JP6112917B2 - Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material - Google Patents

Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material Download PDF

Info

Publication number
JP6112917B2
JP6112917B2 JP2013048129A JP2013048129A JP6112917B2 JP 6112917 B2 JP6112917 B2 JP 6112917B2 JP 2013048129 A JP2013048129 A JP 2013048129A JP 2013048129 A JP2013048129 A JP 2013048129A JP 6112917 B2 JP6112917 B2 JP 6112917B2
Authority
JP
Japan
Prior art keywords
arsenic
regenerated cellulose
adsorptive
viscose
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013048129A
Other languages
Japanese (ja)
Other versions
JP2014171996A (en
Inventor
林 誠
誠 林
功介 山下
功介 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Rayon Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Rayon Co Ltd
Priority to JP2013048129A priority Critical patent/JP6112917B2/en
Publication of JP2014171996A publication Critical patent/JP2014171996A/en
Application granted granted Critical
Publication of JP6112917B2 publication Critical patent/JP6112917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、砒素吸着性再生セルロース成形体、その製造方法、砒素吸着材及び水処理材に関し、詳細には、水中の砒素を吸着除去することができる砒素吸着性再生セルロース成形体、その製造方法、砒素吸着材及び水処理材に関する。   The present invention relates to an arsenic-adsorbing regenerated cellulose molded article, a method for producing the same, an arsenic adsorbing material, and a water treatment material, and more specifically, an arsenic-adsorbing regenerated cellulose shaped article capable of adsorbing and removing arsenic in water, and a method for producing the same. The present invention relates to an arsenic adsorbent and a water treatment material.

砒素が人体に対して有害であることは昔から知られており、人体への蓄積性も問題とされている。砒素で汚染されている飲用水、工業用水、工業用排水や、砒素で汚染された土壌の溶出液などにより人体に健康被害が生じる恐れがある。例えば、アジアの開発途上国において、井戸水に高い濃度の砒素が含まれている場合があり、地元住民に健康被害をもたらしていることが報告されている。   It has been known for a long time that arsenic is harmful to the human body, and its accumulation in the human body is also a problem. Drinking water, industrial water, industrial wastewater contaminated with arsenic, or leaching solution of soil contaminated with arsenic may cause health damage. For example, it has been reported that in well-developed Asian countries, well water contains high concentrations of arsenic, causing health damage to local residents.

従来、砒素などの有毒物質を含有する有毒物質含有水溶液にアルカリ剤を添加して有毒物質を水酸化物として沈殿・除去させる方法が報告されている。例えば、特許文献1には、砒酸イオンなどの有害な無機性イオンを含有する水に、少なくともセリウムの塩を主成分として含有する希土類元素の塩溶液及び水酸化マグネシュウムを添加し、PH8から11にて沈澱を生成させ、固液分離することにより、砒酸イオンを除去することが記載されている。しかし、このような方法では、ある程度有毒物質の濃度が高い場合は有効であるが、低濃度の場合は凝集物が生成し難いため砒酸イオンが沈殿せずに流出してしまうとともに排水がアルカリ性であり、もう一度中和する必要があった。  Conventionally, a method has been reported in which an alkaline agent is added to an aqueous solution containing a toxic substance such as arsenic to precipitate and remove the toxic substance as a hydroxide. For example, in Patent Document 1, a salt solution of a rare earth element containing at least a cerium salt as a main component and magnesium hydroxide is added to water containing harmful inorganic ions such as arsenate ions, and PH8 to 11 are added. It is described that arsenic ions are removed by forming a precipitate and performing solid-liquid separation. However, such a method is effective when the concentration of the toxic substance is high to some extent, but when the concentration is low, it is difficult to produce aggregates, so that the arsenate ions flow out without precipitating and the drainage is alkaline. There was a need to neutralize again.

そこで、特許文献2には、水に難溶性のカルシウム塩により表面が改質されてなる改質アルカリ性カルシウム化合物と、酸性硫酸鉄塩とがプレミックスされてなり、pH調整を必要とせず、砒素などの重金属を不溶化できる重金属不溶化材が記載されている。特許文献3には、塩化第一鉄と、酸化マグネシウムとを含有してなり、前記塩化第一鉄100質量部に対して、前記酸化マグネシウムが50〜200質量部配合され、汚染物質のpH雰囲気によらず、処理後の溶出液のpHを中性付近に維持できる有害物質溶出低減材が記載されている。特許文献4には、鉄・アルミニウム複水酸化物を少なくとも含み、pH3〜11の範囲の砒素汚染水又は砒素汚染土壌に対して、単位重量当たりのAs(V)とAs(III)の吸着量が高く、且つ単位重量当たりのAs(V)吸着量の変動率が10%以内である砒素吸着剤が記載されている。特許文献5には、カルシウム・マグネシウム系の鉄鋼スラブ類と、鉄塩及び/又はアルミニウム塩を含む中和剤を添加して製造した液状重金属吸着能を有する液状材料や、該液状材料に乾燥天然ゼオライトを添加して生成した砒素及び重金属類吸着・不溶化能力を有する粉末材料が記載されている。   Therefore, in Patent Document 2, a modified alkaline calcium compound whose surface is modified with a calcium salt that is sparingly soluble in water and an acidic iron sulfate salt are premixed, and pH adjustment is not required. A heavy metal insolubilizing material capable of insolubilizing heavy metals such as is described. Patent Document 3 contains ferrous chloride and magnesium oxide, and 50 to 200 parts by mass of the magnesium oxide is blended with 100 parts by mass of the ferrous chloride, and the pH atmosphere of the pollutant Regardless, there is described a hazardous substance elution reducing material capable of maintaining the pH of the eluate after treatment in the vicinity of neutrality. Patent Document 4 includes adsorption amounts of As (V) and As (III) per unit weight on arsenic-contaminated water or arsenic-contaminated soil containing at least iron / aluminum double hydroxide and in the range of pH 3-11. And an arsenic adsorbent having a variation rate of As (V) adsorption amount per unit weight within 10%. Patent Document 5 discloses a liquid material having the ability to adsorb liquid heavy metals produced by adding a calcium / magnesium-based steel slab and a neutralizing agent containing an iron salt and / or an aluminum salt. A powder material having the ability to adsorb and insolubilize arsenic and heavy metals produced by adding zeolite is described.

一方、特許文献6には、有機高分子樹脂と、ゼオライト、複合金属酸化物などの無機イオン吸着体を含んでなるフィブリルが三次元網目構造を形成してなり、外表面に開口する連通孔を有する多孔性成形体により砒素を吸着して除去することが記載されている。   On the other hand, in Patent Document 6, a fibril containing an organic polymer resin and an inorganic ion adsorbent such as zeolite or composite metal oxide forms a three-dimensional network structure, and has a communication hole that opens to the outer surface. It is described that arsenic is adsorbed and removed by a porous molded body having the same.

特開2006−341139号公報JP 2006-341139 A 特開2006−272145号公報JP 2006-272145 A 特開2009−256593号公報JP 2009-256593 A WO2008/126691WO2008 / 126691 特開2011−136311号公報JP 2011-136411 A 特許第4671419号Japanese Patent No. 4671419

しかし、特許文献2〜5に記載の重金属不溶化材は、粉末又はスラリー状で用いられ、特許文献6に記載の多孔性成形体は、平均粒径が100〜2500μmの球状粒子として用いられており、取扱いが煩雑であるという問題がある。   However, the heavy metal insolubilizing materials described in Patent Documents 2 to 5 are used in the form of powder or slurry, and the porous molded body described in Patent Document 6 is used as spherical particles having an average particle diameter of 100 to 2500 μm. There is a problem that handling is complicated.

そこで、本発明は、上記従来の問題を鑑み、取扱い性が良好であり、砒素に対する吸着性が高い砒素吸着性再生セルロース成形体、その製造方法、砒素吸着材及び水処理材を提供する。   Therefore, in view of the above-described conventional problems, the present invention provides an arsenic adsorptive regenerated cellulose molded article having good handleability and high adsorptivity to arsenic, a manufacturing method thereof, an arsenic adsorbent, and a water treatment material.

本発明は、セルロース内に鉄イオン複合体を含む砒素吸着性再生セルロース成形体であって、上記鉄イオン複合体は、イオン結合性を有する合成ゼオライト、イオン結合性を有する天然ゼオライト、及びカルボキシル基を有する有機高分子からなる群から選ばれる一種以上の担体と、上記担体に担持されている鉄イオンで構成されていることを特徴とする砒素吸着性再生セルロース成形体に関する。
The present invention is an arsenic-adsorbing regenerated cellulose molded article containing an iron ion complex in cellulose, the iron ion complex comprising a synthetic zeolite having an ion binding property, a natural zeolite having an ion binding property, and a carboxyl group The present invention relates to an arsenic-adsorptive regenerated cellulose molded article comprising one or more carriers selected from the group consisting of organic polymers having selenium and iron ions supported on the carriers.

本発明は、また、上記の砒素吸着性再生セルロース成形体の製造方法であって、セルロースを含むビスコース原液に、イオン結合性を有する合成ゼオライト、イオン結合性を有する天然ゼオライト、及びカルボキシル基を有する有機高分子からなる群から選ばれる一種以上の担体の分散液を混合してビスコース液を調製する工程と、上記ビスコース液を凝固再生させてビスコースレーヨン成形体を得る工程と、上記ビスコースレーヨン成形体を鉄化合物で処理する工程を含む砒素吸着性再生セルロース成形体の製造方法に関する。
The present invention is also a method for producing the above-mentioned arsenic-adsorbing regenerated cellulose molded article, wherein a synthetic zeolite having ion binding properties, a natural zeolite having ion binding properties, and a carboxyl group are added to a viscose stock solution containing cellulose. A step of preparing a viscose liquid by mixing a dispersion of one or more carriers selected from the group consisting of organic polymers, a step of solidifying and regenerating the viscose liquid to obtain a viscose rayon molded body, and the above The present invention relates to a method for producing an arsenic-adsorptive regenerated cellulose molded body comprising a step of treating a viscose rayon molded body with an iron compound.

本発明は、また、上記の砒素吸着性再生セルロース成形体を含む砒素吸着材に関する。   The present invention also relates to an arsenic adsorbent comprising the arsenic-adsorbing regenerated cellulose molded article.

本発明は、また、上記の砒素吸着性再生セルロース成形体を含む水処理材に関する。   The present invention also relates to a water treatment material comprising the arsenic-adsorbing regenerated cellulose molded body.

本発明は、再生セルロース成形体において、セルロース内にイオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体と、鉄イオンを含ませるとともに、鉄イオンを担体に担持した状態で存在させることにより、砒素に対する吸着性が高い砒素吸着性再生セルロース成形体並びにそれを用いた砒素吸着材及び水処理材を提供することができる。また、本発明の砒素吸着性再生セルロース成形体は、濡れ性が高いため、液体の被処理対象から砒素を吸着して除去する際に取扱いが簡便である。また、再生セルロース成形体は、生分解性に優れるため、砒素を吸着した後の砒素吸着性再生セルロース成形体の処理も簡便であるとともに、砒素の回収も可能になる。   In the regenerated cellulose molded article, the present invention includes one or more carriers selected from the group consisting of inorganic particles having ion binding properties and organic polymers having a reactive functional group in cellulose, iron ions, and iron. By allowing ions to be supported on a carrier, it is possible to provide an arsenic adsorptive regenerated cellulose molded article having a high arsenic adsorptivity, and an arsenic adsorbent and a water treatment material using the same. In addition, since the arsenic-adsorbing regenerated cellulose molded article of the present invention has high wettability, it is easy to handle when adsorbing and removing arsenic from a liquid target. In addition, since the regenerated cellulose molded article is excellent in biodegradability, it is easy to treat the arsenic-adsorbing regenerated cellulose molded article after adsorbing arsenic, and arsenic can be recovered.

本発明の製造方法によると、セルロースを含むビスコース原液にイオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体の分散液を混合して調製したビスコース液を凝固再生することにより、イオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体を再生セルロース成形体中に練り込み、その後、鉄化合物で処理して、鉄イオンを担体に担持させることで、砒素を吸着・除去する鉄イオン複合体をセルロース内(成形体内部)に含ませ、砒素に対する吸着性が高い砒素吸着性再生セルロース成形体を提供することができる。   According to the production method of the present invention, prepared by mixing a dispersion of one or more carriers selected from the group consisting of inorganic particles having ion binding properties and organic polymers having a reactive functional group into a viscose stock solution containing cellulose. By coagulating and regenerating the viscose solution, one or more carriers selected from the group consisting of inorganic particles having ion binding properties and organic polymers having reactive functional groups are kneaded into the regenerated cellulose molded body, Arsenic adsorptive regenerated cellulose with high adsorptivity to arsenic, containing iron ion complex that adsorbs and removes arsenic by treating with iron compound and supporting iron ions on the carrier, inside cellulose (inside the molded body) A molded body can be provided.

本発明者は、セルロース内に、イオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体と、上記担体に担持されている鉄イオンで構成された鉄イオン複合体を含ませることにより、砒素に対する吸着性が格段に向上することを見出し本発明に至った。本発明において、成形体とは、繊維、スポンジなどの形態を示すものをいう。本発明の砒素吸着性再生セルロース成形体は、液体の被処理対象と接触させることにより、これらの水中の砒素(砒酸イオン、亜砒酸イオン)を吸着・保持して、水中から砒素を除去することができる。本発明の砒素吸着性再生セルロース成形体は、砒素吸着材及び水処理材として用いることができる。   The present inventor comprises, in cellulose, one or more carriers selected from the group consisting of inorganic particles having ion binding properties and organic polymers having a reactive functional group, and iron ions supported on the carriers. Including the iron ion complex, the present inventors have found that the adsorptivity to arsenic is remarkably improved, leading to the present invention. In the present invention, a molded product refers to a material that exhibits a form such as fiber or sponge. The arsenic-adsorptive regenerated cellulose molded article of the present invention can remove arsenic from water by adsorbing and holding these arsenic ions (arsenate ions and arsenite ions) by bringing them into contact with a liquid target. it can. The arsenic adsorptive regenerated cellulose molded product of the present invention can be used as an arsenic adsorbent and a water treatment material.

本発明の砒素吸着性再生セルロース成形体では、セルロースという水に対して半透膜性を有する基材中に、イオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体を含有させ、上記担体に鉄イオンを担持しているので、セルロース内(成形体内部)に上記担体と鉄イオンで構成された鉄イオン複合体が含まれることとなる。そして、井戸水などの液体の被処理対象を上記砒素吸着性再生セルロース成形体で処理した時、砒素はセルロース内部の鉄イオン複合体に吸着・保持され、除去される。上記セルロースがビスコース法又は銅アンモニア法による再生セルロースである場合、特に非晶質性が高いので砒素を含む液体の被処理対象を透過し易くなり、吸着性が高くなる。   In the arsenic adsorptive regenerated cellulose molded product of the present invention, cellulose is a base material having a semipermeable membrane with respect to water, and from a group consisting of inorganic particles having ion binding properties and organic polymers having reactive functional groups. Since one or more selected carriers are contained and iron ions are supported on the carrier, an iron ion complex composed of the carrier and iron ions is contained in cellulose (inside the molded body). When a liquid target such as well water is treated with the arsenic-adsorptive regenerated cellulose molded body, arsenic is adsorbed / held on the iron ion complex inside the cellulose and removed. When the cellulose is a regenerated cellulose obtained by the viscose method or the copper ammonia method, the amorphousness is particularly high, so that it easily penetrates the liquid target to be treated containing arsenic and the adsorptivity becomes high.

本発明の砒素吸着性再生セルロース成形体は繊維であること(以下において、砒素吸着性再生セルロース繊維とも記す。)が好ましい。再生セルロース成形体が繊維状であると、濡れ性が高いため、液体の被処理対象から砒素を吸着して除去する際に取扱いが簡便である。また、繊維状であると、処理対象との接触面積も大きく、砒素除去効率が高くなる。   The arsenic-adsorbing regenerated cellulose molded article of the present invention is preferably a fiber (hereinafter also referred to as arsenic-adsorbing regenerated cellulose fiber). When the regenerated cellulose molded body is fibrous, the wettability is high, so that handling is easy when adsorbing and removing arsenic from the liquid target. Moreover, when it is fibrous, the contact area with the process target is large, and the arsenic removal efficiency is increased.

本発明の砒素吸着性再生セルロース成形体は、ビスコース法、銅アンモニア法、溶剤紡糸法などのいずれかの方法で、セルロースを凝固再生させて得ることができる。セルロース内に鉄イオンを担持させた担体を含有させるので、セルロースは半透膜性が高い非晶質構造を採ることが好ましい。セルロースの非晶質性を示す指標として、一次膨潤度が挙げられる。一次膨潤度は、70%以上であることが好ましく、80〜120%であることがより好ましい。特にビスコース法によって得られるレーヨンは、一次膨潤度が上記範囲を満たし、好ましい。なお、一次膨潤度は、湿式紡糸法などの湿式で製造した再生セルロース成形体において、乾燥工程を経ない状態で測定した膨潤度をいい、乾燥工程を経たのちに測定される二次膨潤度とは区別される。この膨潤度は、JIS L 1015 8.26(水膨潤度)に準じて求められる。   The arsenic-adsorbing regenerated cellulose molded article of the present invention can be obtained by coagulating and regenerating cellulose by any method such as viscose method, copper ammonia method, solvent spinning method and the like. Since a carrier in which iron ions are supported in cellulose is contained, it is preferable that the cellulose has an amorphous structure with a high semipermeable property. As an index showing the amorphous nature of cellulose, the primary swelling degree can be mentioned. The primary swelling degree is preferably 70% or more, and more preferably 80 to 120%. In particular, rayon obtained by the viscose method is preferable because the primary swelling degree satisfies the above range. The primary swelling degree refers to the degree of swelling measured after the drying process in the regenerated cellulose molded body produced by a wet method such as a wet spinning method, and the secondary swelling degree measured after the drying process. Are distinguished. This swelling degree is determined according to JIS L 1015 8.26 (water swelling degree).

上記担体としては、イオン結合性(イオン交換性)を有する無機粒子が用いられる。イオン結合性を有することにより、鉄イオン(2価鉄イオン、3価鉄イオン)が無機粒子に結合して、イオンの状態で浮遊する水中の砒素(砒酸イオン、亜砒酸イオン)を効果的に吸着することができる。   As the carrier, inorganic particles having ion binding properties (ion exchange properties) are used. By having ion binding properties, iron ions (divalent iron ions, trivalent iron ions) bind to inorganic particles and effectively adsorb arsenic ions (arsenate ions, arsenite ions) in water floating in the state of ions. can do.

上記イオン結合性を有する無機粒子は、多孔性無機粒子であることが好ましい。多孔性無機粒子であると、表面積が大きくなるため、鉄イオンとの結合部位が増大し、吸着性能が向上する傾向にある。多孔性無機粒子としては、例えばゼオライト、バーミキュライトなどが挙げられる。   The inorganic particles having ion binding properties are preferably porous inorganic particles. In the case of porous inorganic particles, since the surface area is increased, the binding sites with iron ions are increased and the adsorption performance tends to be improved. Examples of the porous inorganic particles include zeolite and vermiculite.

上記ゼオライトは、特に限定されず、天然ゼオライト、人工ゼオライト、合成ゼオライトのいずれであってもよい。例えば、紡糸工程で再生セルロース繊維に含ませる際の歩留りが高いという観点から、天然ゼオライトであることが好ましく、モルディナイトの構造の天然ゼオライトであることがより好ましい。モルディナイトの構造の場合、鉄イオンがより担持されやすい。天然ゼオライトは島根県産が好ましい。島根県産の天然ゼオライトはモルディナイトの構造となっているものが多く、好ましい。モルディナイト構造のゼオライトは、細孔径が比較的大きく鉄イオンを孔内で結合し易い。また、モルディナイト構造のゼオライトは、酸による結晶崩壊が少ないのでビスコースレーヨン製造時の耐酸性を有すると推測される。合成ゼオライトとしては、モレキュラーシーブなどを用いることができる。モレキュラーシーブなどの合成ゼオライトは、酸及びアルカリに耐性を有することが好ましい。耐酸性を有するモレキュラーシーブとしては、疎水性モレキュラーシーブが挙げられる。疎水性モレキュラーシーブは、化学組成におけるSiO2の比率を高めることにより得ることができ、例えば、ユニオン昭和株式会社製「HISIV−3000 POWDER」などが挙げられる。 The zeolite is not particularly limited, and may be natural zeolite, artificial zeolite, or synthetic zeolite. For example, a natural zeolite is preferable, and a natural zeolite having a mordinite structure is more preferable from the viewpoint of high yield when the regenerated cellulose fiber is included in the spinning process. In the case of the mordinite structure, iron ions are more easily supported. Natural zeolite is preferably produced in Shimane Prefecture. Many natural zeolites produced in Shimane Prefecture have a mordinite structure, which is preferable. The zeolite having a mordinite structure has a relatively large pore diameter and easily binds iron ions in the pores. Further, it is presumed that the zeolite having a mordinite structure has acid resistance at the time of producing viscose rayon because there is little crystal disintegration due to acid. A molecular sieve etc. can be used as a synthetic zeolite. Synthetic zeolites such as molecular sieves are preferably resistant to acids and alkalis. Examples of the molecular sieve having acid resistance include a hydrophobic molecular sieve. Hydrophobic molecular sieve can be obtained by increasing the ratio of SiO 2 in the chemical composition, and examples thereof include “HISIV-3000 POWDER” manufactured by Union Showa Corporation.

上記イオン結合性を有する無機粒子は、微粒子状であることが好ましい。上記再生セルロース成形体が繊維である場合、上記イオン結合性を有する無機粒子は、平均粒子径は0.3〜2μmであることが好ましく、0.5〜1.5μmであることがより好ましい。粒子径が小さいと無機粒子の分散液において凝集が発生し易く、扱い易い粒子径を保ちにくい傾向があり、粒子径が大きいと繊維に練り込んだ時に繊維の強度が低下する恐れがある。本発明の砒素吸着性再生セルロース繊維においては、後述するとおり、原料ビスコースに無機粒子の分散液を混合して調製したビスコース液を凝固再生することで、無機粒子を繊維内に含ませているため、無機粒子は、ビスコース液中で微分散された状態のままか、それに近い状態で繊維内に存在する。即ち、原料(分散液中)の無機粒子の粒子径と、再生セルロース繊維中の無機粒子の粒子径はほぼ同一である。なお、本発明の砒素吸着性再生セルロース繊維中の無機粒子の平均粒子径は、マイクロスコープ(VHX-500F、キーエンス製)を用い、倍率3500倍で透過光により側面観察を行い、任意の視野において30点の粒子径を計測し、その平均値を算出することで確認できる。一方、上記再生セルロース成形体が、スポンジである場合は、成形体生産時の工程性や繊維径の制約がないことから、平均粒子径に特に制約はない。ただし、粒子の表面積が大きい方が吸着サイトが増加することから、平均粒子径は小さい方が、より適している。   The inorganic particles having ion binding properties are preferably in the form of fine particles. When the said regenerated cellulose molded object is a fiber, it is preferable that the average particle diameter of the said inorganic particle which has the said ion binding property is 0.3-2 micrometers, and it is more preferable that it is 0.5-1.5 micrometers. If the particle size is small, aggregation tends to occur in the dispersion of inorganic particles, and the particle size tends to be difficult to maintain. If the particle size is large, the strength of the fiber may be reduced when kneaded into the fiber. In the arsenic-adsorbing regenerated cellulose fiber of the present invention, as described later, the inorganic particles are included in the fiber by coagulating and regenerating the viscose liquid prepared by mixing the dispersion of inorganic particles with the raw material viscose. Therefore, the inorganic particles are present in the fiber in a state of being finely dispersed in the viscose liquid or in a state close thereto. That is, the particle size of the inorganic particles in the raw material (in the dispersion) and the particle size of the inorganic particles in the regenerated cellulose fiber are almost the same. The average particle size of the inorganic particles in the arsenic-adsorbing regenerated cellulose fiber of the present invention was measured with a microscope (VHX-500F, manufactured by Keyence), side-viewed with transmitted light at a magnification of 3500, and in any field of view. This can be confirmed by measuring the particle size at 30 points and calculating the average value. On the other hand, when the regenerated cellulose molded product is a sponge, there is no particular limitation on the average particle size because there are no restrictions on processability and fiber diameter during production of the molded product. However, since the adsorption site increases when the particle surface area is larger, the smaller average particle diameter is more suitable.

上記担体としては、反応性官能基を含む有機高分子が用いられる。反応性官能基を有する有機高分子は、鉄イオンを担持することができる高分子であればよい。反応性官能基を有する有機高分子としては、例えば、反応性官能基としてカルボキシル基、スルホン基などを有する高分子化合物が挙げられる。鉄イオンとの結合性に優れるという観点から、カルボキシル基(カルボン酸基)を含有する有機高分子であることが好ましい。カルボキシル基を含有する有機高分子は、室温で水溶液であってもよく微粒子状であってもよい。鉄イオンを効果的に担持させる観点から、1分子中のカルボキシル基の多いことが好ましい。   As the carrier, an organic polymer containing a reactive functional group is used. The organic polymer having a reactive functional group may be any polymer that can carry iron ions. Examples of the organic polymer having a reactive functional group include a polymer compound having a carboxyl group, a sulfone group, or the like as the reactive functional group. From the viewpoint of excellent binding properties with iron ions, an organic polymer containing a carboxyl group (carboxylic acid group) is preferable. The organic polymer containing a carboxyl group may be an aqueous solution or a fine particle form at room temperature. From the viewpoint of effectively supporting iron ions, it is preferable that there are many carboxyl groups in one molecule.

上記カルボキシル基含有有機高分子としては、例えば、室温で水溶液であるポリカルボン酸、スチレンカルボン酸、マレイン酸系共重合物、ビニル無水酢酸共重合物、カルボキシメチルセルロースなどを用いることができる。ポリカルボン酸としては、ポリアクリル酸などが挙げられる。凝固再生工程で再生セルロース成形体に含ませる際の歩留りが高いという観点から、カルボキシル基含有有機高分子の溶液の粘度は500〜6000mPa・sであることが好ましく、より好ましくは1000〜5000mPa・sである。また、成形体の歩留りの観点から、重合度が1万以上であることが好ましく、より好ましくは2万以上である。   Examples of the carboxyl group-containing organic polymer include polycarboxylic acid, styrene carboxylic acid, maleic acid copolymer, vinyl acetic anhydride copolymer, and carboxymethyl cellulose which are aqueous solutions at room temperature. Examples of the polycarboxylic acid include polyacrylic acid. From the viewpoint of high yield when included in the regenerated cellulose molded body in the coagulation regeneration step, the viscosity of the carboxyl group-containing organic polymer solution is preferably 500 to 6000 mPa · s, more preferably 1000 to 5000 mPa · s. It is. Further, from the viewpoint of the yield of the molded product, the degree of polymerization is preferably 10,000 or more, more preferably 20,000 or more.

上記有機高分子が微粒子状の場合、上記カルボキシル基含有有機高分子において、カルボキシル基は官能基として存在することが好ましい。このようなカルボキシル基含有有機高分子としては、例えば、アクリレート系樹脂などが挙げられる。本発明において、アクリレート系樹脂粒子とは、アクリロニトリル系重合体を主体とし、カルボキシル基が変性された粒子であり、アクリロニトリル系重合体にアクリル酸、アクリル酸ナトリウム、アクリルアミドが架橋重合された共重合体から構成されている長鎖状合成高分子からなる樹脂粒子をいう。例えば、東洋紡製のタフチック(登録商標)「HU−700E」)などのアクリロニトリル系樹脂粒子の水分散液を用いることができる。上記有機高分子が微粒子状であり、上記再生セルロース成形体が繊維の場合、上記カルボキシル基含有有機高分子は、平均粒子径が0.3〜2.0μmであることが好ましい。より好ましくは、0.5〜1.5μmである。粒子径が小さいと凝集が発生し易く、扱い易い粒子径を保ちにくい傾向があり、粒子径が大きいと繊維に練り込んだ時に繊維の強度が低下する恐れがある。一方、上記再生セルロース成形体がスポンジの場合は、成形体生産時の工程性や繊維径の制約がないことから、平均粒子径に制約はない。ただし、粒子の表面積が大きい方が結合サイトが増加することから、平均粒子径は小さい方が、より適している。   When the organic polymer is in the form of fine particles, the carboxyl group is preferably present as a functional group in the carboxyl group-containing organic polymer. Examples of such carboxyl group-containing organic polymers include acrylate resins. In the present invention, the acrylate-based resin particle is a particle mainly composed of an acrylonitrile-based polymer and having a carboxyl group modified, and a copolymer obtained by crosslinking and polymerizing acrylic acid, sodium acrylate, and acrylamide on the acrylonitrile-based polymer. The resin particle which consists of a long-chain synthetic polymer comprised from these. For example, an aqueous dispersion of acrylonitrile-based resin particles such as Tuftic (registered trademark) “HU-700E” manufactured by Toyobo Co., Ltd. can be used. When the organic polymer is in the form of fine particles and the regenerated cellulose molded body is a fiber, the carboxyl group-containing organic polymer preferably has an average particle diameter of 0.3 to 2.0 μm. More preferably, it is 0.5 to 1.5 μm. If the particle size is small, aggregation tends to occur, and the particle size tends to be difficult to maintain. If the particle size is large, the strength of the fiber may decrease when kneaded into the fiber. On the other hand, when the regenerated cellulose molded body is a sponge, there is no restriction on the average particle diameter because there is no restriction on processability and fiber diameter during production of the molded body. However, since the binding site increases when the surface area of the particle is larger, the smaller average particle diameter is more suitable.

本発明の砒素吸着性再生セルロース繊維においては、後述するとおり、原料ビスコースにアクリレート系樹脂粒子などのカルボキシル基含有有機高分子の粒子を混合して調製したビスコース液を凝固再生することで、カルボキシル基含有有機高分子の粒子を繊維内に含ませているため、カルボキシル基含有有機高分子の粒子は、ビスコース液中で微分散された状態のままか、それに近い状態で繊維内に存在する。即ち、原料(分散液中)のカルボキシル基含有有機高分子の粒子の粒子径と、再生セルロース繊維中のカルボキシル基含有有機高分子の粒子の粒子径はほぼ同一である。なお、本発明の砒素吸着性再生セルロース繊維中のカルボキシル基含有有機高分子の粒子の平均粒子径は、マイクロスコープ(VHX-500F、キーエンス製)を用い、倍率3500倍で透過光により側面観察を行い、任意の視野において30点の粒子径を計測し、その平均値を算出することで確認できる。   In the arsenic adsorptive regenerated cellulose fiber of the present invention, as described later, by coagulating and regenerating a viscose solution prepared by mixing particles of carboxyl group-containing organic polymer such as acrylate resin particles with raw material viscose, Since the carboxyl group-containing organic polymer particles are contained in the fiber, the carboxyl group-containing organic polymer particles are present in the fiber in a state of being finely dispersed in the viscose liquid or in a state close thereto. To do. That is, the particle diameter of the carboxyl group-containing organic polymer particles in the raw material (in the dispersion) is almost the same as the particle diameter of the carboxyl group-containing organic polymer particles in the regenerated cellulose fiber. The average particle size of the carboxyl group-containing organic polymer particles in the arsenic-adsorbing regenerated cellulose fiber of the present invention was measured with a microscope (VHX-500F, manufactured by Keyence) and side-viewed with transmitted light at a magnification of 3500 times. This can be confirmed by measuring the particle size of 30 points in an arbitrary visual field and calculating the average value.

上記砒素吸着性再生セルロース成形体において、セルロース100質量%に対する上記担体の含有量は、3〜30質量%であることが好ましく、より好ましくは5〜15質量%である。担体の含有量が3質量%未満では、担持される鉄イオンの量が少なくなり、砒素吸着性能が低くなる傾向があり、30質量%を超えると、成形体の強度が低下しやすく、加工が困難になる傾向があり、濾過材などの製品として用いる場合に要求する特性を満たさない恐れがある。   In the arsenic adsorptive regenerated cellulose molded body, the content of the carrier with respect to 100% by mass of cellulose is preferably 3 to 30% by mass, more preferably 5 to 15% by mass. If the content of the carrier is less than 3% by mass, the amount of iron ions to be supported tends to be low and the arsenic adsorption performance tends to be low. It tends to be difficult, and there is a possibility that the characteristics required when used as a product such as a filter medium are not satisfied.

上記砒素吸着性再生セルロース成形体において、鉄の含有量は、0.05〜3質量%であることが好ましく、より好ましくは、0.1〜2質量%、さらにより好ましくは0.15〜1.5質量%である。鉄の含有量が0.05質量%未満であると、砒素吸着性能が発揮されにくい恐れがあり、3質量%を超えると、担体に担持させる加工が困難になる傾向がある。担体の全ての結合サイトに鉄イオンが担持されておらず、50%程度の結合サイトに担持されてもよい。鉄イオンが担持されていない担体の結合サイトに液体被処理対象(水中)の他のイオンなどが付着することで、水の清澄化に寄与することもある。本発明において、成形体中、具体的には繊維中の鉄の含有量(存在量)は、以下のように測定する。成形体が、スポンジの場合は、下記の測定方法において、繊維の代わりにスポンジを試料として用いることでスポンジ中の鉄の含有量を測定することができる。   In the arsenic-adsorbing regenerated cellulose molded body, the iron content is preferably 0.05 to 3% by mass, more preferably 0.1 to 2% by mass, and even more preferably 0.15 to 1%. 0.5% by mass. If the iron content is less than 0.05% by mass, the arsenic adsorption performance may not be exhibited, and if it exceeds 3% by mass, it tends to be difficult to carry on the carrier. Iron ions are not supported on all the binding sites of the carrier, and may be supported on about 50% of the binding sites. When other ions or the like of the liquid treatment target (in water) adhere to the binding site of the carrier on which iron ions are not supported, it may contribute to the clarification of water. In the present invention, the content (abundance) of iron in the molded body, specifically in the fiber, is measured as follows. When the molded body is a sponge, the iron content in the sponge can be measured by using the sponge as a sample instead of the fiber in the following measurement method.

<鉄の含有量の測定>
(a)繊維(原綿)を105℃で2時間定温送風乾燥機内に放置し、その後秤量瓶にいれ、デシケータに1時間入れ室温(20±5℃)になったら、絶乾質量を測定する。
(b)上記で得られた乾燥後の原綿を800℃で灰化し、灰を硝酸で溶解してJIS K 0102の吸光光度法により鉄を定量分析し、鉄の質量を算出する。
(c)下記式により、繊維中の鉄の含有量を算出する。
鉄の含有量(質量%)=(吸光光度による鉄の質量/繊維の絶乾質量)×100
<Measurement of iron content>
(A) The fiber (raw cotton) is left in a constant temperature blast dryer at 105 ° C. for 2 hours, then placed in a weighing bottle, placed in a desiccator for 1 hour and when it reaches room temperature (20 ± 5 ° C.), the absolute dry mass is measured.
(B) The dried raw cotton obtained above is incinerated at 800 ° C., the ash is dissolved in nitric acid, and iron is quantitatively analyzed by an absorptiometric method of JIS K 0102 to calculate the mass of iron.
(C) The iron content in the fiber is calculated according to the following formula.
Iron content (mass%) = (mass of iron by spectrophotometry / absolute dry mass of fiber) × 100

本発明の砒素吸着性再生セルロース繊維は、特に限定されないが、原料ビスコースに担体の分散液を添加して調製したビスコース液を凝固再生(紡糸)し、得られた担体を含有するビスコースレーヨン糸条を鉄化合物で処理することで製造することが好ましい。   The arsenic-adsorbing regenerated cellulose fiber of the present invention is not particularly limited, but viscose containing a carrier obtained by coagulating and regenerating (spinning) a viscose solution prepared by adding a carrier dispersion to raw material viscose. It is preferable to manufacture the rayon yarn by treating it with an iron compound.

原料ビスコースとしては、セルロースを7〜10質量%、水酸化ナトリウムを5〜8質量%、二硫化炭素を2〜3.5質量%含むビスコース原液を調製して用いるとよい。このとき、必要に応じて、エチレンジアミン四酢酸(EDTA)などの添加剤を使用することもできる。原料ビスコースの温度は18〜23℃に保持するのが好ましい。セルロースを含むビスコース原液に、イオン結合性を有する無機粒子及び反応性官能基を有する有機高分子からなる群から選ばれる一種以上の担体の分散液を混合してビスコース液(紡糸用ビスコース液)を調製する。   As the raw material viscose, a viscose stock solution containing 7 to 10% by mass of cellulose, 5 to 8% by mass of sodium hydroxide, and 2 to 3.5% by mass of carbon disulfide may be prepared and used. At this time, additives such as ethylenediaminetetraacetic acid (EDTA) can be used as necessary. The temperature of the raw material viscose is preferably maintained at 18 to 23 ° C. A viscose solution (spinning viscose) is prepared by mixing a dispersion of one or more carriers selected from the group consisting of inorganic particles having ion binding properties and organic polymers having reactive functional groups into a viscose stock solution containing cellulose. Liquid).

イオン結合性を有する無機粒子としては、上述したものを用いることができる。無機粒子の分散液において、無機粒子の平均粒子径は、0.3〜2μmであることが好ましく、より好ましくは0.5〜1.5μmである。粒子径が小さいと分散液において凝集が発生し易く、扱い易い粒子径を保ちにくい傾向があり、粒子径が大きいと得られた繊維の強度が低下する恐れがある。本発明において、分散液における担体粒子の平均粒子径は、レーザー回折光散乱式粒度分析測定法で測定した体積累積平均粒子径d50をいう。  As the inorganic particles having ion binding properties, those described above can be used. In the dispersion of inorganic particles, the average particle diameter of the inorganic particles is preferably 0.3 to 2 μm, more preferably 0.5 to 1.5 μm. If the particle size is small, aggregation tends to occur in the dispersion, and it tends to be difficult to maintain a particle size that is easy to handle. If the particle size is large, the strength of the obtained fiber may be reduced. In the present invention, the average particle diameter of the carrier particles in the dispersion refers to a volume cumulative average particle diameter d50 measured by a laser diffraction light scattering particle size analysis measurement method.

反応性官能基を有する有機高分子としては、上述したものを用いることができる。カルボキシル基含有有機高分子の水溶液を用いる場合、歩留りの観点から、水溶液の粘度は500〜6000mPa・sであることが好ましく、より好ましくは1000〜5000mPa・sである。カルボキシル基含有有機高分子の微粒子を用いる場合、分散液におけるカルボキシル基含有有機高分子粒子の平均粒子径が0.3〜2.0μmであることが好ましく、より好ましくは、0.5〜1.5μmである。粒子径が小さいと凝集が発生し易く、扱い易い粒子径を保ちにくい傾向があり、粒子径が大きいと繊維に練り込んだ時に繊維の強度が低下する恐れがある。   As the organic polymer having a reactive functional group, those mentioned above can be used. When using the aqueous solution of a carboxyl group-containing organic polymer, from the viewpoint of yield, the viscosity of the aqueous solution is preferably 500 to 6000 mPa · s, more preferably 1000 to 5000 mPa · s. When the carboxyl group-containing organic polymer fine particles are used, the average particle size of the carboxyl group-containing organic polymer particles in the dispersion is preferably 0.3 to 2.0 μm, more preferably 0.5 to 1. 5 μm. If the particle size is small, aggregation tends to occur, and the particle size tends to be difficult to maintain. If the particle size is large, the strength of the fiber may decrease when kneaded into the fiber.

上記担体の添加量は、セルロースに対して3〜30質量%であることが好ましく、より好ましくは5〜15質量%である。担体の添加量が3質量%未満では、担持される鉄イオンの量も少なくなり、砒素吸着性能が低くなる傾向があり、30質量%を超えると、繊維強度が低下しやすくなる。  The amount of the carrier added is preferably 3 to 30% by mass, more preferably 5 to 15% by mass with respect to cellulose. If the added amount of the carrier is less than 3% by mass, the amount of iron ions to be supported also decreases, and the arsenic adsorption performance tends to be low. If the added amount exceeds 30% by mass, the fiber strength tends to decrease.

紡糸浴(ミューラー浴)としては、硫酸を95〜130g/L、硫酸亜鉛を10〜17g/L、硫酸ナトリウム(芒硝)を290〜370g/L含む強酸性浴を用いることが好ましい。より好ましい硫酸濃度は、100〜120g/Lである。   As the spinning bath (Mueller bath), it is preferable to use a strongly acidic bath containing 95 to 130 g / L of sulfuric acid, 10 to 17 g / L of zinc sulfate, and 290 to 370 g / L of sodium sulfate (sodium salt). A more preferable sulfuric acid concentration is 100 to 120 g / L.

上記砒素吸着性再生セルロース繊維は、例えば通常の円形ノズルを用いて製造することができる。紡糸ノズルとしては、目的とする生産量にもよるが、直径0.04〜0.12mmのホールを500〜20000個有する円形ノズルを用いることが好ましい。上記紡糸ノズルを用い、紡糸用ビスコース液を紡糸浴中に押し出して紡糸し、凝固再生させる。紡糸速度は30〜80m/分の範囲が好ましい。また、延伸率は39〜55%が好ましい。ここで延伸率とは、延伸前のスライバー速度を100としたとき、延伸後のスライバー速度をどこまで速くしたかを示すものである。倍率で示すと、延伸前が1、延伸後は1.39〜1.55倍となる。   The arsenic-adsorbing regenerated cellulose fiber can be produced using, for example, a normal circular nozzle. As the spinning nozzle, it is preferable to use a circular nozzle having 500 to 20000 holes having a diameter of 0.04 to 0.12 mm, depending on the target production amount. Using the spinning nozzle, the spinning viscose liquid is extruded into a spinning bath, spun, and coagulated and regenerated. The spinning speed is preferably in the range of 30 to 80 m / min. The stretching ratio is preferably 39 to 55%. Here, the stretching ratio indicates how much the sliver speed after stretching is increased when the sliver speed before stretching is 100. In terms of magnification, it is 1 before stretching and 1.39 to 1.55 times after stretching.

得られた再生セルロース繊維(レーヨン繊維)の糸条を所定の長さにカットし、精練処理を行う。精練工程は、通常の方法で、熱水処理、水硫化処理、漂白、酸洗い及び油剤付与の順で行うとよい。その後、必要に応じて圧縮ローラーや真空吸引などの方法で余分な油剤、水分を繊維から除去し、乾燥処理を施す。   A thread of the obtained regenerated cellulose fiber (rayon fiber) is cut into a predetermined length and subjected to a scouring treatment. The scouring step is preferably performed in the order of hot water treatment, hydrosulfurization treatment, bleaching, pickling, and oil application. Then, if necessary, excess oil agent and moisture are removed from the fiber by a method such as a compression roller or vacuum suction, and a drying treatment is performed.

また、上記再生セルロース成形体がスポンジの場合、原料ビスコースに担体を添加して調製したビスコース液を凝固再生して担体を含有するビスコーススポンジを得ることができる。ビスコーススポンジの製造方法の一例としては、汎用的な原料ビスコース100質量部に対し、補強繊維としてレーヨンのカット綿(例えば、ダイワボウレーヨン社製「SB」、繊度3.3dtex、繊維長10mm)を6.5質量部、結晶芒硝6.5質量部、担体(ゼオライトなど)を0.85質量部(ビスコース液中のセルロース分に対して10質量%)となるように入れ、混練機を使用して十分に混練を行い、得られた混合物を適当に孔の開いたステンレス製容器に入れ、90℃以上の温水に入れ5時間放置する。このようにして得られたビスコーススポンジは、ビスコースに含まれる副生成物も含有しているため、脱硫や晒を行い、副生性物が除去される。  When the regenerated cellulose molded body is a sponge, a viscose sponge containing a carrier can be obtained by coagulating and regenerating a viscose liquid prepared by adding a carrier to raw material viscose. As an example of a method for producing a viscose sponge, rayon cut cotton (for example, “SB” manufactured by Daiwabo Rayon Co., Ltd., fineness 3.3 dtex, fiber length 10 mm) is used as a reinforcing fiber with respect to 100 parts by mass of general-purpose raw material viscose. 6.5 parts by mass of crystal, 6.5 parts by mass of crystal mirabilite, and 0.85 parts by mass of a carrier (zeolite, etc.) (10% by mass with respect to the cellulose content in the viscose liquid). Use and knead well, put the resulting mixture into a stainless steel container with a suitable hole, put it in warm water of 90 ° C. or higher and leave it for 5 hours. Since the viscose sponge obtained in this way also contains by-products contained in the viscose, desulfurization and bleaching are performed to remove by-products.

次に、担体を含有する再生セルロース成形体(繊維状、スポンジ状)を鉄化合物で処理し、鉄イオンを担体に担持させて鉄イオン複合体を形成する。鉄イオンが担体の結合サイトに吸着又は結合されることになり、鉄イオン複合体はセルロース構造物内部(繊維中やスポンジ中)に含まれる。担体を含有する再生セルロース成形体が繊維の場合、鉄化合物による処理は、精練工程中で行ってもよく、精練工程後に後加工として行ってもよい。例えば、精練処理時に、担体を含有するレーヨン繊維を連続した糸状のまま鉄化合物の浴中を通過させて鉄イオンを付着させてもよいし、精練工程で担体を含有するレーヨン繊維に鉄化合物の水溶液をシャワーして鉄イオンを付着させてもよい。或いは、乾燥後の担体を含有するレーヨン繊維(原綿)を、鉄化合物の浴中に浸漬し、その後絞ることにより鉄イオンを付着させてもよく、担体を含有するレーヨン繊維(原綿)を不織布などに加工した状態で鉄化合物の浴中を通過させて鉄イオンを付着させてもよい。担体を含有する再生セルロース成形体がスポンジの場合、鉄イオンを含む溶液に含浸させて鉄イオンをビスコーススポンジ内部に保持されている担体に担持させて鉄イオン複合体を形成する。   Next, a regenerated cellulose molded body (fibrous, sponge-like) containing a carrier is treated with an iron compound, and iron ions are supported on the carrier to form an iron ion composite. Iron ions are adsorbed or bonded to the binding sites of the carrier, and the iron ion complex is contained inside the cellulose structure (in the fiber or sponge). When the regenerated cellulose molded body containing the carrier is a fiber, the treatment with the iron compound may be performed in the scouring step, or may be performed as a post-processing after the scouring step. For example, at the time of scouring treatment, the rayon fiber containing the carrier may be passed through the iron compound bath in a continuous thread form to adhere iron ions, or the iron compound may be attached to the rayon fiber containing the carrier in the scouring step. The aqueous solution may be showered to allow iron ions to adhere. Alternatively, the rayon fiber (raw cotton) containing the carrier after drying may be immersed in an iron compound bath and then squeezed to attach iron ions. The rayon fiber (raw cotton) containing the carrier may be nonwoven fabric, etc. The iron ions may be adhered by passing through a bath of an iron compound in a state of being processed into an iron compound. When the regenerated cellulose molded body containing a carrier is a sponge, it is impregnated with a solution containing iron ions, and iron ions are supported on a carrier held inside the viscose sponge to form an iron ion complex.

鉄化合物による処理は、鉄イオンを含む水溶液を用いて行うことができる。鉄イオンを含む水溶液は、水溶液中で鉄イオンを形成する鉄化合物を用いて調製することができる。水溶液中で鉄イオンを形成する鉄化合物としては、例えば、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄などが挙げられ、砒素吸着性により優れるという観点から、水溶液中で3価の鉄イオンを形成する塩化第二鉄、硫酸第二鉄などを用いることが好ましい。鉄イオンを含む水溶液のpHは、鉄化合物が鉄イオンを形成することができればよく特に限定されないが、加工性の観点から、pH2〜8の範囲であることが好ましく、pH3〜6の範囲がより好ましい。鉄イオンを含む水溶液のpHが低すぎると、担体に対する鉄イオンの付着が少なくなる傾向があり、pHが高すぎると、鉄が水酸化鉄に変換されてしまう恐れがある。鉄イオンを含む水溶液は、特に限定されないが、鉄イオン濃度が0.1〜30g/Lであることが好ましく、より好ましくは、0.5〜10g/Lである。処理温度については、鉄イオンを繊維に付着できればよく、特に限定がない。例えば、操作の簡便性から、室温(20±5℃)で処理してもよい。   The treatment with the iron compound can be performed using an aqueous solution containing iron ions. The aqueous solution containing iron ions can be prepared using an iron compound that forms iron ions in the aqueous solution. Examples of the iron compound that forms iron ions in an aqueous solution include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, and the like. It is preferable to use ferric chloride, ferric sulfate, etc. that form trivalent iron ions. The pH of the aqueous solution containing iron ions is not particularly limited as long as the iron compound can form iron ions, but from the viewpoint of processability, the pH is preferably in the range of 2 to 8, more preferably in the range of pH 3 to 6. preferable. If the pH of the aqueous solution containing iron ions is too low, the adhesion of iron ions to the carrier tends to be reduced, and if the pH is too high, iron may be converted to iron hydroxide. The aqueous solution containing iron ions is not particularly limited, but the iron ion concentration is preferably 0.1 to 30 g / L, and more preferably 0.5 to 10 g / L. The treatment temperature is not particularly limited as long as iron ions can adhere to the fiber. For example, the treatment may be performed at room temperature (20 ± 5 ° C.) for the convenience of operation.

上記砒素吸着性再生セルロース繊維は、繊度が0.8〜17dtex(デシテックス)であることが好ましい。より好ましくは1.7〜8dtexであり、さらに好ましくは2.2〜6dtexである。繊度が0.8dtex未満であると、延伸時に単繊維切れが発生しやすい傾向にある。繊度が17dtexを超えると、繊維の再生状態が不良になりやすく、繊維自体の強伸度に影響があり、加工性が悪くなる場合がある。   The arsenic adsorptive regenerated cellulose fiber preferably has a fineness of 0.8 to 17 dtex (decitex). More preferably, it is 1.7-8 dtex, More preferably, it is 2.2-6 dtex. When the fineness is less than 0.8 dtex, the single fiber tends to be broken during stretching. If the fineness exceeds 17 dtex, the regenerated state of the fiber tends to be poor, the strength and elongation of the fiber itself are affected, and workability may be deteriorated.

上記砒素吸着性再生セルロース繊維は、長繊維状及び短繊維状のいずれの形態でもよい。上記長繊維状としては、例えば、トウ、フィラメントなどが挙げられ、上記短繊維状としては、例えば、湿式抄紙用原綿、エアレイド不織布用原綿、カード用原綿などが挙げられる。   The arsenic adsorptive regenerated cellulose fiber may be in the form of either a long fiber or a short fiber. Examples of the long fiber form include tow and filament, and examples of the short fiber form include wet papermaking raw cotton, airlaid non-woven raw cotton, and card raw cotton.

上記砒素吸着性再生セルロース繊維は、繊維構造物を形成して用いることができる。上記再生セルロース繊維を含む繊維構造物であると、砒素を含む液体の被処理対象の条件により、繊度や繊維空隙を容易に調整することができ、液体の被処理対象から砒素を効果的に除去することができ、好ましい。上記繊維構造物は、特に限定されないが、例えば、トウ、フィラメント、紡績糸、詰め綿、紙、不織布、織物、編物などが挙げられる。  The arsenic adsorptive regenerated cellulose fiber can be used by forming a fiber structure. The fiber structure containing the regenerated cellulose fiber can easily adjust the fineness and fiber gap according to the condition of the liquid treatment target containing arsenic, and effectively removes arsenic from the liquid treatment target. Can be preferred. Although the said fiber structure is not specifically limited, For example, a tow | toe, a filament, spun yarn, stuffed cotton, paper, a nonwoven fabric, a textile fabric, a knitted fabric etc. are mentioned.

上記砒素吸着性再生セルロース繊維は、単独又はその他の再生セルロース繊維、コットン、麻、ウール、アクリル、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタンなどの他の繊維と混綿して用いることができる。他の繊維と混綿して繊維構造物を形成する場合、特に限定されないが、上記砒素吸着性再生セルロース繊維は、繊維構造物100質量%に対して、50質量%以上含まれることが好ましく、より好ましくは70質量%以上含まれる。  The arsenic-adsorbing regenerated cellulose fibers can be used alone or in combination with other regenerated cellulose fibers, cotton, hemp, wool, acrylic, polyester, polyamide, polyolefin, polyurethane and other fibers. When a fiber structure is formed by blending with other fibers, the arsenic-adsorbing regenerated cellulose fiber is preferably contained in an amount of 50% by mass or more based on 100% by mass of the fiber structure. Preferably 70 mass% or more is contained.

上記砒素吸着性再生セルロース成形体が繊維の場合は、繊維及びそれを含む繊維構造物は、単独又は他の素材と組み合わせて砒素吸着材として用いることができる。特に、液体の被処理対象と接触させて水中の砒素を吸着除去する水処理材として使用するのに適している。液体の被処理対象としては、特に限定されないが、飲料水、河川水、海水、地下水、下水、工業用水、工業用排水、汚染土壌の溶出液などが挙げられる。上記砒素吸着性再生セルロース成形体は、低濃度の砒素でも吸着可能であり、吸着除去効率が高い。例えば、砒素(砒酸イオン、亜砒酸イオン)の濃度が0.01〜100ppmの広範囲について処理可能である。  When the arsenic-adsorbing regenerated cellulose molded body is a fiber, the fiber and the fiber structure containing the fiber can be used alone or in combination with other materials as an arsenic adsorbent. In particular, it is suitable for use as a water treatment material for adsorbing and removing arsenic in water by bringing it into contact with a liquid treatment target. Although it does not specifically limit as a liquid to-be-processed object, Drinking water, river water, seawater, groundwater, sewage, industrial water, industrial wastewater, the eluate of contaminated soil, etc. are mentioned. The arsenic adsorptive regenerated cellulose molded body can adsorb even a low concentration of arsenic and has high adsorption removal efficiency. For example, a wide range of arsenic (arsenate ion, arsenite ion) concentration of 0.01 to 100 ppm can be processed.

例えば、上記砒素吸着性再生セルロース繊維(原綿)を開繊しカラムに詰め、或いは上記砒素吸着性再生セルローススポンジをカラムに詰め、詰め綿又は詰め材料として使用して飲料水などの液体被処理対象の濾過にも使用可能であるし、原綿又はスポンジに対して各種加工を行い、使用環境に合わせた仕様にすることもできる。例えば、紡毛用紡績を行い太い紡績糸に加工後、糸巻き用カートリッジフィルターに加工して、水処理材として用いてもよい。ニードルパンチ不織布のような不織布状態に加工した濾過布でもよく、水流交絡不織布としてワイパーやウェットシートに使用してもよい。湿紙として生産した物を抄紙し、コーヒーのドリッパーのような形態で濾過材として使用することも可能である。  For example, the arsenic-adsorbing regenerated cellulose fiber (raw cotton) is opened and packed in a column, or the arsenic-adsorbing regenerated cellulose sponge is packed in a column and used as stuffed cotton or a stuffing material to be treated with liquid such as drinking water. It can also be used for filtration, and various processing can be performed on the raw cotton or sponge so that the specification matches the usage environment. For example, after spinning into a spun yarn and processing it into a thick spun yarn, it may be processed into a thread-wound cartridge filter and used as a water treatment material. A filter cloth processed into a nonwoven fabric state such as a needle punched nonwoven fabric may be used, or a hydroentangled nonwoven fabric may be used for a wiper or a wet sheet. A product produced as a wet paper can be made and used as a filter medium in the form of a coffee dripper.

以下、実施例により本発明をさらに具体的に説明する。本発明は、下記の実施例に限定されるものではない。なお、下記の実施例において添加量を単に%と表記した場合は、質量%を意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples. In the following examples, when the addition amount is simply expressed as%, it means mass%.

(実施例1)
[紡糸用ビスコース液の調製]
天然ゼオライトの微粒子(「イズカライト」、平均粒子径:63μm以下、株式会社イズカ製)100質量部と、分散剤(「デモールT」、花王ケミカル製)2質量部の混合物に、水を添加混合してゼオライトの濃度が20質量%の分散液を調製した。その後湿式粉砕分散機「Dyno−mill TYPE KDL−PILOT」(Willly A. Bachofen AG Maschinenfabrik製)にて、周速14m/秒、処理量10L/時間で20回(pass)通過させ、分散液中のゼオライトの微粒子の平均粒子径を1.15μmとした。ゼオライトの添加量がセルロースに対して17.6質量%となるように、粉砕処理後のゼオライトの分散液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度3.3dtexのゼオライトを含有するレーヨン繊維の糸条を得た。第1浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/Lを含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.09mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られたゼオライト含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施した。
[処理条件]
塩化鉄6水和物(Fe3+)を使用して鉄分の濃度が0.1質量%の鉄イオンを含む水溶液(pH3)を調製し、得られた鉄イオンを含む水溶液に、繊維との浴比が1:20になるように、乾燥後のゼオライト含有レーヨン繊維を浸漬し、室温で5分間放置した。その後繊維をイオン交換水で洗浄し、2槽式洗濯機の脱水を1分間行い、乾燥処理(60℃、7時間)を施し、繊維Aを得た。
Example 1
[Preparation of viscose liquid for spinning]
Water was added to and mixed with 100 parts by mass of natural zeolite fine particles (“Izcalite”, average particle size: 63 μm or less, manufactured by Izuka Co., Ltd.) and 2 parts by mass of a dispersant (“Demol T”, manufactured by Kao Chemical). Thus, a dispersion having a zeolite concentration of 20% by mass was prepared. Thereafter, the mixture was passed 20 times (pass) at a peripheral speed of 14 m / second and a throughput of 10 L / hour with a wet pulverizer “Dyno-mill TYPE KDL-PILOT” (manufactured by Willy A. Bachofen AG Maskinfabrik). The average particle size of the zeolite fine particles was 1.15 μm. The dispersion of zeolite after pulverization is added to the raw material viscose so that the amount of zeolite added is 17.6% by mass with respect to the cellulose, and the mixture is stirred and mixed in a mixer. Prepared. The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained spinning viscose liquid was spun by a two-bath tension spinning method at a spinning speed of 50 m / min and a draw ratio of 45% to obtain a rayon fiber yarn containing zeolite having a fineness of 3.3 dtex. As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.09 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the zeolite-containing rayon fiber obtained above was cut into a fiber length of 51 mm and subjected to a scouring treatment. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Then, after sufficiently washing with water and applying an oil agent, excess moisture and the oil agent were dropped from the fiber with a compression roller, and a drying treatment (60 ° C., 7 hours) was performed.
[Processing conditions]
Using iron chloride hexahydrate (Fe 3+ ), an aqueous solution (pH 3) containing iron ions with an iron concentration of 0.1% by mass was prepared. The dried zeolite-containing rayon fiber was immersed so that the bath ratio was 1:20, and left at room temperature for 5 minutes. Thereafter, the fiber was washed with ion-exchanged water, dewatered in a two-tank washing machine for 1 minute, and subjected to a drying treatment (60 ° C., 7 hours) to obtain fiber A.

(実施例2)
塩化鉄6水和物(Fe3+)に替えて、硫酸鉄7水和物(Fe2+)を用いた以外は、実施例1と同様にして繊維Bを得た。
(Example 2)
Fiber B was obtained in the same manner as in Example 1 except that iron sulfate heptahydrate (Fe 2+ ) was used instead of iron chloride hexahydrate (Fe 3+ ).

(比較例1)
鉄化合物による処理を行っていない以外は、実施例1と同様にしてゼオライト含有レーヨン繊維(繊維C)を得た。
(Comparative Example 1)
A zeolite-containing rayon fiber (fiber C) was obtained in the same manner as in Example 1 except that the treatment with the iron compound was not performed.

(実施例3)
[紡糸用ビスコース液の調製]
モレキュラーシーブの微粒子(「HISIV−3000 POWDER」、平均粒子径:3μm、ユニオン昭和株式会社製)100質量部と、分散剤(「デモールT」、花王ケミカル製)5質量部の混合物に、純水を添加してモレキュラーシーブの濃度が15質量%の分散液を調製した。モレキュラーシーブの添加量がセルロースに対して17.6質量%となるように、モレキュラーシーブの分散液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度3.3dtexのモレキュラーシーブを含有するレーヨン繊維の糸条を得た。第1浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/Lを含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.09mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られたモレキュラーシーブ含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施した。
[処理条件]
塩化鉄6水和物(Fe3+)を使用して鉄分の濃度が0.1質量%の鉄イオンを含む水溶液(pH3)を調製し、得られた鉄イオンを含む水溶液に、繊維との浴比が1:20になるように、乾燥後のモレキュラーシーブ含有レーヨン繊維を浸漬し、室温で5分間放置した。その後繊維をイオン交換水で洗浄し、2槽式洗濯機の脱水を1分間行い、乾燥処理(60℃、7時間)を施し、繊維Dを得た。
(Example 3)
[Preparation of viscose liquid for spinning]
Pure water is added to a mixture of 100 parts by mass of molecular sieve fine particles (“HISIV-3000 POWDER”, average particle size: 3 μm, manufactured by Union Showa Co., Ltd.) and 5 parts by mass of a dispersant (“Demol T”, manufactured by Kao Chemical). Was added to prepare a dispersion having a molecular sieve concentration of 15% by mass. The molecular sieve dispersion was added to the raw material viscose so that the molecular sieve addition amount was 17.6% by mass with respect to the cellulose, and the mixture was stirred and mixed to prepare a spinning viscose liquid. . The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained spinning viscose liquid was spun at a spinning speed of 50 m / min and a draw ratio of 45% by a two-bath tension spinning method to obtain a rayon fiber yarn containing a molecular sieve having a fineness of 3.3 dtex. . As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.09 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the molecular sieve-containing rayon fiber obtained above was cut into a fiber length of 51 mm and subjected to a scouring treatment. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Then, after sufficiently washing with water and applying an oil agent, excess moisture and the oil agent were dropped from the fiber with a compression roller, and a drying treatment (60 ° C., 7 hours) was performed.
[Processing conditions]
Using iron chloride hexahydrate (Fe 3+ ), an aqueous solution (pH 3) containing iron ions with an iron concentration of 0.1% by mass was prepared. The dried molecular sieve-containing rayon fibers were immersed so that the bath ratio was 1:20, and left at room temperature for 5 minutes. Thereafter, the fiber was washed with ion-exchanged water, dewatered in a two-tank washing machine for 1 minute, and subjected to a drying treatment (60 ° C., 7 hours) to obtain a fiber D.

(比較例2)
鉄化合物による処理を行っていない以外は、実施例3と同様にしてモレキュラーシーブ含有レーヨン繊維(繊維E)を得た。
(Comparative Example 2)
A molecular sieve-containing rayon fiber (fiber E) was obtained in the same manner as in Example 3 except that the treatment with the iron compound was not performed.

(実施例4)
[紡糸用ビスコース液の調製]
ポリアクリル酸の溶液(荒川化学工業株式会社製「タマノリG−37」、濃度8.5%、粘度:4500mPa・s)を用い、ポリアクリル酸の質量がセルロースに対して6.0質量%となるように、ポリアクリル酸の溶液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度3.3dtexのポリアクリル酸を含有するレーヨン繊維の糸条を得た。第1浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/Lを含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.09mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られたポリアクリル酸含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施した。
[処理条件]
塩化鉄6水和物(Fe3+)を使用して鉄分の濃度が0.1質量%の鉄イオンを含む水溶液(pH3)を調製し、得られた鉄イオンを含む水溶液に、繊維との浴比が1:20になるように、乾燥後のポリアクリル酸含有レーヨン繊維を浸漬し、室温で5分間放置した。その後繊維をイオン交換水で洗浄し、2槽式洗濯機の脱水を1分間行い、乾燥処理(60℃、7時間)を施し、繊維Fを得た。
Example 4
[Preparation of viscose liquid for spinning]
Using a solution of polyacrylic acid (“Tamanori G-37” manufactured by Arakawa Chemical Industries, Ltd., concentration 8.5%, viscosity: 4500 mPa · s), the mass of polyacrylic acid is 6.0% by mass with respect to cellulose. Thus, a solution of polyacrylic acid was added to the raw material viscose and stirred and mixed in a mixer to prepare a viscose solution for spinning. The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained viscose solution for spinning is spun at a spinning speed of 50 m / min and a draw rate of 45% by a two-bath tension spinning method to obtain a rayon fiber yarn containing polyacrylic acid having a fineness of 3.3 dtex. It was. As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.09 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the rayon fiber containing polyacrylic acid obtained above was cut into a fiber length of 51 mm and subjected to a scouring treatment. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Then, after sufficiently washing with water and applying an oil agent, excess moisture and the oil agent were dropped from the fiber with a compression roller, and a drying treatment (60 ° C., 7 hours) was performed.
[Processing conditions]
Using iron chloride hexahydrate (Fe 3+ ), an aqueous solution (pH 3) containing iron ions with an iron concentration of 0.1% by mass was prepared. The dried polyacrylic acid-containing rayon fibers were immersed so that the bath ratio was 1:20, and left at room temperature for 5 minutes. Thereafter, the fiber was washed with ion-exchanged water, dewatered in a two-tank washing machine for 1 minute, and subjected to a drying treatment (60 ° C., 7 hours) to obtain a fiber F.

(比較例3)
鉄化合物による処理を行っていない以外は、実施例4と同様にしてポリアクリル酸含有レーヨン繊維(繊維G)を得た。
(Comparative Example 3)
A polyacrylic acid-containing rayon fiber (fiber G) was obtained in the same manner as in Example 4 except that the treatment with the iron compound was not performed.

(比較例4)
[紡糸用ビスコース液の調製]
酸化ジルコニウムの微粒子(平均粒子径1.5μm、株式会社三井金属製)100質量部と、分散剤(「デモールT」、花王ケミカル製)5質量部の混合物に、純水を添加混合して酸化ジルコニウムの濃度が15質量%の分散液を調製した。酸化ジルコニウムの添加量がセルロースに対して11質量%となるように、得られた酸化ジルコニウムの分散液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度1.7dtexの酸化ジルコニウムを含有するレーヨン繊維の糸条を得た。第一浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/L含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.07mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られた酸化ジルコニウム含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施し繊維Hを得た。
(Comparative Example 4)
[Preparation of viscose liquid for spinning]
Oxidized by adding pure water to a mixture of 100 parts by mass of zirconium oxide fine particles (average particle size 1.5 μm, Mitsui Kinzoku Co., Ltd.) and 5 parts by mass of a dispersant (“Demol T”, manufactured by Kao Chemical Co., Ltd.) A dispersion having a zirconium concentration of 15% by mass was prepared. The resulting zirconium oxide dispersion is added to the raw material viscose so that the added amount of zirconium oxide is 11% by mass with respect to cellulose, and the mixture is stirred and mixed to prepare a spinning viscose liquid. did. The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained viscose liquid for spinning was spun at a spinning speed of 50 m / min and a draw rate of 45% by a two-bath tension spinning method to obtain a rayon fiber yarn containing zirconium oxide having a fineness of 1.7 dtex. . As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.07 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the rayon fiber containing zirconium oxide obtained above was cut into a fiber length of 51 mm and scoured. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Subsequently, after sufficiently washing with water and applying an oil agent, excess moisture and the oil agent were dropped from the fiber with a compression roller, and a drying treatment (60 ° C., 7 hours) was performed to obtain a fiber H.

(比較例5)
[紡糸用ビスコース液の調製]
二酸化チタン(平均粒子径0.5μm)100質量部と、分散剤「ヘキサメタリン酸ナトリウム」1質量部の混合物に、純水を添加混合して二酸化チタンの濃度が15質量%の分散液を調製した。二酸化チタンの添加量がセルロースに対して10質量%となるように、得られた二酸化チタンの分散液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度1.7dtexの二酸化チタンを含有するレーヨン繊維の糸条を得た。第一浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/L含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.07mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られた二酸化チタン含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施し繊維Iを得た。
(Comparative Example 5)
[Preparation of viscose liquid for spinning]
Pure water was added to and mixed with 100 parts by mass of titanium dioxide (average particle size 0.5 μm) and 1 part by mass of the dispersant “sodium hexametaphosphate” to prepare a dispersion having a titanium dioxide concentration of 15% by mass. . The resulting titanium dioxide dispersion is added to the raw material viscose so that the amount of titanium dioxide added is 10% by mass with respect to the cellulose, and the mixture is stirred and mixed to prepare a spinning viscose liquid. did. The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained viscose solution for spinning was spun at a spinning speed of 50 m / min and a draw rate of 45% by a two-bath tension spinning method to obtain a rayon fiber yarn containing titanium dioxide having a fineness of 1.7 dtex. . As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.07 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the titanium dioxide-containing rayon fiber obtained above was cut into a fiber length of 51 mm and subjected to a scouring treatment. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Subsequently, after sufficiently washing with water and applying an oil agent, excess water and an oil agent were dropped from the fiber with a compression roller, and drying treatment (60 ° C., 7 hours) was performed to obtain a fiber I.

(比較例6)
[紡糸用ビスコース液の調製]
針葉樹活性炭(平均粒子径1.2μm)100質量部と、分散剤(「デモールT」、花王ケミカル製)5質量部の混合物に、純水を添加混合して活性炭の濃度が15質量の%分散液を調製した。活性炭の添加量がセルロースに対して17.6質量%となるように、得られた活性炭の分散液を原料ビスコースへ添加し、混合機にて攪拌混合を行い、紡糸用ビスコース液を調製した。温度は20℃に保った。原料ビスコースとしては、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液を用いた。
[紡糸条件]
得られた紡糸用ビスコース液を、2浴緊張紡糸法により、紡糸速度50m/分、延伸率45%で紡糸して、繊度3.3dtexの活性炭を含有するレーヨン繊維の糸条を得た。第一浴(紡糸浴)としては、硫酸100g/L、硫酸亜鉛15g/L、硫酸ナトリウム350g/L含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.09mmのホールを4000個有する円形ノズルを用いた。紡糸中、単糸切れなどの不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
上記で得られた活性炭含有レーヨン繊維の糸条を、繊維長51mmにカットし、精練処理を行った。精練工程では、熱水処理後に水洗を行い、水硫化ソーダをシャワーして脱硫を実施した。次いで、十分水洗し、油剤を付与した後、圧縮ローラーで余分な水分と油剤を繊維から落とし、乾燥処理(60℃、7時間)を施し繊維Jを得た。
(Comparative Example 6)
[Preparation of viscose liquid for spinning]
Pure water is added and mixed in a mixture of 100 parts by weight of softwood activated carbon (average particle size 1.2 μm) and 5 parts by weight of a dispersant (“Demol T”, manufactured by Kao Chemical Co., Ltd.). A liquid was prepared. The obtained activated carbon dispersion is added to the raw material viscose so that the amount of activated carbon added is 17.6% by mass with respect to cellulose, and the mixture is stirred and mixed to prepare a spinning viscose liquid. did. The temperature was kept at 20 ° C. As the raw material viscose, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
[Spinning conditions]
The obtained spinning viscose liquid was spun at a spinning speed of 50 m / min and a draw rate of 45% by a two-bath tension spinning method to obtain a rayon fiber yarn containing activated carbon having a fineness of 3.3 dtex. As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate and 350 g / L of sodium sulfate was used. In addition, a circular nozzle having 4000 holes having a hole diameter of 0.09 mm was used as a spinneret for discharging viscose. During spinning, inconveniences such as single yarn breakage did not occur, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The yarn of the activated carbon-containing rayon fiber obtained above was cut into a fiber length of 51 mm and subjected to a scouring treatment. In the scouring process, water washing was performed after the hot water treatment, and desulfurization was performed by showering sodium hydrosulfide. Subsequently, after sufficiently washing with water and applying an oil agent, excess moisture and the oil agent were dropped from the fiber with a compression roller, and a drying treatment (60 ° C., 7 hours) was performed to obtain a fiber J.

(比較例7)
紡糸用ビスコース液として、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%を含むビスコース原液をそのまま使用し、比較例4と同様の紡糸条件及び精練条件で紡糸、精練し、セルロース100%のレギュラーレーヨン繊維(繊維K)を得た。
(Comparative Example 7)
As a viscose solution for spinning, a viscose stock solution containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used as it was. Spinning and scouring were performed under scouring conditions to obtain 100% cellulose regular rayon fiber (fiber K).

実施例1〜4の繊維における鉄含有量を下記のように測定し、その結果を下記表1に示した。また、実施例及び比較例の繊維の砒素に対する吸着性を下記のように測定・評価し、その結果を下記表1に示した。   The iron content in the fibers of Examples 1 to 4 was measured as follows, and the results are shown in Table 1 below. Further, the adsorptivity of the fibers of Examples and Comparative Examples to arsenic was measured and evaluated as follows, and the results are shown in Table 1 below.

(鉄の含有量の測定)
(a)繊維(原綿)を105℃で2時間定温送風乾燥機内に放置し、その後秤量瓶にいれ、デシケータに1時間入れ室温(20±5℃)になったら、絶乾質量を測定した。
(b)上記で得られた乾燥後の原綿を800℃で灰化し、灰を硝酸で溶解してJIS K 0102の吸光光度法により鉄を定量分析し、鉄の質量を算出した。
(c)下記式により、繊維中の鉄の含有量(存在量)を算出した。
鉄の含有量(質量%)=(吸光光度による鉄の質量/繊維の絶乾質量)×100
(Measurement of iron content)
(A) The fiber (raw cotton) was left in a constant temperature blast dryer at 105 ° C. for 2 hours, then placed in a weighing bottle, placed in a desiccator for 1 hour and brought to room temperature (20 ± 5 ° C.), and the absolute dry mass was measured.
(B) The dried raw cotton obtained above was incinerated at 800 ° C., the ash was dissolved in nitric acid, and iron was quantitatively analyzed by an absorptiometric method of JIS K 0102 to calculate the mass of iron.
(C) The iron content (abundance) in the fiber was calculated according to the following formula.
Iron content (mass%) = (mass of iron by spectrophotometry / absolute dry mass of fiber) × 100

(砒素の吸着試験1)
(a)砒素として換算した濃度が0.979ppmの砒酸(五価)の水溶液を原液として用いた。原液における砒素濃度を初期砒素濃度とした。
(b)原液100mLと試料1.0gをポリプロピレン容器に入れ、24時間振とうした後、試料を取り除き、誘導結合プラズマ質量分析装置(ICP−MS、島津製作所製、「ICPM−8500」)を使用して残液中の砒素濃度を測定した。残液中の砒素濃度を吸着後砒素濃度とした。
(c)下記式により、砒素除去率を算出した。
砒素除去率(%) = 100−{(吸着後砒素濃度/初期砒素濃度)×100}
(Arsenic adsorption test 1)
(A) An aqueous solution of arsenic acid (pentavalent) having a concentration converted to arsenic of 0.979 ppm was used as a stock solution. The arsenic concentration in the stock solution was defined as the initial arsenic concentration.
(B) Put 100 mL of the stock solution and 1.0 g of the sample in a polypropylene container, shake for 24 hours, remove the sample, and use an inductively coupled plasma mass spectrometer (ICP-MS, manufactured by Shimadzu Corporation, “ICPM-8500”) Then, the arsenic concentration in the residual liquid was measured. The arsenic concentration in the residual liquid was defined as the arsenic concentration after adsorption.
(C) The arsenic removal rate was calculated by the following formula.
Arsenic removal rate (%) = 100 − {(arsenic concentration after adsorption / initial arsenic concentration) × 100}

(砒素の吸着試験2)
(a)砒素として換算した濃度が1mg/Lの三酸化二砒酸(三価)を含む塩酸溶液を対象砒素溶液として用いた。対象砒素溶液における砒素濃度を対象砒素溶液濃度とした。
(b)対象砒素溶液200mLと試料2.0gをポリプロピレン容器に入れ、緩やかに5時間振とうした後、試料を取り除き、工業排水試験法JIS K 0102 61.3に従い、残液中の砒素濃度を測定した。残液中の砒素濃度を吸着後砒素溶液濃度とした。
(c)下記式により、砒素除去率を算出した。
砒素除去率(%)=100−{(吸着後砒素溶液濃度/対象砒素溶液濃度)×100}
(Arsenic adsorption test 2)
(A) A hydrochloric acid solution containing diarsenic trioxide (trivalent) having a concentration converted to arsenic of 1 mg / L was used as the target arsenic solution. The arsenic concentration in the target arsenic solution was defined as the target arsenic solution concentration.
(B) Place 200 mL of the target arsenic solution and 2.0 g of the sample in a polypropylene container, gently shake for 5 hours, remove the sample, and determine the arsenic concentration in the residual liquid according to the industrial wastewater test method JIS K 0102 61.3. It was measured. The arsenic concentration in the residual liquid was defined as the arsenic solution concentration after adsorption.
(C) The arsenic removal rate was calculated by the following formula.
Arsenic removal rate (%) = 100 − {(Arsenic solution concentration after adsorption / Target arsenic solution concentration) × 100}

Figure 0006112917
Figure 0006112917

上記表1の結果から分かるように、イオン結合性を有する多孔性の無機粒子及びカルボキシル基含有有機高分子からなる群から選ばれる一種以上の担体と、担体に担持されている鉄イオンで構成された鉄イオン複合体をセルロース内に有する実施例1〜4の再生セルロース繊維は、液体被処理対象(水中)の砒素(砒素イオン)を80%以上除去していた。特に、担体と3価の鉄イオンで構成された鉄イオン複合体を含む砒素吸着性再生セルロース繊維は、担体と2価の鉄イオンで構成された鉄イオン複合体を含む砒素吸着性再生セルロース繊維に比べて、砒素吸着性能がより高かった。一方、セルロース内にイオン結合性を有する多孔性の無機粒子のみを含有する比較例1、2の繊維は、砒素吸着性能を有しておらず、水中から砒素を除去することができなかった。セルロース内にカルボキシル基含有有機高分子のみを含有する比較例3の繊維も、砒素吸着性能を十分に有していなかった。カチオン吸着特性を有する酸化ジルコニウム又は二酸化チタンをセルロース内に有する比較例4〜5の繊維も、砒素吸着性能が格段に低く、砒素の除去率が30%未満であった。同様に、物理吸着特性を有する活性炭をセルロース内に有する比較例6の繊維は、砒素吸着性能を有しておらず、水中から砒素を除去することができなかった。比較例7のレギュラーレーヨン繊維も砒素吸着性能を有していなかった。   As can be seen from the results in Table 1 above, it is composed of one or more carriers selected from the group consisting of porous inorganic particles having ion binding properties and carboxyl group-containing organic polymers, and iron ions supported on the carriers. In addition, the regenerated cellulose fibers of Examples 1 to 4 having the iron ion complex in cellulose removed arsenic (arsenic ions) of 80% or more of the liquid treatment target (in water). In particular, an arsenic-adsorbing regenerated cellulose fiber containing an iron ion complex composed of a carrier and trivalent iron ions is an arsenic-adsorbing regenerated cellulose fiber containing an iron ion complex composed of a carrier and divalent iron ions. Compared with, arsenic adsorption performance was higher. On the other hand, the fibers of Comparative Examples 1 and 2 containing only porous inorganic particles having ion binding properties in cellulose did not have arsenic adsorption performance, and arsenic could not be removed from water. The fiber of Comparative Example 3 containing only the carboxyl group-containing organic polymer in cellulose also did not have sufficient arsenic adsorption performance. The fibers of Comparative Examples 4 to 5 having zirconium oxide or titanium dioxide having cation adsorption characteristics in cellulose also had extremely low arsenic adsorption performance and an arsenic removal rate of less than 30%. Similarly, the fiber of Comparative Example 6 having activated carbon having physical adsorption characteristics in cellulose did not have arsenic adsorption performance, and arsenic could not be removed from water. The regular rayon fiber of Comparative Example 7 also did not have arsenic adsorption performance.

本発明の砒素吸着性再生セルロース成形体、それを含む砒素吸着材及び水処理材は、飲料水、河川水、海水、地下水、下水、工業用水、工業用排水、汚染土壌の溶出液などの水中の砒素(砒素イオン)を除去するのに用いることができる。  The arsenic adsorptive regenerated cellulose molded article of the present invention, arsenic adsorbent and water treatment material containing the same, are used for drinking water, river water, seawater, groundwater, sewage, industrial water, industrial wastewater, eluate of contaminated soil, etc. It can be used to remove arsenic (arsenic ions).

Claims (11)

セルロース内に鉄イオン複合体を含む砒素吸着性再生セルロース成形体であって、
前記鉄イオン複合体は、イオン結合性を有する合成ゼオライト、イオン結合性を有する天然ゼオライト、及びカルボキシル基を有する有機高分子からなる群から選ばれる一種以上の担体と、前記担体に担持されている鉄イオンで構成されていることを特徴とする砒素吸着性再生セルロース成形体。
An arsenic adsorptive regenerated cellulose molded article containing an iron ion complex in cellulose,
The iron ion complex is supported on one or more carriers selected from the group consisting of synthetic zeolite having ion binding properties, natural zeolite having ion binding properties, and an organic polymer having a carboxyl group, and the carrier. An arsenic-adsorbing regenerated cellulose molded article characterized by comprising iron ions.
前記砒素吸着性再生セルロース成形体において、鉄の含有量が0.05〜3質量%である請求項1に記載の砒素吸着性再生セルロース成形体。   The arsenic adsorptive regenerated cellulose molded product according to claim 1, wherein the arsenic adsorptive regenerated cellulose molded product has an iron content of 0.05 to 3% by mass. 前記担体は、平均粒子径が0.3〜2.0μmである請求項1又は2に記載の砒素吸着性再生セルロース成形体。   The arsenic-adsorptive regenerated cellulose molded article according to claim 1 or 2, wherein the carrier has an average particle size of 0.3 to 2.0 µm. 前記担体は、セルロースに対して3〜30質量%含有されている請求項1〜3のいずれか1項に記載の砒素吸着性再生セルロース成形体。 The arsenic adsorptive regenerated cellulose molded article according to any one of claims 1 to 3, wherein the carrier is contained in an amount of 3 to 30% by mass with respect to cellulose. 前記天然ゼオライトは、モルディナイト構造の天然ゼオライトである請求項1〜4のいずれか1項に記載の砒素吸着性再生セルロース成形体。 The arsenic-adsorbing regenerated cellulose molded article according to any one of claims 1 to 4, wherein the natural zeolite is a natural zeolite having a mordinite structure . 前記合成ゼオライトは、疎水性モレキュラーシーブである請求項1〜5のいずれか1項に記載の砒素吸着性再生セルロース成形体。 The arsenic-adsorbing regenerated cellulose molded article according to any one of claims 1 to 5, wherein the synthetic zeolite is a hydrophobic molecular sieve . 前記鉄イオンは、3価イオンである請求項1〜6のいずれか1項に記載の砒素吸着性再生セルロース成形体。   The arsenic-adsorptive regenerated cellulose molded article according to any one of claims 1 to 6, wherein the iron ions are trivalent ions. 前記砒素吸着性再生セルロース成形体は、砒素吸着性ビスコース成形体である請求項1〜7のいずれか1項に記載の砒素吸着性再生セルロース成形体。The arsenic-adsorptive regenerated cellulose molded body according to any one of claims 1 to 7, wherein the arsenic-adsorptive regenerated cellulose molded body is an arsenic-adsorptive viscose molded body. 請求項1〜のいずれか1項に記載の砒素吸着性再生セルロース成形体の製造方法であって、
セルロースを含むビスコース原液に、イオン結合性を有する合成ゼオライト、イオン結合性を有する天然ゼオライト、及びカルボキシル基を有する有機高分子からなる群から選ばれる一種以上の担体の分散液を混合してビスコース液を調製する工程と、
前記ビスコース液を凝固再生させてビスコース成形体を得る工程と、
前記ビスコース成形体を鉄化合物で処理する工程を含む砒素吸着性再生セルロース成形体の製造方法。
A method for producing an arsenic-adsorptive regenerated cellulose molded article according to any one of claims 1 to 8 ,
A viscose stock solution containing cellulose is mixed with a dispersion of one or more carriers selected from the group consisting of synthetic zeolite having ion binding properties, natural zeolite having ion binding properties, and organic polymers having carboxyl groups. A step of preparing a course liquid;
A step of solidifying and regenerating the viscose liquid to obtain a viscose molded body;
A method for producing an arsenic-adsorptive regenerated cellulose molded body comprising a step of treating the viscose molded body with an iron compound.
請求項1〜のいずれか1項に記載の砒素吸着性再生セルロース成形体を含む砒素吸着材。 An arsenic adsorbent comprising the arsenic adsorptive regenerated cellulose molded article according to any one of claims 1 to 8 . 請求項1〜のいずれか1項に記載の砒素吸着性再生セルロース成形体を含む水処理材。 A water treatment material comprising the arsenic adsorptive regenerated cellulose molded article according to any one of claims 1 to 8 .
JP2013048129A 2013-03-11 2013-03-11 Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material Active JP6112917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048129A JP6112917B2 (en) 2013-03-11 2013-03-11 Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048129A JP6112917B2 (en) 2013-03-11 2013-03-11 Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material

Publications (2)

Publication Number Publication Date
JP2014171996A JP2014171996A (en) 2014-09-22
JP6112917B2 true JP6112917B2 (en) 2017-04-12

Family

ID=51693839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048129A Active JP6112917B2 (en) 2013-03-11 2013-03-11 Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material

Country Status (1)

Country Link
JP (1) JP6112917B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851571B2 (en) * 2015-02-23 2021-03-31 ナノサミット株式会社 A collecting agent for removing radioactive substances, a porous body supporting the collecting agent, and a device using these.
JP6826501B2 (en) * 2016-06-30 2021-02-03 ダイワボウホールディングス株式会社 Regenerated cellulose fibers, fiber structures containing them and methods for manufacturing them
JP7130192B2 (en) * 2018-01-25 2022-09-05 ダイワボウレーヨン株式会社 Arsenic-adsorbing regenerated cellulose molded article, method for producing same, arsenic-adsorbing material, and water treatment material
WO2019172164A1 (en) * 2018-03-07 2019-09-12 島根県 Arsenic-adsorbent cellulose material
WO2023210025A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor
CN115178242B (en) * 2022-06-28 2023-06-06 中国地质大学(武汉) Adsorption film for fixing pentavalent arsenic ions, and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486206B2 (en) * 2000-02-25 2010-06-23 レンゴー株式会社 Functional material containing catalyst substance and method for producing the same
JP2003225559A (en) * 2001-06-21 2003-08-12 Japan Science & Technology Corp Adsorbent made from plant biomass
CN1894029B (en) * 2003-12-15 2011-05-11 旭化成化学株式会社 Porous formed article and method for production thereof
JP5001202B2 (en) * 2008-03-17 2012-08-15 株式会社アムロン Manufacturing method of environmental cleaner
JP2011092864A (en) * 2009-10-30 2011-05-12 Nippon Filcon Co Ltd Method for manufacturing fibrous metal adsorbent

Also Published As

Publication number Publication date
JP2014171996A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6112917B2 (en) Arsenic adsorptive regenerated cellulose molded body, method for producing the same, arsenic adsorbent and water treatment material
JP4671419B2 (en) Porous molded body and method for producing the same
CA2958196C (en) Granular filtration media mixture and uses in water purification
Talukder et al. Chitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solution
TWI565852B (en) Preparation of Nano silver blended natural cellulose fibers method
JP2007014826A (en) Porous molding and its producing method
TWI551739B (en) Method for preparing nano silver blended natural cellulose spunbonded non-woven fabric
JP2006297382A (en) Porous molding with high adsorption capacity and its production method
KR20040036705A (en) Method for removing heavy metals from media containing heavy metals by means of a lyocell moulded body, cellulosic moulded body comprising adsorbed heavy metals, and the use of the same
JP6826501B2 (en) Regenerated cellulose fibers, fiber structures containing them and methods for manufacturing them
Aliahmadipoor et al. Preparation of PVDF/FMBO composite electrospun nanofiber for effective arsenate removal from water
WO2015122856A1 (en) A process for preparation of composite sorbent for removal contaminants from water
JP2013234405A (en) Radioactive nuclide adsorptive regenerated cellulosic fiber, method for producing the same, fiber structure, and filtering material
CA3210304A1 (en) Fiber-based materials for water treatment
JP6093223B2 (en) Inorganic ion adsorbent and porous molded body
JP7130192B2 (en) Arsenic-adsorbing regenerated cellulose molded article, method for producing same, arsenic-adsorbing material, and water treatment material
JP5062972B2 (en) Ion removal apparatus and ion removal method
JP6130173B2 (en) Anion adsorbent, production method thereof and water treatment material
WO2019049757A1 (en) Fibers based on poly(vinyl alcohol)
TWI385124B (en) Dechlorinating chitosan fibers and method for manufacturing the same
JP2021065842A (en) Fibrous adsorbent and method for producing the same, and heavy metal immobilization method using the fibrous adsorbent
US20240132382A1 (en) Fiber-based materials for water treatment
KR20010104112A (en) A method of preparing chitosan filter for sterilization.
CA2920381A1 (en) Filter media for gravity filtration applications
Mahfoudhi et al. University of Sfax, Sfax, Tunisia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6112917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350