、ユニット化された各電源調光ユニット2,2,…に供給される。供給された交流電圧は三相全波整流回路5で直流電圧に変換されて3色LED照明回路6に出力され、赤色、緑色、青色の3色のLEDを点灯させる。   As shown in FIG. 2, the distributed plant cultivation system 1 is connected to a three-phase AC power supply 4, and the AC voltage from the three-phase AC power supply 4 is converted into unitized power supply dimming units 2, 2,. To be supplied. The supplied AC voltage is converted into a DC voltage by the three-phase full-wave rectifier circuit 5 and output to the three-color LED illumination circuit 6 to light up the three-color LEDs of red, green, and blue.

また、電源調光ユニット2には調光信号発生器9が接続されており、コンピュータ10からの指令に基づいて調光信号発生器9で生成された調光信号が電源調光ユニット2に入力される。電源調光ユニット2では、入力された調光信号に基づいて3色LED照明回路6に流れる電流を直接ON/OFFし、赤色、緑色、青色の3色のLEDが個別に調光される。なお、3色LED照明回路6に流れる電流値は、電流検出回路8で検出される。   A dimming signal generator 9 is connected to the power dimming unit 2, and a dimming signal generated by the dimming signal generator 9 based on a command from the computer 10 is input to the power dimming unit 2. Is done. In the power supply dimming unit 2, the current flowing through the three-color LED illumination circuit 6 is directly turned on / off based on the input dimming signal, and the red, green, and blue LEDs are individually dimmed. Note that the current value flowing through the three-color LED illumination circuit 6 is detected by the current detection circuit 8.

図3に示すように、電源調光ユニット2は、三相全波整流回路5と、3色LED照明回路6と、パルス調光回路7と、電流検出回路8を備えて構成されている。   As shown in FIG. 3, the power supply dimming unit 2 includes a three-phase full-wave rectifier circuit 5, a three-color LED illumination circuit 6, a pulse dimming circuit 7, and a current detection circuit 8.

三相全波整流回路5は、位相が互いに120°ずれたU相、V相、W相の三系統の交流からなる三相交流電源4に対し、U−V相、V−W相、W−U相のそれぞれに接続された三相の絶縁トランス11を有する。この三相の絶縁トランス11の出力側には、それぞれ図のように結線されたダイオードブリッジ型の全波整流回路12が接続されており、各相の交流電圧を全波整流して出力する。本実施形態では、電源を絶縁トランス11と全波整流回路12で構成することにより、電解コンデンサや安定化回路等の高価な部品を使用していないため、低コストで高寿命な電源回路とすることができる。また、従来の直流安定化電源に比べて消費電力を削減することも可能となり、しかも負荷の大小に関わらず変換効率が変化しない。   The three-phase full-wave rectifier circuit 5 is provided with a U-V phase, a V-W phase, a W-phase, and a three-phase AC power source 4 composed of three phases of U-phase, V-phase, and W-phase. A three-phase insulating transformer 11 is connected to each of the U phases. A diode bridge type full-wave rectifier circuit 12 connected as shown in the figure is connected to the output side of the three-phase isolation transformer 11, and the AC voltage of each phase is full-wave rectified and output. In this embodiment, since the power source is constituted by the insulating transformer 11 and the full-wave rectifier circuit 12, since expensive parts such as an electrolytic capacitor and a stabilizing circuit are not used, a low-cost and long-life power circuit is obtained. be able to. In addition, it becomes possible to reduce power consumption as compared with a conventional DC stabilized power supply, and the conversion efficiency does not change regardless of the load.

三相全波整流回路5には、3色LED照明回路6が接続されている。3色LED照明回路6は、赤色LED13、緑色LED14、及び青色LED15をそれぞれ複数個ずつ直列接続してなる3列のLEDモジュールからなり、三相全波整流回路5で全波整流された脈流により点灯する。   A three-color LED illumination circuit 6 is connected to the three-phase full-wave rectifier circuit 5. The three-color LED illumination circuit 6 is composed of three rows of LED modules in which a plurality of red LEDs 13, green LEDs 14, and blue LEDs 15 are connected in series, and the pulsating current is full-wave rectified by the three-phase full-wave rectifier circuit 5. Lights by.

3色LED照明回路6には、電流検出回路8を介してパルス調光回路7が接続されている。パルス調光回路7は、調光信号発生器9に接続されたON/OFF回路16と、LEDモジュールに接続された最大電流制限回路17を備えて構成されている。   A pulse dimming circuit 7 is connected to the three-color LED illumination circuit 6 via a current detection circuit 8. The pulse dimming circuit 7 includes an ON / OFF circuit 16 connected to the dimming signal generator 9 and a maximum current limiting circuit 17 connected to the LED module.

ON/OFF回路16は、電流制限抵抗R1とフォトカプラからなり、調光信号発生器9から出力されるパルス信号に応じて、電流制限抵抗R1に流れる電流が制限値を超えると発光素子のダイオードDが点灯して受光素子のフォトトランジスタQ1がONし、制限値よりも低いとダイオードDが消灯してフォトトランジスタQ1がOFFする。これにより、各色のLEDモジュールへ出力される電流のONとOFFが切り替えられる。   The ON / OFF circuit 16 includes a current limiting resistor R1 and a photocoupler. When the current flowing through the current limiting resistor R1 exceeds the limit value in accordance with the pulse signal output from the dimming signal generator 9, a diode of the light emitting element is formed. When D is turned on and the phototransistor Q1 of the light receiving element is turned on, and when lower than the limit value, the diode D is turned off and the phototransistor Q1 is turned off. Thereby, ON / OFF of the electric current output to the LED module of each color is switched.

最大電流制限回路17は、バイアス抵抗R2、電界効果トランジスタ(FET)Q2、トランジスタQ3、及び電流制限抵抗R3からなり、電流制限抵抗R3に流れる電流が制限値を超えるとトランジスタQ3がONし、電界効果トランジスタQ2がOFFする。これにより、3色LED照明回路6への電流の供給が遮断され、各色のLEDモジュールに流れる電流の最大値が制限される。   The maximum current limiting circuit 17 includes a bias resistor R2, a field effect transistor (FET) Q2, a transistor Q3, and a current limiting resistor R3. When the current flowing through the current limiting resistor R3 exceeds a limit value, the transistor Q3 is turned on, The effect transistor Q2 is turned OFF. Thereby, the supply of current to the three-color LED lighting circuit 6 is cut off, and the maximum value of the current flowing through the LED module of each color is limited.

また、本実施形態の調光信号発生器9は、図4に示すようにPWM(パルス幅変調)制御によるパルス調光方式を採用しており、三角波発生回路18と、可変抵抗VRと、コンパレータUとからなる。   Further, the dimming signal generator 9 of the present embodiment employs a pulse dimming method based on PWM (pulse width modulation) control as shown in FIG. 4, and includes a triangular wave generation circuit 18, a variable resistor VR, and a comparator. U.

調光信号発生器9では、三角波発生回路18から出力された三角波電圧と可変抵抗VRで分圧された基準電圧をコンパレータUで比較し、図5に示すように三角波電圧が基準電圧より高いと電源電圧Vccを出力し、低いと0Vを出力するPWM波形が生成される。そして、このPWM波形からなる調光信号(赤色調光信号、緑色調光信号、青色調光信号)をパルス調光回路7に出力し、そのデューティ比(ON時間とOFF時間の割合)を0〜100%とすることで各色のLEDの点灯時間と消灯時間を個別に調整し、その明るさを0〜100%まで制御することができる。   In the dimming signal generator 9, the triangular wave voltage output from the triangular wave generating circuit 18 and the reference voltage divided by the variable resistor VR are compared by the comparator U, and if the triangular wave voltage is higher than the reference voltage as shown in FIG. A PWM waveform is generated that outputs the power supply voltage Vcc, and outputs 0 V if it is low. Then, a dimming signal (red dimming signal, green dimming signal, blue dimming signal) composed of this PWM waveform is output to the pulse dimming circuit 7 and its duty ratio (ratio between ON time and OFF time) is 0. By setting it to ˜100%, the lighting time and turning-off time of each color LED can be individually adjusted, and the brightness can be controlled from 0 to 100%.

このように、本実施形態ではPWM制御によるパルス調光方式を採用したことにより、3色LED照明回路6に流れる電流を直接ON/OFFすることができるため、変換による調光ロスが発生しない。また、このパルス調光方式によれば、調光信号のデューティ比と光量が比例するので、デューティ比の制御によりLEDの光量を容易に管理することができる。   As described above, in the present embodiment, since the pulse dimming method based on the PWM control is adopted, the current flowing through the three-color LED illumination circuit 6 can be directly turned on / off, and thus the dimming loss due to the conversion does not occur. Further, according to this pulse dimming method, since the duty ratio of the dimming signal is proportional to the light quantity, the light quantity of the LED can be easily managed by controlling the duty ratio.

ここで、PWM波形からなる調光信号は、その周波数が10Hz(電圧100V、電流2〜10A)未満であると、植物栽培の管理者にLEDの点滅が感じられるため適していない。一方、その周波数が2kHz(電圧100V、電流2〜10A)を超えると、パルス信号で直接LED電流(2〜10A)をON/OFFするためには回路が複雑になり調光ロスが発生する。また、ON/OFF電流が大きいため、絶縁トランス11が共振して大きなノイズが発生してしまう。さらに、調光信号のデューティ比と光量が比例しなくなり、特に0〜20%、80〜100%において誤差が大きくなる。したがって、調光信号の周波数は10Hz〜2kHzの範囲内に制限されていることが好ましい。   Here, if the frequency of the dimming signal having a PWM waveform is less than 10 Hz (voltage 100 V, current 2 to 10 A), the plant cultivation manager feels blinking of the LED, which is not suitable. On the other hand, if the frequency exceeds 2 kHz (voltage 100 V, current 2 to 10 A), the circuit becomes complicated in order to directly turn on / off the LED current (2 to 10 A) with a pulse signal, and dimming loss occurs. Further, since the ON / OFF current is large, the insulation transformer 11 resonates and a large noise is generated. Further, the duty ratio of the dimming signal is not proportional to the amount of light, and the error increases especially in the range of 0 to 20% and 80 to 100%. Therefore, the frequency of the dimming signal is preferably limited to a range of 10 Hz to 2 kHz.

3色LED照明回路6とパルス調光回路7の間には、図3に示す電流検出回路8が設けられている。電流検出回路8は、強磁性体のコア材にコイルを巻いた中空の検出コイルからなり、コイルの穴に導線を通して配置することにより、赤色LED13、緑色LED14、及び青色LED15に流れる電流を非接触で検出する。そして、電源調光ユニット2,2,…ごとに検出された電流値のアナログデータは、A/D変換回路においてデジタルデータに変換され、図2に示すコンピュータ10にフィードバックされる。なお、電流検出回路8では、三相全波整流回路5の出力電圧も検出される。この検出された電圧値のアナログデータも同様に、A/D変換回路でデジタルデータに変換されてコンピュータ10に出力される。   A current detection circuit 8 shown in FIG. 3 is provided between the three-color LED illumination circuit 6 and the pulse dimming circuit 7. The current detection circuit 8 is formed of a hollow detection coil in which a coil is wound around a ferromagnetic core material, and the current flowing through the red LED 13, the green LED 14, and the blue LED 15 is contactlessly arranged by passing a lead wire through the hole of the coil. Detect with. The analog data of the current value detected for each of the power supply dimming units 2, 2,... Is converted into digital data by the A / D conversion circuit and fed back to the computer 10 shown in FIG. Note that the current detection circuit 8 also detects the output voltage of the three-phase full-wave rectification circuit 5. Similarly, the detected analog data of the voltage value is converted into digital data by the A / D conversion circuit and output to the computer 10.

このように、3色LED照明回路6をパルス調光することにより、LEDに流れる電流を非接触で検出することができる。そして、電流を非接触で検出することが可能になるので、電流や光量等を制御しやすくなり、全体をシステム化することができる。また、図2に示すように、負荷の3色LED照明回路6に流れる電流や時間等のデータを電源調光ユニット2,2,…単位で収集蓄積し、栽培植物の生育状況等を全体としてコンピュータ10で管理することにより、植物工場全体の省エネ化、省人化を図ることが可能になる。   Thus, the current flowing through the LED can be detected in a non-contact manner by performing pulse dimming on the three-color LED illumination circuit 6. And since it becomes possible to detect an electric current non-contactingly, it becomes easy to control an electric current, a light quantity, etc., and the whole can be systematized. In addition, as shown in FIG. 2, data such as current and time flowing through the three-color LED lighting circuit 6 of the load is collected and accumulated in units of power supply dimming units 2, 2,... By managing with the computer 10, energy saving and manpower saving of the whole plant factory can be achieved.

なお、本実施形態の変形例として、図6に示すように電源調光ユニット2と等電圧分配(EVD: Equal Voltage Distributor)方式の電源回路を組み合わせた構成を採用しても良い。この電源回路は、三相交流電源4の各相の交流電圧を分割、低電圧化する三相の電圧分割トランス20,20,20を備えたものである。   As a modification of the present embodiment, a configuration in which a power source dimming unit 2 and an equal voltage distribution (EVD) type power supply circuit are combined as shown in FIG. 6 may be adopted. This power supply circuit includes three-phase voltage dividing transformers 20, 20, 20 that divide and reduce the AC voltage of each phase of the three-phase AC power supply 4.

図7に示すように、三相の電圧分割トランス20はすべて単巻トランスからなり、U−V入力端子間、V−W入力端子間、W−U入力端子間にそれぞれ入力導線21を介して巻線22が直列に接続されており、巻線22の始端と終端の間の巻数が均等(図7の例では2等分)に分割され、その分割された個別巻線23の両端に出力導線24を介して絶縁トランス11が接続されている。   As shown in FIG. 7, all of the three-phase voltage dividing transformers 20 are single-winding transformers, and are respectively connected between U-V input terminals, between V-W input terminals, and between W-U input terminals via input conductors 21. The windings 22 are connected in series, and the number of turns between the starting end and the end of the winding 22 is divided equally (in two parts in the example of FIG. 7), and output to both ends of the divided individual windings 23. An insulating transformer 11 is connected via a conducting wire 24.

このため、三相交流電源4から入力されたAC200Vの交流電圧は各電圧分割トランス20,20,…により均等に2分割され、その結果AC100Vに低電圧化された交流電圧がそれぞれ絶縁トランス11,11,…を介して全波整流回路12に出力される。   For this reason, the AC voltage of AC200V input from the three-phase AC power supply 4 is equally divided into two by the voltage dividing transformers 20, 20,..., And as a result, the AC voltage reduced to AC100V is respectively converted into the isolation transformer 11, Are output to the full-wave rectifier circuit 12 via 11.

最後に、本実施形態のパルス調光が植物の生育に及ぼす影響について、栽培実験による検証に基づいて説明する。   Lastly, the effect of pulse dimming according to the present embodiment on the growth of plants will be described based on verification by cultivation experiments.

<光量と周波数、デューティ比の関係>
調光信号の周波数が5Hz,100Hz,200Hz,500Hz,1kHzの各周波数において、デューティ比を0から5%刻みで100%まで変化させたときの赤色LED、青色LED、緑色LEDでの光量を、LEDパネルの27cm下、分光放射計:MS−720(英弘精機株式会社製)で測定した。最大光量は、赤色LEDで211μmol/m-2/s-1 、青色LEDで53μmol/m-2/s-1 、緑色LEDで19μmol/m-2/s-1 であり、ほぼデューティ比に比例した値を示した。
<Relationship between light intensity, frequency, and duty ratio>
The light intensity of the red LED, blue LED, and green LED when the duty ratio is changed from 0 to 5% in increments of 5% at each frequency of 5 Hz, 100 Hz, 200 Hz, 500 Hz, and 1 kHz. Measurement was performed with a spectroradiometer: MS-720 (manufactured by Eihiro Seiki Co., Ltd.) 27 cm below the LED panel. Maximum amount of light, 211μmol / m -2 / s -1 red LED, 53μmol / m -2 / s -1 blue LED, a 19μmol / m -2 / s -1 green LED, substantially proportional to the duty ratio Showed the value.

<消費電力>
図6に示す等電圧分配(EVD)電源と、図16に示すスイッチング方式の直流安定化(DC)電源での光量を変化させたときの消費電力の比較を実施した。EVD電源は三相200V、DC電源は単相100Vであり、使用したLED素子も異なるため単純な比較はできないが、EVD電源とDC電源を等光量となる条件下で測定した電力(W)のEVD電源/DC電源比は、図8に示すように赤色LEDで62%(180μmol/m-2/s-1 )〜56%(50μmol/m-2/s-1 )、青色LED、緑色LEDでは光量に関わらずそれぞれ52%、62%前後であった。
<Power consumption>
A comparison was made of power consumption when the amount of light was changed between the equal voltage distribution (EVD) power source shown in FIG. 6 and the switching direct current stabilized (DC) power source shown in FIG. The EVD power supply is three-phase 200V, the DC power supply is single-phase 100V, and the LED elements used are different, so a simple comparison cannot be made, but the power (W) measured under the condition that the EVD power supply and the DC power supply have the same amount of light. EVD power supply / DC power supply ratio is 62% (180 μmol / m −2 / s −1 ) to 56% (50 μmol / m −2 / s −1 ), red LED, green LED as shown in FIG. However, it was around 52% and 62%, respectively, regardless of the amount of light.

<栽培実験1>
供試植物としてリーフレタス(グリーンウェーブ)を用いた。発芽後、白色蛍光灯(150μmol/m-2/s-1 、明暗期16h/8h)下の湛液型水耕(DFT)装置で13日間育苗し、薄膜水耕(NFT)装置のEVD試験区とDC試験区に定植した。定植は、50株の苗から、生育の良いもの12株(L)、遅れているもの12株(S)を選別、それぞれの試験区に12株(S+L)を割り付けた。EVD試験区の苗とDC試験区の苗の様子を図9に示す。EVD電源の周波数は500Hzとし、赤色150μmol/m-2/s-1 +青色15μmol/m-2/s-1 、DC電源も同じ光量となるように調光して明期24hで17日間の栽培をした。
<Cultivation experiment 1>
Leaf lettuce (green wave) was used as a test plant. After germination, the seedlings were raised for 13 days in a submerged hydroponic (DFT) apparatus under a white fluorescent lamp (150 μmol / m −2 / s −1 , light and dark period 16 h / 8 h), and an EVD test of a thin film hydroponic (NFT) apparatus Planted in the ward and DC test zone. For the fixed planting, 12 strains (L) with good growth and 12 strains (S) with delay were selected from 50 seedlings, and 12 strains (S + L) were assigned to each test plot. The state of the seedlings in the EVD test section and the DC test section are shown in FIG. EVD power supply frequency is 500 Hz, red 150 μmol / m −2 / s −1 + blue 15 μmol / m −2 / s −1 , and the DC power supply is dimmed so that the same light intensity is obtained, and the light period is 24 h for 17 days. Cultivated.

<栽培実験1の結果と考察>
草丈、根長、株の最大径、新鮮重量(可食部、根部)、SPAD値を測定した。その結果を図10に示す。EVD試験区とDC試験区では、草丈、根長、株の最大径、SPAD値の平均値に大きな相違はなかった。可食部新鮮重量の平均値に相違が出たので、差を比較するためにt検定を実施した。各試験区(EVD、DC)、苗サイズ(S、L)での可食部新鮮重量を図11に示す。検定結果は、EVD(S)対DC(S)がP(T<=t)0.057>0.05、EVD(L)対DC(L)がP(T<=t)0.1134>0.05となった。これらの結果から、S個体群では「有意傾向である」がL個体群では「有意差はない」ことが推察される。定植時の苗選択のバラツキを考慮すると両方式での明確な有意性を認めることはできないが、パルス調光が生育初期において生育を促進する可能性を示唆したものとも言える。
<Results and discussion of cultivation experiment 1>
Plant height, root length, maximum strain diameter, fresh weight (edible part, root part), and SPAD value were measured. The result is shown in FIG. There was no significant difference between the EVD test group and the DC test group in terms of plant height, root length, maximum strain diameter and SPAD value. Since there was a difference in the average value of the fresh weight of the edible part, a t-test was performed to compare the difference. The edible part fresh weight in each test section (EVD, DC) and seedling size (S, L) is shown in FIG. The test results are EVD (S) vs. DC (S) P (T <= t) 0.057> 0.05, EVD (L) vs. DC (L) P (T <= t) 0.1134> 0.05. From these results, it is inferred that “there is a significant tendency” in the S population, but “no significant difference” in the L population. Considering the variation in seedling selection at the time of planting, it is not possible to recognize a clear significance in both formulas, but it can also be said that pulse dimming may promote growth in the early stage of growth.

<栽培実験2>
供試植物としてリーフレタス(グリーンウェーブとレッドファイア)を用いた。発芽後、白色蛍光灯(150μmol/m-2/s-1 、明暗期16h/8h)下の湛液型水耕(DFT)装置で17日間育苗し、薄膜水耕(NFT)装置のEVD試験区に定植した。定植は、50株の苗から、グリーンウェーブ、レッドファイアそれぞれ生育が同程度のもの6株を選別した。その苗の様子を図12に示す。EVDの周波数は50Hz、100Hz、200Hzとし、周波数を変えて14日間の栽培実験を実施した。栽培時の光量は、赤色150μmol/m-2/s-1 +青色15μmol/m-2/s-1 とした。
<Cultivation experiment 2>
Leaf lettuce (green wave and red fire) was used as a test plant. After germination, the seedlings were cultivated for 17 days in a submerged hydroponic (DFT) apparatus under a white fluorescent lamp (150 μmol / m −2 / s −1 , light and dark period 16 h / 8 h), and an EVD test of a thin film hydroponic (NFT) apparatus Planted in the ward. For the fixed planting, 6 strains with similar growth of Green Wave and Red Fire were selected from 50 seedlings. The state of the seedling is shown in FIG. The frequency of EVD was 50 Hz, 100 Hz, and 200 Hz, and the cultivation experiment for 14 days was implemented by changing the frequency. The amount of light at the time of cultivation was red 150 μmol / m −2 / s −1 + blue 15 μmol / m −2 / s −1 .

<栽培実験2の結果と考察>
草丈、根長、株の最大径、新鮮重量(可食部、根部)、SPAD値を測定した。その結果を図13に示す。草丈、根長、株の最大径、可食部新鮮重量、SPAD値の平均値に有意水準を超えるような大きな相違はなかった。しかしながら、グリーンウェーブとレッドファイアの可食部新鮮重量の平均値では、グリーンウェーブでは周波数が増加すると生育が促進され、レッドファイアでは抑制される傾向が見られた(図14を参照)。これは、栽培品種によってパルス光の周波数が生育に影響する可能性を示唆する結果とも言える。
<Results and discussion of cultivation experiment 2>
Plant height, root length, maximum strain diameter, fresh weight (edible part, root part), and SPAD value were measured. The result is shown in FIG. There were no significant differences in plant height, root length, maximum strain diameter, fresh weight of edible portion, and SPAD values exceeding the significance level. However, in the average value of the fresh weight of the edible part of the green wave and the red fire, the growth was promoted when the frequency increased in the green wave, and the tendency was suppressed in the red fire (see FIG. 14). This can be said to be a result suggesting the possibility that the frequency of the pulsed light affects the growth depending on the cultivar.

<まとめ>
EVD電源を植物工場LED照明システムに適用し、レタスの栽培実験を通した評価した。その結果、交流電源でも十分な光量が得られるとともに、PWM制御により細かな調光が可能なことが検証できた。また、厳密な比較ではないが、電源部での消費電力の削減の可能性があることを示せた。さらに、レタス栽培において、パルス調光が幼苗期に生育を促進する可能性を示唆する結果が得られた。
<Summary>
The EVD power supply was applied to a plant factory LED lighting system and evaluated through lettuce cultivation experiments. As a result, it was verified that a sufficient amount of light was obtained even with an AC power supply and that fine dimming was possible by PWM control. Moreover, although it is not a strict comparison, it has been shown that there is a possibility of reducing power consumption in the power supply unit. Furthermore, in lettuce cultivation, the result which suggested the possibility that pulse dimming promoted the growth at the seedling stage was obtained.

1:分散型植物栽培システム
2:電源調光ユニット
3:栽培棚
4:三相交流電源
5:三相全波整流回路
6:3色LED照明回路
7:パルス調光回路
8:電流検出回路
9:調光信号発生器
10:コンピュータ
11:絶縁トランス
12:全波整流回路
13:赤色LED
14:緑色LED
15:青色LED
16:ON/OFF回路
17:最大電流制限回路
18:三角波発生回路
19:検出コイル
20:電圧分割トランス
21:入力導線
22:巻線
23:個別巻線
24:出力導線
D:ダイオード
Q1:フォトトランジスタ
Q2:電界効果トランジスタ
Q3:トランジスタ
R1:電流制限抵抗
R2:バイアス抵抗
R3:電流制限抵抗
VR:可変抵抗
U:コンパレータ
1: Distributed plant cultivation system 2: Power supply dimming unit 3: Cultivation shelf 4: Three-phase AC power supply 5: Three-phase full-wave rectifier circuit 6: Three-color LED lighting circuit 7: Pulse dimming circuit 8: Current detection circuit 9 : Dimming signal generator 10: Computer 11: Insulation transformer 12: Full-wave rectifier circuit 13: Red LED
14: Green LED
15: Blue LED
16: ON / OFF circuit 17: Maximum current limiting circuit 18: Triangular wave generation circuit 19: Detection coil 20: Voltage dividing transformer 21: Input conductor 22: Winding 23: Individual winding 24: Output conductor D: Diode Q1: Phototransistor Q2: Field effect transistor Q3: Transistor R1: Current limiting resistor R2: Bias resistor R3: Current limiting resistor VR: Variable resistance U: Comparator

Claims (5)

一定のエリアごとに分散して配置される複数の電源調光ユニットを備え、各電源調光ユニットによりパルス調光されたLED光を照射して植物を栽培する分散型植物栽培システムであって、
前記電源調光ユニットは、
三相交流電源の各相に接続され、絶縁トランスを介して入力された各相の交流電圧を全波整流する三相全波整流回路と、
前記三相全波整流回路に接続され、全波整流された脈流により点灯する赤色LED、緑色LED、及び青色LEDからなる3色LED照明回路と、
前記3色LED照明回路に接続され、PWM制御された調光信号に基づいて前記3色LED照明回路に出力される電流をON/OFFし、前記赤色LED、前記緑色LED、及び前記青色LEDを個別にパルス調光するパルス調光回路と、
前記3色LED照明回路と前記パルス調光回路との間に配置された検出コイルにより、前記赤色LED、前記緑色LED、及び前記青色LEDに流れる電流を非接触で検出する電流検出回路とを備え、
電流値をコンピュータにフィードバックさせることで、電流値および光量を制御することを特徴とする分散型植物栽培システム。
A distributed plant cultivation system comprising a plurality of power source dimming units distributed and arranged for each fixed area, and cultivating plants by irradiating LED light pulse-dimmed by each power source dimming unit,
The power control unit is
A three-phase full-wave rectifier circuit that is connected to each phase of the three-phase AC power source and full-wave rectifies the AC voltage of each phase input via an isolation transformer;
A three-color LED lighting circuit connected to the three-phase full-wave rectifier circuit, which is lit by a full-wave rectified pulsating current, consisting of a red LED, a green LED, and a blue LED;
The current connected to the three-color LED illumination circuit is turned ON / OFF based on a PWM-controlled dimming signal, and the red LED, the green LED, and the blue LED are turned on. A pulse dimming circuit for individual pulse dimming,
A current detection circuit configured to detect the current flowing through the red LED, the green LED, and the blue LED in a non-contact manner by a detection coil disposed between the three-color LED illumination circuit and the pulse dimming circuit; ,
A distributed plant cultivation system , wherein a current value and a light amount are controlled by feeding back a current value to a computer .
前記調光信号の周波数が10Hz〜2KHzの範囲内に制限されていることを特徴とする請求項1に記載の分散型植物栽培システム。   The distributed plant cultivation system according to claim 1, wherein the frequency of the dimming signal is limited to a range of 10 Hz to 2 KHz. 前記3色LED照明回路に流れる最大電流を制限する電流制限回路を更に備えていることを特徴とする請求項1または2のいずれか1項に記載の分散型植物栽培システム。   The distributed plant cultivation system according to claim 1, further comprising a current limiting circuit that limits a maximum current flowing through the three-color LED lighting circuit. 前記三相交流電源の各相の交流電圧を分割、低電圧化して出力する三相の電圧分割トランスを更に備えていることを特徴とする請求項1〜3のいずれか1項に記載の分散型植物栽培システム。   The dispersion according to any one of claims 1 to 3, further comprising a three-phase voltage dividing transformer that divides and lowers the AC voltage of each phase of the three-phase AC power source and outputs the divided voltage. Type plant cultivation system. 複数の電源調光ユニットを一定のエリアごとに分散して配置し、前記複数の電源調光ユニットの各々により、三相交流電源から絶縁トランスを介して入力された各相の交流電圧を全波整流し、
前記全波整流された脈流により点灯する赤色LED、緑色LED、及び青色LEDからなる3色LED照明回路を駆動し、
前記3色LED照明回路を駆動する電流をPWM制御された調光信号に基づいてON/OFFし、
前記3色LED照明回路とパルス調光回路との間に配置された検出コイルにより、前記赤色LED、前記緑色LED、及び前記青色LEDに流れる電流を非接触で検出し、電流値をコンピュータにフィードバックさせることで、電流値および光量を制御することにより、
前記赤色LED、前記緑色LED、及び前記青色LEDを個別にパルス調光したLED光を照射して植物を栽培することを特徴とする分散型植物栽培方法。
A plurality of power supply dimming units are distributed and arranged in a certain area, and each of the plurality of power supply dimming units generates a full-wave AC voltage of each phase input from a three-phase AC power supply through an isolation transformer. Rectified,
Driving a three-color LED lighting circuit consisting of a red LED, a green LED, and a blue LED that is lit by the full-wave rectified pulsating flow;
The current for driving the three-color LED lighting circuit is turned on / off based on a PWM-controlled dimming signal,
A detection coil disposed between the three-color LED lighting circuit and the pulse dimming circuit detects the current flowing through the red LED, the green LED, and the blue LED in a non-contact manner, and feeds back the current value to the computer. By controlling the current value and the amount of light,
A distributed plant cultivation method comprising cultivating a plant by irradiating LED light obtained by individually pulse-modulating the red LED, the green LED, and the blue LED.
JP2014211049A 2014-10-15 2014-10-15 Distributed plant cultivation system and method Active JP6126061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211049A JP6126061B2 (en) 2014-10-15 2014-10-15 Distributed plant cultivation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211049A JP6126061B2 (en) 2014-10-15 2014-10-15 Distributed plant cultivation system and method

Publications (2)

Publication Number Publication Date
JP2016081684A JP2016081684A (en) 2016-05-16
JP6126061B2 true JP6126061B2 (en) 2017-05-10

Family

ID=55958991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211049A Active JP6126061B2 (en) 2014-10-15 2014-10-15 Distributed plant cultivation system and method

Country Status (1)

Country Link
JP (1) JP6126061B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853929B2 (en) * 2016-12-07 2021-04-07 日本▲まき▼線工業株式会社 LED drive power supply
CN106472135A (en) * 2016-12-12 2017-03-08 互联智控科技(天津)有限公司 The plant light compensation intelligence control system powered based on constant low pressure and light compensation method
CN110418571A (en) 2017-03-16 2019-11-05 Mt艾迪巴株式会社 Plant culture light generating apparatus, with the plant culture equipment and plant cultivation method using it
KR20200083966A (en) * 2017-09-01 2020-07-09 트레스토토 피티와이 리미티드 Lighting control circuit, lighting device and method
JP6513162B1 (en) * 2017-10-25 2019-05-15 株式会社マキセンサービス Three-phase LED lighting system
CN113840433B (en) * 2021-09-24 2024-01-16 中国农业科学院都市农业研究所 Agricultural lighting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166584A (en) * 1991-12-13 1993-07-02 Manyou Hozen Kenkyusho:Kk Lighting device, optical fiber lighting device and power supply
JP2010004869A (en) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp Apparatus and method for raising organism
JP2013149479A (en) * 2012-01-19 2013-08-01 Tdk Corp Light emitting element driving device
JP5586732B1 (en) * 2013-04-15 2014-09-10 日本▲まき▼線工業株式会社 LED lighting device

Also Published As

Publication number Publication date
JP2016081684A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6126061B2 (en) Distributed plant cultivation system and method
US11979955B2 (en) Load control device for a light-emitting diode light source
US11949281B2 (en) Modular lighting panel
US8242711B2 (en) Lighting systems
JP6949042B2 (en) Controllable power and lighting system
US20130141012A1 (en) LED-Based Lighting Power Supplies With Power Factor Correction And Dimming Control
US20140042933A1 (en) Apparatus and Method for Dimming Signal Generation for a Distributed Solid State Lighting System
US20140266389A1 (en) Powerline Control Interface
JP5586732B1 (en) LED lighting device
US20130229119A1 (en) Dimmable Solid State Lighting System, Apparatus and Method, with Distributed Control and Intelligent Remote Control
US20130229120A1 (en) Solid State Lighting System, Apparatus and Method with Flicker Removal
CA3166303A1 (en) Drive circuit for a light-emitting diode light source
JP6389460B2 (en) Power supply
JP2017526134A (en) Controllable power supply and lighting device
EP2645821A1 (en) Marker lamp and marker lamp system
CN107006091B (en) Driving circuit and method
US20130229124A1 (en) Dimmable Solid State Lighting System, Apparatus, and Article Of Manufacture Having Encoded Operational Parameters
Barghi et al. Intelligent lighting control with LEDS for smart home
Cardesín et al. Low cost intelligent LED driver for public Lighting Smart Grids
JP2017220438A (en) Phase control signal and pwm converter
KR100961979B1 (en) Power supply device of led lamp
US20240130019A1 (en) Drive circuit for a light-emitting diode light source
KR20150109864A (en) A unification panelboard system
JP2014186962A (en) Illumination system
KR20160039730A (en) AC Source Direct Drive for Lighting Device of Light Emitting Diode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160318

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6126061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250