JP6110197B2 - Conductive polycarbonate resin composition - Google Patents

Conductive polycarbonate resin composition Download PDF

Info

Publication number
JP6110197B2
JP6110197B2 JP2013090425A JP2013090425A JP6110197B2 JP 6110197 B2 JP6110197 B2 JP 6110197B2 JP 2013090425 A JP2013090425 A JP 2013090425A JP 2013090425 A JP2013090425 A JP 2013090425A JP 6110197 B2 JP6110197 B2 JP 6110197B2
Authority
JP
Japan
Prior art keywords
component
weight
resin composition
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013090425A
Other languages
Japanese (ja)
Other versions
JP2014214181A (en
Inventor
友田 琢也
琢也 友田
祐樹 松本
祐樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2013090425A priority Critical patent/JP6110197B2/en
Publication of JP2014214181A publication Critical patent/JP2014214181A/en
Application granted granted Critical
Publication of JP6110197B2 publication Critical patent/JP6110197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、良好な電気特性を有し、かつ高剛性、高寸法精度を有する導電性ポリカーボネート樹脂組成物に関する。   The present invention relates to a conductive polycarbonate resin composition having good electrical characteristics, high rigidity, and high dimensional accuracy.

芳香族ポリカーボネート樹脂は、機械的特性、寸法精度、電気的特性、熱的特性などに優れ、エンジニアプラスチックとして電気、電子機器分野、自動車分野、OA分野などさまざまな分野において幅広く使用されている。近年、デジタルカメラ等の電子機器では製品の小型化が進んでいるため、使用する製品筐体においても筐体の薄肉化が進んでいる。その中において、レンズ鏡筒等の筐体やカメラ内部に組み込まれるレンズマウント部品、シャッター地板、シャッター羽根押え、中間板といったカメラシャッター部品等の精密薄肉部品は、カメラボディ等の大きな筐体と比較し、更なる小型化・薄肉化が必要とされている。このような部材には、従来よりも高い剛性と優れた寸法精度を兼ね備えた材料が要求されている。   Aromatic polycarbonate resins are excellent in mechanical properties, dimensional accuracy, electrical properties, thermal properties, and the like, and are widely used as engineer plastics in various fields such as electrical, electronic equipment, automobile, and OA fields. In recent years, since electronic products such as digital cameras have been downsized, the housing of the product housing to be used is also becoming thinner. Among them, precision thin-walled parts such as camera barrel parts such as a lens barrel and lens mount parts incorporated in the camera, shutter base plate, shutter blade retainer, and intermediate plate are compared with large cases such as camera bodies. However, further downsizing and thinning are required. Such a member is required to have a material having both higher rigidity and superior dimensional accuracy than before.

また、これらの製品に求められる特性は、薄肉化に伴う高剛性、高寸法精度だけではなく、組み立て時の異物混入や周辺電子部品等への誤作動、更に動作時の摩擦による各部品への帯電による埃の付着を抑制することが求められる。より具体的には、静電対策のために電荷が製品表面に帯電しないような低い飽和帯電電圧と埃の付着を抑制するのに必要な電気抵抗率を有する必要がある。   The characteristics required for these products are not only high rigidity and high dimensional accuracy associated with thinning, but also contamination by foreign objects during assembly, malfunction of peripheral electronic components, etc., and friction due to friction during operation. It is required to suppress adhesion of dust due to charging. More specifically, it is necessary to have a low saturation charging voltage that prevents a charge from being charged on the surface of the product and an electrical resistivity necessary to suppress adhesion of dust as a countermeasure against static electricity.

かかる課題の解決のため、芳香族ポリカーボネート樹脂に炭素繊維等の導電性繊維を添加した導電性ポリカーボネート樹脂組成物などが提案されている。しかしながらかかる樹脂組成物は、優れた導電性、高剛性、高寸法精度を示すものの、その導電繊維自身の硬さから金型を磨耗する問題がある。そのため精密部品においては寸法変動の原因となり、また量産時において金型寿命を縮めるため生産効率の低下、金型修正等の生産コストアップの問題点がある。以上のことより、炭素繊維等の硬度の高い導電性繊維を使用せず、埃の付着を抑制できる導電性、高い剛性および高い寸法精度を有する材料が求められる。   In order to solve this problem, a conductive polycarbonate resin composition in which conductive fibers such as carbon fibers are added to an aromatic polycarbonate resin has been proposed. However, although such a resin composition exhibits excellent conductivity, high rigidity, and high dimensional accuracy, there is a problem that the mold is worn due to the hardness of the conductive fiber itself. For this reason, precision parts cause dimensional fluctuations, and there is a problem of reduction in production efficiency and an increase in production costs such as mold correction because the mold life is shortened in mass production. From the above, there is a demand for a material having conductivity, high rigidity, and high dimensional accuracy that can suppress adhesion of dust without using conductive fibers having high hardness such as carbon fibers.

特許文献1では、芳香族ポリカーボネート樹脂と熱可塑性ポリエステル樹脂とのアロイに導電性カーボンブラックと無機フィラーからなる樹脂組成物が提案されているが、現在、求められる小型化・薄肉化対応に必要な高い剛性や導電性を得るには十分に満足できるものではなかった。
特許文献2では、熱可塑性樹脂に粒子形状が板状の無機質フィラー、無機質繊維、導電性フィラーおよび熱可塑性エラストマーからなる樹脂組成物が提案されているが、得られる導電性の効果の記載は不十分であり、また熱可塑性エラストマーの添加による剛性低下が避けられず高い剛性を得るには不十分であった。
In Patent Document 1, a resin composition composed of conductive carbon black and an inorganic filler is proposed for an alloy of an aromatic polycarbonate resin and a thermoplastic polyester resin, but it is currently necessary for the required reduction in size and thickness. It was not satisfactory to obtain high rigidity and conductivity.
Patent Document 2 proposes a resin composition composed of an inorganic filler, inorganic fiber, conductive filler, and thermoplastic elastomer having a plate shape in a thermoplastic resin, but there is no description of the resulting conductive effect. It was sufficient, and the rigidity reduction due to the addition of the thermoplastic elastomer was inevitable, and it was insufficient to obtain a high rigidity.

また特許文献3〜7では、芳香族ポリカーボネート樹脂、導電性カーボンブラックおよびガラス繊維からなる樹脂組成物、または芳香族ポリカーボネート樹脂と熱可塑性ポリエステル樹脂とのアロイ、導電性カーボンブラックおよびガラス繊維からなる樹脂組成物が各種提案されており、芳香族ポリカーボネート樹脂と熱可塑性ポリエステル樹脂とのアロイに導電性カーボンブラックおよびガラス繊維を配合させ導電性を付与し強度を向上させる方法は公知である。しかし、いずれの特許文献においてもガラス繊維形状が導電性に与える影響に関する記載はなく、またこれらの特許文献記載のガラス繊維形状ではより高い剛性と高い寸法精度を両立するには不十分であり満足できるものではなかった。   In Patent Documents 3 to 7, a resin composition comprising an aromatic polycarbonate resin, conductive carbon black and glass fiber, or an alloy of an aromatic polycarbonate resin and a thermoplastic polyester resin, a resin comprising conductive carbon black and glass fiber. Various compositions have been proposed, and a method of adding conductive carbon black and glass fiber to an alloy of an aromatic polycarbonate resin and a thermoplastic polyester resin to impart conductivity and improve strength is known. However, in any patent document, there is no description regarding the influence of the glass fiber shape on the conductivity, and the glass fiber shape described in these patent documents is insufficient and satisfactory for achieving both higher rigidity and higher dimensional accuracy. It wasn't possible.

特開2005−120322号公報JP 2005-120322 A 特開平2−138366号公報Japanese Patent Laid-Open No. 2-138366 特開平6−9888号公報JP-A-6-9888 特許第4889460号公報Japanese Patent No. 4889460 特表2004−514782号公報Special Table 2004-514782 特開2011−16902号公報JP 2011-16902 A 特公平6−80145号公報Japanese Examined Patent Publication No. 6-80145

本発明は、良好な電気特性を有し、かつ高剛性、高寸法精度を有する導電性ポリカーボネート樹脂組成物に関する。   The present invention relates to a conductive polycarbonate resin composition having good electrical characteristics, high rigidity, and high dimensional accuracy.

本発明者らは、かかる課題を解決するため鋭意検討した結果、芳香族ポリカーボネート樹脂およびポリエステル樹脂からなる樹脂成分に導電性カーボンブラックおよび扁平断面形状を有するガラス繊維を配合することにより、従来技術において十分に検討されていなかった良好な電気特性、高剛性、高寸法精度を有することを見出し、更に検討を進めて本発明を完成した。すなわち、本発明によれば、上記課題は(A)芳香族ポリカーボネート樹脂(A成分)50〜95重量%および(B)ポリエステル樹脂(B成分)5〜50重量%からなる樹脂成分100重量部に対し、(C)扁平断面形状を有するガラス繊維(C成分)5〜150重量部および(D)導電性カーボンブラック(D成分)1〜25重量部を含有する導電性ポリカーボネート樹脂組成物により達成される。   As a result of diligent investigations to solve such problems, the inventors of the present invention have incorporated conductive carbon black and glass fiber having a flat cross-sectional shape into a resin component composed of an aromatic polycarbonate resin and a polyester resin, and thus in the prior art. The present inventors have found that it has good electrical characteristics, high rigidity, and high dimensional accuracy that have not been sufficiently studied, and further studied to complete the present invention. That is, according to the present invention, the above-mentioned problem is achieved in 100 parts by weight of a resin component comprising (A) an aromatic polycarbonate resin (component A) 50 to 95% by weight and (B) a polyester resin (component B) 5 to 50% by weight. On the other hand, it is achieved by a conductive polycarbonate resin composition containing (C) 5 to 150 parts by weight of glass fiber (C component) having a flat cross-sectional shape and (D) 1 to 25 parts by weight of conductive carbon black (D component). The

以下、更に本発明の詳細について説明する。
(A成分:芳香族ポリカーボネート樹脂)
本発明において使用される芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereinafter, the details of the present invention will be described.
(Component A: aromatic polycarbonate resin)
The aromatic polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
In the present invention, in addition to bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced using other dihydric phenols as the A component.
For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy) Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is a copolymerized polycarbonate of the following (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.
The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and Tg of 120 to 180 ° C, or (ii) Tg of 160 to 250 ° C, Polycarbonate which is preferably 170 to 230 ° C. and has a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。   Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。   As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.

前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。   In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with such bifunctional carboxylic acid and bifunctional alcohol are included. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.

分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01〜1モル%、より好ましくは0.05〜0.9モル%、さらに好ましくは0.05〜0.8モル%である。   The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. It is 0.01-1 mol%, More preferably, it is 0.05-0.9 mol%, More preferably, it is 0.05-0.8 mol%.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。 In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably 100% by mole in total with the structural unit derived from dihydric phenol. The content is preferably 0.001 to 1 mol%, more preferably 0.005 to 0.9 mol%, and still more preferably 0.01 to 0.8 mol%. The ratio of the branched structure can be calculated by 1 H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。   The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic difunctional carboxylic acid include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.

本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。   Reaction methods such as interfacial polymerization, melt transesterification, carbonate prepolymer solid phase transesterification, and ring-opening polymerization of cyclic carbonate compounds, which are methods for producing the polycarbonate resin of the present invention, include various documents and patent publications. This is a well-known method.

本発明の樹脂組成物を製造するにあたり、芳香族ポリカーボネート樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10、さらに好ましくは1.4×10〜2.4×10である。 In producing the resin composition of the present invention, the viscosity average molecular weight (M) of the aromatic polycarbonate resin is not particularly limited, but is preferably 1 × 10 4 to 5 × 10 4 , more preferably 1.4 ×. 10 4 to 3 × 10 4 , more preferably 1.4 × 10 4 to 2.4 × 10 4 .

粘度平均分子量が1×10未満の芳香族ポリカーボネート樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。 With an aromatic polycarbonate resin having a viscosity average molecular weight of less than 1 × 10 4 , good mechanical properties cannot be obtained. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity average molecular weight exceeding 5 × 10 4 is inferior in versatility in that it is inferior in fluidity during injection molding.

なお、前記芳香族ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10〜3×10の芳香族ポリカーボネート系樹脂(A−1−1−1成分)、および粘度平均分子量1×10〜3×10の芳香族ポリカーボネート系樹脂(A−1−1−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10であるポリカーボネート系樹脂(A−1−1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。 In addition, the said aromatic polycarbonate-type resin may be obtained by mixing that whose viscosity average molecular weight is outside the said range. In particular, a polycarbonate resin having a viscosity average molecular weight exceeding the above range (5 × 10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more preferred embodiment, the A component is an aromatic polycarbonate-based resin (A-1-1-1 component) having a viscosity average molecular weight of 7 × 10 4 to 3 × 10 5 and a viscosity average molecular weight of 1 × 10 4 to 3 ×. Polycarbonate resin (A-1-1), which is composed of 10 4 aromatic polycarbonate resin (A-1-1-2 component) and has a viscosity average molecular weight of 1.6 × 10 4 to 3.5 × 10 4. Component) (hereinafter may be referred to as “high molecular weight component-containing polycarbonate resin”).

かかる高分子量成分含有ポリカーボネート樹脂(A−1−1成分)において、A−1−1−1成分の分子量は7×10〜2×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−1−1−2成分の分子量は1×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。 In such a high molecular weight component-containing polycarbonate resin (A-1-1 component), the molecular weight of the A-1-1-1 component is preferably 7 × 10 4 to 2 × 10 5 , more preferably 8 × 10 4 to 2 ×. 10 5 , more preferably 1 × 10 5 to 2 × 10 5 , and particularly preferably 1 × 10 5 to 1.6 × 10 5 . The molecular weight of the A-1-1-2 component is preferably 1 × 10 4 to 2.5 × 10 4 , more preferably 1.1 × 10 4 to 2.4 × 10 4 , and still more preferably 1.2 ×. 10 4 to 2.4 × 10 4 , particularly preferably 1.2 × 10 4 to 2.3 × 10 4 .

高分子量成分含有ポリカーボネート樹脂(A−1−1成分)は前記A−1−1−1成分とA−1−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1−1成分100重量%中、A−1−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1−1成分が4〜20重量%であり、特に好ましくはA−1−1−1成分が5〜20重量%である。   The high molecular weight component-containing polycarbonate resin (component A-1-1) is prepared by mixing the components A-1-1-1 and A-1-1-2 in various proportions and satisfying a predetermined molecular weight range. Can be obtained. Preferably, in 100% by weight of the A-1-1 component, the A-1-1-1 component is 2 to 40% by weight, and more preferably, the A-1-1-1 component is 3 to 30% by weight. More preferably, the A-1-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1-1 component is 5 to 20% by weight.

また、A−1−1成分の調製方法としては、(1)A−1−1−1成分とA−1−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1−1成分および/またはA−1−1−2成分とを混合する方法などを挙げることができる。   Moreover, as a preparation method of A-1-1 component, (1) The method of superposing | polymerizing each A-1-1-1 component and A-1-1-2 component independently, and mixing these, (2 ) A method for producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method represented by the method disclosed in Japanese Patent Application Laid-Open No. 5-306336 in the same system. And (3) an aromatic polycarbonate resin obtained by the production method (production method (2)) and A separately produced A. Examples thereof include a method of mixing the 1-1-1 component and / or the A-1-1-2 component.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution in which 0.7 g of polycarbonate is dissolved in 100 ml of methylene chloride at 20 ° C. with a specific viscosity (η SP ) calculated by the following formula:
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

尚、本発明の導電性ポリカーボネート樹脂組成物における芳香族ポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。   The viscosity average molecular weight of the aromatic polycarbonate resin in the conductive polycarbonate resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

更にポリオルガノシロキサン単位を共重合したポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂とは下記一般式[1]で表される二価フェノールおよび下記一般式〔3〕で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂である。   Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used. The polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula [1] and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula [3]. Polymeric resin.

Figure 0006110197
Figure 0006110197

[上記一般式〔1〕において、R及びRは夫々独立してハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式[2]で表される基からなる群より選ばれる少なくとも一つの基である。] [In the above general formula [1], R 1 and R 2 are each independently a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a cyclohexane having 6 to 20 carbon atoms. Alkyl group, cycloalkoxy group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, aryl group having 3 to 14 carbon atoms, aryloxy group having 3 to 14 carbon atoms, 7 to 7 carbon atoms Represents a group selected from the group consisting of 20 aralkyl groups, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group, and when there are plural groups, they may be the same or different. Well, e and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2]. ]

Figure 0006110197
Figure 0006110197

[上記一般式[2]においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。] [In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and It represents a group selected from the group consisting of carboxyl groups, and when there are a plurality thereof, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]

Figure 0006110197
Figure 0006110197

[上記一般式[3]において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは300未満の自然数である。Xは炭素原子数2〜8の二価脂肪族基である。] [In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number Q is 0 or a natural number, and p + q is a natural number less than 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]

式[1]で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。   Examples of the dihydric phenol (I) represented by the formula [1] include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1 , 1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1- Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) ) Propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) fluorene 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4′- Dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphe Luether, 4,4′-sulfonyldiphenol, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 2,2′-dimethyl-4,4′-sulfonyldiphenol, 4,4 '-Dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4'-sulfonyldiphenol, 4,4'- Dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydroxy Phenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4 ′-(1, 3-adamantanediyl) diphenol and 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。   Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-biphenyl. (4-hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、および(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。   The hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by hydrosilylation reaction at the end of a polysiloxane chain having a degree of polymerization of. Of these, (2-allylphenol) -terminated polydiorganosiloxane, (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane and (2-methoxy-) are particularly preferred. 4-Allylphenol) -terminated polydimethylsiloxane is preferred.

また、ヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は300未満の自然数である。300以上では、ポリジオルガノシロキサン単位のポリカーボネート中への組み込みが不均等になるとともに、ポリマー分子中のポリジオルガノシロキサン単位の割合が増加するため、該単位を含むポリカーボネートと、含まないポリカーボネートとが生じやすく、かつ相互の相溶性が低下しやすくなる。その結果としてポリジオルガノシロキサンドメインの分散が不均一になり、外観不良になるだけでなく、十分な難燃性が得られない。かかるジオルガノシロキサン重合度(p+q)は好ましくは10〜120、より好ましくは20〜115、さらに好ましくは30〜110である。かかる範囲の下限以下では、十分な難燃性が得られず、また、ポリジオルガノシロキサンドメイン径が小さく、十分な耐衝撃性が発現しない。なお、本発明においてポリジオルガノシロキサンドメインとは、ポリカーボネートのマトリックス中に分散したポリジオルガノシロキサンを主成分とするドメインをいい、他の成分を含んでもよい。上述の如く、ポリジオルガノシロキサンドメインは、マトリックスたるポリカーボネートとの相分離により構造が形成されることから、必ずしも単一の成分から構成されない。   Further, the degree of diorganosiloxane polymerization (p + q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is a natural number of less than 300. If it is 300 or more, the incorporation of polydiorganosiloxane units in the polycarbonate becomes uneven and the proportion of the polydiorganosiloxane units in the polymer molecule increases, so that a polycarbonate containing the unit and a polycarbonate not containing it tend to be generated. In addition, the compatibility with each other tends to decrease. As a result, the dispersion of the polydiorganosiloxane domain becomes non-uniform and not only the appearance becomes poor, but also sufficient flame retardancy cannot be obtained. The degree of diorganosiloxane polymerization (p + q) is preferably 10 to 120, more preferably 20 to 115, and still more preferably 30 to 110. Below the lower limit of this range, sufficient flame retardancy cannot be obtained, the polydiorganosiloxane domain diameter is small, and sufficient impact resistance is not exhibited. In the present invention, the polydiorganosiloxane domain means a domain mainly composed of polydiorganosiloxane dispersed in a polycarbonate matrix and may contain other components. As described above, the polydiorganosiloxane domain is not necessarily composed of a single component because the structure is formed by phase separation from the polycarbonate polycarbonate.

共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1〜50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H−NMR測定により算出することが可能である。 The polydiorganosiloxane content in the total weight of the copolymer resin is preferably 0.1 to 50% by weight. The polydiorganosiloxane component content is more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is hardly affected by the molding conditions is easily obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.

本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、2種以上を用いてもよい。また、本発明の製造方法の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。   In this invention, hydroxyaryl terminal polydiorganosiloxane (II) may use only 1 type, and may use 2 or more types. Further, within the range not hindering the production method of the present invention, other comonomer other than the dihydric phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) is 10% by weight or less based on the total weight of the copolymer. It can also be used in combination in the range.

本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中において、二価フェノール(I)と、ホスゲンや二価フェノール(I)のクロロホルメート等のクロロホルメート形成性化合物との反応により、二価フェノール(I)のクロロホルメートおよび/または末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調製する。クロロホルメート形成性化合物としてはホスゲンが好適である。   In the present invention, a chloroformate-forming compound such as divalent phenol (I) and phosgene or chloroformate of divalent phenol (I) in a mixed solution of an organic solvent insoluble in water and an aqueous alkaline solution in advance. To prepare a mixed solution of a chloroformate compound containing a chloroformate of dihydric phenol (I) and / or a carbonate oligomer of dihydric phenol (I) having a terminal chloroformate group. As the chloroformate-forming compound, phosgene is preferred.

二価フェノール(I)からのクロロホルメート化合物を生成するにあたり、本発明の製造方法に用いられる二価フェノール(I)の全量を一度にクロロホルメート化合物としてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。   In producing the chloroformate compound from the dihydric phenol (I), the whole amount of the dihydric phenol (I) used in the production method of the present invention may be converted to the chloroformate compound at one time, or a part thereof may be used. A post-added monomer may be added as a reaction raw material to a subsequent interfacial polycondensation reaction. The post-added monomer is added to allow the subsequent polycondensation reaction to proceed rapidly, and it is not necessary to add it when it is not necessary.

このクロロホルメート化合物生成反応の方法は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。更に、所望に応じ、亜硫酸ナトリウム、およびハイドロサルファイドなどの酸化防止剤を少量添加してもよく、添加することが好ましい。   The method for this chloroformate compound formation reaction is not particularly limited, but usually a method of carrying out in a solvent in the presence of an acid binder is preferred. Furthermore, if desired, a small amount of an antioxidant such as sodium sulfite and hydrosulfide may be added, and it is preferable to add them.

クロロホルメート形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、好適なクロロホルメート形成性化合物であるホスゲンを使用する場合、ガス化したホスゲンを反応系に吹き込む方法が好適に採用できる。   The use ratio of the chloroformate-forming compound may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Moreover, when using the phosgene which is a suitable chloroformate formation compound, the method of blowing gasified phosgene into a reaction system can be employ | adopted suitably.

前記酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。   Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Is used.

酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、二価フェノール(I)のクロロホルメート化合物の形成に使用する二価フェノール(I)1モルあたり(通常1モルは2当量に相当)、2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。   The use ratio of the acid binder may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction as described above. Specifically, 2 equivalents or slightly more than 2 equivalents per mole of dihydric phenol (I) used for forming the chloroformate compound of dihydric phenol (I) (usually 1 mole corresponds to 2 equivalents). It is preferable to use an acid binder.

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレンおよびクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。   As said solvent, what is necessary is just to use a solvent inert to various reaction, such as what is used for manufacture of a well-known polycarbonate, individually or as a mixed solvent. Representative examples include hydrocarbon solvents such as xylene, and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.

水に不溶性の有機溶媒のモル比は二価フェノール(I)1モルあたり、好ましくは8モル以上、より好ましくは10モル以上、さらに好ましくは12モル以上、特に好ましくは14モル以上である。上限は特に制限されないが、装置の大きさやコストの面から50モル以下で充分である。二価フェノール(I)に対する有機溶媒のモル比をかかる範囲内とすることにより、ポリジオルガノシロキサンドメインの平均サイズおよび規格化分散を、より適正値に制御しやすくなる。   The molar ratio of the organic solvent insoluble in water is preferably 8 moles or more, more preferably 10 moles or more, still more preferably 12 moles or more, particularly preferably 14 moles or more, per mole of dihydric phenol (I). The upper limit is not particularly limited, but 50 mol or less is sufficient from the viewpoint of the size and cost of the apparatus. By setting the molar ratio of the organic solvent to the dihydric phenol (I) within such a range, it becomes easier to control the average size and normalized dispersion of the polydiorganosiloxane domain to appropriate values.

クロロホルメート化合物の生成反応における圧力は特に制限はなく、常圧、加圧、もしくは減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、反応に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
クロロホルメート化合物の生成反応におけるpH範囲は、公知の界面反応条件が利用でき、pHは通常10以上に調製される。
The pressure in the formation reaction of the chloroformate compound is not particularly limited and may be any of normal pressure, pressurization, or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of -20 to 50 ° C, and in many cases, heat is generated with the reaction, so it is desirable to cool with water or ice. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours.
As the pH range in the formation reaction of the chloroformate compound, known interfacial reaction conditions can be used, and the pH is usually adjusted to 10 or more.

本発明においては、このようにして二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調整した後、該混合溶液を攪拌しながら式[5]で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、0.01モル/min以下の速度で加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該クロロホーメート化合物とを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合樹脂を得る。   In the present invention, after preparing a mixed solution of the chloroformate of the dihydric phenol (I) and the chloroformate compound containing the carbonate oligomer of the dihydric phenol (I) having a terminal chloroformate group in this way, While stirring the mixed solution, the hydroxyaryl-terminated polydiorganosiloxane (II) represented by the formula [5] is added in an amount of 0.01 mol per 1 mol of the dihydric phenol (I) charged in preparing the mixed solution. The polycarbonate-polydiorganosiloxane copolymer resin is obtained by adding the hydroxyaryl-terminated polydiorganosiloxane (II) and the chloroformate compound by interfacial polycondensation.

またポリカーボネート−ポリジオルガノシロキサン共重合樹脂は、分岐化剤を上記の二価フェノール系化合物と併用して分岐ポリカーボネート共重合体とすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The polycarbonate-polydiorganosiloxane copolymer resin can be made into a branched polycarbonate copolymer by using a branching agent in combination with the above dihydric phenol compound. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

かかる分岐ポリカーボネート共重合体の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該共重合体を構成するカーボネート構成単位全量中、好ましくは0.005〜1.5モル%、より好ましくは0.01〜1.2モル%、特に好ましくは0.05〜1.0モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。 The branched polycarbonate copolymer is produced by a branching agent used in the interfacial polycondensation reaction after completion of the production reaction, even if the branched solution is contained in the mixed solution during the production reaction of the chloroformate compound. May be added. The proportion of the carbonate constituent unit derived from the branching agent is preferably 0.005 to 1.5 mol%, more preferably 0.01 to 1.2 mol% in the total amount of carbonate constituent units constituting the copolymer. Especially preferably, it is 0.05-1.0 mol%. Such a branched structure amount can be calculated by 1 H-NMR measurement.

重縮合反応における系内の圧力は、減圧、常圧、もしくは加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。   The pressure in the system in the polycondensation reaction can be any of reduced pressure, normal pressure, or increased pressure, but can usually be suitably performed at normal pressure or about the pressure of the reaction system. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Since the reaction time varies depending on other conditions such as the reaction temperature, it cannot be generally specified, but it is usually performed in 0.5 to 10 hours.

場合により、得られたポリカーボネート共重合体に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート共重合体として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として回収することができる。
In some cases, the obtained polycarbonate copolymer is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to obtain a desired reduced viscosity [η SP / C] can also be obtained as a polycarbonate copolymer.
The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purity) after various post-treatments such as a known separation and purification method.

ポリカーボネート−ポリジオルガノシロキサン共重合樹脂の粘度平均分子量は5.0×10〜5.0×10の範囲が好ましい。かかる粘度平均分子量はより好ましくは1.0×10〜4.0×10、更に好ましくは1.5×10〜3.5×10、特に好ましくは1.7×10〜2.5×10である。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂の粘度平均分子量が5.0×10未満では、多くの分野において実用上の機械的強度が得られにくく、5.0×10を超えると、溶融粘度が高く、概して高い成形加工温度を必要とするため、樹脂の熱劣化などの不具合を生じやすい。 The viscosity-average molecular weight of the polycarbonate-polydiorganosiloxane copolymer resin is preferably in the range of 5.0 × 10 3 to 5.0 × 10 4 . The viscosity average molecular weight is more preferably 1.0 × 10 4 to 4.0 × 10 4 , further preferably 1.5 × 10 4 to 3.5 × 10 4 , and particularly preferably 1.7 × 10 4 to 2. .5 × 10 4 . When the viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer resin is less than 5.0 × 10 3 , practical mechanical strength is difficult to obtain in many fields, and when it exceeds 5.0 × 10 4 , the melt viscosity is It is high and generally requires a high molding temperature, so it tends to cause problems such as thermal degradation of the resin.

(B成分:ポリエステル樹脂)
本発明のポリエステル樹脂としては、ポリエステルを形成するジカルボン酸成分とジオール成分の内、ジカルボン酸成分100モル%の70モル%以上が芳香族ジカルボン酸であるポリエステル樹脂が好ましく、より好ましくは90モル%以上、最も好ましくは99モル%以上が芳香族ジカルボン酸であるポリエステル樹脂である。
(B component: polyester resin)
The polyester resin of the present invention is preferably a polyester resin in which 70 mol% or more of 100 mol% of the dicarboxylic acid component is an aromatic dicarboxylic acid among the dicarboxylic acid component and the diol component forming the polyester, more preferably 90 mol%. As described above, most preferably 99% by mole or more of the polyester resin is an aromatic dicarboxylic acid.

このジカルボン酸の例として、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2,5−ジクロロテレフタル酸、2−メチルテレフタル酸、4,4−スチルベンジカルボン酸、4,4−ビフェニルジカルボン酸、オルトフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ビス安息香酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4−ジフェニルエーテルジカルボン酸、4,4−ジフェノキシエタンジカルボン酸、5−Naスルホイソフタル酸、エチレン−ビス−p−安息香酸等があげられる。これらのジカルボン酸は単独でまたは2種以上混合して使用することができる。本発明のポリエステル樹脂には、上記の芳香族ジカルボン酸以外に、30モル%未満の脂肪族ジカルボン酸成分を共重合することができる。その具体例として、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸等があげられる。   Examples of this dicarboxylic acid include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid. Acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxylic acid, 4,4-diphenoxyethane Examples thereof include dicarboxylic acid, 5-Na sulfoisophthalic acid, and ethylene-bis-p-benzoic acid. These dicarboxylic acids can be used alone or in admixture of two or more. In addition to the above aromatic dicarboxylic acid, the polyester resin of the present invention can be copolymerized with an aliphatic dicarboxylic acid component of less than 30 mol%. Specific examples thereof include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like.

本発明のジオール成分としては、例えばエチレングリコール、ジエチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、トランス−またはシス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、デカメチレングリコール、シクロヘキサンジオール、p−キシレンジオール、ビスフェノールA、テトラブロモビスフェノールA、テトラブロモビスフェノールA−ビス(2−ヒドロキシエチルエーテル)などを挙げることができる。これらは単独でも、2種以上を混合して使用することができる。尚、ジオール成分中の二価フェノールは30モル%以下であることが好ましい。   Examples of the diol component of the present invention include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, trans- or cis-2,2, 4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3 -Cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2-hydroxyethyl ether) and the like. These can be used alone or in admixture of two or more. In addition, it is preferable that the dihydric phenol in a diol component is 30 mol% or less.

具体的なポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリへキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン−1,2−ビス(フェノキシ)エタン−4,4’−ジカルボキシレートなどの他、ポリエチレンイソフタレート/テレフタレート共重合体、ポリブチレンテレフタレート/イソフタレート共重合体などのような共重合ポリエステル樹脂が挙げられる。   Specific polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2- In addition to bis (phenoxy) ethane-4,4′-dicarboxylate, there may be mentioned copolymer polyester resins such as polyethylene isophthalate / terephthalate copolymer, polybutylene terephthalate / isophthalate copolymer, and the like.

また本発明に使用されるポリエステル樹脂の末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。   In addition, the terminal group structure of the polyester resin used in the present invention is not particularly limited, and even when the ratio of the hydroxyl group and the carboxyl group in the terminal group is substantially the same, Good. Moreover, those terminal groups may be sealed by reacting a compound having reactivity with such terminal groups.

本発明に使用されるポリエステル樹脂の製造方法については、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重縮合触媒の存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水または低級アルコールを系外に排出することにより行われる。例えば、ゲルマニウム系重合触媒としては、ゲルマニウムの酸化物、水酸化物、ハロゲン化物、アルコラート、フェノラート等が例示でき、更に具体的には、酸化ゲルマニウム、水酸化ゲルマニウム、四塩化ゲルマニウム、テトラメトキシゲルマニウム等が例示できる。また本発明では、従来公知の重縮合の前段階であるエステル交換反応において使用される、マンガン、亜鉛、カルシウム、マグネシウム等の化合物を併せて使用でき、およびエステル交換反応終了後にリン酸または亜リン酸の化合物等により、かかる触媒を失活させて重縮合することも可能である。更にポリエステル樹脂の製造方法は、バッチ式、連続重合式のいずれの方法をとることも可能である。   For the production method of the polyester resin used in the present invention, in accordance with a conventional method, in the presence of a polycondensation catalyst containing titanium, germanium, antimony and the like, the dicarboxylic acid component and the diol component are polymerized while heating, By discharging water or lower alcohol produced as a by-product out of the system. For example, germanium-based polymerization catalysts include germanium oxides, hydroxides, halides, alcoholates, phenolates, and the like. More specifically, germanium oxide, germanium hydroxide, germanium tetrachloride, tetramethoxygermanium, etc. Can be illustrated. Further, in the present invention, compounds such as manganese, zinc, calcium, magnesium, etc., which are used in a transesterification reaction that is a prior stage of a conventionally known polycondensation, can be used in combination, and phosphoric acid or phosphorous after completion of the transesterification reaction. Such a catalyst can be deactivated and polycondensed with an acid compound or the like. Furthermore, the production method of the polyester resin can be either batch type or continuous polymerization type.

更に上記ポリエステル樹脂中でも特に好適であるのは、ポリエチレンテレフタレートである。本発明のポリエチレンテレフタレートとは、テレフタル酸あるいはその誘導体と、1,4−エタンジオールあるいはその誘導体とから重縮合反応により得られるポリマーであるが、上述のとおり他のジカルボン酸成分および他のアルキレングリコール成分を共重合したものを含む。   Furthermore, polyethylene terephthalate is particularly suitable among the polyester resins. The polyethylene terephthalate of the present invention is a polymer obtained by polycondensation reaction from terephthalic acid or a derivative thereof and 1,4-ethanediol or a derivative thereof, but as described above, other dicarboxylic acid components and other alkylene glycols. Includes copolymerized components.

ポリエチレンテレフタレートの末端基構造は上記と同様、特に限定されるものではないが、より好ましいのは末端カルボキシル基が末端水酸基に比較して少ないものである。また製造方法についても上記の各種方法を取り得るが、連続重合式のものが好ましい。これはその品質安定性が高く、またコスト的にも有利なためである。更に重合触媒としては有機チタン化合物を用いることが好ましい。これはエステル交換反応などへの影響が少ない傾向にあるからである。   The terminal group structure of polyethylene terephthalate is not particularly limited as described above, but more preferably the terminal carboxyl group is less than the terminal hydroxyl group. Moreover, although the said various methods can be taken also about a manufacturing method, the thing of continuous polymerization type is preferable. This is because the quality stability is high and the cost is advantageous. Further, an organic titanium compound is preferably used as the polymerization catalyst. This is because the influence on the transesterification reaction tends to be small.

かかる有機チタン化合物としては、好ましい具体例としてチタンテトラブトキシド、チタンイソプロポキシド、蓚酸チタン、酢酸チタン、安息香酸チタン、トリメリット酸チタン、テトラブチルチタネートと無水トリメリット酸との反応物などを挙げることができる。有機チタン化合物の使用量は、そのチタン原子がポリエチレンテレフタレートを構成する酸成分に対し、3〜12mg原子%となる割合が好ましい。   Preferred examples of such organic titanium compounds include titanium tetrabutoxide, titanium isopropoxide, titanium oxalate, titanium acetate, titanium benzoate, titanium trimellitic acid, a reaction product of tetrabutyl titanate and trimellitic anhydride, and the like. be able to. The amount of the organic titanium compound used is preferably such that the titanium atom is 3 to 12 mg atom% with respect to the acid component constituting polyethylene terephthalate.

本発明のポリエステル樹脂の分子量については特に制限されないが、o−クロロフェノールを溶媒として35℃で測定した固有粘度が0.5〜1.5であるのが好ましく、特に好ましくは0.6〜1.2である。   The molecular weight of the polyester resin of the present invention is not particularly limited, but the intrinsic viscosity measured at 35 ° C. using o-chlorophenol as a solvent is preferably 0.5 to 1.5, particularly preferably 0.6 to 1. .2.

B成分の含有量は、芳香族ポリカーボネート樹脂(A成分)との合計100重量%当り、5〜50重量%であり、7〜50重量%が好ましく、9〜45重量%がより好ましく、10〜40重量%が最も好ましい。ポリエステル樹脂を配合することによって、導電性カーボンブラックがポリエステル樹脂相に偏在するため、より少ない導電性カーボンブラックの添加量で導電性を得ることができる。しかし、ポリエステル樹脂の配合が5重量%より小さくなると、ポリエステル樹脂の配合量が少ないために静電対策に必要な導電性を付与することができない。また、50重量%を超えると、ポリエステル樹脂が樹脂成分のほぼ半分以上を占めるため熱安定性低下による強度低下や量産時のバリ発生など生産効率の低下が発生し好ましくない。   Content of B component is 5 to 50 weight% per 100 weight% in total with aromatic polycarbonate resin (A component), 7 to 50 weight% is preferable, 9 to 45 weight% is more preferable, 10 to 10 weight% 40% by weight is most preferred. By blending the polyester resin, the conductive carbon black is unevenly distributed in the polyester resin phase, so that the conductivity can be obtained with a smaller amount of the conductive carbon black added. However, if the blending of the polyester resin is less than 5% by weight, the conductivity required for the countermeasure against static electricity cannot be imparted because the blending amount of the polyester resin is small. On the other hand, if it exceeds 50% by weight, the polyester resin accounts for almost half or more of the resin component, so that the production efficiency declines such as strength reduction due to thermal stability degradation and burr generation during mass production.

(C成分:扁平断面形状を有するガラス繊維)
本発明で使用する扁平断面形状を有するガラス繊維としては、例えば長繊維タイプ(ロービング)や短繊維状のチョップドストランド、ミルドファイバーなどから選択して用いることができる。中でも扁平断面形状を有するガラス繊維のチョップドストランドが好ましく、円形断面形状のチョップドストランドより高い電気特性、高い剛性、高い寸法精度を得るために配合する。
(C component: glass fiber having a flat cross-sectional shape)
The glass fiber having a flat cross-sectional shape used in the present invention can be selected from, for example, a long fiber type (roving), a short fiber chopped strand, a milled fiber, or the like. Among these, chopped strands of glass fibers having a flat cross-sectional shape are preferable, and are blended to obtain higher electrical characteristics, higher rigidity, and higher dimensional accuracy than chopped strands having a circular cross-sectional shape.

本発明で使用する扁平断面形状を有するガラス繊維の繊維断面の長径の平均値は10〜50μmが好ましく、より好ましくは15〜40μm、さらに好ましくは20〜35μmであり、長径と短径の比(長径/短径)の平均値は好ましくは1.5〜8、より好ましくは2〜6、さらに好ましくは2.5〜5である。長径と短径の比の平均値がこの範囲の扁平断面形状を有するガラス繊維を使用した場合、1.5未満の扁平断面形状を有するガラス繊維を使用した場合に比べ、寸法精度と剛性が大きく改良され、導電性も向上させることができる。この導電性の向上は成形品表面において、扁平断面形状を有するガラス繊維の長辺面が成形品表面と平行および垂直に配向することにより、成形品表面だけではなく成形品の厚み方向への導電ネットワークを形成しやすく、導電効果が円形断面繊維に比べ、より有効に作用するためと考えられる。また扁平断面形状としては扁平の他、楕円状、まゆ状、および三つ葉状、あるいはこれに類する形状の扁平断面形状が含まれる。なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。また、扁平断面形状を有するガラス繊維の平均繊維長と平均繊維径の比(アスペクト比)は好ましくは2〜120、より好ましくは2.5〜70、更に好ましくは3〜50であり、繊維長と平均繊維径の比が2未満であると機械的強度の向上効果が小さく、繊維長と平均繊維径の比が120を超えると異方性が大きくなる。かかる扁平断面形状を有するガラス繊維の平均繊維径とは、扁平断面形状を同一面積の真円形に換算したときの数平均繊維径をいう。また平均繊維長とは、本発明の樹脂組成物中における数平均繊維長をいう。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。   The average value of the major axis of the fiber cross section of the glass fiber having a flat cross-sectional shape used in the present invention is preferably 10 to 50 μm, more preferably 15 to 40 μm, still more preferably 20 to 35 μm, and the ratio of the major axis to the minor axis ( The average value of (major axis / minor axis) is preferably 1.5 to 8, more preferably 2 to 6, and further preferably 2.5 to 5. When glass fibers having a flat cross-sectional shape with an average ratio of the major axis to the minor axis in this range are used, dimensional accuracy and rigidity are greater than when glass fibers having a flat cross-sectional shape of less than 1.5 are used. It can be improved and conductivity can be improved. This improvement in conductivity is caused by the fact that the long side surface of the glass fiber having a flat cross-sectional shape is oriented parallel and perpendicular to the surface of the molded product on the surface of the molded product. It is thought that it is easy to form a network, and the conductive effect acts more effectively than a circular cross-section fiber. In addition to the flat shape, the flat cross-sectional shape includes an elliptical shape, an eyebrow shape, a trefoil shape, or a similar flat cross-sectional shape. Of these, a flat shape is preferable from the viewpoint of improving mechanical strength and low anisotropy. The ratio of the average fiber length to the average fiber diameter (aspect ratio) of the glass fiber having a flat cross-sectional shape is preferably 2 to 120, more preferably 2.5 to 70, still more preferably 3 to 50, and the fiber length. When the ratio of the average fiber diameter is less than 2, the effect of improving the mechanical strength is small, and when the ratio of the fiber length to the average fiber diameter exceeds 120, the anisotropy increases. The average fiber diameter of glass fibers having such a flat cross-sectional shape refers to the number average fiber diameter when the flat cross-sectional shape is converted into a true circle having the same area. The average fiber length refers to the number average fiber length in the resin composition of the present invention. The number-average fiber length is a value calculated by an image analyzer from an image obtained by observing the residue of the filler collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical, using an optical microscope. It is. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.

上記の扁平断面ガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス充填材は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかる扁平断面形状を有するガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理された扁平断面形状を有するガラス繊維の集束剤付着量は、扁平断面ガラス繊維100重量%中好ましくは0.1〜3重量%、より好ましくは0.2〜1重量%である。 Various glass compositions represented by A glass, C glass, E glass, etc. are applied to the glass composition of said flat cross-section glass fiber, and it is not specifically limited. Such a glass filler may contain components such as TiO 2 , SO 3 , and P 2 O 5 as necessary. Among these, E glass (non-alkali glass) is more preferable. The glass fiber having such a flat cross-sectional shape is a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent, which improves mechanical strength. To preferred. In addition, those that have been subjected to bundling treatment with olefin resin, styrene resin, acrylic resin, polyester resin, epoxy resin, urethane resin, etc. are preferable. From the viewpoint of mechanical strength, epoxy resin and urethane resin are preferred. Particularly preferred. The sizing agent adhesion amount of the glass fiber having a flat cross-sectional shape subjected to the bundling treatment is preferably 0.1 to 3% by weight, more preferably 0.2 to 1% by weight in 100% by weight of the flat cross-sectional glass fiber.

C成分の含有量は、樹脂成分100重量部に対し、5〜150重量部であり、7〜120重量部が好ましく、10〜90重量部がより好ましく、15〜80重量部が最も好ましい。C成分の含有量が5重量部より小さくなると、剛性および導電性が低下して成形収縮率が大きくなり、150重量部を超えると押出性が著しく低下する。   Content of C component is 5-150 weight part with respect to 100 weight part of resin components, 7-120 weight part is preferable, 10-90 weight part is more preferable, 15-80 weight part is the most preferable. When the content of component C is less than 5 parts by weight, the rigidity and conductivity are reduced and the molding shrinkage ratio is increased, and when it exceeds 150 parts by weight, the extrudability is significantly reduced.

(D成分:導電性カーボンブラック)
導電性カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、サーマルブラック等が挙げられるが、これらの中でも従来の導電性カーボンブラックと比較して極少量で優れた導電性を示し、少量の添加で優れた導電性が得られる点で、ケッチェンブラックが好ましい。
(D component: conductive carbon black)
Examples of the conductive carbon black include ketjen black, acetylene black, furnace black, thermal black, etc. Among them, the conductive carbon black exhibits excellent conductivity in a very small amount compared to the conventional conductive carbon black, and a small amount Ketjen black is preferable in that excellent conductivity can be obtained by addition.

この導電性カーボンブラックは、特に原料、製法に制限されるものではないが、そのDBP吸油量が400ml/100g以上で、かつBET比表面積が1000m/g以上のカーボンブラックがより好適に使用できる。DBP給油量は400〜1000ml/100gがより好ましく、400〜600ml/100gがさらに好ましい。このDBP吸油量が400ml/100gより小さく、かつBET比表面積が1000m/gより小さい場合、またはDBP吸油量、BET比表面積のいずれかが前記数値より小さい場合には、所望の表面抵抗率、体積抵抗率および飽和帯電電圧を得るためにより多くの配合量が必要となり、結果的に導電性カーボンブラックの脱落が多くなりかつ流動性が低下する可能性がある。また、BET比表面積の上限については特に制限はないが、作業性を大きく損なわせる虞がある点で、1,500m/g以下がより好ましい。 The conductive carbon black is not particularly limited by the raw material and the production method, but carbon black having a DBP oil absorption of 400 ml / 100 g or more and a BET specific surface area of 1000 m 2 / g or more can be more suitably used. . The DBP oil supply amount is more preferably 400 to 1000 ml / 100 g, further preferably 400 to 600 ml / 100 g. When the DBP oil absorption is less than 400 ml / 100 g and the BET specific surface area is less than 1000 m 2 / g, or when either the DBP oil absorption or the BET specific surface area is smaller than the above value, the desired surface resistivity, In order to obtain a volume resistivity and a saturation charging voltage, a larger amount of blending is required, and as a result, the conductive carbon black may drop more and the fluidity may decrease. Moreover, there is no restriction | limiting in particular about the upper limit of a BET specific surface area, However, 1500 m < 2 > / g or less is more preferable at the point which may impair workability | operativity greatly.

ここでDBP吸油量とは、ジブチルフタレートアブソープトメーターによって測定された値で、導電性カーボンブラック100g当りに包含されるジブチルフタレートのml容量で、導電性カーボンブラックのストラクチャーの程度を示し、樹脂組成物に配合した際の導電性に影響するとされている。また、BET比表面積は液体窒素吸着法によって求めた値で、導電性カーボンブラック単位重量当たりの表面積を示す。   Here, the DBP oil absorption is a value measured by a dibutyl phthalate abstract meter, which is the ml capacity of dibutyl phthalate contained per 100 g of conductive carbon black, and indicates the degree of structure of the conductive carbon black. It is said to affect the conductivity when blended with the composition. Further, the BET specific surface area is a value obtained by a liquid nitrogen adsorption method and indicates the surface area per unit weight of the conductive carbon black.

D成分の含有量は、樹脂成分100重量部に対し、1〜25重量部であり、1.5〜15重量部が好ましく、2〜12重量部がより好ましく、2.5〜10重量部が最も好ましい。B成分の含有量が1重量部未満であれば、静電対策に必要な導電性を得ることができず、25重量部を超えると押出性が著しく低下し、また樹脂組成物のコストアップにも繋がるため好ましくない。   Content of D component is 1-25 weight part with respect to 100 weight part of resin components, 1.5-15 weight part is preferable, 2-12 weight part is more preferable, 2.5-10 weight part is Most preferred. If the content of component B is less than 1 part by weight, the conductivity required for electrostatic countermeasures cannot be obtained, and if it exceeds 25 parts by weight, the extrudability is remarkably lowered and the cost of the resin composition is increased. Is also not preferable.

(E成分:C成分と異なる形状を有する無機フィラー)
本発明の樹脂組成物には、強化フィラーとしてC成分と異なる形状を有する無機フィラーを配合することができる。かかる無機フィラーとしては、繊維状強化材、板状強化材、および粒状強化材から選択される少なくとも1種の強化材を指し、そのなかでも繊維状強化材が好ましい。
(E component: inorganic filler having a shape different from the C component)
In the resin composition of the present invention, an inorganic filler having a shape different from the C component can be blended as a reinforcing filler. The inorganic filler refers to at least one reinforcing material selected from a fibrous reinforcing material, a plate-like reinforcing material, and a granular reinforcing material, and among them, a fibrous reinforcing material is preferable.

繊維状強化材としてはワラストナイト、ガラス繊維、ガラスミルドファイバー、金属繊維、金属コートガラス繊維、セラミック繊維、アラミド繊維、ポリアリレート繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、塩基性硫酸マグネシウムなどの各種ウイスカーなどや、カーボンミルドファイバー、気相成長カーボンファイバー、およびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003〜0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。   Examples of fibrous reinforcing materials include wollastonite, glass fiber, glass milled fiber, metal fiber, metal coated glass fiber, ceramic fiber, aramid fiber, polyarylate fiber, potassium titanate whisker, aluminum borate whisker, basic magnesium sulfate, etc. And various kinds of whiskers, carbon milled fibers, vapor-grown carbon fibers, and carbon nanotubes. The carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 μm, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable.

板状強化材としてはタルク、マイカ、クレー、モンモンリロナイト、スメクタイト、カオリン、炭酸カルシウム、ガラスフレーク、炭素フレーク、金属フレーク、金属コートガラスフレーク、グラファイト等が挙げられる。板状強化材は強化材自体の異方性が少なく、高度な寸法安定性が求められる精密部材に適している。かかる板状強化材の平均粒径は0.1〜300μmの範囲が好ましく、特に0.1〜200μmの範囲が好ましい。かかる平均粒径は、レーザー回折・散乱法で測定される平均粒径(D50(粒子径分布のメジアン径))をいう。かかる測定は、例えば(株)堀場製作所製レーザー回析・散乱方式粒子径分布測定装置を利用できる。板状強化材の平均粒径が300μmを越えると、ゲート部やホットランナーのノズル部に詰まりを生ずる場合があり、高度に自動化された近年の成形現場において、生産効率の低下を招く。特に近年は成形サイクルの向上や成形品の外観向上のためゲート径やノズル径を小径化する傾向にあり、詰まりの問題を、更に高いレベルで解決することが重要となっている。板状強化材の平均粒径が0.1μmを下回ると、板状強化材の剛性や寸法安定性の改良効果が小さくなる。
粒状強化材としては、ガラスビーズ、ガラスバルーン、カーボンビーズ、セラミック粒子、セラミックバルーン、アラミド粒子、シリカ、が挙げられる。
Examples of the plate-like reinforcing material include talc, mica, clay, montmon lilonite, smectite, kaolin, calcium carbonate, glass flake, carbon flake, metal flake, metal-coated glass flake, graphite and the like. The plate-like reinforcing material is suitable for a precision member requiring little dimensional stability because the reinforcing material itself has little anisotropy. The average particle size of the plate-like reinforcing material is preferably in the range of 0.1 to 300 μm, particularly preferably in the range of 0.1 to 200 μm. The average particle size refers to an average particle size (D50 (median diameter of particle size distribution)) measured by a laser diffraction / scattering method. For this measurement, for example, a laser diffraction / scattering particle size distribution measuring apparatus manufactured by Horiba, Ltd. can be used. If the average particle size of the plate-like reinforcing material exceeds 300 μm, clogging may occur in the gate part or the nozzle part of the hot runner, which leads to a decrease in production efficiency in a highly automated recent molding site. In particular, in recent years, there is a tendency to reduce the gate diameter and nozzle diameter in order to improve the molding cycle and the appearance of the molded product, and it is important to solve the clogging problem at a higher level. When the average particle size of the plate-like reinforcing material is less than 0.1 μm, the effect of improving the rigidity and dimensional stability of the plate-like reinforcing material is reduced.
Examples of the particulate reinforcing material include glass beads, glass balloons, carbon beads, ceramic particles, ceramic balloons, aramid particles, and silica.

本発明の無機フィラーは本発明の効果を損なわない範囲でオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されていても良く、シランカップリング剤、高級脂肪酸エステル、およびワックスなどの各種表面処理剤で表面処理されていても良い。また、造粒された形態で使用しても良く、かかる造粒方法としては、バインダーを使用する場合と、実質的に使用しない場合があるが、バインダーを使用しないものがより好適である。バインダーを使用しない場合の造粒方法としては、脱気圧縮の方法(例えば真空状態で脱気しながらブリケッティングマシーンなどでローラー圧縮する方法など)、および転動造粒や凝集造粒の方法などが挙げられる。   The inorganic filler of the present invention may be focused with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like as long as the effects of the present invention are not impaired. It may be surface-treated with various surface treatment agents such as coupling agents, higher fatty acid esters, and waxes. Moreover, you may use in the granulated form, and as such a granulation method, there are a case where a binder is used and a case where it is not substantially used, but a method using no binder is more preferable. As a granulation method when a binder is not used, a deaeration compression method (for example, a roller compression with a briquetting machine while deaeration in a vacuum state), a rolling granulation method or an agglomeration granulation method Etc.

本発明の無機フィラーは、異種材料で表面被覆されたものを含む。かかる異種材料としては金属および金属酸化物が好適に例示される。金属としては、銀、銅、ニッケル、およびアルミニウムなどが例示される。また金属酸化物としては、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化鉄、酸化アルミニウム、および酸化ケイ素などが例示される。かかる異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。   The inorganic filler of the present invention includes those whose surface is coated with a different material. Preferred examples of such dissimilar materials include metals and metal oxides. Examples of the metal include silver, copper, nickel, and aluminum. Examples of the metal oxide include titanium oxide, cerium oxide, zirconium oxide, iron oxide, aluminum oxide, and silicon oxide. There are no particular limitations on the method of surface coating of such different materials, for example, various known plating methods (for example, electrolytic plating, electroless plating, hot dipping, etc.), vacuum deposition methods, ion plating methods, CVD methods (For example, thermal CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method, etc. can be mentioned.

E成分の含有量は、樹脂成分100重量部に対し、0.001〜150重量部であることが好ましく、0.005〜120重量部がより好ましく、0.01〜90重量部がさらに好ましく、0.05〜45重量部が最も好ましい。   The content of component E is preferably 0.001 to 150 parts by weight, more preferably 0.005 to 120 parts by weight, still more preferably 0.01 to 90 parts by weight, with respect to 100 parts by weight of the resin component. 0.05 to 45 parts by weight is most preferred.

(その他の添加剤について)
本発明の樹脂組成物には、成形加工時の分子量低下や色相を安定化させるための各種安定剤、離型剤、色剤、C成分およびE成分以外の充填剤及び難燃剤等を使用することができる。
(Other additives)
The resin composition of the present invention uses various stabilizers, mold release agents, colorants, fillers other than component C and component E, flame retardants, and the like for stabilizing molecular weight reduction and hue during molding. be able to.

(i)難燃剤
本発明の樹脂組成物には、難燃剤として知られる各種の化合物が配合される。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
かかる難燃剤としては、(1)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(2)有機リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(3)シリコーン化合物からなるシリコーン系難燃剤、並びに(4)ハロゲン系難燃剤(例えば、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート(オリゴマーを含む)、臭素化ポリアクリレート、および塩素化ポリエチレンなど)等が挙げられる。
(I) Flame retardant Various compounds known as flame retardants are blended in the resin composition of the present invention. The compounding of the compound used as a flame retardant not only improves the flame retardancy but also provides, for example, an improvement in antistatic properties, fluidity, rigidity, and thermal stability based on the properties of each compound.
Examples of such flame retardants include (1) organometallic salt flame retardants (for example, alkali (earth) organic sulfonate metal salts, borate metal salt flame retardants, stannate metal salt flame retardants, etc.), (2) Organophosphorous flame retardants (for example, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, and phosphonic acid amide compounds), (3) silicone flame retardants comprising silicone compounds, and (4) halogens And flame retardant (for example, brominated epoxy resin, brominated polystyrene, brominated polycarbonate (including oligomers), brominated polyacrylate, chlorinated polyethylene, etc.).

(1)有機金属塩系難燃剤
有機金属塩系難燃剤は、耐熱性がほぼ維持されると共に少なからず帯電防止性を付与できる点で有利である。本発明において最も有利に使用される有機金属塩系難燃剤は、含フッ素有機金属塩化合物である。本発明の含フッ素有機金属塩化合物とは、フッ素置換された炭化水素基を有する有機酸からなるアニオン成分と金属イオンからなるカチオン成分からなる金属塩化合物をいう。より好適な具体例としては、フッ素置換有機スルホン酸の金属塩、フッ素置換有機硫酸エステルの金属塩、およびフッ素置換有機リン酸エステルの金属塩が例示される。含フッ素有機金属塩化合物は1種もしくは2種以上を混合して使用することができる。その中でも好ましいのはフッ素置換有機スルホン酸の金属塩であり、とくに好ましいのはパーフルオロアルキル基を有するスルホン酸の金属塩である。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。
(1) Organometallic salt-based flame retardant An organic metal salt-based flame retardant is advantageous in that heat resistance is substantially maintained and antistatic properties can be imparted. The organometallic salt flame retardant most advantageously used in the present invention is a fluorine-containing organometallic salt compound. The fluorine-containing organometallic salt compound of the present invention refers to a metal salt compound comprising an anion component composed of an organic acid having a fluorine-substituted hydrocarbon group and a cation component composed of a metal ion. More preferred specific examples include metal salts of fluorine-substituted organic sulfonic acids, metal salts of fluorine-substituted organic sulfates, and metal salts of fluorine-substituted organic phosphates. Fluorine-containing organometallic salt compounds can be used alone or in combination of two or more. Among them, a metal salt of a fluorine-substituted organic sulfonic acid is preferable, and a metal salt of a sulfonic acid having a perfluoroalkyl group is particularly preferable. Here, the carbon number of the perfluoroalkyl group is preferably in the range of 1-18, more preferably in the range of 1-10, and still more preferably in the range of 1-8.

有機金属塩系難燃剤の金属イオンを構成する金属は、アルカリ金属あるいはアルカリ土類金属であり、アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。したがって好適な有機金属塩系難燃剤は、パーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストや難燃性の点で有利であるがリチウムおよびナトリウムは逆に透明性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。   The metal constituting the metal ion of the organometallic salt flame retardant is an alkali metal or an alkaline earth metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium. Examples of the alkaline earth metal include beryllium. , Magnesium, calcium, strontium and barium. More preferred is an alkali metal. Accordingly, a preferred organometallic salt flame retardant is an alkali metal perfluoroalkyl sulfonate. Among such alkali metals, rubidium and cesium are suitable when transparency requirements are higher, but these are not general-purpose and difficult to purify, resulting in disadvantages in terms of cost. is there. On the other hand, although lithium and sodium are advantageous in terms of cost and flame retardancy, they may be disadvantageous in terms of transparency. In consideration of these, the alkali metal in the perfluoroalkylsulfonic acid alkali metal salt can be properly used, but perfluoroalkylsulfonic acid potassium salt having an excellent balance of properties is most suitable in any respect. Such potassium salts and alkali metal salts of perfluoroalkylsulfonic acid composed of other alkali metals can be used in combination.

かかるパーフルオロアルキルスルホン酸アルカリ金属塩としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロブタンジスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。   Such alkali metal perfluoroalkylsulfonates include potassium trifluoromethanesulfonate, potassium perfluorobutanesulfonate, potassium perfluorobutanedisulfonate, potassium perfluorohexanesulfonate, potassium perfluorooctanesulfonate, pentafluoroethanesulfone. Sodium sulfate, sodium perfluorobutanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, Cesium perfluorooctane sulfonate, cesium perfluorohexane sulfonate, perfluorobutene Nsuruhon acid rubidium, and perfluorohexane sulfonic acid rubidium, and these may be used in combination of at least one or two. Of these, potassium perfluorobutanesulfonate is particularly preferred.

上記の含フッ素有機金属塩はイオンクロマトグラフィー法により測定した弗化物イオンの含有量が好ましくは50ppm以下、より好ましくは20ppm以下、更に好ましくは10ppm以下である。弗化物イオンの含有量が低いほど、難燃性や耐光性が良好となる。弗化物イオンの含有量の下限は実質的に0とすることも可能であるが、精製工数と効果との兼ね合いから実用的には0.2ppm程度が好ましい。かかる弗化物イオンの含有量のパーフルオロアルキルスルホン酸アルカリ金属塩は例えば次のように精製される。パーフルオロアルキルスルホン酸アルカリ金属塩を、該金属塩の2〜10重量倍のイオン交換水に、40〜90℃(より好適には60〜85℃)の範囲において溶解させる。該パーフルオロアルキルスルホン酸アルカリ金属塩は、パーフルオロアルキルスルホン酸をアルカリ金属の炭酸塩または水酸化物で中和する方法、もしくはパーフルオロアルキルスルホニルフルオライドをアルカリ金属の炭酸塩または水酸化物で中和する方法により(より好適には後者の方法により)生成される。また該イオン交換水は、特に好適には電気抵抗値が18MΩ・cm以上である水である。金属塩を溶解した液を上記温度下で0.1〜3時間、より好適には0.5〜2.5時間撹拌する。その後該液を0〜40℃、より好適に10〜35℃の範囲に冷却する。冷却により結晶が析出する。析出した結晶をろ過によって取り出す。これにより好適な精製されたパーフルオロアルキルスルホン酸アルカリ金属塩が製造される。   The fluorine-containing organometallic salt preferably has a fluoride ion content as measured by ion chromatography of 50 ppm or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less. The lower the fluoride ion content, the better the flame retardancy and light resistance. The lower limit of the fluoride ion content can be substantially zero, but is practically preferably about 0.2 ppm in view of the balance between the refining man-hour and the effect. Such alkali metal salt of perfluoroalkylsulfonic acid having a fluoride ion content is purified, for example, as follows. The perfluoroalkylsulfonic acid alkali metal salt is dissolved in 2 to 10 times by weight of the metal salt in ion-exchanged water in the range of 40 to 90 ° C. (more preferably 60 to 85 ° C.). The alkali metal salt of perfluoroalkylsulfonic acid is a method of neutralizing perfluoroalkylsulfonic acid with an alkali metal carbonate or hydroxide, or perfluoroalkylsulfonyl fluoride with an alkali metal carbonate or hydroxide. It is produced by a neutralizing method (more preferably by the latter method). The ion-exchanged water is particularly preferably water having an electric resistance value of 18 MΩ · cm or more. The solution in which the metal salt is dissolved is stirred at the above temperature for 0.1 to 3 hours, more preferably 0.5 to 2.5 hours. Thereafter, the liquid is cooled to 0 to 40 ° C, more preferably in the range of 10 to 35 ° C. Crystals precipitate upon cooling. The precipitated crystals are removed by filtration. This produces a suitable purified perfluoroalkylsulfonic acid alkali metal salt.

含フッ素有機金属塩化合物の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.005〜0.6重量部、より好ましくは0.005〜0.2重量部、さらに好ましくは0.008〜0.13重量部である。かかる好ましい範囲であるほど含フッ素有機金属塩の配合により期待される効果(例えば難燃性や帯電防止性など)が発揮されると共に、樹脂組成物の耐光性に与える悪影響も少なくなる。
その他上記含フッ素有機金属塩化合物以外の有機金属塩系難燃剤としては、フッ素原子を含有しない有機スルホン酸の金属塩が好適である。該金属塩としては、例えば脂肪族スルホン酸のアルカリ金属塩、脂肪族スルホン酸のアルカリ土類金属塩、芳香族スルホン酸のアルカリ金属塩、および芳香族スルホン酸のアルカリ土類金属塩等(いずれもフッ素原子を含有しない)が挙げられる。
The content of the fluorine-containing organometallic salt compound is preferably 0.005 to 0.6 parts by weight, more preferably 0.005 to 0.2 parts by weight, based on 100 parts by weight of the total of component A and component B. More preferably, it is 0.008 to 0.13 parts by weight. The more preferable range is, the effects (for example, flame retardancy and antistatic property) expected from the blending of the fluorine-containing organic metal salt are exhibited, and the adverse effect on the light resistance of the resin composition is reduced.
In addition, as an organic metal salt flame retardant other than the above-mentioned fluorine-containing organic metal salt compound, a metal salt of an organic sulfonic acid not containing a fluorine atom is suitable. Examples of the metal salt include an alkali metal salt of an aliphatic sulfonic acid, an alkaline earth metal salt of an aliphatic sulfonic acid, an alkali metal salt of an aromatic sulfonic acid, and an alkaline earth metal salt of an aromatic sulfonic acid (any Also does not contain a fluorine atom).

脂肪族スルホン酸金属塩の好ましい例としては、アルキルスルホン酸アルカリ(土類)金属塩を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する)。かかるアルキルスルホン酸アルカリ(土類)金属塩に使用するアルカンスルホン酸の好ましい例としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、メチルブタンスルホン酸、ヘキサンスルホン酸、へプタンスルホン酸、オクタンスルホン酸等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。   Preferable examples of the aliphatic sulfonic acid metal salt include an alkali (earth) metal salt of an alkyl sulfonate, and these can be used alone or in combination of two or more (here, alkali The (earth) metal salt is used to include both alkali metal salts and alkaline earth metal salts). Preferred examples of the alkane sulfonic acid used for the alkali (earth) metal salt of the alkyl sulfonate include methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, butane sulfonic acid, methyl butane sulfonic acid, hexane sulfonic acid, and heptane. Examples thereof include sulfonic acid and octanesulfonic acid, and these can be used alone or in combination of two or more.

芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。   The aromatic sulfonic acid used in the aromatic (earth) metal salt of aromatic sulfonate includes monomeric or polymeric aromatic sulfide sulfonic acid, aromatic carboxylic acid and ester sulfonic acid, monomeric or polymeric sulfonic acid. Aromatic ether sulfonic acid, aromatic sulfonate sulfonic acid, monomeric or polymeric aromatic sulfonic acid, monomeric or polymeric aromatic sulfonic acid, aromatic ketone sulfonic acid, heterocyclic sulfonic acid, Examples include at least one acid selected from the group consisting of sulfonic acids of aromatic sulfoxides and condensates of methylene type bonds of aromatic sulfonic acids, and these are used alone or in combination of two or more. be able to.

芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムな、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。   Specific examples of the aromatic (earth) metal salt of an aromatic sulfonate include, for example, disodium diphenyl sulfide-4,4′-disulfonate, dipotassium diphenyl sulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate Poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Lithium, poly (2-fluoro-6-butylphenylene oxide) polysulfonate, potassium sulfonate of benzenesulfonate, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, dipotassium p-benzenedisulfonate, naphthalene-2 , 6-disulfonic acid dipotassium, biphenyl-3,3'-disulfonic acid calcium, diphenylsulfone-3-sulfonic acid sodium, diphenylsulfone-3-sulfonic acid potassium, diphenylsulfone-3,3'-disulfonic acid dipotassium, diphenylsulfone Α, α, α-trifluoroacetophenone sodium 4-sulfonate, dipotassium benzophenone-3,3′-disulfonate, Nene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate, calcium thiophene-2,5-disulfonate, sodium benzothiophenesulfonate, potassium diphenylsulfoxide-4-sulfonate, naphthalene Examples thereof include a formalin condensate of sodium sulfonate and a formalin condensate of sodium anthracene sulfonate.

一方、硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。   On the other hand, the alkali (earth) metal salt of sulfate ester may include, in particular, the alkali (earth) metal salt of sulfate ester of monovalent and / or polyhydric alcohols. Alcohol sulfates include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono, di, tri, tetrasulfate, and lauric acid monoglyceride. And sulfuric acid esters of palmitic acid monoglyceride and stearic acid monoglyceride sulfate. The alkali (earth) metal salts of these sulfates are preferably alkali (earth) metal salts of lauryl sulfate.

また他のアルカリ(土類)金属塩としては、芳香族スルホンアミドのアルカリ(土類)金属塩を挙げることができ、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
上記の中でも好ましいフッ素原子を含有しない有機スルホン酸の金属塩は、芳香族スルホン酸アルカリ(土類)金属塩であり、特にカリウム塩が好適である。かかる芳香族スルホン酸アルカリ(土類)金属塩を配合する場合その含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.001〜1重量部であり、より好ましくは0.005〜0.5重量部、更に好ましくは0.01〜0.1重量部である。
Examples of other alkali (earth) metal salts include alkali (earth) metal salts of aromatic sulfonamides such as saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonimide, N Examples include-(N'-benzylaminocarbonyl) sulfanilimide and alkali (earth) metal salts of N- (phenylcarboxyl) sulfanilimide.
Among the above, preferable metal salts of organic sulfonic acids not containing fluorine atoms are aromatic (earth) metal salts of aromatic sulfonates, and potassium salts are particularly preferable. When blending such an aromatic sulfonate alkali (earth) metal salt, the content is preferably 0.001 to 1 part by weight, more preferably based on 100 parts by weight of the total of component A and component B. Is 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.1 parts by weight.

(2)有機リン系難燃剤
本発明の有機リン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため本発明の樹脂組成物の成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式(i)で表される1種または2種以上のホスフェート化合物を挙げることができる。
(2) Organophosphorous flame retardant As the organophosphorous flame retardant of the present invention, an aryl phosphate compound is suitable. This is because such phosphate compounds are generally excellent in hue. Moreover, since the phosphate compound has a plasticizing effect, it is advantageous in that the moldability of the resin composition of the present invention can be improved. As such phosphate compounds, various known phosphate compounds as conventional flame retardants can be used, and more preferably, one or more phosphate compounds represented by the following general formula (i) can be mentioned.

Figure 0006110197
Figure 0006110197

(但し前記式中のXは、二価フェノールから誘導される二価の有機基を表し、R、R、R、およびRはそれぞれ一価フェノールから誘導される一価の有機基を表す。j、k、l及びmはそれぞれ独立して0または1であり、nは0〜5の整数であり、重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値である。) (However, X 1 in the above formula represents a divalent organic group derived from a dihydric phenol, and R 1 , R 2 , R 3 and R 4 are each a monovalent organic group derived from a monohydric phenol. J, k, l and m are each independently 0 or 1, n is an integer of 0 to 5, and n is an average value in the case of a mixture of phosphate esters having different degrees of polymerization n. Represents a value of 0 to 5.)

前記式のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5〜1.5、より好ましくは0.8〜1.2、更に好ましくは0.95〜1.15、特に好ましくは1〜1.14の範囲である。   The phosphate compound of the above formula may be a mixture of compounds having different n numbers, in which case the average n number is preferably 0.5-1.5, more preferably 0.8-1. 2, More preferably, it is 0.95-1.15, Most preferably, it is the range of 1-1.14.

上記Xを誘導する二価フェノールの好適な具体例としては、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン及びビス(4−ヒドロキシフェニル)サルファイドからなる群から選ばれたジヒドロキシ化合物の2個の水酸基を除去して得られる二価の基が挙げられる。R、R、R、およびRの具体例としては、それぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール及びp−クミルフェノールからなる群から選ばれたモノヒドロキシ化合物の1個の水酸基を除去して得られる一価の基が挙げられる。 Preferable specific examples of the dihydric phenol for deriving X 1 include hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis ( And a divalent group obtained by removing two hydroxyl groups of a dihydroxy compound selected from the group consisting of 4-hydroxyphenyl) ketone and bis (4-hydroxyphenyl) sulfide. Specific examples of R 1 , R 2 , R 3 and R 4 are each independently phenol, cresol, xylenol, isopropylphenol, butylphenol and p-cumyl which may be substituted with one or more halogen atoms. Examples thereof include monovalent groups obtained by removing one hydroxyl group of a monohydroxy compound selected from the group consisting of phenol.

上記R、R、R、およびRを誘導する一価フェノールの好適な具体例としては、フェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、およびp−クミルフェノールが例示され、中でも好ましくはフェノール、および2,6−ジメチルフェノールである。
尚、かかる一価フェノールはハロゲン原子で置換されてもよく、該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6−トリブロモフェニル)ホスフェートおよびトリス(2,4−ジブロモフェニル)ホスフェート、トリス(4−ブロモフェニル)ホスフェートなどが例示される。
Preferable specific examples of the monohydric phenol for deriving R 1 , R 2 , R 3 , and R 4 include phenol, cresol, xylenol, isopropylphenol, butylphenol, and p-cumylphenol. Are phenol and 2,6-dimethylphenol.
The monohydric phenol may be substituted with a halogen atom. Specific examples of the phosphate compound having a group derived from the monohydric phenol include tris (2,4,6-tribromophenyl) phosphate and tris. Examples include (2,4-dibromophenyl) phosphate, tris (4-bromophenyl) phosphate, and the like.

一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6−キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6−キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4−ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である(ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式(1)におけるn=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。)。
有機リン系難燃剤の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.01〜20重量部、より好ましくは2〜10重量部、さらに好ましくは2〜7重量部である。
On the other hand, specific examples of the phosphate compound not substituted with a halogen atom include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate, and resorcinol bisdi (2,6-xylyl) phosphate). Preferred are phosphate oligomers mainly composed of phosphate oligomers, phosphate oligomers mainly composed of 4,4-dihydroxydiphenyl bis (diphenyl phosphate), and phosphate oligomers mainly composed of bisphenol A bis (diphenyl phosphate). Indicates that a small amount of other components having different degrees of polymerization may be included, and more preferably, the component of n = 1 in the formula (1) is 80% by weight or more, more preferably 85% by weight or more, and still more preferably Contains over 90% by weight Are shown.).
The content of the organophosphorus flame retardant is preferably 0.01 to 20 parts by weight, more preferably 2 to 10 parts by weight, still more preferably 2 to 7 parts, based on 100 parts by weight of the total of the A component and the B component. Parts by weight.

(3)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
(3) Silicone-based flame retardant The silicone compound used as the silicone-based flame retardant of the present invention improves flame retardancy by a chemical reaction during combustion. As the compound, various compounds conventionally proposed as a flame retardant for aromatic polycarbonate resin can be used. The silicone compound binds itself during combustion or binds to a component derived from the resin to form a structure, or gives a flame retardant effect to the polycarbonate resin by a reduction reaction during the structure formation. It is considered. Therefore, it is preferable that a group having high activity in such a reaction is contained, and more specifically, a predetermined amount of at least one group selected from an alkoxy group and a hydrogen (ie, Si—H group) is contained. preferable. As a content rate of this group (alkoxy group, Si-H group), the range of 0.1-1.2 mol / 100g is preferable, the range of 0.12-1 mol / 100g is more preferable, 0.15-0. The range of 6 mol / 100 g is more preferable. Such a ratio can be determined by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound by the alkali decomposition method. The alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group.

一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、
Q単位:SiOで示される4官能性シロキサン単位である。
Generally, the structure of a silicone compound is constituted by arbitrarily combining the following four types of siloxane units. That is,
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 Monofunctional siloxane units such as (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 ,
D unit: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO Bifunctional siloxane units such as
T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 etc. A trifunctional siloxane unit of
Q unit: a tetrafunctional siloxane unit represented by SiO 2 .

シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。 Specifically, the structure of the silicone compound used in the silicone-based flame retardant is represented by the following formulas: D n , T p , M m D n , M m T p , M m Q q , M m D n T p , M m D n Q q, M m T p Q q, M m D n T p Q q, D n T p, D n Q q, include D n T p Q q. Among these, preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .

ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。
またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
Here, the coefficients m, n, p, and q in the above formula are integers of 1 or more that indicate the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average degree of polymerization of the silicone compound. . This average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40. The better the range, the better the flame retardancy. Further, as described later, a silicone compound containing a predetermined amount of an aromatic group is excellent in transparency and hue. As a result, good reflected light can be obtained.
When any of m, n, p, and q is a numerical value of 2 or more, the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms or organic residues to be bonded. .

シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。   The silicone compound may be linear or have a branched structure. The organic residue bonded to the silicon atom is preferably an organic residue having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. Specific examples of such an organic residue include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, And aralkyl groups such as tolyl groups. More preferably, they are a C1-C8 alkyl group, an alkenyl group, or an aryl group. As the alkyl group, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable.

さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。より好適なシリコーン系難燃剤は、下記一般式(ii)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)のシリコーン化合物である。   Further, the silicone compound used as the silicone flame retardant preferably contains an aryl group. On the other hand, silane compounds and siloxane compounds as organic surface treatment agents for titanium dioxide pigments are clearly distinguished from silicone-based flame retardants in their preferred embodiments in that it is preferable to contain no aryl group. . A more preferable silicone-based flame retardant is a silicone having a ratio (aromatic group amount) of 10 to 70% by weight (more preferably 15 to 60% by weight) including an aromatic group represented by the following general formula (ii). A compound.

Figure 0006110197
Figure 0006110197

(式(ii)中、Xはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。nは0〜5の整数を表わす。さらに式(ii)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。) (In formula (ii), each X independently represents an OH group or a monovalent organic residue having 1 to 20 carbon atoms. N represents an integer of 0 to 5. Further, in formula (ii), n is 2). In these cases, different types of X can be taken.)

シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
Si−H基を有するシリコーン化合物としては、下記一般式(iii)および(iv)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。
The silicone compound used as the silicone-based flame retardant may contain a reactive group in addition to the Si-H group and the alkoxy group. Examples of the reactive group include an amino group, a carboxyl group, an epoxy group, and a vinyl group. Examples thereof include a group, a mercapto group, and a methacryloxy group.
Preferred examples of the silicone compound having a Si—H group include silicone compounds containing at least one of the structural units represented by the following general formulas (iii) and (iv).

Figure 0006110197
Figure 0006110197
Figure 0006110197
Figure 0006110197

(式(iii)および式(iv)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式(v)で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(iii)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。) (In formula (iii) and formula (iv), Z 1 to Z 3 each independently represent a hydrogen atom, a monovalent organic residue having 1 to 20 carbon atoms, or a compound represented by the following general formula (v): Α1 to α3 each independently represents 0 or 1. m1 represents 0 or an integer of 1 or more, and the repeating unit in the case where m1 is 2 or more in formula (iii) represents a plurality of different repeating units. Can be taken.)

Figure 0006110197
Figure 0006110197

(式(v)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(v)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。) (In formula (v), Z 4 to Z 8 each independently represents a hydrogen atom or a monovalent organic residue having 1 to 20 carbon atoms. Α 4 to α 8 each independently represents 0 or 1. m 2 represents 0. Alternatively, it represents an integer of 1 or more, and the repeating unit in the case where m2 is 2 or more in formula (v) can take a plurality of different repeating units.

シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(vi)および一般式(vii)に示される化合物から選択される少なくとも1種の化合物があげられる。   Examples of the silicone compound having an alkoxy group in the silicone compound used for the silicone-based flame retardant include at least one compound selected from compounds represented by the general formula (vi) and the general formula (vii).

Figure 0006110197
Figure 0006110197

(式(vi)中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。) (In the formula (vi), β 1 represents a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group or aralkyl group having 6 to 12 carbon atoms. Γ 1 , γ 2 , γ 3 , γ 4 , γ 5 , and γ 6 represent an alkyl group and a cycloalkyl group having 1 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms, and at least one group is aryl. And δ 1 , δ 2 , and δ 3 are each an alkoxy group having 1 to 4 carbon atoms.)

Figure 0006110197
Figure 0006110197

(式(vii)中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。) (In formula (vii), β 2 and β 3 represent a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms. γ 7 , γ 8 , γ 9 , γ 10 , γ 11 , γ 12 , γ 13, and γ 14 are each an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 to 12 carbon atoms. An aryl group and an aralkyl group, and at least one group is an aryl group or an aralkyl group, and δ 4 , δ 5 , δ 6 , and δ 7 represent an alkoxy group having 1 to 4 carbon atoms.

シリコーン系難燃剤の配合量は、A成分とB成分との合計100重量部を基準として、好ましくは0.01〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。   The blending amount of the silicone-based flame retardant is preferably 0.01 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, still more preferably 1 to 1, based on a total of 100 parts by weight of the component A and the component B. 5 parts by weight.

(4)ハロゲン系難燃剤
本発明のハロゲン系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(viii)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(viii)で表される構成単位からなる臭素化ポリカーボネート化合物である。
(4) Halogen flame retardant As the halogen flame retardant of the present invention, brominated polycarbonate (including oligomers) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can greatly improve flame retardancy. In the brominated polycarbonate used in the present invention, the structural unit represented by the following general formula (viii) is at least 60 mol%, preferably at least 80 mol%, particularly preferably substantially the following general formula. It is the brominated polycarbonate compound which consists of a structural unit represented by (viii).

Figure 0006110197
Figure 0006110197

(式(viii)中、Xは臭素原子、Rは炭素数1〜4のアルキレン基、炭素数1〜4のアルキリデン基または−SO−である。) (In the formula (viii), X is a bromine atom, R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —).

また、かかる式(viii)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、−SO−、特に好ましくはイソプロピリデン基を示す。
臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U−3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される。
In the formula (viii), R preferably represents a methylene group, an ethylene group, an isopropylidene group, —SO 2 —, and particularly preferably an isopropylidene group.
The brominated polycarbonate has a small number of remaining chloroformate groups and preferably has a terminal chlorine content of 0.3 ppm or less, more preferably 0.2 ppm or less. The amount of terminal chlorine is determined by dissolving a sample in methylene chloride, adding 4- (p-nitrobenzyl) pyridine and allowing it to react with terminal chlorine (terminal chloroformate). -3200). When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the resin composition becomes better, and molding at a higher temperature becomes possible, and as a result, a resin composition having better molding processability is provided.

また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H−NMR法により測定して求めることができる。かかる末端水酸基量であると、樹脂組成物の熱安定性が更に向上し好ましい。 The brominated polycarbonate preferably has a small number of remaining hydroxyl terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less with respect to 1 mol of the structural unit of brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving a sample in deuterated chloroform and measuring it by 1 H-NMR method. Such a terminal hydroxyl group amount is preferable because the thermal stability of the resin composition is further improved.

臭素化ポリカーボネートの比粘度は、好ましくは0.015〜0.1の範囲、より好ましくは0.015〜0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のB−1成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。   The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08. The specific viscosity of the brominated polycarbonate is calculated according to the above-described specific viscosity calculation formula used for calculating the viscosity average molecular weight of the polycarbonate resin which is the B-1 component of the present invention.

臭素化ポリカーボネートの含有量は、A成分とB成分との合計100重量部を基準として、0.01〜10重量部が好ましく、より好ましくは0.01〜8重量部、さらに好ましくは0.05〜7重量部である。   The content of brominated polycarbonate is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 8 parts by weight, and still more preferably 0.05, based on the total of 100 parts by weight of component A and component B. ~ 7 parts by weight.

(ii)含フッ素滴下防止剤
本発明の樹脂組成物には、含フッ素滴下防止剤を含むことができる。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(Ii) Fluorine-containing anti-dripping agent The resin composition of the present invention may contain a fluorine-containing anti-drop agent. By using such a fluorine-containing anti-drip agent in combination with the above flame retardant, better flame retardancy can be obtained. Examples of such a fluorine-containing anti-drip agent include a fluorine-containing polymer having a fibril-forming ability. Examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene copolymers (for example, tetrafluoroethylene / hexafluoropropylene copolymer). Polymer, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like, preferably polytetrafluoroethylene (hereinafter referred to as PTFE). May be called).

フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。 Polytetrafluoroethylene (fibrillated PTFE) having fibril-forming ability has a very high molecular weight, and exhibits a tendency to bind PTFE to each other by an external action such as shearing force to form a fiber. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million. The number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in JP-A-6-145520. That is, the fibrillated PTFE has a melt viscosity at 380 ° C. measured by the method described in this publication in the range of 10 7 to 10 13 poise, preferably in the range of 10 8 to 10 12 poise.

かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。   Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE having such fibril-forming ability can improve the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and mechanical properties. is there. Further, as disclosed in JP-A-6-145520, those having a structure having such a fibrillated PTFE as a core and a low molecular weight polytetrafluoroethylene as a shell are also preferably used.

フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。   Examples of commercially available fibrillated PTFE include Teflon (registered trademark) 6J from Mitsui DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500, F-201L from Daikin Chemical Industries, Ltd., and the like. Commercially available aqueous dispersions of fibrillated PTFE include: Fluon AD-1, AD-936 manufactured by Asahi IC Fluoropolymers, Fluon D-1, D-2 manufactured by Daikin Industries, Ltd., Mitsui A representative example is Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd.

混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)「メタブレン A3750」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)、GUANGZHOU SHINE POLYMER TECHNOLOGY社製「ShinepolyTM SN3307」(商品名)「ShinepolyTM SN3300B7」(商品名)などが例示される。 As a mixed form of fibrillated PTFE, (1) a method in which an aqueous dispersion of fibrillated PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a co-agglomerated mixture (JP-A-60-258263). (2) A method of mixing an aqueous dispersion of fibrillated PTFE and dried organic polymer particles (Japanese Patent Laid-Open No. 4-272957). Described method), (3) A method in which an aqueous dispersion of fibrillated PTFE and an organic polymer particle solution are uniformly mixed, and the respective media are simultaneously removed from the mixture (Japanese Patent Laid-Open Nos. 06-220210, (Method described in Japanese Patent Application Laid-Open No. 08-188653), (4) A method of polymerizing monomers forming an organic polymer in an aqueous dispersion of fibrillated PTFE (Method described in JP-A-9-95583), and (5) an aqueous dispersion of PTFE and an organic polymer dispersion are uniformly mixed, and then a vinyl monomer is further polymerized in the mixed dispersion. Thereafter, those obtained by a method for obtaining a mixture (a method described in JP-A No. 11-29679) can be used. Commercial products of these mixed forms of fibrillated PTFE include “Metablene A3800” (trade name) “Metablene A3750” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals. ) and Pacific Interchem Corporation Co., Ltd. "POLY TS AD001" (trade name), GUANGZHOU SHINE POLYMER TECHNOLOGY Co., Ltd. "Shinepoly TM SN3307" (trade name) "Shinepoly TM SN3300B7" (trade name), and the like.

上記フィブリル化PTFEは機械的強度を低下させないため、できる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。   The fibrillated PTFE is preferably finely dispersed as much as possible in order not to lower the mechanical strength. As a means of achieving such fine dispersion, the above mixed form of fibrillated PTFE is advantageous. A method of directly supplying an aqueous dispersion in a melt kneader is also advantageous for fine dispersion. However, in the case of the aqueous dispersion form, consideration is required in that the hue is slightly deteriorated. The proportion of fibrillated PTFE in the mixed form is preferably 10 to 80% by weight, more preferably 15 to 75% by weight, in 100% by weight of the mixture. When the ratio of fibrillated PTFE is in such a range, good dispersibility of fibrillated PTFE can be achieved.

含フッ素滴下防止剤の含有量は、A成分とB成分との合計100重量部を基準として、0.01〜3重量部が好ましく、より好ましくは0.01〜2重量部、さらに好ましくは0.05〜1.5重量部である。   The content of the fluorine-containing anti-drip agent is preferably 0.01 to 3 parts by weight, more preferably 0.01 to 2 parts by weight, and still more preferably 0, based on the total of 100 parts by weight of component A and component B. 0.05 to 1.5 parts by weight.

(iii)安定剤
本発明の樹脂組成物には公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤、紫外線吸収剤および光安定剤などが挙げられる。
(Iii) Stabilizer Various known stabilizers can be blended in the resin composition of the present invention. Examples of the stabilizer include phosphorus stabilizers, hindered phenol antioxidants, ultraviolet absorbers, and light stabilizers.

(iii−1)リン系安定剤
リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
(Iii-1) Phosphorous stabilizer Examples of the phosphorous stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Among these, phosphorous acid, phosphoric acid, phosphonous acid, and phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.

トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。   Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, and tributoxyethyl phosphate. Among these, trialkyl phosphate is preferable. The carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.

アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。   Examples of the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like. Among these, long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.

ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。   Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl) Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl Taerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexylpentaerythritol diphosphite.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。   Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。   The tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

好適なリン系安定剤は、トリオルガノホスフェート化合物、アシッドホスフェート化合物、および下記一般式(iX)で表されるホスファイト化合物である。殊にトリオルガノホスフェート化合物を配合することが好ましい。   Suitable phosphorus stabilizers are triorganophosphate compounds, acid phosphate compounds, and phosphite compounds represented by the following general formula (iX). It is particularly preferable to add a triorganophosphate compound.

Figure 0006110197
Figure 0006110197

(式(iX)中、RおよびR’は炭素数6〜30のアルキル基または炭素数6〜30のアリール基を表し、互いに同一であっても異なっていてもよい。) (In formula (iX), R and R ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same as or different from each other.)

上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
また上記式(iX)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferable as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and both can be used.
Among the above formulas (iX), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.

(iii−2)ヒンダードフェノール系酸化防止剤
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。
(Iii-2) Hindered phenolic antioxidant As the hindered phenolic compound, various compounds that are usually blended in resins can be used. Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino) Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-methylenebis (2,6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) Ru-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Renbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy Examples include -5-methylbenzyl) benzene and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate.

上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。   Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. 4-hydroxyphenyl) propionate, and 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxaspiro [5,5] undecane is preferably used. In particular, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxa Spiro [5,5] undecane is preferred. The said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.

リン系安定剤およびヒンダードフェノール系酸化防止剤はいずれかが配合されることが好ましい。殊にリン系安定剤が配合されることが好ましく、トリオルガノホスフェート化合物が配合されることがより好ましい。リン系安定剤およびヒンダードフェノール系酸化防止剤の含有量は、それぞれA成分とB成分との合計100重量部を基準として、好ましくは0.005〜1重量部、より好ましくは0.01〜0.3重量部である。   It is preferable that either a phosphorus stabilizer or a hindered phenol antioxidant is blended. In particular, a phosphorus stabilizer is preferably blended, and a triorganophosphate compound is more blended. The content of the phosphorus-based stabilizer and the hindered phenol-based antioxidant is preferably 0.005 to 1 part by weight, more preferably 0.01 to 1 part on the basis of 100 parts by weight of the total of the component A and the component B, respectively. 0.3 parts by weight.

(iii−3)紫外線吸収剤
本発明の樹脂組成物は紫外線吸収剤を含有することができる。本発明の樹脂組成物は良好な色相をも有することから、紫外線吸収剤の配合により屋外の使用においてもかかる色相を長期間維持することができる。
(Iii-3) Ultraviolet absorber The resin composition of this invention can contain a ultraviolet absorber. Since the resin composition of the present invention also has a good hue, such a hue can be maintained for a long time even when used outdoors by blending an ultraviolet absorber.

ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。   In the benzophenone series, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methane, 2- Dorokishi -4-n-dodecyloxy benzoin phenone, and such as 2-hydroxy-4-methoxy-2'-carboxy benzophenone may be exemplified.

ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   In the benzotriazole series, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4 -One), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacryloxy) Copolymerization of ethylphenyl) -2H-benzotriazole with vinyl monomer copolymerizable with the monomer And 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a copolymer of vinyl monomer copolymerizable with the monomer, 2-hydroxyphenyl-2H-benzotriazole skeleton A polymer having

ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   In the hydroxyphenyl triazine series, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Illustrated. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。   In the cyclic imino ester system, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazine) -4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), and the like.

また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。   Further, as the ultraviolet absorber, specifically, for cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, whereby the ultraviolet-absorbing monomer and / or the light-stable monomer having a hindered amine structure, and an alkyl (meth) acrylate. A polymer type ultraviolet absorber obtained by copolymerization with a monomer such as may be used. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylate. The

上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、更に好ましくは0.03〜1重量部、最も好ましくは0.05〜0.5重量部である。
Among them, benzotriazole and hydroxyphenyltriazine are preferable from the viewpoint of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable from the viewpoint of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.
The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03, based on the total of 100 parts by weight of the component A and the component B. To 1 part by weight, most preferably 0.05 to 0.5 part by weight.

(iii−4)その他の熱安定剤
本発明の樹脂組成物には、上記のリン系安定剤およびヒンダードフェノール系酸化防止剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(Iii-4) Other Heat Stabilizers The resin composition of the present invention may contain other heat stabilizers other than the above phosphorus stabilizers and hindered phenol antioxidants. Such other heat stabilizers are preferably used in combination with any of these stabilizers and antioxidants, and particularly preferably used in combination with both. Examples of such other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (such stabilizers). Is described in detail in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. In the present invention, such a premixed stabilizer can also be used. The content of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, based on 100 parts by weight of the total of the A component and the B component. .

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量はA成分とB成分との合計100重量部を基準として、好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, based on a total of 100 parts by weight of component A and component B. .

(iv)離型剤
本発明の樹脂組成物は、その成形時の生産性向上や成形品の寸法精度の向上を目的として、更に、脂肪酸エステル、ポリオレフィン系ワックス、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などの公知の離型剤を配合することもできる。本発明の樹脂組成物は、良好な流動性を有することから圧力伝播が良好で、歪の均一化された成形品が得られる。一方で離型抵抗が大きくなるような複雑形状の成形品の場合、離型時における成形品の変形を招く恐れがある。上記特定の成分の配合は、かかる問題を樹脂組成物の特性を損なうことなく解決するものである。
(Iv) Mold Release Agent The resin composition of the present invention is further made of a fatty acid ester, a polyolefin wax, a silicone compound, a fluorine compound (polyfluoro compound) for the purpose of improving productivity during molding and improving dimensional accuracy of a molded product. Fluorine oil represented by alkyl ether, etc.), known release agents such as paraffin wax and beeswax can also be blended. Since the resin composition of the present invention has good fluidity, the pressure propagation is good and a molded article with uniform strain can be obtained. On the other hand, in the case of a molded product having a complicated shape that increases the mold release resistance, the molded product may be deformed at the time of mold release. The compounding of the specific component solves such a problem without impairing the properties of the resin composition.

かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数は、好ましくは3〜32、より好ましくは5〜30である。一方、脂肪族カルボン酸は好ましくは炭素数3〜32、より好ましくは炭素数10〜30の脂肪族カルボン酸である。その中でも飽和脂肪族カルボン酸が好ましい。本発明の脂肪酸エステルは、全エステル(フルエステル)が高温時の熱安定性に優れる点で好ましい。本発明の脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更に脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。   Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, carbon number of this alcohol becomes like this. Preferably it is 3-32, More preferably, it is 5-30. On the other hand, the aliphatic carboxylic acid is preferably an aliphatic carboxylic acid having 3 to 32 carbon atoms, more preferably 10 to 30 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferred. The fatty acid ester of the present invention is preferable in that all esters (full esters) are excellent in thermal stability at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less (can take substantially 0). The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value of the fatty acid ester is preferably 10 or less (can take substantially 0). These characteristics can be obtained by a method defined in JIS K 0070.

ポリオレフィン系ワックスとしては、分子量が1,000〜10,000である、エチレン単独重合体、炭素原子数3〜60のα−オレフィンの単独重合体または共重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体が例示される。かかる分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により標準ポリスチレン換算で測定される数平均分子量である。かかる数平均分子量の上限は、より好ましくは6,000、更に好ましくは3,000である。ポリオレフィン系ワックスにおけるα−オレフィン成分の炭素数は好ましくは60以下、より好ましくは40以下である。より好適な具体例としては、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、および1−オクテンなどが例示される。好適なポリオレフィン系ワックスはエチレン単独重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体である。炭素原子数3〜60のα−オレフィンの割合は、好ましくは20モル%以下、より好ましくは10モル%以下である。いわゆるポリエチレンワックスとして市販されているものが好適に利用される。
上記の離型剤の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.005〜5重量部、より好ましくは0.01〜4重量部、更に好ましくは0.02〜3重量部である。
As the polyolefin wax, an ethylene homopolymer having a molecular weight of 1,000 to 10,000, a homopolymer or copolymer of an α-olefin having 3 to 60 carbon atoms, or ethylene and a carbon atom having 3 to 3 carbon atoms. A copolymer with 60 α-olefins is exemplified. The molecular weight is a number average molecular weight measured in terms of standard polystyrene by GPC (gel permeation chromatography) method. The upper limit of the number average molecular weight is more preferably 6,000, and still more preferably 3,000. The carbon number of the α-olefin component in the polyolefin wax is preferably 60 or less, more preferably 40 or less. More preferred specific examples include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like. A suitable polyolefin wax is an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 60 carbon atoms. The proportion of the α-olefin having 3 to 60 carbon atoms is preferably 20 mol% or less, more preferably 10 mol% or less. What is marketed as what is called polyethylene wax is used suitably.
The content of the release agent is preferably 0.005 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, and still more preferably 0, based on a total of 100 parts by weight of the component A and the component B. 0.02 to 3 parts by weight.

(v)染顔料
本発明の樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。
(V) Dye / pigment The resin composition of the present invention can further contain various dyes / pigments and can provide molded products that exhibit various design properties. Examples of dyes used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Examples thereof include dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Furthermore, the resin composition of this invention can mix | blend a metallic pigment, and can also obtain a better metallic color. As the metallic pigment, aluminum powder is suitable. Further, by blending a fluorescent brightening agent or other fluorescent dye that emits light, a better design effect utilizing the luminescent color can be imparted.

本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好で樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
上記の染顔料の含有量は、A成分とB成分との合計100重量部を基準として、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during resin molding.
The content of the dye / pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the A component and the B component.

(vi)熱線吸収能を有する化合物
本発明の樹脂組成物は熱線吸収能を有する化合物を含有することができる。かかる化合物としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウム、酸化イモニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系や酸化タングステン系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、芳香族ポリカーボネート系樹脂(A成分)とポリエステル樹脂(B成分)と非円形断面形状を有する絶縁性無機フィラー(C成分)およびC成分と異なる形状を有する絶縁性無機フィラー(D成分)との合計100重量部を基準として0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明の樹脂組成物中、0.1〜200ppm(重量割合)の範囲が好ましく、0.5〜100ppmの範囲がより好ましい。
(Vi) Compound having heat absorption ability The resin composition of the present invention may contain a compound having heat absorption ability. Such compounds include phthalocyanine-based near-infrared absorbers, metal oxide-based near-infrared absorbers such as ATO, ITO, iridium oxide, ruthenium oxide and imonium oxide, and metal borides such as lanthanum boride, cerium boride and tungsten boride. Preferable examples include various metal compounds having excellent near-infrared absorptivity such as a system and tungsten oxide near-infrared absorber, and carbon filler. As such a phthalocyanine-based near infrared absorber, for example, MIR-362 manufactured by Mitsui Chemicals, Inc. is commercially available and easily available. Examples of the carbon filler include carbon black, graphite (including both natural and artificial) and fullerene, and carbon black and graphite are preferable. These can be used alone or in combination of two or more. The content of the phthalocyanine-based near-infrared absorber has a shape different from that of the aromatic polycarbonate-based resin (component A), the polyester resin (component B), the insulating inorganic filler (component C) having a non-circular cross-sectional shape, and the component C. 0.0005 to 0.2 parts by weight is preferred, 0.0008 to 0.1 parts by weight is more preferred, and 0.001 to 0.07 parts by weight based on a total of 100 parts by weight of the insulating inorganic filler (component D). Part is more preferred. The content of the metal oxide near-infrared absorber, the metal boride-based near infrared absorber, and the carbon filler is preferably in the range of 0.1 to 200 ppm (weight ratio) in the resin composition of the present invention. A range of ˜100 ppm is more preferable.

(vii)光拡散剤
本発明の樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物等が例示される。かかる高分子微粒子は、既に熱可塑性樹脂の光拡散剤として公知の微粒子である。より好適には粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、A成分とB成分との合計100重量部を基準として、好ましくは0.005〜20重量部、より好ましくは0.01〜10重量部、更に好ましくは0.01〜3重量部である。尚、光拡散剤は2種以上を併用することができる。
(Vii) Light diffusing agent The resin composition of the present invention can be provided with a light diffusing effect by blending a light diffusing agent. Examples of such light diffusing agents include polymer fine particles, inorganic fine particles having a low refractive index such as calcium carbonate, and composites thereof. Such polymer fine particles are fine particles already known as light diffusing agents for thermoplastic resins. More preferably, acrylic crosslinked particles having a particle size of several μm, silicone crosslinked particles represented by polyorganosilsesquioxane, and the like are exemplified. Examples of the shape of the light diffusing agent include a spherical shape, a disk shape, a column shape, and an indefinite shape. Such spheres need not be perfect spheres, but include deformed ones, and such columnar shapes include cubes. A preferred light diffusing agent is spherical, and the more uniform the particle size is. The content of the light diffusing agent is preferably 0.005 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, and still more preferably 0.01, based on the total of 100 parts by weight of the component A and the component B. ~ 3 parts by weight. Two or more light diffusing agents can be used in combination.

(viii)光高反射用白色顔料
本発明の樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が特に好ましい。かかる光高反射用白色顔料の含有量は、A成分とB成分との合計100重量部を基準として、3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(Viii) White pigment for high light reflection The resin composition of the present invention can be provided with a light reflection effect by blending a white pigment for high light reflection. As such a white pigment, a titanium dioxide (particularly titanium dioxide treated with an organic surface treating agent such as silicone) pigment is particularly preferred. The content of the white pigment for high light reflection is preferably 3 to 30 parts by weight and more preferably 8 to 25 parts by weight based on 100 parts by weight of the total of the A component and the B component. Two or more kinds of white pigments for high light reflection can be used in combination.

(ix)帯電防止剤
本発明の樹脂組成物には、更なる帯電防止性能が求められる場合があり、かかる場合帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量はA成分とB成分との合計100重量部を基準として、5重量部以下が適切であり、好ましくは0.05〜5重量部、より好ましくは1〜3.5重量部、更に好ましくは1.5〜3重量部の範囲である。
(Ix) Antistatic agent The resin composition of the present invention may require further antistatic performance, and in such a case, it is preferable to include an antistatic agent. Examples of the antistatic agent include (1) aryl sulfonic acid phosphonium salts represented by dodecylbenzenesulfonic acid phosphonium salts, organic sulfonic acid phosphonium salts such as alkyl sulfonic acid phosphonium salts, and tetrafluoroboric acid phosphonium salts. Examples thereof include phosphonium borate salts. The content of the phosphonium salt is suitably 5 parts by weight or less, preferably 0.05 to 5 parts by weight, more preferably 1 to 3.5 parts by weight, based on a total of 100 parts by weight of component A and component B. Parts, more preferably in the range of 1.5 to 3 parts by weight.

帯電防止剤としては例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量はA成分とB成分との合計100重量部を基準として、0.5重量部以下が適切であり、好ましくは0.001〜0.3重量部、より好ましくは0.005〜0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。   Examples of the antistatic agent include: (2) lithium organic sulfonate, organic sodium sulfonate, organic potassium sulfonate, cesium organic sulfonate, rubidium organic sulfonate, calcium organic sulfonate, magnesium organic sulfonate, and barium organic sulfonate. And organic sulfonate alkali (earth) metal salts. Such metal salts are also used as flame retardants as described above. More specific examples of such metal salts include metal salts of dodecylbenzene sulfonic acid and metal salts of perfluoroalkane sulfonic acid. The content of the organic sulfonate alkali (earth) metal salt is suitably 0.5 parts by weight or less, preferably 0.001 to 0.3 parts by weight, based on the total of 100 parts by weight of component A and component B. Parts, more preferably 0.005 to 0.2 parts by weight. In particular, alkali metal salts such as potassium, cesium, and rubidium are preferable.

帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩はA成分、B成分とC成分の合計100重量部を基準として、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーはA成分とB成分との合計100重量部を基準として、5重量部以下が適切である。   Examples of the antistatic agent include (3) organic sulfonic acid ammonium salts such as alkyl sulfonic acid ammonium salt and aryl sulfonic acid ammonium salt. The ammonium salt is suitably 0.05 parts by weight or less based on 100 parts by weight of the total of the A component, B component and C component. Examples of the antistatic agent include (4) a polymer containing a poly (oxyalkylene) glycol component such as polyether ester amide as a constituent component. The polymer is suitably 5 parts by weight or less based on the total of 100 parts by weight of the component A and the component B.

(x)その他の添加剤
本発明の樹脂組成物には、A成分、B成分以外の熱可塑性樹脂、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。かかる他の樹脂としては、例えばポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、MS樹脂(メチルメタクリートとスチレンから主としてなる共重合体樹脂)、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂、環状ポリオレフィン樹脂、ポリ乳酸樹脂、ポリカプロラクトン樹脂、並びに熱可塑性フッ素樹脂(例えばポリフッ化ビニリデン樹脂に代表される)等の樹脂が挙げられる。
(X) Other additives The resin composition of the present invention includes a component A, a thermoplastic resin other than the component B, other flow modifiers, antibacterial agents, dispersants such as liquid paraffin, photocatalytic antifouling agents, and A photochromic agent etc. can be mix | blended. Examples of such other resins include polyamide resins, polyimide resins, polyetherimide resins, polystyrene resins, MS resins (copolymer resins mainly composed of methyl methacrylate and styrene), polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylenes. Sulfide resin, polysulfone resin, polyolefin resin such as polyethylene, polypropylene, polystyrene resin, acrylonitrile / styrene copolymer (AS resin), polymethacrylate resin, phenol resin, epoxy resin, cyclic polyolefin resin, polylactic acid resin, polycaprolactone resin, In addition, a resin such as a thermoplastic fluororesin (represented by, for example, polyvinylidene fluoride resin) can be used.

(樹脂組成物の製造)
本発明の樹脂組成物は、単軸押出機、二軸押出機の如き押出機を用いて、溶融混練することによりペレット化することができる。かかるペレットを作製するにあたり、任意の方法が採用される。例えばA成分からE成分を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などの予備混合手段を用いて充分に混合(いわゆるドライブレンド)した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより得られた予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、溶融混練後の組成物をペレタイザー等の機器によりペレット化する方法が挙げられる。他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法、また各成分の一部を予め混合した後、ベント式二軸押出機に代表される溶融混練機にて溶融混練することによりペレット化し、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。
(Manufacture of resin composition)
The resin composition of the present invention can be pelletized by melt kneading using an extruder such as a single screw extruder or a twin screw extruder. In producing such pellets, an arbitrary method is adopted. For example, components A to E are sufficiently mixed (so-called dry blend) using premixing means such as a V-type blender, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer, and then an extrusion granulator as necessary. Granulation of the pre-mixture obtained by using a briquetting machine, etc., and then melt-kneading with a melt-kneader typified by a vent type twin-screw extruder, and pelletizing the melt-kneaded composition with a device such as a pelletizer The method of making it. In addition, a method of supplying each component independently to a melt kneader represented by a vent type twin screw extruder, or a part of each component is premixed and then supplied to the melt kneader independently of the remaining components. In addition, a part of each component is mixed in advance and then pelletized by melt kneading in a melt kneader represented by a vent type twin screw extruder, and supplied to the melt kneader independently of the remaining components Examples include methods.

予備混合する方法としては例えば、A成分のパウダーの一部とE成分などの配合する添加剤とをドライブレンドして、パウダーで希釈された添加剤のマスターバッチを作成する方法が挙げられる。また各成分の一部を予め混合した後、ベント式二軸押出機に代表される溶融混練機にて溶融混練することによりペレット化する方法としては、例えばA成分のパウダーの一部とE成分、B成分の一部とE成分などを溶融混練しペレット化を作成する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。これら溶融混練に際しての加熱温度は、通常250〜320℃の範囲で選ばれる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。かかる液注装置、または液添装置は加温装置が設置されているものが好ましく使用される。押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化することができる。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。本発明の樹脂組成物は、通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。   Examples of the premixing method include a method of dry blending a part of the A component powder and an additive such as the E component to prepare a master batch of the additive diluted with the powder. Further, as a method of pelletizing by mixing a part of each component in advance and then melt-kneading in a melt-kneader represented by a vent type twin screw extruder, for example, a part of the powder of component A and the component E The method of melt-kneading a part of B component and E component etc. and making pelletization is mentioned. Furthermore, the method etc. which supply one component independently from the middle of a melt extruder are mentioned. The heating temperature at the time of melt kneading is usually selected in the range of 250 to 320 ° C. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt extruder. As such a liquid injection device or a liquid addition device, one provided with a heating device is preferably used. The extruded resin can be cut directly into pellets or formed into strands and then cut into pellets with a pelletizer. When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder. Although the shape of the obtained pellet can take general shapes, such as a cylinder, a prism, and a spherical shape, it is more preferably a cylinder. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm. The resin composition of the present invention can be usually produced by injection-molding pellets produced as described above to produce various products.

更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、およびフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。   Furthermore, the resin melt-kneaded by an extruder can be directly made into a sheet, a film, a profile extrusion molded product, a direct blow molded product, and an injection molded product without going through pellets. In such injection molding, not only a normal molding method but also an injection compression molding, an injection press molding, a gas assist injection molding, a foam molding (including those by injection of a supercritical fluid), an insert molding, depending on the purpose as appropriate. A molded product can be obtained using an injection molding method such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultrahigh-speed injection molding. The advantages of these various molding methods are already widely known. In addition, either a cold runner method or a hot runner method can be selected for molding. Moreover, the resin composition of this invention can also be utilized in the form of various profile extrusion-molded articles, a sheet | seat, a film, etc. by extrusion molding. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. The resin composition of the present invention can be formed into a molded product by rotational molding, blow molding or the like.

本発明の導電性ポリカーボネート樹脂組成物は、電気特性、剛性、寸法精度に優れるという利点を有することから、各種電子・電気機器、OA機器、半導体関連部材、車両関連部材、機械部品、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、殊に薄肉化の進行と高い寸法精度が求められるカメラ鏡筒やレンズマウント部品、シャッター部品といったカメラ部品に有用であり、その奏する産業上の効果は格別である。   Since the conductive polycarbonate resin composition of the present invention has the advantages of excellent electrical characteristics, rigidity, and dimensional accuracy, various electronic / electric equipment, OA equipment, semiconductor-related members, vehicle-related members, mechanical parts, and other agricultural materials It is useful for various applications such as transport containers, playground equipment, and miscellaneous goods, and is particularly useful for camera parts such as camera barrels, lens mount parts, and shutter parts, which require progress in thinning and high dimensional accuracy. The industrial effect is exceptional.

本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の各種特性の測定は、以下の方法によった。原料は以下の原料を用いた。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these. In addition, the measurement of the various characteristics in an Example was based on the following method. The following raw materials were used as raw materials.

(1)表面抵抗率、体積抵抗率
射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度280℃、金型温度80℃で測定用成形品(縦×横×厚み=45mm×50mm×2mmt)を作成し、それぞれの抵抗値に合った抵抗率計を使用して測定した。すなわち、10Ω/sq以上の場合は、TOA株式会社製 デジタル絶縁計DSM−8103(印加電圧100V、専用プローブ)、10Ω/sq以下の場合には、三菱化学株式会社製 ロレスターGP MCP−T600(印加電圧90V、ESPプローブ(JISK7194準拠))を使用した。具体的な測定方法としては、成形品を温度23℃、湿度50%RHの条件下において前記の抵抗率計を使用して試験片面内の中央部の表面抵抗率と体積抵抗率を測定し3個の試験片から得られた値の平均値を成形品の表面抵抗率および体積抵抗率とした。
(1) Surface resistivity, volume resistivity Molding for measurement (length × width × thickness = at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C. using an injection molding machine (Sumitomo Heavy Industries, Ltd. SG-150U) 45 mm × 50 mm × 2 mmt) and measured using a resistivity meter suitable for each resistance value. That is, when 10 8 Ω / sq or more, TOA Co., Ltd. digital insulation meter DSM-8103 (applied voltage 100 V, dedicated probe), when 10 7 Ω / sq or less, Mitsubishi Chemical Corporation Lorestar GP MCP -T600 (applied voltage 90V, ESP probe (JISK7194 compliant)) was used. As a specific measuring method, the surface resistivity and volume resistivity of the central part in the test piece surface were measured using the resistivity meter under the conditions of a temperature of 23 ° C. and a humidity of 50% RH. The average value of the values obtained from the individual test pieces was used as the surface resistivity and volume resistivity of the molded product.

(2)飽和帯電電圧
射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度280℃、金型温度80℃で測定用成形品(縦×横×厚み=45mm×50mm×2mmt)を作成し、スタチックオネストメーター(シシド静電気株式会社製 H−0110)を使用し印加電圧10kVにて測定した。具体的な測定方法としては、温度23℃、湿度50%RHの条件下において前記のスタチックオネストメーターを使用して、試験片面内の中央部の飽和帯電電圧を測定し、3個の試験片から得られた値の平均値を成形品の飽和帯電電圧とした。
(2) Saturation charging voltage Using an injection molding machine (Sumitomo Heavy Industries, Ltd. SG-150U) at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C., a molded product for measurement (length × width × thickness = 45 mm × 50 mm × 2 mmt), and a static one meter (H-0110 manufactured by Sisid Electrostatic Co., Ltd.) was used and measured at an applied voltage of 10 kV. As a specific measuring method, the above-mentioned static one meter is used under the conditions of a temperature of 23 ° C. and a humidity of 50% RH to measure the saturation charging voltage at the center of the test piece surface, and three test pieces are measured. The average value of the values obtained from the above was taken as the saturation charging voltage of the molded product.

(3)剛性
射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度280℃、金型温度80℃で曲げ試験片(厚み4mm)を作成し、ISO178に準じて曲げ弾性率を測定した。
(3) Rigidity Using an injection molding machine (Sumitomo Heavy Industries, Ltd. SG-150U), a bending test piece (thickness 4 mm) was created at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C., and flexural elasticity according to ISO178. The rate was measured.

(4)成形収縮率
一方の短辺側に厚み1.5mmのフィルムゲートを有する短辺50mm、長辺100mm、厚み2mmの平板を成形し、23℃、50%RH、24時間状態調節したのち、平板の流動の流れ方向および直角方向の寸法を三次元測定機(三豊製作所(株)製 MICROPAK 550)を使用し測定し、流れ方向および直角方向の成形収縮率を求めた。なお、試験片は、射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度310℃、金型温度100℃で成形した。
(4) Mold shrinkage rate After molding a flat plate with a short side of 50 mm, a long side of 100 mm and a thickness of 2 mm having a film gate with a thickness of 1.5 mm on one short side, the condition was adjusted at 23 ° C., 50% RH for 24 hours. The flow direction of the flat plate and the dimension in the perpendicular direction were measured using a three-dimensional measuring machine (MICROPAK 550 manufactured by Mitoyo Seisakusho Co., Ltd.) to determine the molding shrinkage in the flow direction and the perpendicular direction. In addition, the test piece was shape | molded by the cylinder temperature of 310 degreeC and the mold temperature of 100 degreeC with the injection molding machine (Sumitomo Heavy Industries, Ltd. SG-150U).

(5)異方性
上記で求めた成形収縮率の流れ方向と垂直方向の比(流れ方向の成形収縮率/垂直芳香の成形収縮率)を異方性として求めた。異方性の値は1に近いほど成形収縮率の異方性が小さく好ましい。
(5) Anisotropy The ratio of the molding shrinkage rate determined above to the flow direction and the vertical direction (molding shrinkage rate in the flow direction / molding shrinkage rate of vertical aroma) was determined as anisotropy. The anisotropy value closer to 1 is preferable because the anisotropy of the molding shrinkage ratio is small.

[実施例1〜19、および比較例1〜8]
ポリカーボネート樹脂、ポリエステル樹脂、扁平断面形状を有するガラス繊維、導電性カーボンブラックおよび各種添加剤を表1および表2記載の各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する扁平断面形状を有するガラス繊維および各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX−30XSST(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで280℃とした。なお、強化充填材は上記押出機のサイドフィーダーを使用し第二供給口から供給し、残りのポリカーボネート樹脂および添加剤は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。
得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片を成形した。各評価結果を表1および表2に示した。
[Examples 1 to 19 and Comparative Examples 1 to 8]
After mixing polycarbonate resin, polyester resin, glass fiber having a flat cross-sectional shape, conductive carbon black and various additives in the blending amounts shown in Table 1 and Table 2, using a vent type twin screw extruder The mixture was melt kneaded to obtain pellets. The glass fiber having a flat cross-sectional shape to be used and various additives were preliminarily prepared with a polycarbonate resin in advance with a concentration of 10 to 100 times the blending amount as a guide, and then were mixed by a blender. The vent type twin-screw extruder used was TEX-30XSST (completely meshing, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The extrusion conditions are a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the second supply port and 280 ° C. from the second supply port to the die part. did. The reinforcing filler was supplied from the second supply port using the side feeder of the extruder, and the remaining polycarbonate resin and additives were supplied to the extruder from the first supply port. The first supply port here is a supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port.
The obtained pellets were dried with a hot air circulation dryer at 120 ° C. for 5 hours, and then a test piece for evaluation was molded using an injection molding machine. The evaluation results are shown in Tables 1 and 2.

表1および表2中の記号表記の各成分は下記の通りである。
(A成分)
A−1:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL−1225WX(商品名)、粘度平均分子量19,700)
(B成分)
B−1:ポリエチレンテレフタレート(帝人(株)製:TRN−8550FF(商品名))
B−2:ポリブチレンテレフタレート(ポリプラスチックス(株)製:ジュラネックス 500FP EF202X(商品名))
(C成分)
C−1:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA−830(商品名)、長径28μm、短径7μm、カット長3mm、エポキシ系集束剤)
C−2:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA−820(商品名)、長径28μm、短径7μm、カット長3mm、ウレタン系集束剤)
(D成分)
D−1:ケッチェンブラック[ライオン株式会社製:EC―600JD(製品名)、DBP吸油量495ml/100g、BET比表面積1270m/g)]
D−2:導電性カーボンブラック[電気化学工業株式会社製:デンカブラック(、DBP吸油量191ml/100g、BET比表面積68m/g)]
D−3:導電性カーボンブラック[三菱化学株式会社製:MA−600(製品名)、DBP吸油量131ml/100g、BET比表面積140m/g)]
(E成分)
E−1:円形断面ガラスファイバー(日東紡績(株)製:3PE937(商品名)、繊維径:13μm、カット長:3mm、アミノシラン処理表面処理およびエポキシ/ウレタン系集束剤)
E−2:円形断面ガラスファイバー(日本電気硝子(株)製:ECS―03T−511(商品名)、直径13μm、カット長3mm、アミノシラン処理表面処理およびウレタン系集束剤)
(その他)
Rw:ポリオレフィン系離型剤(三井化学(株)製:ハイワックス405MP(商品名))
Each component of the symbol notation in Table 1 and Table 2 is as follows.
(Component A)
A-1: Linear aromatic polycarbonate resin powder synthesized by interfacial polycondensation from bisphenol A, p-tert-butylphenol as a terminal terminator, and phosgene (manufactured by Teijin Chemicals Ltd .: Panlite L-1225WX (product) Name), viscosity average molecular weight 19,700)
(B component)
B-1: Polyethylene terephthalate (manufactured by Teijin Limited: TRN-8550FF (trade name))
B-2: Polybutylene terephthalate (manufactured by Polyplastics Co., Ltd .: DURANEX 500FP EF202X (trade name))
(C component)
C-1: Flat cross-section chopped glass fiber (manufactured by Nittobo Co., Ltd .: CSG 3PA-830 (trade name), major axis 28 μm, minor diameter 7 μm, cut length 3 mm, epoxy-based sizing agent)
C-2: Flat cross-section chopped glass fiber (manufactured by Nittobo Co., Ltd .: CSG 3PA-820 (trade name), major axis 28 μm, minor diameter 7 μm, cut length 3 mm, urethane sizing agent)
(D component)
D-1: Ketjen Black [manufactured by Lion Corporation: EC-600JD (product name), DBP oil absorption 495 ml / 100 g, BET specific surface area 1270 m 2 / g)]
D-2: Conductive carbon black [manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black (DBP oil absorption 191 ml / 100 g, BET specific surface area 68 m 2 / g)]
D-3: Conductive carbon black [Mitsubishi Chemical Corporation: MA-600 (product name), DBP oil absorption 131 ml / 100 g, BET specific surface area 140 m 2 / g)]
(E component)
E-1: Circular cross-section glass fiber (manufactured by Nitto Boseki Co., Ltd .: 3PE937 (trade name), fiber diameter: 13 μm, cut length: 3 mm, aminosilane-treated surface treatment and epoxy / urethane sizing agent)
E-2: Circular cross-section glass fiber (manufactured by Nippon Electric Glass Co., Ltd .: ECS-03T-511 (trade name), diameter 13 μm, cut length 3 mm, aminosilane-treated surface treatment and urethane sizing agent)
(Other)
Rw: Polyolefin release agent (manufactured by Mitsui Chemicals, Inc .: High Wax 405MP (trade name))

Figure 0006110197
Figure 0006110197

Figure 0006110197
Figure 0006110197

Claims (11)

(A)芳香族ポリカーボネート樹脂(A成分)50〜95重量%および(B)芳香族ポリエステル樹脂(B成分)5〜50重量%からなる樹脂成分100重量部に対し、(C)扁平断面形状を有するガラス繊維(C成分)5〜150重量部および(D)導電性カーボンブラック(D成分)1〜25重量部を含有し、脂肪族ポリエステル樹脂を含有しない導電性ポリカーボネート樹脂組成物。 For (A) aromatic polycarbonate resin (component A) 50 to 95% by weight and (B) aromatic polyester resin (component B) 5 to 50% by weight of resin component 100 parts by weight, (C) flat cross-sectional shape A conductive polycarbonate resin composition containing 5 to 150 parts by weight of glass fiber (C component) and 1 to 25 parts by weight of (D) conductive carbon black (D component) and containing no aliphatic polyester resin . B成分が、ポリブチレンテレフタレートおよびポリエチレンテレフタレートからなる群より選ばれる少なくとも1種であることを特徴とする請求項1記載の導電性ポリカーボネート樹脂組成物。   2. The conductive polycarbonate resin composition according to claim 1, wherein the component B is at least one selected from the group consisting of polybutylene terephthalate and polyethylene terephthalate. B成分が、ポリエチレンテレフタレートであることを特徴とする請求項1または2記載の導電性ポリカーボネート樹脂組成物。   The conductive polycarbonate resin composition according to claim 1, wherein the component B is polyethylene terephthalate. C成分が、繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8である扁平形状を有するガラス繊維であることを特徴とする請求項1〜3のいずれかに記載の導電性ポリカーボネート樹脂組成物。   The C component is a glass fiber having a flat shape in which the average value of the major axis of the fiber cross section is 10 to 50 μm and the ratio of the major axis to the minor axis (major axis / minor axis) is 1.5 to 8. The conductive polycarbonate resin composition according to any one of claims 1 to 3. D成分が、ケッチェンブラック、アセチレンブラックおよびファーネスブラックからなる群より選ばれる少なくとも1種であることを特徴とする請求項1〜4のいずれかに記載の導電性ポリカーボネート樹脂組成物。   The conductive polycarbonate resin composition according to claim 1, wherein the component D is at least one selected from the group consisting of ketjen black, acetylene black, and furnace black. D成分が、ケッチェンブラックであることを特徴とする請求項1〜5のいずれかに記載の導電性ポリカーボネート樹脂組成物。   The conductive polycarbonate resin composition according to claim 1, wherein the component D is ketjen black. D成分が、DBP吸油量が400ml/100g以上であり、BET比表面積が1000m/g以上であるケッチェンブラックであることを特徴とする請求項5または6記載の導電性ポリカーボネート樹脂組成物。 The conductive polycarbonate resin composition according to claim 5 or 6, wherein the D component is ketjen black having a DBP oil absorption of 400 ml / 100 g or more and a BET specific surface area of 1000 m 2 / g or more. 樹脂成分100重量部に対し、(E)C成分と異なる形状を有する無機フィラー(E成分)を0.001〜150重量部含有することを特徴とする請求項1〜7のいずれかに記載の導電性ポリカーボネート樹脂組成物。   The inorganic filler (E component) having a shape different from that of the (E) C component is contained in an amount of 0.001 to 150 parts by weight with respect to 100 parts by weight of the resin component. A conductive polycarbonate resin composition. E成分が円形断面形状を有するガラス繊維であることを特徴とする請求項8記載の導電性ポリカーボネート樹脂組成物。   The conductive polycarbonate resin composition according to claim 8, wherein the E component is a glass fiber having a circular cross-sectional shape. 請求項1〜9のいずれかに記載の導電性ポリカーボネート樹脂組成物を成形してなる成形品。   A molded product formed by molding the conductive polycarbonate resin composition according to claim 1. 成形品が、カメラ鏡筒、レンズマウント部品、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材および車両関連部材よりなる群より選ばれる成形品であることを特徴とする請求項10記載の成形品。   11. The molded article is a molded article selected from the group consisting of a camera barrel, a lens mount component, an electrical / electronic component including a camera shutter component, an OA equipment component, a semiconductor-related member, and a vehicle-related member. The molded product described.
JP2013090425A 2013-04-23 2013-04-23 Conductive polycarbonate resin composition Active JP6110197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090425A JP6110197B2 (en) 2013-04-23 2013-04-23 Conductive polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090425A JP6110197B2 (en) 2013-04-23 2013-04-23 Conductive polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2014214181A JP2014214181A (en) 2014-11-17
JP6110197B2 true JP6110197B2 (en) 2017-04-05

Family

ID=51940289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090425A Active JP6110197B2 (en) 2013-04-23 2013-04-23 Conductive polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP6110197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039805B1 (en) 2017-12-27 2019-11-01 롯데첨단소재(주) Lens barrel member
KR102141727B1 (en) * 2017-12-31 2020-08-05 롯데첨단소재(주) Lens barrel member
JP7026566B2 (en) * 2018-04-27 2022-02-28 ポリプラスチックス株式会社 Resin composition for antistatic parts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069888A (en) * 1992-06-24 1994-01-18 Mitsubishi Petrochem Co Ltd Composition for precise molding
JP4485167B2 (en) * 2003-10-20 2010-06-16 三菱エンジニアリングプラスチックス株式会社 Conductive thermoplastic resin composition
JP2008280409A (en) * 2007-05-09 2008-11-20 Mitsubishi Engineering Plastics Corp Resin composition for manufacturing vehicle external component and vehicle exterior component
JP2009096881A (en) * 2007-10-17 2009-05-07 Toray Ind Inc Resin composition and molded product composed thereof
JP5296622B2 (en) * 2009-07-08 2013-09-25 帝人株式会社 Molded product comprising conductive resin composition
JP2011026439A (en) * 2009-07-24 2011-02-10 Teijin Chem Ltd Glass fiber-reinforced resin composition
JP5316507B2 (en) * 2010-10-05 2013-10-16 三菱エンジニアリングプラスチックス株式会社 Conductive thermoplastic resin composition and molded article thereof
JP5346994B2 (en) * 2011-07-11 2013-11-20 帝人株式会社 Polycarbonate resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2014214181A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP5602997B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP6195904B2 (en) Glass fiber reinforced polycarbonate resin composition
JP5524463B2 (en) A lens barrel made of a glass fiber reinforced flame retardant resin composition
JP5684470B2 (en) Thermoplastic resin composition
JP5048948B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP5431758B2 (en) Polycarbonate resin composition
JP2011026439A (en) Glass fiber-reinforced resin composition
JP6343680B2 (en) Polycarbonate resin composition and molded article comprising the same
JP2009114364A (en) Resin composition
JP6181394B2 (en) Thermoplastic resin composition and molded article thereof
JP6224331B2 (en) Thermoplastic resin composition and molded article thereof
JP2006124600A (en) Highly light-reflecting polycarbonate resin composition and method for producing the same
JP5583883B2 (en) Flame retardant polycarbonate resin composition
JP5612242B2 (en) Flame retardant polycarbonate resin composition
JP6110197B2 (en) Conductive polycarbonate resin composition
JP5204795B2 (en) Polycarbonate resin composition
JP2013221072A (en) Glass fiber-reinforced polycarbonate resin composition
JP2008208317A (en) Flame retardant polycarbonate resin composition
JP2008231441A (en) Glass fiber-reinforced aromatic polycarbonate resin composition
JP2019156924A (en) Thermoplastic resin composition
JP2018119102A (en) Thermoplastic resin composition and molded article thereof
EP3647369B1 (en) Reinforced polycarbonate resin composition
JP7440306B2 (en) Polycarbonate resin composition and molded product thereof
JP2018154025A (en) Thermally caulked conjugate
JP2019006954A (en) Reinforced polycarbonate resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150