JP6125543B2 - Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace - Google Patents

Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace Download PDF

Info

Publication number
JP6125543B2
JP6125543B2 JP2014559714A JP2014559714A JP6125543B2 JP 6125543 B2 JP6125543 B2 JP 6125543B2 JP 2014559714 A JP2014559714 A JP 2014559714A JP 2014559714 A JP2014559714 A JP 2014559714A JP 6125543 B2 JP6125543 B2 JP 6125543B2
Authority
JP
Japan
Prior art keywords
fluidized
furnace
fluidized bed
electric burner
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014559714A
Other languages
Japanese (ja)
Other versions
JPWO2014119612A1 (en
Inventor
阿川 隆一
隆一 阿川
裕司 森下
裕司 森下
長尾 亙
亙 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2014119612A1 publication Critical patent/JPWO2014119612A1/en
Application granted granted Critical
Publication of JP6125543B2 publication Critical patent/JP6125543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/201Plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50213Preheating processes other than drying or pyrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

本発明は、流動床燃焼炉及び流動床燃焼炉の運転方法に関する。   The present invention relates to a fluidized bed combustion furnace and a method for operating the fluidized bed combustion furnace.

従来、例えば石炭等の燃料及び例えば珪砂等の流動材が流動する流動床を形成しながら燃料を燃焼する流動床燃焼炉が知られている。この流動床燃焼炉を起動する場合の運転方法として、以下の特許文献1には、炉内に流動材を供給し、燃焼空気を炉内に供給して流動材を流動させながら、例えば重油等の化石燃料を燃料としたバーナーを作動させ、バーナーの火炎により流動材を所定温度まで加熱し、その後、燃料を炉内に投入し燃焼に供すると共にバーナーの作動を停止する炉起動時の運転方法が記載されている。   2. Description of the Related Art Conventionally, fluidized bed combustion furnaces that combust fuel while forming a fluidized bed in which a fluid such as coal and a fluidized material such as silica sand flow are known. As an operation method when starting up this fluidized bed combustion furnace, in Patent Document 1 below, fluidized material is supplied into the furnace and combustion air is supplied into the furnace to flow the fluidized material. Operating at the time of starting the furnace, which operates the burner using the fossil fuel as fuel, heats the fluidized material to the predetermined temperature by the flame of the burner, then puts the fuel into the furnace for combustion and stops the operation of the burner Is described.

また、以下の特許文献2には、炉外に、起動用燃料(化石燃料)を燃焼することにより熱空気を発生する起動用燃焼器を設け、この起動用燃焼器からの熱空気を炉内に供給し、この熱空気により、炉内の流動材を流動させながら加熱し、流動材が燃料の自然着火可能な温度に達したら、燃料を炉内に投入し燃焼に供する炉起動時の運転方法が記載されている。   Patent Document 2 below includes a start-up combustor that generates hot air by burning start-up fuel (fossil fuel) outside the furnace, and the hot air from the start-up combustor is transferred into the furnace. When the fluidized material reaches a temperature at which the fuel can be ignited spontaneously, the fuel is introduced into the furnace and burned. A method is described.

特開2009−250571号公報JP 2009-250571 A 特開平5−187615号公報Japanese Patent Laid-Open No. 5-187615

しかしながら、上記何れの特許文献にあっても、流動材を加熱する際に化石燃料を用いて燃焼する、詳しくは、特許文献1ではバーナーの作動に化石燃料を用いて燃焼し、又、特許文献2では起動用燃焼器の作動に化石燃料を用いて燃焼するため、COが発生する。ここで、COは地球温暖化の原因とされているため、COを低減することが求められている。また、例えば重油等の化石燃料を、流動床燃焼炉が設置された現地(現場)まで運搬して使用するため、取り扱い及び維持管理が面倒である。However, in any of the above patent documents, when the fluidized material is heated, it is burned by using fossil fuel. Specifically, in Patent Document 1, the burner is burned by using fossil fuel. In 2, CO 2 is generated because fossil fuel is used for the operation of the start-up combustor. Here, since CO 2 is a cause of global warming, it is required to reduce CO 2 . In addition, since fossil fuel such as heavy oil is transported and used to the site (site) where the fluidized bed combustion furnace is installed, handling and maintenance are troublesome.

本発明は、このような課題を解決するために成されたものであり、炉起動時の流動材の加熱時を始めとしてCOを削減でき、加えて、取り扱い及び維持管理が容易となる流動床燃焼炉及び流動床燃焼炉の運転方法を提供することを目的とする。The present invention has been made to solve such a problem, and can reduce CO 2 at the time of heating the fluidized material at the time of starting the furnace, and in addition, the flow that makes handling and maintenance easy. It aims at providing the operating method of a bed combustion furnace and a fluidized bed combustion furnace.

本発明の一形態に係る流動床燃焼炉は、原料及び流動材が流動する流動床を形成しながら原料を燃焼する燃焼室を備えた流動床燃焼炉において、原料の継続した燃焼を可能とする原料継続燃焼可能温度まで、流動材を加熱する電気式バーナーを備え、電気式バーナーの出力方向は流動材の流動方向と交差する方向である。   A fluidized bed combustion furnace according to an embodiment of the present invention enables continuous combustion of a raw material in a fluidized bed combustion furnace having a combustion chamber for combusting the raw material while forming a fluidized bed in which the raw material and the fluidized material flow. An electric burner that heats the fluidized material up to the temperature at which the raw material can be continuously combusted is provided, and the output direction of the electric burner is a direction that intersects the flow direction of the fluidized material.

また、本発明の一形態に係る流動床燃焼炉の運転方法は、原料及び流動材が流動する流動床を形成しながら原料を燃焼する燃焼室を備えた流動床燃焼炉の運転方法であって、電気式バーナーにより、原料の継続した燃焼を可能とする原料継続燃焼可能温度まで流動材を加熱し、電気式バーナーの出力方向は流動材の流動方向と交差する方向である。   An operation method of a fluidized bed combustion furnace according to an embodiment of the present invention is an operation method of a fluidized bed combustion furnace provided with a combustion chamber for combusting a raw material while forming a fluidized bed in which the raw material and the fluidized material flow. The fluidized material is heated by the electric burner to a temperature at which the raw material can be continuously combusted to enable continuous combustion of the raw material, and the output direction of the electric burner is a direction that intersects the flow direction of the fluidized material.

このような本発明によれば、流動材を原料継続燃焼可能温度まで加熱する電気式バーナーは、化石燃料を用いずに電気を用いて熱を発するため、COを削減できる。加えて、この電気式バーナーでは、化石燃料の運搬等が必要なく電気を使用するため、取り扱い及び維持管理が容易となる。また、電気式バーナーの出力方向は流動材の流動方向と交差する方向であるため、流動材によるバーナー閉鎖や摩耗損耗を抑制できる。According to the present invention as described above, the electric burner that heats the fluidized material to the temperature at which the raw material can be continuously combusted generates heat using electricity without using fossil fuel, and thus can reduce CO 2 . In addition, since this electric burner uses electricity without the need for transporting fossil fuels, it is easy to handle and maintain. In addition, since the output direction of the electric burner is a direction that intersects the flow direction of the fluidized material, burner closure and wear and tear due to the fluidized material can be suppressed.

流動床燃焼炉は、流動材を炉内に供給するための流動材供給路と、流動材供給路に設けられた電気式バーナーと、を備えてよい。このような構成を採用した場合、流動材が炉内に供給される前段階で、電気式バーナーが流動材を加熱することができる。   The fluidized bed combustion furnace may include a fluidized material supply path for supplying the fluidized material into the furnace and an electric burner provided in the fluidized material supply path. When such a configuration is adopted, the electric burner can heat the fluidized material before the fluidized material is supplied into the furnace.

流動床燃焼炉は、流動材供給路の電気式バーナーより上流側に接続され高水分燃料を供給する高水分燃料供給路を備えてよい。   The fluidized bed combustion furnace may include a high moisture fuel supply path that is connected to an upstream side of the electric burner of the fluidized material supply path and supplies a high moisture fuel.

このような構成を採用した場合、流動材は、流動材供給路において電気式バーナーにより加熱されて炉内に供給され、高水分燃料は、高水分燃料供給路から流動材供給路に供給され当該流動材供給路において電気式バーナーにより加熱されて炉内に供給される。このため、高水分燃料が加熱されずに炉内に供給される場合に比して、高水分燃料の水分がある程度蒸発することから発熱量の低下が抑止されて燃料の継続した燃焼が可能とされ、その結果、流動床燃焼炉を安定して運転できる。   When such a configuration is adopted, the fluidized material is heated by an electric burner in the fluidized material supply path and supplied into the furnace, and the high moisture fuel is supplied from the high moisture fuel supply channel to the fluidized material supply channel. It is heated by an electric burner in the fluid material supply path and supplied into the furnace. For this reason, compared with the case where the high moisture fuel is supplied to the furnace without being heated, the moisture of the high moisture fuel evaporates to some extent, so that a decrease in the calorific value is suppressed and the fuel can be continuously burned. As a result, the fluidized bed combustion furnace can be operated stably.

流動床燃焼炉は、炉内から排出される排ガスから流動材を固気分離し炉内に戻し循環させる流動材循環路を備え、流動材供給路は、流動材循環路に接続されてよい。   The fluidized bed combustion furnace may include a fluidized material circulation path that separates the fluidized material from the exhaust gas discharged from the furnace and circulates it back into the furnace, and the fluidized material supply path may be connected to the fluidized material circulation path.

流動床燃焼炉において、電気式バーナーは、燃焼室に進入するように炉壁を貫通して配置されていてよい。このような構成を採用した場合、電気式バーナーは、燃焼室内に貯められている流動材を加熱することができる。   In the fluidized bed combustion furnace, the electric burner may be disposed through the furnace wall so as to enter the combustion chamber. When such a configuration is adopted, the electric burner can heat the fluidized material stored in the combustion chamber.

ここで、電気式バーナーは、炉の起動時に使用されるものとすると、特に上記作用・効果を好適に奏することができる。   Here, if the electric burner is used at the time of start-up of the furnace, the above-mentioned operation and effect can be particularly suitably achieved.

このような構成を採用した場合、上記と同様にして電気式バーナーにより加熱された流動材や高水分燃料が、上記とは別ルートを経由して炉内に供給される。これによっても、高水分燃料が加熱されずに炉内に供給される場合に比して、高水分燃料の水分がある程度蒸発することから発熱量の低下が抑止されて燃料の継続した燃焼が可能とされ、その結果、流動床燃焼炉を安定して運転できる。   When such a configuration is adopted, the fluidized material and the high moisture fuel heated by the electric burner in the same manner as described above are supplied into the furnace via a route different from the above. Even in this case, compared with the case where the high moisture fuel is supplied to the furnace without being heated, the moisture of the high moisture fuel evaporates to some extent, so that a decrease in the calorific value is suppressed and the fuel can be continuously burned. As a result, the fluidized bed combustion furnace can be operated stably.

ここで、電気式バーナーは、プラズマトーチであると、プラズマトーチによる電気エネルギーを用いた少量の高温ガス体によって、流動材を効率良く容易に加熱することができる。   Here, if the electric burner is a plasma torch, the fluidized material can be efficiently and easily heated by a small amount of high-temperature gas using electric energy generated by the plasma torch.

このような本発明によれば、COを削減でき、加えて、取り扱い及び維持管理が容易となる。According to the present invention as described above, CO 2 can be reduced, and in addition, handling and maintenance are facilitated.

本発明の第1実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。It is a schematic sectional lineblock diagram showing an important section of a fluidized bed combustion furnace concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。It is a schematic sectional block diagram which shows the principal part of the fluidized-bed combustion furnace which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。It is a schematic sectional block diagram which shows the principal part of the fluidized bed combustion furnace which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。It is a schematic sectional block diagram which shows the principal part of the fluidized bed combustion furnace which concerns on 4th Embodiment of this invention.

以下、本発明による流動床燃焼炉及び流動床燃焼炉の運転方法の好適な実施形態について図面を参照しながら説明する。なお、同一又は相当要素には同一符号を付し重複する説明は省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a fluidized bed combustion furnace and a fluidized bed combustion furnace operating method according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent element, and the overlapping description is abbreviate | omitted.

図1は、本発明の第1実施形態に係る流動床燃焼炉の要部を示す概略断面構成図であり、この流動床燃焼炉は、ここでは、流動床ボイラであって、発電所に用いられるものである。   FIG. 1 is a schematic sectional view showing the main part of a fluidized bed combustion furnace according to a first embodiment of the present invention. This fluidized bed combustion furnace is here a fluidized bed boiler and used for a power plant. It is what

図1に示すように、流動床ボイラ100は、上下端を閉じた筒状の炉1を備え、炉1を構成する炉壁5内が燃焼室6とされる。この流動床ボイラ100は、燃焼室6に例えば珪砂等の流動材7を予め収容し、燃焼室6の底部に設けた複数の開口9から当該燃焼室6に燃焼空気を導入し、さらに、外部から燃焼室6に燃焼対象の原料を導入し、これらを燃焼空気により流動させながら流動床8を形成して原料を燃焼するものであり、燃焼の際に、炉壁5に配設された水管により熱交換を行うと共に炉1の上部から燃焼ガス(排ガス)を後段に排出する。   As shown in FIG. 1, a fluidized bed boiler 100 includes a cylindrical furnace 1 whose upper and lower ends are closed, and the inside of the furnace wall 5 constituting the furnace 1 is a combustion chamber 6. The fluidized bed boiler 100 previously accommodates a fluidized material 7 such as silica sand in the combustion chamber 6, introduces combustion air into the combustion chamber 6 through a plurality of openings 9 provided at the bottom of the combustion chamber 6, and Are introduced into the combustion chamber 6 to form a fluidized bed 8 while flowing with combustion air, and the raw material is combusted. A water pipe disposed on the furnace wall 5 at the time of combustion. In addition to exchanging heat, the combustion gas (exhaust gas) is discharged from the upper part of the furnace 1 to the subsequent stage.

なお、ここでは、燃焼対象の原料を、特に好ましいとして、例えばバイオマスや石炭等の燃料としているが、例えば廃タイヤやごみ等の焼却目的の廃棄物とすることもできる。   Here, the raw material to be combusted is particularly preferably a fuel such as biomass or coal, but can also be a waste for incineration such as waste tires or garbage.

ここで、特に本実施形態においては、上記流動材7を加熱し炉1内の燃焼室6に供給するための流動材供給装置2が、炉1に対して付設されている。   Here, particularly in the present embodiment, a fluid material supply device 2 for heating the fluid material 7 and supplying the fluid material 7 to the combustion chamber 6 in the furnace 1 is attached to the furnace 1.

流動材供給装置2は、流動材7の流路となる流動材供給路3を備える。この流動材供給路3は、上方から下方に向かって鉛直に延びる第1供給路10と、この第1供給路10の下端から傾いて下方に延び炉壁5を貫通して燃焼室6に進入する第2供給路11と、を有する。そして、流動材供給路3内の流動材7は、第1供給路10内を下方に向かって移動し、第2供給路11内を傾斜に従い移動し、燃焼室6に供される。   The fluidized material supply device 2 includes a fluidized material supply path 3 that serves as a flow path for the fluidized material 7. This fluidized material supply path 3 enters the combustion chamber 6 through a first supply path 10 extending vertically downward from above and extending downward from the lower end of the first supply path 10 through the furnace wall 5. And a second supply path 11. Then, the fluidized material 7 in the fluidized material supply path 3 moves downward in the first supply path 10, moves in the second supply path 11 according to the inclination, and is supplied to the combustion chamber 6.

第1供給路10の途中は、流動材7を加熱するための加熱路12とされている。この加熱路12は、流動材7を加熱するためのものであり、電気式バーナーの一種であるプラズマトーチ4を備える。   The middle of the first supply path 10 is a heating path 12 for heating the fluidized material 7. The heating path 12 is for heating the fluidized material 7 and includes a plasma torch 4 which is a kind of electric burner.

プラズマトーチ4は、電気を用いて約4000〜20000°Cの高温のプラズマジェット(高温ガス体)を出力するものである。このプラズマトーチ4は、その先端のノズルが、加熱路12内に進入するように路壁を略水平方向に貫通して設置され、そのノズルから略水平方向に出力されるプラズマジェットによるプラズマフレームPFが、下方に移動する流動材7の傍(側)を横切る配置とされている(交わらない配置とされている)。そして、プラズマトーチ4は、プラズマフレームPFにより、加熱路12内を移動する流動材7を、燃焼室6において上記原料の継続した燃焼を可能とする原料継続燃焼可能温度まで加熱する。この原料継続燃焼可能温度は、ここでは、500°C〜700°Cとされている。プラズマトーチ4の出力方向は流動材7の流動方向と交差する方向である。すなわち、プラズマトーチ4は、落下する流動材7に対して横方向からプラズマジェットを出力することができる。   The plasma torch 4 outputs a high-temperature plasma jet (hot gas body) of about 4000 to 20000 ° C. using electricity. The plasma torch 4 is installed so that the nozzle at the tip of the plasma torch 4 penetrates the road wall in a substantially horizontal direction so as to enter the heating path 12, and a plasma flame PF by a plasma jet output from the nozzle in a substantially horizontal direction. However, it is set as the arrangement | positioning which crosses the side (side) of the fluidized material 7 which moves below (it is set as the arrangement | positioning which does not cross). The plasma torch 4 heats the fluidized material 7 moving in the heating path 12 to the temperature at which the raw material can be continuously combusted in the combustion chamber 6 by the plasma flame PF. Here, the raw material continuous combustion possible temperature is set to 500 ° C. to 700 ° C. The output direction of the plasma torch 4 is a direction that intersects the flow direction of the fluidized material 7. That is, the plasma torch 4 can output a plasma jet from the lateral direction with respect to the falling fluid 7.

プラズマトーチ4としては、移行型(TR)トーチ又は非移行型(NTR)トーチの何れも採用することができるが、ここでは、プラズマフレームPFを長くすることができる移行型トーチが採用されている。   As the plasma torch 4, either a transition type (TR) torch or a non-transition type (NTR) torch can be adopted, but here, a transition type torch that can lengthen the plasma flame PF is adopted. .

次に、このような構成を有する流動床ボイラ100の運転方法について説明する。   Next, an operation method of the fluidized bed boiler 100 having such a configuration will be described.

先ず、炉1の起動時、具体的には、原料を燃焼室6に投入する前の炉1の起動時に、流動材7を流動材供給路3内に流し、移動する流動材7を、プラズマトーチ4により前述した原料継続燃焼可能温度まで加熱し、必要量の加熱済みの流動材7を燃焼室6に供給する。このとき、燃焼空気を開口9を通して燃焼室6に供給し流動材7を満遍なく流動させる。次いで、原料を燃焼室6に投入し、原料及び流動材7を流動させながら流動床8を形成し、原料を燃焼させる手順となる。   First, when the furnace 1 is started, specifically, when the furnace 1 is started before the raw material is charged into the combustion chamber 6, the fluidized material 7 is caused to flow into the fluidized material supply path 3, and the moving fluidized material 7 is converted into plasma. The torch 4 heats the raw material to the above-described continuous combustion possible temperature, and supplies the required amount of heated fluidized material 7 to the combustion chamber 6. At this time, the combustion air is supplied to the combustion chamber 6 through the opening 9 so that the fluidized material 7 flows evenly. Next, the raw material is charged into the combustion chamber 6, the fluidized bed 8 is formed while the raw material and the fluidized material 7 are fluidized, and the raw material is combusted.

このように、本実施形態においては、原料を燃焼室6に投入する前の炉1の起動時に、プラズマトーチ4により、流動材7を原料継続燃焼可能温度まで加熱するようにしており、このプラズマトーチ4は、化石燃料を用いずに電気を用いて熱を発するため、COを削減することができる。加えて、このプラズマトーチ4では、化石燃料の運搬等が必要なく電気を使用するため、取り扱い及び維持管理が容易となる。また、プラズマトーチ4の出力方向は流動材7の流動方向と交差する方向であるため、流動材7によるバーナー閉鎖や摩耗損耗を抑制できる。また、燃焼バーナーを用いた場合は、高温の燃料燃焼ガスと流動材との間で伝熱による熱交換によって流動材の温度を上げる。これに対して、電気式バーナー(プラズマトーチ4)を用いた場合、プラズマフレームPFと流動材7との間で輻射による熱交換を行うことができるため、流動材7の温度を上げやすい。As described above, in this embodiment, the fluidized material 7 is heated to the temperature at which the raw material can be continuously combusted by the plasma torch 4 when the furnace 1 is started before the raw material is put into the combustion chamber 6. Since the torch 4 generates heat using electricity without using fossil fuel, CO 2 can be reduced. In addition, since this plasma torch 4 uses electricity without the need to transport fossil fuels, it is easy to handle and maintain. Further, since the output direction of the plasma torch 4 is a direction intersecting with the flow direction of the fluidizing material 7, burner closure and wear and tear by the fluidizing material 7 can be suppressed. When a combustion burner is used, the temperature of the fluidized material is raised by heat exchange by heat transfer between the high-temperature fuel combustion gas and the fluidized material. On the other hand, when an electric burner (plasma torch 4) is used, heat exchange by radiation can be performed between the plasma flame PF and the fluidized material 7, so that the temperature of the fluidized material 7 is easily raised.

また、本実施形態によれば、プラズマトーチ4による電気エネルギーを用いた少量の高温ガス体によって、流動材7を効率良く容易に加熱することができる。また、このように、流動材7を効率良く容易に加熱することができるため、流動材7を原料継続燃焼可能温度まで一早く加熱できる。   Moreover, according to this embodiment, the fluidized material 7 can be efficiently and easily heated by a small amount of the high-temperature gas body using the electric energy generated by the plasma torch 4. In addition, since the fluidizing material 7 can be efficiently and easily heated in this manner, the fluidizing material 7 can be quickly heated to the temperature at which the raw material can be continuously combusted.

また、本実施形態では、流動床ボイラ100が配された場所が発電所(発電設備がある設備)のため、発電設備で生じた電気をそのまま利用できる。   Moreover, in this embodiment, since the place where the fluidized bed boiler 100 is arranged is a power plant (equipment with a power generation facility), the electricity generated in the power generation facility can be used as it is.

また、本実施形態に係る流動床ボイラ100は、流動材7を炉1内に供給するための流動材供給路3と、流動材供給路3に設けられたプラズマトーチ4と、を備えている。このような構成を採用した場合、流動材7が炉1内に供給される前段階で、プラズマトーチ4が流動材7を加熱することができる。   Further, the fluidized bed boiler 100 according to the present embodiment includes a fluidized material supply path 3 for supplying the fluidized material 7 into the furnace 1 and a plasma torch 4 provided in the fluidized material supply path 3. . When such a configuration is adopted, the plasma torch 4 can heat the fluidized material 7 before the fluidized material 7 is supplied into the furnace 1.

図2は、本発明の第2実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。   FIG. 2 is a schematic cross-sectional configuration diagram showing a main part of a fluidized bed combustion furnace according to a second embodiment of the present invention.

この第2実施形態の流動床ボイラ200が第1実施形態の流動床ボイラ100と違う点は、プラズマトーチ4を、その先端のノズルが、燃焼室6に進入するように炉壁5を貫通させて設置し、このプラズマトーチ4により、燃焼室6に予め収容されている流動材7を、上記原料継続燃焼可能温度まで加熱するようにした点である。   The difference between the fluidized bed boiler 200 of the second embodiment and the fluidized bed boiler 100 of the first embodiment is that the plasma torch 4 is passed through the furnace wall 5 so that the nozzle at the tip of the plasma torch 4 enters the combustion chamber 6. The fluidized material 7 previously stored in the combustion chamber 6 is heated by the plasma torch 4 to the temperature at which the raw material can be continuously combusted.

具体的な運転方法は、先ず、原料を燃焼室6に投入する前の炉1の起動時に、燃焼室6に常温の流動材7を外部から供給し、次いで、燃焼空気を開口9を通して燃焼室6に供給し流動材7を満遍なく流動させながら、プラズマトーチ4により、流動材7を前述した原料継続燃焼可能温度まで加熱し、流動材7が原料継続燃焼可能温度に達した後に原料を燃焼室6に投入し、原料が着火し燃焼し始めたらプラズマトーチ4の出力を徐々に下げ、その後、プラズマトーチ4の出力を停止する手順となる。プラズマトーチ4の出力方向は流動材7の流動方向と交差する方向である。すなわち、プラズマトーチ4は、開口9を通る燃焼空気によって流動する流動材7に対して横方向からプラズマジェットを出力することができる。なお、本実施形態において流動材の流動方向とは燃焼空気が供給される方向(鉛直方向)のことを言い、流動材が水平方向に移動するものは流動材の流動方向に含まない。   A specific operation method is as follows. First, when the furnace 1 is started before the raw material is charged into the combustion chamber 6, the normal temperature fluidized material 7 is supplied to the combustion chamber 6 from the outside, and then the combustion air is supplied through the opening 9 to the combustion chamber. 6, while the fluidizing material 7 flows evenly, the fluidizing material 7 is heated by the plasma torch 4 to the temperature at which the material can be continuously combusted, and after the fluidizing material 7 reaches the material continuously combustible temperature, the material is combusted in the combustion chamber. When the raw material is ignited and starts to burn, the output of the plasma torch 4 is gradually lowered, and then the output of the plasma torch 4 is stopped. The output direction of the plasma torch 4 is a direction that intersects the flow direction of the fluidized material 7. That is, the plasma torch 4 can output a plasma jet from the lateral direction with respect to the fluidized material 7 that flows by the combustion air passing through the opening 9. In this embodiment, the flow direction of the fluidized material refers to the direction in which combustion air is supplied (vertical direction), and the fluidized material moving in the horizontal direction is not included in the fluidized material flow direction.

なお、プラズマトーチ4としては、移行型トーチ又は非移行型トーチの何れも採用することができるが、ここでは、バーナーと似たフレームを形成できる非移行型トーチとするのが好ましい。   As the plasma torch 4, either a transfer type torch or a non-transfer type torch can be adopted, but here, a non-transfer type torch capable of forming a frame similar to a burner is preferable.

このような第2実施形態においても、第1実施形態と同様に、原料を燃焼室6に投入する前の炉1の起動時に、プラズマトーチ4により、流動材7を原料継続燃焼可能温度まで加熱するため、第1実施形態と同様な効果を得ることができるというのはいうまでもない。   Also in the second embodiment, as in the first embodiment, the fluidizing material 7 is heated to the temperature at which the raw material can be continuously combusted by the plasma torch 4 when the furnace 1 is started before the raw material is charged into the combustion chamber 6. Therefore, it goes without saying that the same effect as in the first embodiment can be obtained.

また、本実施形態に係る流動床ボイラ200において、プラズマトーチ4は、燃焼室6に進入するように炉壁5を貫通して配置されている。このような構成を採用した場合、プラズマトーチ4は、燃焼室6内に貯められている流動材7を加熱することができる。   Further, in the fluidized bed boiler 200 according to the present embodiment, the plasma torch 4 is disposed through the furnace wall 5 so as to enter the combustion chamber 6. When such a configuration is adopted, the plasma torch 4 can heat the fluidized material 7 stored in the combustion chamber 6.

図3は、本発明の第3実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。   FIG. 3 is a schematic cross-sectional configuration diagram showing a main part of a fluidized bed combustion furnace according to a third embodiment of the present invention.

この第3実施形態の流動床ボイラ300が第1実施形態の流動床ボイラ100と違う点は、燃料として燃え難い高水分燃料を用いる場合、当該高水分燃料をプラズマトーチ4により加熱してから炉1内に供給するようにした点である。具体的には、流動材供給装置2に代えて、高水分燃料を供給する高水分燃料供給路23が、上記流動材供給路3のプラズマトーチ4より上流側に接続された流動材供給装置22を用いた点である。   The difference between the fluidized bed boiler 300 of the third embodiment and the fluidized bed boiler 100 of the first embodiment is that when a high moisture fuel that is difficult to burn is used as the fuel, the high moisture fuel is heated by the plasma torch 4 before the furnace. This is the point that it is supplied within 1. Specifically, instead of the fluid material supply device 2, a fluid material supply device 22 in which a high moisture fuel supply channel 23 for supplying high moisture fuel is connected to the upstream side of the plasma torch 4 of the fluid material supply channel 3. It is a point using.

ここでいう高水分燃料とは、含水率が50%を越える燃料であり、具体的には、例えば山林系の未利用バイオマス等が挙げられる。この場合の含水率は70%程度である。   The high moisture fuel here is a fuel having a moisture content exceeding 50%, and specifically includes, for example, unused forest biomass. The moisture content in this case is about 70%.

このような第3実施形態にあっては、第1実施形態と同様に、原料を燃焼室6に投入する前の炉1の起動時において、流動材7が流動材供給路3内に流され、移動する流動材7がプラズマトーチ4により原料継続燃焼可能温度まで加熱されて炉1内に供給される。従って、第1実施形態と同様な効果を得ることができる。   In the third embodiment, as in the first embodiment, the fluidized material 7 is caused to flow into the fluidized material supply path 3 when the furnace 1 is started before the raw material is charged into the combustion chamber 6. The moving fluid 7 is heated to the temperature at which the raw material can be continuously combusted by the plasma torch 4 and supplied into the furnace 1. Therefore, the same effect as that of the first embodiment can be obtained.

これに加えて、炉1の起動時において、高水分燃料は、高水分燃料供給路23から流動材供給路3内に供給され、流動材7と共にプラズマトーチ4により加熱されて炉1内に供給される。このため、高水分燃料が加熱されずに炉1内に投入される場合に比して、高水分燃料の水分がある程度蒸発することから、発熱量の低下が抑止されて燃料の継続した燃焼が可能とされ、その結果、流動床ボイラ300を安定して運転できる。   In addition to this, when the furnace 1 is started, the high moisture fuel is supplied from the high moisture fuel supply passage 23 into the fluidized material supply passage 3 and is heated by the plasma torch 4 together with the fluidized material 7 to be supplied into the furnace 1. Is done. For this reason, as compared with the case where the high-moisture fuel is put into the furnace 1 without being heated, the moisture of the high-moisture fuel evaporates to some extent. As a result, the fluidized bed boiler 300 can be operated stably.

なお、高水分燃料供給路23に供される高水分燃料は、高水分燃料の全部であっても一部であっても良く、燃料の継続した燃焼が可能となれば良い。   Note that the high moisture fuel supplied to the high moisture fuel supply path 23 may be all or a part of the high moisture fuel, as long as the fuel can be continuously burned.

また、高水分燃料は、炉1の起動時以外の例えば通常運転時に、プラズマトーチ4により加熱されて炉1内に供給されても良い。   Further, the high moisture fuel may be heated by the plasma torch 4 and supplied into the furnace 1 during normal operation other than when the furnace 1 is started.

因みに、プラズマトーチ4により、高水分燃料の含水率が50%程度に下げられれば、発熱量の低下が抑止されて燃料の継続した燃焼が可能とされるため、好ましい。   Incidentally, if the water content of the high-moisture fuel is lowered to about 50% by the plasma torch 4, it is preferable because the decrease in the calorific value is suppressed and the fuel can be continuously burned.

図4は、本発明の第4実施形態に係る流動床燃焼炉の要部を示す概略断面構成図である。   FIG. 4 is a schematic cross-sectional configuration diagram showing a main part of a fluidized bed combustion furnace according to a fourth embodiment of the present invention.

この第4実施形態では、流動床ボイラが循環流動床ボイラ400とされている。循環流動床ボイラ400は、炉1内からの排ガスから流動材7(灰等を含む)を分離し炉1内に戻し循環させる流動材循環路25を備える。この流動材循環路25は、サイクロン30、ダウンカマー31、ループシール32、戻し管33をこの順に接続して成る。   In the fourth embodiment, the fluidized bed boiler is a circulating fluidized bed boiler 400. The circulating fluidized bed boiler 400 includes a fluidized material circulation path 25 that separates the fluidized material 7 (including ash and the like) from the exhaust gas from the furnace 1 and circulates it back into the furnace 1. The fluid circulation path 25 is formed by connecting a cyclone 30, a downcomer 31, a loop seal 32, and a return pipe 33 in this order.

サイクロン30は、炉1に接続され、炉1内から排出された排ガスから流動材7を固気分離するものである。   The cyclone 30 is connected to the furnace 1 and separates the fluidized material 7 from the exhaust gas discharged from the inside of the furnace 1.

ダウンカマー31は、サイクロン30の底部に接続され、当該サイクロン30で分離した流動材7を下方に送るものである。   The downcomer 31 is connected to the bottom of the cyclone 30 and sends the fluidized material 7 separated by the cyclone 30 downward.

ループシール32は、ダウンカマー31の下端に接続され、当該ダウンカマー31から送られた流動材7、炉1内のガス等によりサイクロン30側に逆流するのを防止すべく、サイクロン30からの流動材7を一時的に貯留して炉1内の流動床8とサイクロン30との間を遮断しシールすると共に、ラインL2を通して適宜供給される流動用空気により、貯留した流動材7を流れやすく流動化させて順次下方に送るものである。なお、流動用空気をループシール32に供給するラインL2は、前述した燃焼用空気を炉1底部の複数の開口9に供給するためのラインL1から分岐されている。 Loop seal 32 is connected to the lower end of the downcomer 31, flow member 7 sent from the downcomer 31, the gas or the like in the furnace 1 in order to prevent backflow into the cyclone 30, from the cyclone 30 The fluidized material 7 is temporarily stored to shut off and seal between the fluidized bed 8 and the cyclone 30 in the furnace 1, and the stored fluidized material 7 is easily flowed by the flowing air appropriately supplied through the line L2. It is fluidized and sent sequentially downward. The line L2 for supplying the flow air to the loop seal 32 is branched from the line L1 for supplying the combustion air to the plurality of openings 9 at the bottom of the furnace 1 described above.

戻し管33は、ループシール32と炉1下部とに接続され、ループシール32からの流動材7を炉1内の燃焼室6に戻すものである。   The return pipe 33 is connected to the loop seal 32 and the lower part of the furnace 1, and returns the fluidized material 7 from the loop seal 32 to the combustion chamber 6 in the furnace 1.

この第4実施形態では、前述した流動材供給装置22が炉1下部に接続される点は第3実施形態と同様である。この第4実施形態が第3実施形態と違う点は、第3実施形態の流動材供給装置22と同様な構成の流動材供給装置42を、ループシール32に接続した点である。   In this 4th Embodiment, the point by which the fluidized material supply apparatus 22 mentioned above is connected to the furnace 1 lower part is the same as that of 3rd Embodiment. The fourth embodiment is different from the third embodiment in that a fluid material supply device 42 having the same configuration as that of the fluid material supply device 22 of the third embodiment is connected to the loop seal 32.

このように構成された循環流動床ボイラ400によれば、流動材供給装置22による第3実施形態と同様な作用・効果に加えて、流動材7や高水分燃料が、上記とは別ルートのループシール32、戻し管33を経由して炉1内に供給される。これによっても、高水分燃料が加熱されずに炉1内に供給される場合に比して、高水分燃料の水分がある程度蒸発することから発熱量の低下が抑止されて燃料の継続した燃焼が可能とされ、その結果、循環流動床ボイラ400を安定して運転できる。   According to the circulating fluidized bed boiler 400 configured in this way, in addition to the same operation and effect as the third embodiment by the fluidized material supply device 22, the fluidized material 7 and the high-moisture fuel are different routes from the above. It is supplied into the furnace 1 via the loop seal 32 and the return pipe 33. Even in this case, compared with the case where the high-moisture fuel is supplied to the furnace 1 without being heated, the moisture of the high-moisture fuel evaporates to some extent. As a result, the circulating fluidized bed boiler 400 can be operated stably.

なお、高水分燃料は、第3実施形態で述べたのと同様に、炉1の起動時以外の例えば通常運転時に、プラズマトーチ4により加熱されて炉1内に供給されても良い。   The high moisture fuel may be heated by the plasma torch 4 and supplied into the furnace 1 during normal operation other than when the furnace 1 is started, as described in the third embodiment.

また、第4実施形態では、流動材供給装置42をループシール32に接続しているが、例えばダウンカマー31や戻し管33等の流動材循環路25に接続していれば良い。   In the fourth embodiment, the fluid supply device 42 is connected to the loop seal 32. However, it may be connected to the fluid circulation circuit 25 such as the downcomer 31 or the return pipe 33, for example.

因みに、第2実施形態も、上述した循環流動床ボイラに対して適用できる。   Incidentally, the second embodiment can also be applied to the above-described circulating fluidized bed boiler.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、例えば、流動材7を収容するためのホッパを設け、ホッパ出口のダンパを閉にした状態でホッパ内に流動材7を供給して収容し、このホッパ内の流動材7を第2実施形態のようなプラズマトーチ4により原料継続燃焼可能温度まで加熱し、加熱後に出口ダンパを開にして加熱済みの流動材7を燃焼室6に供給するようにしても良い。なお、第3、第4実施形態に関しては、高水分燃料もホッパ内に供給することになる。   As described above, the present invention has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment. For example, a hopper for accommodating the fluidized material 7 is provided, and a damper at the hopper outlet is provided. The fluidized material 7 is supplied and accommodated in the hopper in a closed state, and the fluidized material 7 in the hopper is heated to the temperature at which the raw material can be continuously combusted by the plasma torch 4 as in the second embodiment, and the outlet damper is heated after the heating. Alternatively, the heated fluidized material 7 may be supplied to the combustion chamber 6. In the third and fourth embodiments, high moisture fuel is also supplied into the hopper.

また、上記実施形態においては、高温ガス体を効率良く容易に出力できるとして、特にプラズマトーチ4を用いているが、化石燃料を用いずに電気を用いて熱を発し、流動材7を原料継続燃焼可能温度まで加熱できる電気式バーナーであれば他のものであっても良い。   Further, in the above embodiment, the plasma torch 4 is used in particular because it is possible to efficiently and easily output a high-temperature gas body. However, heat is generated using electricity without using fossil fuel, and the fluidized material 7 is continued as a raw material. Other electric burners may be used as long as they can be heated to a combustible temperature.

また、上記実施形態においては、循環流動床を含む流動床ボイラに対する適用を述べているが、熱交換を行う水管を炉に備えていない流動床火炉に対しても適用可能であり、要は、原料及び流動材が流動する流動床を形成しながら原料を燃焼する燃焼室を備えた流動床燃焼炉全てに対して適用できる。   Moreover, in the said embodiment, although the application with respect to the fluidized-bed boiler containing a circulating fluidized bed is described, it is applicable also to the fluidized-bed furnace which is not equipped with the water pipe which performs heat exchange in the furnace, In short, The present invention can be applied to all fluidized bed combustion furnaces equipped with a combustion chamber for burning a raw material while forming a fluidized bed in which the raw material and a fluidized material flow.

1…炉、2,22,42…流動材供給装置、3…流動材供給路、4…プラズマトーチ(電気式バーナー)、6…燃焼室、7…流動材、8…流動床、23…高水分燃料供給路、25…流動材循環路、100,200,300,400…流動床ボイラ(流動床燃焼炉)。   DESCRIPTION OF SYMBOLS 1 ... Furnace, 2, 22, 42 ... Fluidized material supply apparatus, 3 ... Fluidized material supply path, 4 ... Plasma torch (electric burner), 6 ... Combustion chamber, 7 ... Fluidized material, 8 ... Fluidized bed, 23 ... High Moisture fuel supply path, 25 ... fluidized material circulation path, 100, 200, 300, 400 ... fluidized bed boiler (fluidized bed combustion furnace).

Claims (6)

原料及び流動材が流動する流動床を形成しながら前記原料を燃焼する燃焼室を備えた流動床燃焼炉において、
前記原料の継続した燃焼を可能とする原料継続燃焼可能温度まで、前記流動材を加熱する電気式バーナーと、
前記流動材を炉内に供給するための流動材供給路と、を備え、
前記電気式バーナーは、前記流動材供給路に設けられ、
前記電気式バーナーの出力方向は前記流動材の流動方向と交差する方向であり、
前記流動材供給路の途中は、前記電気式バーナーが設置されて前記流動材が加熱される加熱部とされ、
前記加熱部は前記流動材供給路に比して内部空間の幅が大きく、
前記電気式バーナーと、前記加熱部内を落下する前記流動材との間には空間が形成される、流動床燃焼炉。
In a fluidized bed combustion furnace having a combustion chamber for combusting the raw material while forming a fluidized bed in which the raw material and fluidized material flow,
An electric burner for heating the fluidized material to a temperature at which the raw material can be continuously combusted to enable continuous combustion of the raw material;
A fluid supply path for supplying the fluidized material into the furnace,
The electric burner is provided in the fluid supply path,
The output direction of the electric burner is a direction intersecting the flow direction of the fluidized material,
In the middle of the fluid material supply path, the electric burner is installed and a heating unit in which the fluid material is heated,
The heating section has a larger internal space width than the fluid supply path,
A fluidized bed combustion furnace in which a space is formed between the electric burner and the fluidized material falling in the heating unit.
前記流動材供給路の前記電気式バーナーより上流側に接続され高水分燃料を供給する高水分燃料供給路を備える、請求項1に記載の流動床燃焼炉。 The fluidized bed combustion furnace according to claim 1 , further comprising a high moisture fuel supply passage connected to an upstream side of the electric burner of the fluid material supply passage to supply a high moisture fuel. 炉内から排出される排ガスから前記流動材を固気分離し前記炉内に戻し循環させる流動材循環路を備え、
前記流動材供給路は、前記流動材循環路に接続される、請求項1又は2に記載の流動床燃焼炉。
A fluidized material circulation path for solid-gas separating the fluidized material from the exhaust gas discharged from the furnace and circulating it back into the furnace,
The fluidized bed combustion furnace according to claim 1 , wherein the fluidized material supply path is connected to the fluidized material circulation path.
前記電気式バーナーは、炉の起動時に使用される、請求項1〜3の何れか一項に記載の流動床燃焼炉。 The fluidized bed combustion furnace according to any one of claims 1 to 3 , wherein the electric burner is used when the furnace is started. 前記電気式バーナーは、プラズマトーチである、請求項1〜4の何れか一項に記載の流動床燃焼炉。 The fluidized bed combustion furnace according to any one of claims 1 to 4 , wherein the electric burner is a plasma torch. 原料及び流動材が流動する流動床を形成しながら前記原料を燃焼する燃焼室を備えた流動床燃焼炉の運転方法であって、
電気式バーナーにより、前記原料の継続した燃焼を可能とする原料継続燃焼可能温度まで前記流動材を加熱し、
前記電気式バーナーの出力方向は前記流動材の流動方向と交差する方向であり、
前記電気式バーナーは、前記流動材を炉内に供給するための流動材供給路に設けられ、
前記流動材供給路の途中は、前記電気式バーナーが設置されて前記流動材が加熱される加熱部とされ、
前記加熱部は前記流動材供給路に比して内部空間の幅が大きく、
前記電気式バーナーと、前記加熱部内を落下する前記流動材との間には空間が形成される、流動床燃焼炉の運転方法。
An operation method of a fluidized bed combustion furnace provided with a combustion chamber for combusting the raw material while forming a fluidized bed in which the raw material and fluidized material flow.
The fluidized material is heated to a temperature at which the raw material can be continuously combusted by an electric burner to enable continuous combustion of the raw material,
The output direction of the electric burner is a direction intersecting the flow direction of the fluidized material,
The electric burner is provided in a fluid material supply path for supplying the fluid material into a furnace,
In the middle of the fluid material supply path, the electric burner is installed and a heating unit in which the fluid material is heated,
The heating section has a larger internal space width than the fluid supply path,
A method for operating a fluidized bed combustion furnace, wherein a space is formed between the electric burner and the fluidizing material falling in the heating section.
JP2014559714A 2013-01-31 2014-01-29 Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace Active JP6125543B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013016704 2013-01-31
JP2013016704 2013-01-31
JP2013150321 2013-07-19
JP2013150321 2013-07-19
PCT/JP2014/051935 WO2014119612A1 (en) 2013-01-31 2014-01-29 Fluidized bed combustion furnace and method for operating fluidized bed combustion furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017022444A Division JP6208388B2 (en) 2013-01-31 2017-02-09 Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace

Publications (2)

Publication Number Publication Date
JPWO2014119612A1 JPWO2014119612A1 (en) 2017-01-26
JP6125543B2 true JP6125543B2 (en) 2017-05-10

Family

ID=51262325

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014559714A Active JP6125543B2 (en) 2013-01-31 2014-01-29 Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace
JP2017022444A Active JP6208388B2 (en) 2013-01-31 2017-02-09 Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017022444A Active JP6208388B2 (en) 2013-01-31 2017-02-09 Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace

Country Status (4)

Country Link
JP (2) JP6125543B2 (en)
MY (1) MY175763A (en)
PH (1) PH12015501682A1 (en)
WO (1) WO2014119612A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995603B2 (en) * 2017-12-15 2022-01-14 三菱パワー株式会社 Circulating fluidized bed combustion furnace plant
WO2020036195A1 (en) 2018-08-15 2020-02-20 日本電信電話株式会社 End-of-speech determination device, end-of-speech determination method, and program

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165139A (en) * 1979-06-12 1980-12-23 Babcock Hitachi Kk Starting burner device of fluidized bed furnace
AT367453B (en) * 1980-04-03 1982-07-12 Voest Alpine Ag METHOD AND DEVICE FOR PRODUCING LIQUID GUT IRON OR STEEL PRE-MATERIAL
JPS59134709U (en) * 1983-02-28 1984-09-08 工業技術院長 Burner for fluidized bed furnace
DE3603894A1 (en) * 1986-02-05 1987-08-06 Korf Engineering Gmbh METHOD FOR PRODUCING LIQUID PIPE IRON OR STEEL PRE-MATERIAL
JPS62258918A (en) * 1986-05-02 1987-11-11 Babcock Hitachi Kk Burner with fluidized bed
JPS63140017A (en) * 1986-11-29 1988-06-11 Nippon Steel Corp Prereduction of iron ore
JPH0292401U (en) * 1988-12-28 1990-07-23
JPH0587314A (en) * 1991-09-27 1993-04-06 Ishikawajima Harima Heavy Ind Co Ltd Waste incinerator
JPH062811A (en) * 1992-06-22 1994-01-11 Ishikawajima Harima Heavy Ind Co Ltd Fuel control device for starting burner in circulating fluidized bed boiler
JPH08121731A (en) * 1994-10-25 1996-05-17 Kubota Corp Sewage sludge fluidized bed type incinerator
JPH08303718A (en) * 1995-05-10 1996-11-22 Mitsubishi Heavy Ind Ltd Circulating fluidized bed boiler
JPH09262460A (en) * 1996-03-27 1997-10-07 Chichibu Onoda Cement Corp Treatment of organic compound and device therefor
JP2001027402A (en) * 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd Method for controlling bed temperature of pressurized fluidized bed boiler
JP3831567B2 (en) * 2000-02-21 2006-10-11 三菱重工業株式会社 Circulating fluidized bed furnace
JP2002022126A (en) * 2000-07-12 2002-01-23 Babcock Hitachi Kk System for waste gasification-melting and its operation- control method
JP2002130636A (en) * 2000-10-23 2002-05-09 Tokyo Gas Co Ltd Fluidized bed incinerator
GB2423079B (en) * 2005-06-29 2008-11-12 Tetronics Ltd Waste treatment process and apparatus
AR066535A1 (en) * 2007-05-11 2009-08-26 Plasco Energy Group Inc AN INITIAL GAS REFORMULATION SYSTEM IN A REFORMULATED GAS AND PROCEDURE FOR SUCH REFORMULATION.
AU2011286470A1 (en) * 2010-08-03 2013-03-21 Xiaodi Huang Method and apparatus for coproduction of pig iron and high quality syngas

Also Published As

Publication number Publication date
PH12015501682B1 (en) 2015-10-19
MY175763A (en) 2020-07-08
WO2014119612A1 (en) 2014-08-07
JP6208388B2 (en) 2017-10-04
PH12015501682A1 (en) 2015-10-19
JPWO2014119612A1 (en) 2017-01-26
JP2017106713A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
KR101805700B1 (en) Combustion improvement method for incinerator in complex facility, and complex facility
JP6199174B2 (en) Boiler equipment
JP6958489B2 (en) Energy storage and supply equipment by waste incinerator
JP6208388B2 (en) Fluidized bed combustion furnace and operation method of fluidized bed combustion furnace
KR20080094656A (en) A boiler producing steam from flue gases with high electrical efficiency and improved slag quality
JP2011220541A (en) Boiler facility
JP2013245905A (en) Boiler
JP6388555B2 (en) Biomass gasification system and boiler equipment using the same
JP2005291524A (en) Combustion equipment and method of biomass fuel
JP4415087B2 (en) Incinerator
JP6887917B2 (en) Incinerator plant
JP2013117336A (en) Combustion method and combustion device of stoker-type incinerator
JP6351389B2 (en) Exhaust reburning system
JP6797083B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JP4082416B2 (en) Waste treatment plant
JP4154371B2 (en) Thermal insulation method at the time of waste supply stop of fluidized bed type gasification melting furnace
JP2007309162A (en) Waste incinerator power generation device
JP6797082B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
FI113562B (en) Power boiler and method for burning fuel in a boiler
JP2021071238A (en) Incineration plant and combustion controlling method thereof
JP2005326042A (en) Gasification furnace and combined recycle device
JP5812575B2 (en) Boiler equipment
JP2012021652A (en) Combustion furnace for coal firing boiler and method of operating the same
JP3945513B2 (en) Waste treatment plant and control method thereof
JP3798932B2 (en) Waste treatment plant and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6125543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150