JP2003225559A - Adsorbent made from plant biomass - Google Patents

Adsorbent made from plant biomass

Info

Publication number
JP2003225559A
JP2003225559A JP2001187465A JP2001187465A JP2003225559A JP 2003225559 A JP2003225559 A JP 2003225559A JP 2001187465 A JP2001187465 A JP 2001187465A JP 2001187465 A JP2001187465 A JP 2001187465A JP 2003225559 A JP2003225559 A JP 2003225559A
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
aqueous solution
ion
plant biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001187465A
Other languages
Japanese (ja)
Inventor
Katsutoshi Inoue
勝利 井上
Kedaru Nato Gimire
ケダル ナト ギミレ
Kenjiro Makino
賢次郎 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SADENKO CO Inc
YAMASO MICRON KK
Japan Science and Technology Agency
Original Assignee
SADENKO CO Inc
YAMASO MICRON KK
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SADENKO CO Inc, YAMASO MICRON KK, Japan Science and Technology Corp filed Critical SADENKO CO Inc
Priority to JP2001187465A priority Critical patent/JP2003225559A/en
Publication of JP2003225559A publication Critical patent/JP2003225559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for removing hazardous substances which can satisfy tight environmental regulations with an inexpensive adsorbent and simple operation. <P>SOLUTION: In this adsorbent, metal ions are carried on plant biomass mainly comprising cellulose and/or hemicellulose on which functional groups of an acidic phosphate ester are immobilized by reacting them with phosphoric acid. A preferable example as the plant biomass is a residue of squeezed orange. The adsorbent where a ferric ion is used as the carried metal ion is used for removing tervalent and pentavalent arsenic, pentavalent phosphorus, tervalent antimony, or tetravalent selenium. The adsorbent where a tetravalent cerium ion is used as the carried metal ion is used for removing a fluoride ion. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有害物質を除去す
る技術分野に属し、特に、新規な吸着剤を用いて、水溶
液中から5価の燐、3価のアンチモン、4価のセレン、
3価および5価の砒素、またはフッ化物イオンなどを効
果的に吸着・除去(分離)する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of removing harmful substances, and in particular, using a novel adsorbent, pentavalent phosphorus, trivalent antimony, tetravalent selenium from an aqueous solution,
The present invention relates to a technique for effectively adsorbing / removing (separating) trivalent and pentavalent arsenic or fluoride ions.

【0002】[0002]

【従来の技術】燐、アンチモン、セレン、砒素等は環境
中において酸素と結合した陰イオン、オキソアニオンと
して存在している。フッ化物イオンやこれらの元素のオ
キソアニオンの除去はこれまで主に凝集沈殿法により行
なわれてきた。例えば砒素の除去においては砒素を含有
する処理液に大量の鉄粉を加えて凝集・沈殿させるとい
う方法が多く行われてきた。しかしこの方法では、含水
率が大きく後処理が困難な大量の鉄のスラッジが発生す
るという欠点がある。また、フッ化物イオンの除去では
石灰を加えてフッ化カルシウムの沈殿として分離させる
という方法が採られてきた。この方法ではフッ化物イオ
ンをかなりの程度まで除去可能であるが、今後予想され
る厳しい環境基準をクリアーすることは困難である。
2. Description of the Related Art Phosphorus, antimony, selenium, arsenic and the like exist in the environment as oxygen-bonded anions and oxoanions. Up to now, the removal of fluoride ions and oxoanions of these elements has been mainly carried out by the coagulation precipitation method. For example, in the removal of arsenic, many methods have been performed in which a large amount of iron powder is added to a treatment liquid containing arsenic to cause aggregation / precipitation. However, this method has a drawback in that a large amount of iron sludge, which has a high water content and is difficult to post-process, is generated. In addition, in the removal of fluoride ions, a method has been adopted in which lime is added and the calcium fluoride is separated as a precipitate. Although this method can remove fluoride ions to a large extent, it is difficult to meet the strict environmental standards expected in the future.

【0003】イオン交換法や吸着法は環境中に存在する
これらの微量の有害物質を除去するための凝集・沈殿法
に替わる方法として注目されている。しかし通常の市販
のイオン交換樹脂は上記のオキソアニオンよりも環境中
に大量に存在する硫化物イオンや硫酸イオンを優先的に
吸着するため、これらを上記の目的に使用することはで
きない。
The ion exchange method and the adsorption method have been attracting attention as alternatives to the aggregation / precipitation method for removing these trace amounts of harmful substances existing in the environment. However, ordinary commercial ion exchange resins preferentially adsorb sulfide ions and sulfate ions present in a large amount in the environment rather than the above-mentioned oxo anions, and therefore these cannot be used for the above purpose.

【0004】吉田らはキレート樹脂や陽イオン交換樹脂
に第2鉄イオンを吸着・担持させた吸着剤を用いること
により、砒素や燐の除去が効果的に達成されることを報
告している(Separation Science and Technology, 13
巻、173-184 (1978)、日本学会誌、220〜(1980))。ま
た、守屋はキレート樹脂にアルミニウムや鉄を吸着・担
持させた吸着剤を用いることにより、フッ化物イオンや
セレンが吸着・除去できることを報告している(日本イ
オン交換学会誌、11巻、10〜12(2000))。しかしこれら
のキレート樹脂やイオン交換樹脂は高価でありながら、
単位重量当りに担持される金属イオンの量が充分でな
く、多量の有害物質の除去には適していない。また、こ
れらの樹脂を吸着塔に充填して処理液を流した場合に
は、液中の微細な固形物による目詰まりが頻発し、円滑
な処理を困難にさせるという問題もある。
Yoshida et al. Reported that arsenic and phosphorus can be effectively removed by using an adsorbent in which a ferric ion is adsorbed and supported on a chelate resin or a cation exchange resin ( Separation Science and Technology, 13
Vol., 173-184 (1978), Journal of Japan Society, 220- (1980)). In addition, Moriya reported that fluoride ions and selenium can be adsorbed and removed by using an adsorbent that adsorbs and supports aluminum and iron on a chelate resin (Journal of Japan Ion Exchange Society, Vol. 11, 10-). 12 (2000)). However, while these chelate resins and ion exchange resins are expensive,
The amount of metal ions supported per unit weight is not sufficient, and it is not suitable for removing a large amount of harmful substances. In addition, when the adsorption tower is filled with these resins and the treatment liquid is caused to flow, there is a problem that fine clogging due to fine solids in the liquid frequently causes smooth treatment.

【0005】[0005]

【発明が解決しようとする課題】本発明は、有害物質を
除去するために、安価な吸着剤を用いた簡便で単純な操
作による、厳しい環境規制を十分にクリアーできる新し
い技術を提供することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention provides a new technique capable of sufficiently clearing strict environmental regulations by a simple and simple operation using an inexpensive adsorbent in order to remove harmful substances. Let's take that issue.

【0006】[0006]

【課題を解決するための手段】本発明者は、前記の課題
を解決すべく鋭意研究を重ねた結果、産業廃棄物である
ミカン搾汁残渣等のセルロースやヘミセルロースを主成
分とする植物バイオマスを燐酸で処理して燐酸エステル
(酸性燐酸エステル)の官能基を付与したゲル状物質に
金属イオンを担持(結合)させたものが、有害物質とな
る各種のイオンを吸着し、これらを除去するに有用であ
ることを見出し、本発明を導き出した。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that plant waste mainly composed of cellulose and hemicellulose, such as mandarin orange juice residue, which is an industrial waste. A gel-like substance that has been treated with phosphoric acid and has a functional group of phosphoric acid ester (acidic phosphoric acid ester) loaded with (bonded to) metal ions adsorbs various ions that are harmful substances and removes them. They found it useful and derived the present invention.

【0007】かくして、本発明に従えば、燐酸と反応さ
せることにより酸性燐酸エステルの官能基を固定化させ
たセルロースおよび/またはヘミセルロースを主成分と
するに金属イオンを担持させたことを特徴とする吸着剤
が提供される。
Thus, according to the present invention, the main component is cellulose and / or hemicellulose in which the functional group of the acidic phosphoric acid ester is immobilized by reacting with phosphoric acid, and metal ions are supported. An adsorbent is provided.

【0008】[0008]

【発明の実施の形態】燐酸エステル、ホスホン酸エステ
ル、あるいはホスフィン酸エステルの官能基を有する固
体の吸着剤、あるいは液体の抽出剤が第2鉄イオン、ア
ルミニウムイオン、4価のセリウムイオンなどと強く結
合することは知られている。近年三菱化学(株)はポリ
スチレンの母体にホスホン酸の官能基を固定化したキレ
ート樹脂、DIAION RSP−200を開発し、鉄
やアルミニウムの吸着剤として販売している。
BEST MODE FOR CARRYING OUT THE INVENTION A solid adsorbent having a functional group of a phosphoric acid ester, a phosphonic acid ester, or a phosphinic acid ester, or a liquid extractant is strongly ferric ion, aluminum ion, tetravalent cerium ion, or the like. It is known to combine. In recent years, Mitsubishi Chemical Co., Ltd. has developed DIAION RSP-200, a chelate resin in which a functional group of phosphonic acid is immobilized on a matrix of polystyrene, and sells it as an adsorbent for iron and aluminum.

【0009】一方、セルロースは1個の糖鎖単位に3個
の水酸基を有し、これらの水酸基は燐酸と反応させるこ
とにより燐酸エステルに変換されることが知られてい
る。本発明は、セルロースやヘミセルロースなどの多糖
類を主成分とする植物バイオマスを同様な方法で燐酸エ
ステル化し、このような燐酸エステル化したセルロース
から成る植物バイオマスに第2鉄イオンや4価のセリウ
ムイオンなどを強く結合させて吸着剤としたものであ
る。
On the other hand, it is known that cellulose has three hydroxyl groups in one sugar chain unit, and these hydroxyl groups are converted into phosphoric acid ester by reacting with phosphoric acid. In the present invention, plant biomass mainly composed of polysaccharides such as cellulose and hemicellulose is phosphorylated by the same method, and ferric ion or tetravalent cerium ion is added to plant biomass composed of such phosphorylated ester. It is an adsorbent formed by strongly binding such as.

【0010】かくして、本発明者はこのようなセルロー
スやヘミセルロースを主成分とする植物バイオマスの燐
酸エステル体に第2鉄イオンを担持させたものが燐酸イ
オン、砒酸イオン、亜砒酸イオン、亜セレン酸イオン、
亜アンチモン酸イオンを強力に吸着することを見出し
た。また第2鉄イオンの代わりに4価のセリウムイオン
を担持したものはフッ化物イオンを強力に吸着すること
を見出した。
Thus, the present inventor has found that a phosphate ester of a plant biomass containing cellulose or hemicellulose as the main component and carrying ferric ion is a phosphate ion, an arsenate ion, an arsenite ion or a selenite ion. ,
It was found that it strongly adsorbs antimonite ion. It was also found that those carrying tetravalent cerium ions instead of ferric ions strongly adsorb fluoride ions.

【0011】本発明の有害物質除去用吸着剤を構成する
植物バイオマスとしては、セルロースおよび/またはヘ
ミセルロースを主成分とする植物由来のバイオマスであ
れば、いずれも使用可能であるが、特に好ましい植物バ
イオマスの例は、ミカン搾汁残渣である。ミカン搾汁残
渣の他に、古紙、海藻(例えば、コンブ)のかすなどを
用いることもできる。
As the plant biomass constituting the adsorbent for removing harmful substances of the present invention, any plant-derived biomass containing cellulose and / or hemicellulose as a main component can be used, but particularly preferable plant biomass. Is an orange juice residue. In addition to the citrus juice residue, used paper, seaweed (for example, kelp) residue, or the like can also be used.

【0012】本発明の吸着剤を調製するには、ミカン搾
汁残渣のような植物バイオマスに適当な前処理(後記参
照)を行った後、燐酸と反応させることにより、そのセ
ルロースやヘミセルロースの水酸基と燐酸エステルを形
成させ、この燐酸エステルから成る官能基を植物バイオ
マス中に固定化させる。燐酸化エステル化反応は、既知
の手法に従って実施され、例えば、尿素を触媒とする燐
酸化処理を行う。燐酸エステル化したセルロース(ヘミ
セルロース)から成る植物バイオマスは、次に、担持す
べき金属イオンを含有する水溶液に浸漬することによ
り、該金属イオンが燐酸エステルを介して植物バイオマ
スに吸着・担持(結合)されて吸着剤として調製され
る。
To prepare the adsorbent of the present invention, plant biomass such as citrus juice residue is subjected to an appropriate pretreatment (see below), and then reacted with phosphoric acid to give hydroxyl groups of the cellulose or hemicellulose. And phosphoric acid ester are formed, and the functional group consisting of the phosphoric acid ester is immobilized in plant biomass. The phosphorylated esterification reaction is carried out according to a known method, for example, a phosphorylation treatment using urea as a catalyst is performed. The plant biomass composed of cellulose esterified with phosphoric acid (hemicellulose) is then immersed in an aqueous solution containing a metal ion to be supported so that the metal ion is adsorbed and supported (bonded) on the plant biomass via the phosphoric acid ester. Then, it is prepared as an adsorbent.

【0013】原料となる植物バイオマスは、上記のよう
な燐酸エステル化反応および金属イオンの担持の工程に
先立ち、必要に応じて適当な前処理を行う。例えば、ミ
カン搾汁残渣から吸着剤を調製する場合には、エピクロ
ロヒドリンと苛性ソーダを用いて架橋反応を行わせて水
に不溶化しておく。
The plant biomass as a raw material is subjected to an appropriate pretreatment, if necessary, prior to the above-mentioned phosphoric acid esterification reaction and metal ion loading step. For example, when an adsorbent is prepared from citrus juice residue, it is made insoluble in water by a crosslinking reaction using epichlorohydrin and caustic soda.

【0014】以上のようにして調製される本発明の吸着
剤(吸着ゲル)を用いれば、有害物質を含有する水溶液
と接触させることにより(後述するように単純なバッチ
操作でよい)、有害物質を吸着、除去することができ
る。この場合、それぞれの有害物質に応じて、吸着・除
去するのに好適なpH範囲が存在する。
If the adsorbent (adsorption gel) of the present invention prepared as described above is used, the harmful substance can be obtained by bringing it into contact with an aqueous solution containing the harmful substance (a simple batch operation as described later). Can be adsorbed and removed. In this case, there is a pH range suitable for adsorption / removal depending on each harmful substance.

【0015】例えば、ミカン搾汁残渣のような植物バイ
オマスのセルロースやヘミセルロースを燐酸エステル化
し金属イオンとして第2鉄イオンを担持させた吸着剤を
用いて、3価の砒素を吸着・除去するのは、pHが7〜
12、好ましくはpHが8〜11の水溶液から吸着を行
うのが好適である。同様に、4価のセレンを吸着・除去
するには、pHが2〜6、好ましくはpHが3〜5の水溶
液から吸着を行うのが好適である。同様に、燐を吸着・
除去するには、pHが1.5〜5、好ましくはpHが2〜
4の水溶液から吸着を行うのが好適である。同様に、3
価のアンチモンを吸着・除去するには、pHが2〜1
0、好ましくはpHが5〜8の水溶液から吸着を行うの
が好適である。同様に、5価の砒素を吸着・除去するに
は、pHが2〜7、好ましくはpHが2〜6の水溶液から
吸着を行うのが好適である。
For example, to adsorb and remove trivalent arsenic by using an adsorbent in which cellulose or hemicellulose of plant biomass such as citrus juice residue is phosphorylated and ferric ion is supported as metal ions. , PH is 7 ~
Adsorption is preferably carried out from an aqueous solution having a pH of 12, preferably 8 to 11. Similarly, in order to adsorb and remove tetravalent selenium, it is suitable to adsorb from an aqueous solution having a pH of 2 to 6, preferably a pH of 3 to 5. Similarly, adsorption of phosphorus
For removal, the pH is 1.5-5, preferably the pH is 2-
Adsorption from the aqueous solution of No. 4 is preferred. Similarly, 3
To adsorb and remove valent antimony, the pH is 2-1
Adsorption is preferably carried out from an aqueous solution having a pH of 0, preferably 5 to 8. Similarly, in order to adsorb and remove pentavalent arsenic, it is preferable to adsorb from an aqueous solution having a pH of 2 to 7, preferably a pH of 2 to 6.

【0016】また、ミカン搾汁残渣のような植物バイオ
マスのセルロースやヘミセルロースを燐酸エステル化し
金属イオンとして4価のセリウムイオンを担持させた吸
着剤を用いてフッ素(フッ価物イオン)を吸着・除去す
るには、pHが3〜5、好ましくは3〜4の水溶液から
吸着を行うのが好適である。
Fluorine (fluoride ion) is adsorbed and removed using an adsorbent in which cellulose or hemicellulose of plant biomass such as mandarin orange juice residue is phosphorylated to carry tetravalent cerium ions as metal ions. In order to achieve this, it is preferable to perform adsorption from an aqueous solution having a pH of 3 to 5, preferably 3 to 4.

【0017】固体の吸着剤を用いた吸着・除去あるいは
イオン交換操作においては通常、吸着剤、あるいはイオ
ン交換樹脂をカラムに充填し、この中に問題の処理液を
通液する。この場合、処理液は微細な砂粒などの固形物
を含み、これがカラム内で目詰まりを発生させるという
トラブルを頻発させる。また吸着後は適当な溶離液をカ
ラムに通液して問題の吸着物質の溶離を行ない吸着剤の
再生と吸着物質の濃縮を行うが、実際の操作においては
理論量を大きく上回る溶離剤の使用を余儀なくされてい
る。このようにカラムを用いる通常の吸着・分離操作は
多大のコストを要し、トラブルを頻発させている。
In the adsorption / removal or ion exchange operation using a solid adsorbent, the adsorbent or ion exchange resin is usually packed in a column, and the treatment liquid in question is passed through this column. In this case, the treatment liquid contains solid matter such as fine sand grains, which frequently causes a trouble of causing clogging in the column. After adsorption, an appropriate eluent is passed through the column to elute the adsorbent in question to regenerate the adsorbent and concentrate the adsorbent, but in actual operation, use of an eluent that greatly exceeds the theoretical amount is used. Are forced to. As described above, the ordinary adsorption / separation operation using a column requires a great deal of cost and causes troubles frequently.

【0018】これに対して、本発明の吸着剤を用いる場
合は、多糖類を主成分とする植物バイオマスは焼却が容
易であるため、吸着後は乾燥して焼却し、吸着物質を灰
や煤塵中に濃縮して収集する方が合理的である。このよ
うな発想から本発明の吸着剤を用いる吸着・分離操作は
タンクと攪拌装置を用いたシンプルなパッチ操作で行う
ことができる。かくして、本発明で用いられる植物バイ
オマスを原料とする吸着剤と廃液とを混合・攪拌した
後、ろ過により吸着剤を取り除けば上記の有害陰イオン
が除去された清浄な液が得られる。
On the other hand, when the adsorbent of the present invention is used, the plant biomass containing polysaccharides as the main component is easily incinerated. Therefore, after adsorbing, the plant biomass is dried and incinerated, and the adsorbed substance is ash or dust. It is more rational to concentrate and collect inside. From such an idea, the adsorption / separation operation using the adsorbent of the present invention can be performed by a simple patch operation using a tank and a stirring device. Thus, the adsorbent used in the present invention, which is a raw material of plant biomass, and the waste liquid are mixed and stirred, and then the adsorbent is removed by filtration to obtain a clean liquid in which the harmful anions are removed.

【0019】[0019]

【実施例】以下に実施例により本発明の実施の形態をさ
らに詳細に説明するが、本発明はこれらの実施例に限定
されるものではない。実施例1 吸着ゲルの製造方法 吸着ゲルは例えば以下の方法により製造される。ミカン
ジュース工場で発生したミカン搾汁残渣を湿式粉砕し、
真空乾燥させた平均粒径が約90μmの粉体の試料20
gを80%のプロピルアルコール水溶液を用いてリモネ
ン等の油分や色素成分を除いた後、真空乾燥し200m
lのジメチルスルホキシド(DMSO)中に入れ室温で
24時間攪拌した。この液中に40mlのエピクロロヒ
ドリンを加え、室温で2時間攪拌した後50℃に昇温
し、5Mの苛性ソーダ水溶液を3ml添加し5時間攪拌
することにより、架橋反応を行なわせた。その後室温ま
で冷却し、70%のプロピルアルコール水溶液、および
0.5Mの塩酸水溶液を用いて中性になるまで洗浄を行
ない、さらに真空乾燥させた。
EXAMPLES The following examples illustrate the embodiments of the present invention.
However, the present invention is not limited to these examples.
It is not something that will be done.Example 1 Method for producing adsorption gel The adsorption gel is manufactured, for example, by the following method. Orange
Wet crushed mandarin orange juice residue generated at the juice factory,
Vacuum-dried powder sample 20 with an average particle size of about 90 μm
g using 80% propyl alcohol aqueous solution
200m after vacuum-drying after removing oil and pigment components
l in dimethylsulfoxide (DMSO) at room temperature
It was stirred for 24 hours. 40 ml of epichlorohydrin in this liquid
Add drin, stir at room temperature for 2 hours, and then raise the temperature to 50 ° C.
Then add 3 ml of 5M caustic soda solution and stir for 5 hours
Then, the crosslinking reaction was carried out. Then to room temperature
Cooled with 70% aqueous propyl alcohol, and
Wash with 0.5 M aqueous hydrochloric acid until neutral.
No further vacuum dried.

【0020】上記の乾燥粉体をジメチルホルムアミド
(DMF)で十分洗浄した後、200mlの新しいジメ
チルホルムアミドに入れ、さらに30gの尿素と18g
の燐酸を加え、室温で1時間、150℃で2時間攪拌し
て反応させることにより燐酸化処理を行った。室温まで
冷却した後、反応後の粉体をろ過して回収し、プロピル
アルコールと0.1Mの塩酸水溶液により中性になるま
で洗浄した。さらに蒸留水により洗浄し、真空乾燥し
た。本吸着剤中に含まれる燐の量を蛍光X線分析装置を
用いて測定したところ、糖鎖の1ユニット当り1.15
molと評価された。
After thoroughly washing the above dry powder with dimethylformamide (DMF), it was added to 200 ml of fresh dimethylformamide, and further 30 g of urea and 18 g of urea were added.
Phosphoric acid was added thereto, and the mixture was stirred at room temperature for 1 hour and at 150 ° C. for 2 hours to cause a reaction, whereby a phosphorylation treatment was performed. After cooling to room temperature, the powder after the reaction was collected by filtration and washed with propyl alcohol and a 0.1 M hydrochloric acid aqueous solution until neutral. Further, it was washed with distilled water and vacuum dried. The amount of phosphorus contained in this adsorbent was measured by a fluorescent X-ray analyzer to find that it was 1.15 per unit of sugar chain.
It was estimated to be mol.

【0021】本吸着ゲルを様々な濃度の第2鉄イオン、
あるいは4価のセリウムイオンを含む水溶液と振り混
ぜ、吸着量と濃度の関係(吸着等温線)を調べたとこ
ろ、第2鉄イオンおよび4価のセリウムイオンについて
それぞれ図1および図2に示す結果が得られた。吸着量
は濃度の増加とともに増加するが、やがてある一定値に
達する。この一定値より本吸着ゲルに対してのこれらの
金属イオンの最大吸着量を評価したところ、第2鉄イオ
ンおよび4価のセリウムイオンについてそれぞれ3.7
および1.7mol/kg乾燥ゲルという値が得られ
た。第2鉄イオンについて他の市販のキレート樹脂やイ
オン交換樹脂の値と比較するとこの値は極めて大きな値
である。
The adsorbent gel was treated with various concentrations of ferric ion,
Alternatively, the mixture was shaken with an aqueous solution containing tetravalent cerium ions, and the relationship between the adsorption amount and the concentration (adsorption isotherm) was examined. The results shown in FIGS. 1 and 2 were obtained for ferric ions and tetravalent cerium ions, respectively. Was obtained. The adsorption amount increases with increasing concentration, but eventually reaches a certain value. When the maximum adsorption amount of these metal ions on the present adsorption gel was evaluated from this constant value, it was 3.7 for ferric ion and tetravalent cerium ion, respectively.
And a value of 1.7 mol / kg dry gel was obtained. Compared with the values of other commercially available chelate resins and ion exchange resins for ferric ion, this value is extremely large.

【0022】上記の乾燥吸着ゲル1.2gをpHが3.
01の15mMの塩化第2鉄を含む水溶液600mlに
入れ、室温で24時間振り混ぜることにより第2鉄イオ
ンの担持を行なった。その後蒸留水により洗浄し、さら
に真空乾燥した後吸着試験に供した。同様にして、以下
のようにして、4価のセリウムイオンの担持を行った。
上記の乾燥吸着ゲル2.0gをpHが1.95で4.2
mMの濃度の4価のセリウムイオンの担持を行った。そ
の後蒸留水により洗浄し、さらに真空乾燥した後、吸着
試験に供した。
The dried adsorption gel (1.2 g) had a pH of 3.
Ferric acid was carried by loading 600 ml of an aqueous solution of 01 containing 15 mM ferric chloride and shaking at room temperature for 24 hours. Then, it was washed with distilled water, further dried under vacuum, and then subjected to an adsorption test. Similarly, tetravalent cerium ions were loaded in the following manner.
2.0 g of the above dry adsorption gel was used at a pH of 1.95 and 4.2
A tetravalent cerium ion having a concentration of mM was loaded. After that, it was washed with distilled water, further vacuum dried, and then subjected to an adsorption test.

【0023】実施例2 アンチモンの吸着 様々なpHの15ppmの濃度の塩化アンチモン(II
I)の水溶液15mlと上記の鉄担持の吸着ゲル25m
gとを三角フラスコに取り、30℃の恒温水槽の振盪機
を用いて24時間振り混ぜることによりアンチモンの吸
着を行なった。本吸着ゲルはろ過特性も良好で、例えば
アドバンテック製A5ろ紙を用いてろ過を行なうと、ス
ムーズなろ過が行なわれ、非常に透明なろ液が得られ
た。吸着前後の水溶液中のアンチモンの濃度は島津製I
CPS5000型ICP原子発光分析装置により、また
pHはオリオン製720型pHメーターにより測定し
た。吸着後の水溶液のpHと本吸着ゲルによるアンチモ
ンの吸着百分率の関係を図3に示す。ここで、吸着百分
率とは最初に水溶液中にあった物質が、吸着により水溶
液から除去された百分率である。pH=2〜10の広い
pHの領域において80%以上の吸着が見られ、特にp
H=5〜8の領域においては90%近い吸着が達成され
た。
[0023]Example 2 Antimony adsorption 15 ppm concentration of antimony chloride (II at various pH
15 ml of I) aqueous solution and 25 m of the above iron-supporting adsorption gel
g and g in an Erlenmeyer flask and shaker in a constant temperature water bath at 30 ° C.
Absorption of antimony by shaking with a mixer for 24 hours
I put on my clothes. The adsorptive gel also has good filtration characteristics.
If filtration is performed using Advantech A5 filter paper,
Mousse filtration results in a very clear filtrate
It was The concentration of antimony in the aqueous solution before and after adsorption was Shimadzu I
With the CPS5000 ICP atomic emission spectrometer,
The pH was measured by Orion 720 type pH meter.
It was The pH of the aqueous solution after adsorption and the anti-money by this adsorption gel
The relationship of the adsorption percentage of hydrogen is shown in FIG. Where the adsorption percentage
What is the ratio?
Percentage removed from liquid. Wide pH = 2-10
Adsorption of more than 80% was observed in the pH range, especially p
Adsorption close to 90% is achieved in the region of H = 5-8
It was

【0024】実施例3 燐の吸着 様々なpHの46ppmの濃度の燐酸イオンの水溶液1
5mlと上記の鉄担持の吸着ゲル25mgとを三角フラ
スコに取り、30℃の恒温水槽の振盪機を用いて24時
間振り混ぜることにより燐酸イオンの吸着を行なった。
吸着前後の水溶液中の燐酸イオンの濃度はDIONEX
製DX−120型イオンクロマトグラフにより、またp
Hはオリオン製720型pHメーターにより測定した。
吸着後の水溶液のpHと本吸着ゲルによる燐酸イオンの
吸着百分率との関係を図4に示す。pH=1.5〜5の
領域において80%以上の吸着が見られ、特にpH=2
〜4においては90%以上の吸着が達成された。
[0024]Example 3 Phosphorus adsorption Aqueous solution of phosphate at a concentration of 46 ppm at various pH 1
5 ml and 25 mg of the above-mentioned iron-supporting adsorption gel were mixed with a triangular flare.
Scoot and use a shaker in a constant temperature water bath at 30 ° C for 24:00
The phosphate ions were adsorbed by shaking and mixing.
The concentration of phosphate ion in the aqueous solution before and after adsorption is DIONEX
DX-120 type ion chromatograph manufactured by p
H was measured by Orion model 720 pH meter.
The pH of the aqueous solution after adsorption and the phosphate ion by this adsorption gel
The relationship with the adsorption percentage is shown in FIG. pH = 1.5-5
80% or more adsorption was observed in the region, especially pH = 2
In ~ 4, adsorption of 90% or more was achieved.

【0025】実施例4 5価の砒素の吸着 様々なpHの砒素として15ppmの濃度の砒酸イオン
を含む水溶液15mlと上記の鉄担持の吸着ゲル25m
gとを三角フラスコに取り、30℃の恒温水槽の振盪機
を用いて24時間振り混ぜることにより砒酸イオンの吸
着を行なった。吸着後の水溶液のpHと本吸着ゲルによ
る5価の砒素の吸着百分率の関係を図5に示す。pH=
2〜6の広いpHの領域において90%以上の吸着が達
成された。
[0025]Example 4 Adsorption of pentavalent arsenic Arsenate with a concentration of 15 ppm as arsenic of various pH
15 ml of an aqueous solution containing iron and the above-mentioned iron-supporting adsorption gel 25 m
g and g in an Erlenmeyer flask and shaker in a constant temperature water bath at 30 ° C.
Absorption of arsenate ions by shaking with a mixer for 24 hours
I put on my clothes. The pH of the aqueous solution after adsorption and this adsorption gel
The relationship between the adsorption percentage of pentavalent arsenic is shown in FIG. pH =
Adsorption of 90% or more in a wide pH range of 2 to 6
Was made.

【0026】実施例5 3価の砒素の吸着 様々なpHの砒素として15ppmの濃度の亜砒酸イオ
ンを含む水溶液15mlと上記の鉄担持の吸着ゲル25
mgとを三角フラスコに取り、30℃の恒温水槽の振盪
機を用いて24時間振り混ぜることにより亜砒酸イオン
の吸着を行なった。吸着後の水溶液のpHと本吸着ゲル
による3価の砒素の吸着百分率の関係を図6に示す。p
H=8〜11において80%以上の吸着が達成された。
[0026]Example 5 Adsorption of trivalent arsenic 15 ppm concentration of arsenous-iodine as arsenic of various pH
15 ml of an aqueous solution containing iron and the above-mentioned iron-supporting adsorption gel 25
Transfer mg and mg to an Erlenmeyer flask and shake in a constant temperature water bath at 30 ° C.
Arsenite ion by shaking for 24 hours using a machine
Was adsorbed. PH of aqueous solution after adsorption and this adsorption gel
FIG. 6 shows the relationship of the adsorption percentage of trivalent arsenic according to. p
Adsorption of 80% or more was achieved at H = 8-11.

【0027】実施例6 4価のセレンの吸着 様々なpHのセレンとして15ppmの濃度の亜セレン
酸イオンを含む水溶液15mlと上記の鉄担持の吸着ゲ
ル25mgとを三角フラスコに取り、30℃の恒温水槽
の振盪機を用いて24時間振り混ぜることにより亜セレ
ン酸イオンの吸着を行なった。吸着後の水溶液のpHと
本吸着ゲルによる4価のセレンの吸着百分率の関係を図
7に示す。pH=3〜5において80%以上の吸着が達
成された。
[0027]Example 6 Adsorption of tetravalent selenium Selenite concentration of 15ppm as selenium of various pH
15 ml of an aqueous solution containing acid ions and the above-mentioned iron-supported adsorption gel
25 mg and 25 ml of it in an Erlenmeyer flask and a constant temperature water bath at 30 °
Shaken for 24 hours using a shaker
Adsorption of nitrate ions was performed. The pH of the aqueous solution after adsorption
This figure shows the relationship between the adsorption percentage of tetravalent selenium on this adsorption gel.
7 shows. 80% or more adsorption reached at pH = 3-5
Was made.

【0028】実施例7 フッ素の吸着 様々なpHのセレンとして15ppmの濃度のフッ化物
イオンを含む水溶液15mlと上記の4価のセリウムを
担持した吸着ゲル25mgとを三角フラスコに取り、3
0℃の恒温水槽の振盪機を用いて24時間振り混ぜるこ
とによりフッ価物イオンの吸着を行なった。吸着後の水
溶液のpHと本吸着ゲルによるフッ素の吸着百分率の関
係を図8に示す。pH=3〜4において80%以上の吸
着が達成された。
[0028]Example 7 Fluorine adsorption Fluoride with a concentration of 15 ppm as selenium of various pH
15 ml of an aqueous solution containing ions and the above tetravalent cerium
Take 25 mg of the supported adsorption gel in an Erlenmeyer flask and
Shake for 24 hours using a shaker in a constant temperature water bath at 0 ° C.
The adsorption of fluorine ions was carried out by and. Water after adsorption
The relationship between the pH of the solution and the adsorption percentage of fluorine by this adsorption gel
The engagement is shown in FIG. 80% or more absorption at pH = 3-4
The clothes have been achieved.

【0029】比較例1 ホスホン酸型キレート樹脂によ
る3価のアンチモンの吸着 三菱化学(株)製のホスホン酸型のキレート樹脂である
CRP−200樹脂に第2鉄イオンの担持を行ない、3
価のアンチモンの吸着試験を行った。第2鉄イオンの担
持は実施例1で述べた方法と同じ方法により行った。ま
たアンチモンの吸着方法も実施例2で述べた方法と同じ
である。吸着後の水溶液のpHと本吸着ゲルによる3価
のアンチモンの吸着百分率の関係を図9に示す。pHが
4以下の領域においては90%程度の吸着が見られるも
のの、それ以上のpHにおいては吸着は急激に低下して
いる。
[0029]Comparative Example 1 Using a phosphonic acid type chelate resin
Adsorption of trivalent antimony It is a phosphonic acid type chelating resin manufactured by Mitsubishi Chemical Corporation.
CRP-200 resin was loaded with ferric ions, 3
The adsorption test of high-value antimony was conducted. Bearing ferric ion
The holding was performed by the same method as described in Example 1. Well
The antimony adsorption method is also the same as the method described in Example 2.
Is. PH of aqueous solution after adsorption and trivalent by this adsorption gel
FIG. 9 shows the relationship of the adsorption percentage of antimony of. pH is
About 90% adsorption is observed in the area of 4 or less.
However, the adsorption drops sharply at pH higher than that.
There is.

【0030】比較例2 活性アルミナによる3価のアン
チモンの吸着 粒子径が1.8mmの住友化学(株)製の活性アルミナ
KHD−12を用いて実施例2で述べたと同じ方法によ
り3価のアンチモンの吸着を行った。吸着後の水溶液の
pHと本吸着ゲルによる3価のアンチモンの吸着割合の
関係を図10に示す。比較例1に示したCRP−200
型樹脂の場合とは逆に、吸着はpHの増加に伴い増加す
る。しかしpH=11の場合を除き、吸着は非常に低
い。しかも本吸着剤を用いた場合、ろ液中に白濁したコ
ロイド状物質の生成が認められた。
[0030]Comparative Example 2 Trivalent Anne by Activated Alumina
Adsorption of Zimon Activated alumina manufactured by Sumitomo Chemical Co., Ltd. with a particle size of 1.8 mm
By the same method as described in Example 2 using KHD-12.
Trivalent antimony was adsorbed. Of the aqueous solution after adsorption
Of the pH and the adsorption ratio of trivalent antimony by this adsorption gel
The relationship is shown in FIG. CRP-200 shown in Comparative Example 1
Adsorption increases with increasing pH, as opposed to mold resins
It However, the adsorption is very low except when pH = 11.
Yes. Moreover, when using this adsorbent, the white turbidity in the filtrate
The formation of loid-like substances was observed.

【0031】比較例3 活性アルミナによるフッ素の吸
比較例2で述べたと同じ活性アルミナを用いて実施例6
で述べたと同じ方法によりフッ素の吸着を行った。吸着
後の水溶液のpHと本活性アルミナによるフッ素の吸着
割合の関係を図11に示す。pH=6〜7において60
%程度の吸着が認められるが、実施例6に示した4価の
セリウムを担持した本吸着ゲルに比較すると吸着は低
い。しかも比較例2と同様に吸着、ろ過後のろ液中に白
濁したコロイド状物質の生成が認められた。
[0031]Comparative Example 3 Absorption of fluorine by activated alumina
Wear Example 6 using the same activated alumina as described in Comparative Example 2.
Adsorption of fluorine was carried out by the same method as described above. adsorption
The pH of the aqueous solution after that and the adsorption of fluorine by this activated alumina
The relationship of the ratio is shown in FIG. 60 at pH = 6-7
% Adsorption is observed, but the tetravalent compounds shown in Example 6
Low adsorption compared to this adsorption gel supporting cerium
Yes. Moreover, in the same manner as in Comparative Example 2, white color was obtained in the filtrate after adsorption and filtration.
The formation of cloudy colloidal material was observed.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
の吸着剤は、ミカン搾汁残渣のような植物バイオマスを
利用することによって安価に製造することができる。本
発明の吸着剤を用いれば、有害物質を含有する水溶液を
バッチ式で本発明の吸着剤に接触させるという簡単な操
作により、それらの有害物質をきわめて効率的に吸着、
除去することができる。
As is clear from the above description, the adsorbent of the present invention can be manufactured at low cost by utilizing plant biomass such as citrus juice residue. If the adsorbent of the present invention is used, the harmful substances are adsorbed very efficiently by a simple operation of bringing an aqueous solution containing the harmful substances into contact with the adsorbent of the present invention in a batch system.
Can be removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸着剤に担時される第2鉄イオンの吸
着量と濃度の関係を示す。
FIG. 1 shows the relationship between the adsorption amount and the concentration of ferric ions carried by the adsorbent of the present invention.

【図2】本発明の吸着剤に担時される4価のセリウムイ
オンの吸着量と濃度の関係を示す。
FIG. 2 shows the relationship between the adsorption amount and the concentration of tetravalent cerium ions carried by the adsorbent of the present invention.

【図3】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、アンチモンを含有する水溶液からア
ンチモンを吸着・除去した場合の水溶液のpH(横軸)
と水溶液中から除去されたアンチモンの吸着百分率(縦
軸)を示すグラフである。
[Fig. 3] pH of the aqueous solution when antimony is adsorbed and removed from the aqueous solution containing antimony by using the adsorbent of the present invention prepared from citrus juice residue
2 is a graph showing the adsorption percentage (vertical axis) of antimony removed from the aqueous solution.

【図4】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、燐を含有する水溶液からアンチモン
を吸着・除去した場合の水溶液のpH(横軸)と水溶液
中から除去された燐の吸着百分率(縦軸)を示すグラフ
である。
FIG. 4 shows the pH (horizontal axis) of an aqueous solution when antimony is adsorbed and removed from an aqueous solution containing phosphorus using the adsorbent of the present invention prepared by using citrus juice residue as a raw material and the removal from the aqueous solution. It is a graph which shows the adsorption percentage (vertical axis) of the performed phosphorus.

【図5】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、5価の砒素を含有する水溶液からア
ンチモンを吸着・除去した場合の水溶液のpH(横軸)
と水溶液中から除去された砒素の吸着百分率(縦軸)を
示すグラフである。
FIG. 5: pH of the aqueous solution when antimony is adsorbed / removed from an aqueous solution containing pentavalent arsenic using the adsorbent of the present invention prepared by using citrus juice residue as a raw material (horizontal axis)
3 is a graph showing the adsorption percentage (vertical axis) of arsenic removed from the aqueous solution.

【図6】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、3価の砒素を含有する水溶液からア
ンチモンを吸着・除去した場合の水溶液のpH(横軸)
と水溶液中から除去された砒素の吸着百分率(縦軸)を
示すグラフである。
[Fig. 6] pH of the aqueous solution when antimony is adsorbed and removed from the aqueous solution containing trivalent arsenic using the adsorbent of the present invention prepared by using citrus juice residue as a raw material (horizontal axis).
3 is a graph showing the adsorption percentage (vertical axis) of arsenic removed from the aqueous solution.

【図7】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、4価のセレンを含有する水溶液から
アンチモンを吸着・除去した場合の水溶液のpH(横
軸)と水溶液中から除去されたセレンの吸着百分率(縦
軸)を示すグラフである。
FIG. 7: pH (horizontal axis) and aqueous solution of an aqueous solution when antimony is adsorbed and removed from an aqueous solution containing tetravalent selenium by using the adsorbent of the present invention prepared by using citrus juice residue It is a graph which shows the adsorption percentage (vertical axis) of selenium removed from the inside.

【図8】ミカン搾汁残渣を原料にして調製された本発明
の吸着剤を用いて、フッ素を含有する水溶液からアンチ
モンを吸着・除去した場合の水溶液のpH(横軸)と水
溶液中から除去されたフッ素の吸着百分率(縦軸)を示
すグラフである。
FIG. 8: pH of the aqueous solution (abscissa) and removal from the aqueous solution when antimony is adsorbed and removed from the aqueous solution containing fluorine using the adsorbent of the present invention prepared from the citrus juice residue It is a graph which shows the adsorption percentage (vertical axis) of the produced fluorine.

【図9】比較例のために第2鉄イオンを担持したDIA
ION CRP−200樹脂を吸着剤として、アンチモ
ンを含有する水溶液からアンチモンを吸着・除去した場
合の水溶液のpH(横軸)と水溶液中から除去されたア
ンチモンの吸着百分率(縦軸)を示すグラフである。
FIG. 9 is a DIA carrying ferric ions for a comparative example.
In a graph showing the pH of the aqueous solution (horizontal axis) and the adsorption percentage of the antimony removed from the aqueous solution (vertical axis) when antimony was adsorbed and removed from the aqueous solution containing antimony using ION CRP-200 resin as an adsorbent. is there.

【図10】比較例のために活性アルミナを吸着剤とし
て、アンチモンを含有する水溶液からアンチモンを吸着
・除去した場合の水溶液のpH(横軸)と水溶液中から
除去されたアンチモンの吸着百分率(縦軸)を示すグラ
フである。
FIG. 10 shows the pH (horizontal axis) of the aqueous solution when antimony is adsorbed and removed from the aqueous solution containing antimony using activated alumina as an adsorbent and the adsorption percentage of antimony removed from the aqueous solution (longitudinal direction). (Axis) is a graph showing.

【図11】比較例のために活性アルミナを吸着剤とし
て、フッ素を含有する水溶液からアンチモンを吸着・除
去した場合の水溶液のpH(横軸)と水溶液中から除去
されたフッ素の吸着百分率(縦軸)を示すグラフであ
る。
FIG. 11: pH (horizontal axis) of the aqueous solution when antimony was adsorbed and removed from the aqueous solution containing fluorine using activated alumina as an adsorbent for the comparative example and the adsorption percentage of the fluorine removed from the aqueous solution (longitudinal axis). (Axis) is a graph showing.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500287352 有限会社 山曹ミクロン 大阪府堺市上野芝町1丁21−12 (72)発明者 井上 勝利 佐賀県佐賀市本庄町鹿子19−21 (72)発明者 ギミレ ケダル ナト 佐賀県佐賀市本庄町1佐賀大学国際交流会 館内 (72)発明者 牧野 賢次郎 宮崎県延岡市桜ヶ丘2丁目517−57 Fターム(参考) 4D024 AA04 AB11 AB12 AB16 BA14 BA19 BB01 BB08 BC04 CA06 DB03 4G066 AA02B AA50A AB19B AC02A AC02C AC35C AE10B AE19C BA36 CA21 CA32 CA41 CA46 DA08 FA03 FA12 FA38    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 500287352             Sanso Micron Co., Ltd.             21-12 Uenoshiba-cho, Sakai City, Osaka Prefecture (72) Inventor Victory Inoue             19-21 Kago, Honjo-cho, Saga City, Saga Prefecture (72) Inventor Gimire Kedarnato             1 Saga University International Exchange Meeting, Honjo-cho, Saga City, Saga Prefecture             Hall (72) Inventor Kenjiro Makino             2-517-57 Sakuragaoka, Nobeoka City, Miyazaki Prefecture F-term (reference) 4D024 AA04 AB11 AB12 AB16 BA14                       BA19 BB01 BB08 BC04 CA06                       DB03                 4G066 AA02B AA50A AB19B AC02A                       AC02C AC35C AE10B AE19C                       BA36 CA21 CA32 CA41 CA46                       DA08 FA03 FA12 FA38

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燐酸と反応させることにより酸性燐酸エ
ステルの官能基を固定化させたセルロースおよび/また
はヘミセルロースを主成分とする植物バイオマスに金属
イオンを担持させたことを特徴とする吸着剤。
1. An adsorbent characterized by supporting a metal ion on a plant biomass mainly composed of cellulose and / or hemicellulose in which a functional group of an acidic phosphoric acid ester is immobilized by reacting with phosphoric acid.
【請求項2】 セルロースおよび/またはヘミセルロー
スを主成分とする植物バイオマスがミカン搾汁残渣であ
ることを特徴とする請求項1の吸着剤。
2. The adsorbent according to claim 1, wherein the plant biomass containing cellulose and / or hemicellulose as a main component is citrus juice residue.
【請求項3】 担持させる金属イオンが第2鉄イオンで
あり、3価および5価の砒素、5価の燐、3価のアンチ
モン、または4価のセレンの除去に用いられることを特
徴とする請求項1または請求項2の吸着剤。
3. A metal ion to be carried is ferric ion, which is used for removing trivalent and pentavalent arsenic, pentavalent phosphorus, trivalent antimony, or tetravalent selenium. The adsorbent according to claim 1 or 2.
【請求項4】 担持させる金属イオンが4価のセリウム
イオンであり、フッ化物イオンの除去に用いられること
を特徴とする請求項1または2の吸着剤。
4. The adsorbent according to claim 1, wherein the metal ion to be supported is a tetravalent cerium ion, which is used for removing fluoride ions.
JP2001187465A 2001-06-21 2001-06-21 Adsorbent made from plant biomass Pending JP2003225559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187465A JP2003225559A (en) 2001-06-21 2001-06-21 Adsorbent made from plant biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187465A JP2003225559A (en) 2001-06-21 2001-06-21 Adsorbent made from plant biomass

Publications (1)

Publication Number Publication Date
JP2003225559A true JP2003225559A (en) 2003-08-12

Family

ID=27742565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187465A Pending JP2003225559A (en) 2001-06-21 2001-06-21 Adsorbent made from plant biomass

Country Status (1)

Country Link
JP (1) JP2003225559A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042587A1 (en) * 2003-10-31 2005-05-12 Kowa Co., Ltd. Cellulose ii phosphate ester and metal-adsorbing material using the same
JP2007130540A (en) * 2005-11-09 2007-05-31 Japan Atomic Energy Agency Chelate adsorbent material which can be acted in strong acidity range
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
JP2014505592A (en) * 2011-02-01 2014-03-06 オーストラリアン バイオリファイニング プロプライエタリー リミテッド Cellulose phosphate powder product, process for producing the same, and use for removing contaminants from aqueous solutions
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2015167900A (en) * 2014-03-06 2015-09-28 富士シリシア化学株式会社 Arsenic removing agent, and arsenic removing method
CN105668681A (en) * 2016-01-25 2016-06-15 长沙理工大学 Method for adsorbing and removing arsenic and hexavalent chromium in water by using modified shaddock peel
JP2016155116A (en) * 2015-02-23 2016-09-01 ナノサミット株式会社 Collector to remove radioactive material and porous material supporting it and device using them
CN108636369A (en) * 2018-05-22 2018-10-12 华东理工大学 A kind of strike water hyacinth root powder method of modifying
WO2019172164A1 (en) * 2018-03-07 2019-09-12 島根県 Arsenic-adsorbent cellulose material
CN111909335A (en) * 2020-07-13 2020-11-10 旬阳领盛新材料科技有限公司 Antimony-removing adsorption resin and preparation method thereof
CN114392722A (en) * 2022-01-28 2022-04-26 湖南烯富环保科技有限公司 Biochar @ five-membered metal oxide composite defluorination material and preparation and application thereof
CN115178242A (en) * 2022-06-28 2022-10-14 中国地质大学(武汉) Adsorption film for fixing pentavalent arsenic ions as well as preparation method and application thereof
CN115301209A (en) * 2022-08-26 2022-11-08 华中科技大学 Efficient fluorine reducing agent and preparation and application thereof
CN115301209B (en) * 2022-08-26 2024-05-24 华中科技大学 High-efficiency fluorine-reducing agent and preparation and application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042587A1 (en) * 2003-10-31 2005-05-12 Kowa Co., Ltd. Cellulose ii phosphate ester and metal-adsorbing material using the same
JPWO2005042587A1 (en) * 2003-10-31 2007-11-29 興和株式会社 Cellulose II phosphate and metal adsorbent using the same
US7803937B2 (en) 2003-10-31 2010-09-28 Kowa Co., Ltd. Cellulose II phosphate ester and metal-adsorbing material using the same
JP5052008B2 (en) * 2003-10-31 2012-10-17 興和株式会社 Cellulose II phosphate and metal adsorbent using the same
JP2007130540A (en) * 2005-11-09 2007-05-31 Japan Atomic Energy Agency Chelate adsorbent material which can be acted in strong acidity range
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
CN102481547A (en) * 2009-10-29 2012-05-30 日新高电压工程公司 Adsorbent, method for producing same, and use of same
JP5316645B2 (en) * 2009-10-29 2013-10-16 株式会社Nhvコーポレーション Adsorbent manufacturing method
JP2014505592A (en) * 2011-02-01 2014-03-06 オーストラリアン バイオリファイニング プロプライエタリー リミテッド Cellulose phosphate powder product, process for producing the same, and use for removing contaminants from aqueous solutions
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2015167900A (en) * 2014-03-06 2015-09-28 富士シリシア化学株式会社 Arsenic removing agent, and arsenic removing method
JP2016155116A (en) * 2015-02-23 2016-09-01 ナノサミット株式会社 Collector to remove radioactive material and porous material supporting it and device using them
CN105668681A (en) * 2016-01-25 2016-06-15 长沙理工大学 Method for adsorbing and removing arsenic and hexavalent chromium in water by using modified shaddock peel
CN105668681B (en) * 2016-01-25 2018-03-23 长沙理工大学 A kind of method of Cr VI and arsenic in modified pomelo peel Adsorption water
WO2019172164A1 (en) * 2018-03-07 2019-09-12 島根県 Arsenic-adsorbent cellulose material
JPWO2019172164A1 (en) * 2018-03-07 2021-03-18 島根県 Arsenic-adsorbing cellulose material
JP7319619B2 (en) 2018-03-07 2023-08-02 島根県 Arsenic-adsorbing cellulose material
CN108636369A (en) * 2018-05-22 2018-10-12 华东理工大学 A kind of strike water hyacinth root powder method of modifying
CN111909335A (en) * 2020-07-13 2020-11-10 旬阳领盛新材料科技有限公司 Antimony-removing adsorption resin and preparation method thereof
CN114392722A (en) * 2022-01-28 2022-04-26 湖南烯富环保科技有限公司 Biochar @ five-membered metal oxide composite defluorination material and preparation and application thereof
CN115178242A (en) * 2022-06-28 2022-10-14 中国地质大学(武汉) Adsorption film for fixing pentavalent arsenic ions as well as preparation method and application thereof
CN115178242B (en) * 2022-06-28 2023-06-06 中国地质大学(武汉) Adsorption film for fixing pentavalent arsenic ions, and preparation method and application thereof
CN115301209A (en) * 2022-08-26 2022-11-08 华中科技大学 Efficient fluorine reducing agent and preparation and application thereof
CN115301209B (en) * 2022-08-26 2024-05-24 华中科技大学 High-efficiency fluorine-reducing agent and preparation and application thereof

Similar Documents

Publication Publication Date Title
Qu et al. Multi-component adsorption of Pb (II), Cd (II) and Ni (II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification
Fouda-Mbanga et al. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review
Rudi et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents
Yu et al. Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb (II) and Cd (II) from wastewater
Dong et al. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent
Al-Othman et al. Organic–inorganic type composite cation exchanger poly-o-toluidine Zr (IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals
Ye et al. Adsorptive removal of Cd (II) from aqueous solution using natural and modified rice husk
Weng et al. Adsorption characteristics of copper (II) onto spent activated clay
Namasivayam et al. Application of coconut coir pith for the removal of sulfate and other anions from water
El-Shafey Removal of Zn (II) and Hg (II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk
Ramachandran et al. Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon
Hanumantharao et al. Preparation and development of adsorbent carbon from Acacia farnesiana for defluoridation
JP2003225559A (en) Adsorbent made from plant biomass
Mittal et al. Adsorptive removal of hazardous dye quinoline yellow from wastewater using coconut-husk as potential adsorbent
Ma et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag
Huang et al. Removal of fluoride from aqueous solution onto Zr-loaded garlic peel (Zr-GP) particles
Islam et al. Polyacrylamide thorium (IV) phosphate as an important lead selective fibrous ion exchanger: synthesis, characterization and removal study
Davidescu et al. Synthesis, characterization, and Ni (II) ion sorption properties of poly (styrene-co-divinylbenzene) functionalized with aminophosphonic acid groups
Es-Said et al. Adsorptivity and selectivity of heavy metals Cd (II), Cu (II), and Zn (II) toward phosphogypsum
Mahmoud et al. Enhanced removal of lead by chemically and biologically treated carbonaceous materials
Ligate et al. Removal of heavy metal ions from aqueous solution using rice husks-based adsorbents
Lenka et al. Removal of copper from water and wastewater using dolochar
Adebayo et al. Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a low cost adsorbent from orange peels
Emmanuel et al. Removal of fluoride from drinking water with activated carbons prepared from HNO3 activation—A comparative study
Mihayo et al. Defluoridation of aqueous solution using thermally activated biosorbents prepared from Adansonia digitata fruit pericarp

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A7423