JP6107112B2 - Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches - Google Patents

Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches Download PDF

Info

Publication number
JP6107112B2
JP6107112B2 JP2012274391A JP2012274391A JP6107112B2 JP 6107112 B2 JP6107112 B2 JP 6107112B2 JP 2012274391 A JP2012274391 A JP 2012274391A JP 2012274391 A JP2012274391 A JP 2012274391A JP 6107112 B2 JP6107112 B2 JP 6107112B2
Authority
JP
Japan
Prior art keywords
solvent
ultrasonic
coal tar
insoluble
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274391A
Other languages
Japanese (ja)
Other versions
JP2014119338A (en
Inventor
隆男 上野
隆男 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012274391A priority Critical patent/JP6107112B2/en
Publication of JP2014119338A publication Critical patent/JP2014119338A/en
Application granted granted Critical
Publication of JP6107112B2 publication Critical patent/JP6107112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、コールタール、コールタールピッチ類又は石油系ピッチ類の溶剤不溶分の含有割合測定方法に関するものである。   The present invention relates to a method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches.

コークス炉において石炭を乾留してコークスを製造する際に副生する成分として、重質油であるコールタールや、コールタール誘導体であるコールタールピッチ類(ソフトピッチ、中ピッチ、硬ピッチ、各種作業工程中のピッチを含む)がある。   Coal tar, which is a heavy oil, and coal tar pitches, which are coal tar derivatives (soft pitch, medium pitch, hard pitch, various operations), are produced as by-products when coking coal in a coke oven to produce coke. Including the pitch in the process).

従来、これらの溶剤不溶分の測定は、コールタール又はコールタールピッチ類の試料を採取した後、計量し、溶剤に溶解した後、ろ過してフィルター上の溶解残渣を溶剤で洗浄し、これを乾燥した後、その重量を計量することにより、試料中の溶剤不溶分量を求める方法が採用されており、試料採取、溶解、乾燥の一連の作業が手作業で行われている。そして、溶剤不溶分の測定には、キノリン、トルエン、N−メチルピロリドン、ヘキサン等の溶剤が使用され、一般的にキノリンの場合、「QI(Quinoline Insoluble)」として表示される。   Conventionally, these solvent-insoluble components have been measured by taking a sample of coal tar or coal tar pitches, weighing it, dissolving it in a solvent, filtering, and washing the dissolved residue on the filter with a solvent. After drying, a method of obtaining the solvent-insoluble content in the sample by measuring its weight is adopted, and a series of operations of sample collection, dissolution, and drying are performed manually. For the measurement of the solvent-insoluble matter, a solvent such as quinoline, toluene, N-methylpyrrolidone, hexane or the like is used. Generally, in the case of quinoline, it is displayed as “QI (Quinoline Insoluble)”.

従来より、コールタールやコールタールピッチ類を取り扱うプラント(プロセス)において、QIを連続的に且つ簡便に測定するために、様々な測定手法が提案されている。
例えば、ソフトピッチのQIの測定に液中微粒子計数器(パーティクルカウンター)を適用し、試料中の不溶性粒子数を粒子径ごとに測定し、それらとQIの値との相関関係から特性値を求めておき、その特性値から演算器を利用して自動的にQIを算出する測定装置が提案されている(特許文献1)。
Conventionally, various measuring methods have been proposed in order to continuously and easily measure QI in a plant (process) handling coal tar and coal tar pitches.
For example, a liquid fine particle counter (particle counter) is applied to QI measurement of soft pitch, the number of insoluble particles in the sample is measured for each particle diameter, and the characteristic value is obtained from the correlation between these and the QI value. A measuring apparatus that automatically calculates QI from the characteristic value using an arithmetic unit has been proposed (Patent Document 1).

また、ソフトピッチのQI値の測定に吸光光度計を適用し、更に測定対象である高粘度の瀝青物のサンプル試料に第一の溶剤としてタール留出油を混合して低粘度にしてプロセス配管中で混合する装置(スタティックミキサー)に押し出し混合させた後、第二の溶剤としてキノリンを用い、所定量をスタティックミキサーで混合して溶解/希釈した後に、試料の吸光度を測定する測定装置が提案されている(特許文献2)。この装置では、QI測定の所要時間が20分と短縮できるとしている(同文献段落0037)。   In addition, an absorptiometer is applied to measure the QI value of the soft pitch, and further, a high-viscosity bituminous sample sample to be measured is mixed with tar distillate oil as the first solvent to lower the viscosity. Proposed a measuring device that measures the absorbance of a sample after mixing with a mixing device (static mixer), mixing with quinoline as a second solvent, dissolving / diluting a predetermined amount with a static mixer (Patent Document 2). In this apparatus, the time required for QI measurement can be shortened to 20 minutes (paragraph 0037 of the same document).

特開平04−9664号公報Japanese Patent Laid-Open No. 04-9664 特開平08−101100号公報Japanese Patent Laid-Open No. 08-101100

ところで、特許文献1の技術は、粒子の数をカウントするという点で、測定出来る粒子の数に限りがあるため、溶剤不溶分が1重量%以下のものに限ってしか適用されておらず、QIの測定領域が高くなって粒子の数が多くなった場合に高い精度が確保できない問題がある。   By the way, since the technique of Patent Document 1 is limited in the number of particles that can be measured in terms of counting the number of particles, it is only applied to those having a solvent insoluble content of 1% by weight or less. There is a problem that high accuracy cannot be ensured when the QI measurement region becomes high and the number of particles increases.

また、特許文献2の技術は、スタティックミキサーで混合する際の瀝青物中固形分によるスタティックミキサー内における閉塞、例えば、第一の溶剤であるタール留出油を送液するポンプ内でのタール留出油中固形分によるポンプ内での閉塞の問題があり、安定して測定することが困難である。さらに、吸光光度計においては、測定し得る被測定物の含有割合に範囲があり、測定するQIの範囲に依って希釈倍率、すなわち、試料の量(サンプリング量)を変えたり、希釈溶媒量を変えたりしなければならないという問題もある。   Moreover, the technique of patent document 2 is the clogging in the static mixer by the solid content in the bitumen at the time of mixing with a static mixer, for example, the tar distillation in the pump which sends the tar distillate oil which is the 1st solvent. There is a problem of clogging in the pump due to solid content in the oil output, and it is difficult to measure stably. Furthermore, in the absorptiometer, there is a range in the content ratio of the object to be measured. Depending on the QI range to be measured, the dilution factor, that is, the amount of sample (sampling amount) can be changed, or the amount of diluted solvent can be changed. There is also the problem of having to change.

そこで、本発明は、上記実状に鑑み、コールタールピッチ類のQI等の溶剤不溶分測定がその分量分布の広範囲で行え、かつ幅広い測定領域を有し、さらに煩雑な操作を必要とせずに簡便な方法で溶剤不溶分を測定する方法を提供することを課題とする。   Therefore, in view of the above situation, the present invention can measure solvent-insoluble components such as QI of coal tar pitches over a wide range of the amount distribution, has a wide measurement region, and does not require complicated operations. It is an object of the present invention to provide a method for measuring a solvent insoluble matter by a simple method.

上記課題を解決すべく鋭意検討した結果、本発明者は、超音波センサーを使用してコールタールピッチ類を溶剤に溶解させた溶液に超音波を照射した際に得られる超音波の減衰量と溶剤不溶分、超音波の伝播速度と溶剤不溶分とに相関があり、且つ幅広いQI値等の不溶分に対して、その相関関係が存在することを見出し、本発明を完成するに至ったのである。
すなわち、本発明の要旨は下記(1)〜(4)に存する。
(1)コールタール、コールタールピッチ類又は石油から発生する石油系ピッチ類と溶剤とを混合した溶液中の溶剤不溶分の含有割合を測定する方法であって、超音波センサーを用いて該溶液に超音波を照射して溶剤不溶分を算出する溶剤不溶分の含有割合測定方法。
(2)前記溶液に前記超音波センサーを用いて超音波を照射し、該溶液の超音波減衰量および超音波伝播速度を計測し、該超音波減衰量および超音波伝播速度から溶剤不溶分の含有割合を算出する(1)に記載の溶剤不溶分の含有割合測定方法。
(3)前記溶液に含まれる溶剤不溶分含有割合が0.1%以上、70%以下である該溶液に対して、前記超音波センサーを用いて、超音波を照射し、該溶液の超音波減衰量又は超音波伝播速度を計測し、該超音波減衰量および超音波伝播速度から溶剤不溶分の含有割合を算出する(1)又は(2)に記載の溶剤不溶分の含有割合測定方法。
(4)前記溶剤不溶分がキノリン不溶分である(1)〜(3)のいずれか一項に記載の溶剤不溶分の含有割合測定方法。
As a result of intensive studies to solve the above problems, the present inventor found that the ultrasonic attenuation obtained by irradiating a solution obtained by dissolving coal tar pitches in a solvent using an ultrasonic sensor with ultrasonic waves Since there is a correlation between the solvent insoluble content, the ultrasonic wave propagation speed and the solvent insoluble content, and there is a correlation with the insoluble content such as a wide QI value, the present invention has been completed. is there.
That is, the gist of the present invention resides in the following (1) to (4).
(1) A method for measuring the content of solvent insolubles in a solution in which coal tar, coal tar pitches or petroleum-based pitches generated from petroleum and a solvent are mixed, and using an ultrasonic sensor, the solution A method for measuring the content ratio of a solvent-insoluble component, in which a solvent-insoluble component is calculated by irradiating an ultrasonic wave.
(2) The solution is irradiated with ultrasonic waves using the ultrasonic sensor, the ultrasonic attenuation amount and ultrasonic propagation velocity of the solution are measured, and the solvent insoluble matter is determined from the ultrasonic attenuation amount and ultrasonic propagation velocity. The content rate measuring method according to (1), wherein the content rate is calculated.
(3) An ultrasonic wave is applied to the solution having a solvent-insoluble content in the solution of 0.1% or more and 70% or less using the ultrasonic sensor. The method for measuring the content ratio of a solvent-insoluble component according to (1) or (2), wherein the attenuation amount or the ultrasonic propagation velocity is measured, and the content ratio of the solvent-insoluble component is calculated from the ultrasonic attenuation amount and the ultrasonic propagation velocity.
(4) The method for measuring the content ratio of the solvent insoluble matter according to any one of (1) to (3), wherein the solvent insoluble matter is a quinoline insoluble matter.

本発明は、超音波センサーでもって超音波伝播速度や超音波減衰量を測定し、その測定に基づき、コールタールピッチ類の溶剤不溶分の含有割合を測定することで、試料の量(サンプリング量)を変えたり、希釈溶剤量を変えたりすることなく、その不溶分をその量に関係なく正確に測定することができる。   The present invention measures the ultrasonic wave propagation speed and ultrasonic attenuation amount with an ultrasonic sensor, and based on the measurement, measures the content of the solvent-insoluble component of coal tar pitches to obtain the amount of sample (sampling amount). ) And the amount of the diluted solvent can be accurately measured regardless of the amount.

実施例1の結果を示すグラフThe graph which shows the result of Example 1 実施例2の結果を示すグラフThe graph which shows the result of Example 2

以下に、本発明をその実施形態により更に具体的に説明するが、本発明はその要旨を超えない限り、これらの実施形態によって限定されるものではない。
この発明は、コールタール、コールタールピッチ類又は石油から発生する石油系ピッチ類(以下、まとめて「コールタール類等」と称する場合がある。)と溶剤とを混合した溶液(以下、「測定試料」と称する場合がある。)中の溶剤不溶分の含有割合を測定する方法についての発明である。
Hereinafter, the present invention will be described in more detail with reference to the embodiments. However, the present invention is not limited to these embodiments as long as the gist thereof is not exceeded.
The present invention relates to a solution (hereinafter referred to as “measurement”) in which coal tar, coal tar pitches or petroleum-based pitches generated from petroleum (hereinafter sometimes collectively referred to as “coal tars”) and a solvent are mixed. It may be referred to as “sample”.) It is an invention about a method for measuring the content of solvent-insoluble components in the sample.

前記のコールタールは、好ましくは、コークス炉で生成する粗鋼コークス炉ガスを段階的に冷却していき、沸点の高いものを凝縮して得たコールタールである。また、前記のコールタールピッチ類は、コールタール、好ましくは上述のコークス炉から得たコールタールを蒸留により軽質な芳香族成分を除去したものである。   The coal tar is preferably coal tar obtained by gradually cooling a crude steel coke oven gas produced in a coke oven and condensing one having a high boiling point. The coal tar pitches are obtained by removing light aromatic components by distillation of coal tar, preferably coal tar obtained from the above-mentioned coke oven.

前記の石油から発生する石油系ピッチ類は、好ましくは、石油精製工程における、常圧蒸留残油又は減圧蒸留残油であり、それらの残油を流動接触分解装置により処理した残油も含まれる。これらのコールタール類等の中には、芳香族成分、アルキル側鎖やヘテロ環化合物、硫黄や窒素や酸素などが含まれていてもよい。   The petroleum-based pitches generated from the above-mentioned petroleum are preferably atmospheric distillation residue or vacuum distillation residue in the oil refining process, and also include residual oil obtained by treating these residues with a fluid catalytic cracking apparatus. . These coal tars and the like may contain aromatic components, alkyl side chains, heterocyclic compounds, sulfur, nitrogen, oxygen and the like.

さらに、前記の溶剤としては、例えば、キノリン、トルエン、N−メチルピロリドン、ピリジン、アセトン、ヘキサン、ニトロベンゼン、モルホリン、クロロホルム、アルコールなどが挙げられるが、好ましくはキノリン、トルエン、ピリジンであり、コールタール類等に対して、高い溶解性を持つという観点から、キノリンがより好ましい。   Furthermore, examples of the solvent include quinoline, toluene, N-methylpyrrolidone, pyridine, acetone, hexane, nitrobenzene, morpholine, chloroform, alcohol, and the like, preferably quinoline, toluene, pyridine, and coal tar. From the viewpoint of high solubility with respect to the like, quinoline is more preferable.

これらの溶剤と前記コールタール類等とを混合させる方法は特に限定されないが、コールタール類等は粘性が高いので、撹拌しながら混合することが好ましい。
また、その撹拌で得られた溶液の一部を抜き出し、その抜き出した溶液をさらに希釈した溶液を測定試料としてよい。
A method for mixing these solvents with the coal tars and the like is not particularly limited. However, since coal tars and the like are highly viscous, they are preferably mixed with stirring.
A part of the solution obtained by the stirring may be extracted, and a solution obtained by further diluting the extracted solution may be used as a measurement sample.

前記のコールタール類等と溶剤との混合溶液(測定試料)に含まれる溶剤不溶分の含有割合は、超音波センサーを用いて測定し、算出することができる。
この超音波センサーとしては、超音波の減衰量を測定するセンサー(超音波減衰量測定センサー)と、超音波の伝播速度を測定するセンサー(超音波伝播速度測定センサー)の両方を用いる。
すなわち、前記の測定試料に、超音波センサーを用いて超音波を照射し、その測定試料の超音波減衰量又は超音波伝播速度を計測し、超音波減衰量および超音波伝播速度から溶剤不溶分の含有割合を算出するのである。
The content ratio of the solvent-insoluble component contained in the mixed solution (measurement sample) of the coal tar and the like and the solvent can be measured and calculated using an ultrasonic sensor.
As this ultrasonic sensor, both a sensor for measuring the attenuation amount of ultrasonic waves (ultrasonic attenuation amount measuring sensor) and a sensor for measuring ultrasonic propagation velocity (ultrasonic propagation velocity measuring sensor) are used.
That is, the measurement sample is irradiated with ultrasonic waves using an ultrasonic sensor, and the ultrasonic attenuation amount or ultrasonic propagation velocity of the measurement sample is measured. From the ultrasonic attenuation amount and ultrasonic propagation velocity, the solvent insoluble component is measured. The content ratio of is calculated.

まず、前記超音波減衰量測定センサーを用いると、光やレーザー方式の測定法が不得意とする高含有割合のスラリー(汚泥や石灰スラリー)にも適応できるので、コールタール類等のように、多くの溶剤不溶分を含む溶液の減衰量測定に用いることができる。このような超音波減衰量測定センサーとしては、超音波工業(株)製:AC−F5センサー等があげられる。   First, if the ultrasonic attenuation measurement sensor is used, it can be applied to a high content ratio slurry (sludge and lime slurry), which is not good for light and laser measurement methods. It can be used to measure the attenuation of a solution containing many solvent-insoluble components. Examples of such an ultrasonic attenuation measurement sensor include an AC-F5 sensor manufactured by Ultrasonic Industry Co., Ltd.

この超音波減衰量測定センサーは、超音波の発信部と受信部とから成り、発信部の送信子と受信部の受信子との位置関係は、特に限定されないが、両者が対向または水平となるように設置される。特に送信子から発信された超音波を直接受信する場合は対向して設置され、一方、送信子から発信された超音波をステンレス等の鏡面に照射し、鏡面で反射した超音波を測定する場合は、送信子と受信子は水平に設置される。   This ultrasonic attenuation measurement sensor is composed of an ultrasonic transmission unit and a reception unit, and the positional relationship between the transmission unit of the transmission unit and the reception unit of the reception unit is not particularly limited, but both are opposed or horizontal. Installed. Especially when receiving the ultrasonic wave transmitted from the transmitter directly, it is installed opposite, while the ultrasonic wave transmitted from the transmitter is irradiated to the mirror surface such as stainless steel and the ultrasonic wave reflected by the mirror surface is measured The transmitter and receiver are installed horizontally.

この超音波減衰量測定センサーに用いられる送信子と受信子の距離は超音波を受信することができれば限定する必要はないが、好ましくは20〜200mmであり、より好ましくは40〜150mmである。この距離が短すぎると、超音波の減衰量が小さくなり、正しい測定値を与えないという問題点を生じる場合がある。一方、この距離が長すぎると、超音波の減衰量が大きくなり、送信子から発せられた超音波が受信子に到達しない問題点を生じる場合がある。   The distance between the transmitter and the receiver used in the ultrasonic attenuation measurement sensor is not limited as long as the ultrasonic wave can be received, but is preferably 20 to 200 mm, and more preferably 40 to 150 mm. If this distance is too short, the amount of attenuation of the ultrasonic wave becomes small, which may cause a problem that a correct measurement value is not given. On the other hand, if this distance is too long, the attenuation amount of the ultrasonic wave becomes large, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記超音波減衰量測定センサーを用いての減衰量の測定については、送信子と受信子をすべて浸漬するのに充分な容量の測定試料が入った容器に送信子と受信子を浸漬させるのみであり、秤量、ろ過、乾燥等の手作業が必要となる従来の方法と比較すると操作はごく簡便である。前記の容器に関しては、前記測定試料に対する耐溶解性及び耐熱性を備えていれば限定する必要はないが、ガラス容器またはステンレス容器が好ましい。   For the attenuation measurement using the ultrasonic attenuation measurement sensor, the transmitter and receiver are simply immersed in a container containing a measurement sample having a capacity sufficient to immerse all of the transmitter and receiver. Compared with conventional methods that require manual operations such as weighing, filtration, and drying, the operation is very simple. The container is not limited as long as it has dissolution resistance and heat resistance to the measurement sample, but a glass container or a stainless steel container is preferable.

前記測定試料に含まれる溶剤不溶分含有割合は、0.1重量%以上70重量%以下がよく、1重量%以上30重量%以下が好ましい。溶剤不溶分含有割合が低すぎると、測定試料の溶剤不溶分を測定するのに充分な超音波の減衰が生じないという問題点を生じる場合がある。一方、溶剤不溶分含有割合が高すぎると、超音波の減衰量が大きくなり、送信子から発せられた超音波が受信子に到達しないという問題点を生じる場合がある。   The solvent-insoluble content in the measurement sample is preferably 0.1% by weight to 70% by weight, and more preferably 1% by weight to 30% by weight. If the solvent-insoluble content is too low, there may be a problem that ultrasonic attenuation sufficient to measure the solvent-insoluble content of the measurement sample does not occur. On the other hand, when the solvent-insoluble content is too high, the attenuation amount of the ultrasonic wave increases, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記測定試料の比重は、超音波が送信子から受信子に到達する限り限定する必要はないが、好ましくは温度15℃における比重が0.7〜1.8であり、より好ましくは1.0〜1.6である。比重が大きすぎると、超音波が送信子から受信子に到達し難くなるおそれがある。一方、比重が小さすぎると、超音波の減衰が生じにくいという問題点が生じる場合がある。   The specific gravity of the measurement sample is not necessarily limited as long as the ultrasonic wave reaches the receiver from the transmitter, but the specific gravity at a temperature of 15 ° C. is preferably 0.7 to 1.8, more preferably 1.0. ~ 1.6. If the specific gravity is too large, ultrasonic waves may not easily reach the receiver from the transmitter. On the other hand, if the specific gravity is too small, there may be a problem that ultrasonic attenuation is difficult to occur.

試料溶液に照射される超音波の周波数に関しては、一般的には0.5〜10MHzであり、本発明における試料の測定については、好ましくは0.5〜5MHzである。周波数が低すぎると、超音波の減衰量が小さくなり十分な感度を得られないという問題点が生じる場合がある。一方、周波数が高すぎると、超音波の減衰量が大きくなり送信子から発せられた超音波が受信子に到達しないという問題点を生じる場合がある。   The frequency of the ultrasonic wave applied to the sample solution is generally 0.5 to 10 MHz, and the measurement of the sample in the present invention is preferably 0.5 to 5 MHz. If the frequency is too low, the amount of attenuation of the ultrasonic wave becomes small, and there may be a problem that sufficient sensitivity cannot be obtained. On the other hand, if the frequency is too high, the amount of attenuation of the ultrasonic wave increases, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記の送信子から発信された超音波は試料溶液中の粒子の散乱や内部摩擦等によって減衰をしながら、受信子に到達する。受信子に到達した超音波の減衰量が試料溶液中の溶剤不溶分含有割合と比例関係にあることから、測定された減衰量より、溶剤不溶分含有割合を算出することができる。   The ultrasonic wave transmitted from the transmitter reaches the receiver while being attenuated by scattering of particles in the sample solution or internal friction. Since the attenuation amount of the ultrasonic wave reaching the receiver is proportional to the solvent insoluble content ratio in the sample solution, the solvent insoluble content ratio can be calculated from the measured attenuation.

次に、前記超音波伝播速度測定センサーを用いると、溶液の体積弾性率と密度からなる超音波伝播速度(以下、「音速」と称する場合がある。)を測定することができ、コールタール類等のように、多くの溶剤不溶分を含む溶液の伝播速度の測定に用いることができる。このような超音波伝播速度測定センサーとしては、富士工業(株)製:FUD−1 Model−12等があげられる。   Next, by using the ultrasonic propagation velocity measuring sensor, it is possible to measure the ultrasonic propagation velocity (hereinafter sometimes referred to as “sound velocity”) consisting of the bulk modulus and density of the solution. Thus, it can be used to measure the propagation speed of a solution containing many solvent-insoluble components. An example of such an ultrasonic propagation velocity measuring sensor is FUD-1 Model-12 manufactured by Fuji Kogyo Co., Ltd.

この超音波伝播速度測定センサーは、超音波の発信部と受信部とから成り、発信部の送信子と受信部の受信子との位置関係は、特に限定されないが、両者が対向または水平となるように設置される。特に送信子から発信された超音波を直接受信する場合は対向して設置され、一方、送信子から発信された超音波をステンレス等の鏡面に照射し、鏡面で反射した超音波を測定する場合は、送信子と受信子は水平に設置される。   This ultrasonic propagation velocity measuring sensor is composed of an ultrasonic transmitter and receiver, and the positional relationship between the transmitter of the transmitter and the receiver of the receiver is not particularly limited, but both are opposed or horizontal. Installed. Especially when receiving the ultrasonic wave transmitted from the transmitter directly, it is installed opposite, while the ultrasonic wave transmitted from the transmitter is irradiated to the mirror surface such as stainless steel and the ultrasonic wave reflected by the mirror surface is measured The transmitter and receiver are installed horizontally.

この超音波伝播速度測定センサーに用いられる送信子と受信子の距離は超音波を受信することができれば限定する必要はないが、好ましくは20〜200mmであり、より好ましくは10〜100mmである。この距離が短すぎると、コールタール類等のような粘度の高い液体はセンサー間に均一に満たされず、超音波の受信が不安定となり、正しい値を与えないという問題点を生じる場合がある。一方、この距離が長すぎると、超音波の減衰量が大きくなり送信子から発せられた超音波が受信子に到達しないという問題点を生じる場合がある。   The distance between the transmitter and the receiver used in this ultrasonic propagation velocity measuring sensor is not limited as long as the ultrasonic wave can be received, but is preferably 20 to 200 mm, and more preferably 10 to 100 mm. If this distance is too short, liquids with high viscosity such as coal tars are not filled uniformly between the sensors, and reception of ultrasonic waves becomes unstable, which may cause a problem that correct values are not given. On the other hand, if this distance is too long, the attenuation amount of the ultrasonic wave becomes large, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記超音波伝播速度測定センサーを用いての音速の測定については、送信子と受信子をすべて浸漬するのに充分な容量の測定試料が入った容器に送信子と受信子を浸漬させるのみであり、秤量、ろ過、乾燥等の手作業が必要となる従来の方法と比較すると操作はごく簡便である。前記の容器に関しては、前記測定試料に対する耐溶解性及び耐熱性を備えていれば限定する必要はないが、ガラス容器またはステンレス容器が好ましい。   For the measurement of the sound speed using the ultrasonic propagation velocity measuring sensor, the transmitter and receiver are only immersed in a container containing a measurement sample having a capacity sufficient to immerse all of the transmitter and receiver. Compared with conventional methods that require manual operations such as weighing, filtration, and drying, the operation is very simple. The container is not limited as long as it has dissolution resistance and heat resistance to the measurement sample, but a glass container or a stainless steel container is preferable.

音速は温度変化により変化する性質があるため、測定試料の温度を測定し、試料溶液が入った容器をオイルバスやヒーター等の温度調節器を用いて一定温度にすることが望ましい。温度を一定にすることが困難な場合は、試料溶液の温度変化に対する音速の変化を事前に調査しておき、温度変化に対する音速変化の検量線を作成し、測定により得た試料溶液の音速と温度を前述の検量線に当てはめて、ある温度の音速として求めても良い。   Since the speed of sound has the property of changing according to temperature change, it is desirable to measure the temperature of the sample to be measured and to keep the container containing the sample solution at a constant temperature using a temperature controller such as an oil bath or a heater. If it is difficult to keep the temperature constant, investigate the change in the sound speed with respect to the temperature change of the sample solution in advance, create a calibration curve for the change in the sound speed with respect to the temperature change, The temperature may be applied to the above-described calibration curve to obtain the sound velocity at a certain temperature.

前記測定試料に含まれる溶剤不溶分含有割合は、0.1重量%以上70重量%以下がよく、1重量%以上30重量%以下が好ましい。溶剤不溶分含有割合が低すぎると、音速変化が得にくくなり、測定精度が低下するという問題点を生じる場合がある。一方、溶剤不溶分含有割合が高すぎると、超音波の減衰量が大きく、送信子から発せられた超音波が受信子に到達しないという問題点を生じる場合がある。   The solvent-insoluble content in the measurement sample is preferably 0.1% by weight to 70% by weight, and more preferably 1% by weight to 30% by weight. If the solvent-insoluble content is too low, it is difficult to obtain a change in sound speed, which may cause a problem that measurement accuracy is lowered. On the other hand, if the solvent-insoluble content is too high, the attenuation amount of the ultrasonic wave is large, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記の測定試料の比重は、超音波が送信子から受信子に到達する限り限定する必要はないが、好ましくは温度15℃における比重が0.7〜1.8であり、より好ましくは1.0〜1.6である。比重が大きすぎると、超音波が送信子から受信子に到達し難くなるおそれがある。一方、比重が小さすぎると、超音波の速度変化が生じにくくなるという問題点が生じる場合がある。   The specific gravity of the measurement sample is not necessarily limited as long as the ultrasonic wave reaches the receiver from the transmitter, but the specific gravity at a temperature of 15 ° C. is preferably 0.7 to 1.8, more preferably 1. 0-1.6. If the specific gravity is too large, ultrasonic waves may not easily reach the receiver from the transmitter. On the other hand, if the specific gravity is too small, there may be a problem that a change in the speed of the ultrasonic wave is difficult to occur.

試料溶液に照射される超音波の周波数に関しては、一般的には0.5〜10MHzであり、本発明における試料の測定については、好ましくは0.5〜3MHzである。周波数が低すぎると、超音波の透過力が低下し、発信子から発せられた超音波が受信子に到達しないという問題点が生じる場合がある。一方、周波数が高すぎると、超音波の減衰量が大きくなり送信子から発せられた超音波が受信子に到達しないという問題点を生じる場合がある。   The frequency of the ultrasonic wave applied to the sample solution is generally 0.5 to 10 MHz, and the measurement of the sample in the present invention is preferably 0.5 to 3 MHz. If the frequency is too low, the transmission power of the ultrasonic wave is lowered, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver. On the other hand, if the frequency is too high, the amount of attenuation of the ultrasonic wave increases, and there may be a problem that the ultrasonic wave emitted from the transmitter does not reach the receiver.

前記送信子から発信された超音波は試料溶液の体積弾性率と密度により決定される音速(音速=√(体積弾性率/密度)で受信子に到達する。試料溶液で満たされた送信子と受信子の距離を伝播する超音波の音速が試料溶液中の溶剤不溶分含有割合と比例関係にあることから、測定された音速を基に、溶剤不溶分含有割合を算出することができる。   The ultrasonic wave transmitted from the transmitter reaches the receiver at a sound velocity determined by the bulk modulus and density of the sample solution (sound velocity = √ (volume modulus / density). The transmitter filled with the sample solution Since the sound speed of the ultrasonic wave propagating through the distance of the receiver is proportional to the solvent-insoluble content ratio in the sample solution, the solvent-insoluble content ratio can be calculated based on the measured sound speed.

上記の超音波減衰量測定センサーで測定した不溶分含有割合、及び超音波伝播速度測定センサーで測定した不溶分含有割合は、いずれも、予め溶剤不溶分含有割合が既知の試料を用いて超音波減衰量測定センサー及び超音波伝播速度測定センサーについて、それぞれ溶剤不溶分含有割合と超音波減衰量、溶剤不溶分含有割合と超音波伝播速度との検量線を作成しておくことで、算出される。なお、超音波減衰量測定センサーで測定した不溶分含有割合と、超音波伝播速度測定センサーで測定した不溶分含有割合との間でズレが生じた場合、検量線に問題があると考えられるので、その都度、検量線を補正していくことにより、いずれの測定値を用いても正確な溶剤不溶分含有割合を得ることができる。   The insoluble content ratio measured by the ultrasonic attenuation measurement sensor and the insoluble content ratio measured by the ultrasonic propagation velocity measurement sensor are both ultrasonic using a sample whose solvent insoluble content ratio is known in advance. Calculated by creating a calibration curve for the solvent-insoluble content and ultrasonic attenuation, and for the solvent-insoluble content and ultrasonic propagation velocity for the attenuation measurement sensor and ultrasonic propagation velocity measurement sensor, respectively. . If there is a discrepancy between the insoluble content measured by the ultrasonic attenuation measurement sensor and the insoluble content measured by the ultrasonic propagation velocity measuring sensor, it is considered that there is a problem with the calibration curve. By correcting the calibration curve each time, an accurate solvent-insoluble content ratio can be obtained regardless of which measurement value is used.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、本発明での溶剤不溶分、超音波の減衰量及び伝播速度の測定は以下の方法により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In the present invention, the solvent insoluble matter, the attenuation amount of ultrasonic waves, and the propagation velocity were measured by the following methods.

[超音波減衰の測定]
(1)試料をビーカーに加える。
(2)秤量した試料をオイルバスに入れ、40℃になるように加温する。
(3)超音波の減衰量を測定できるセンサー(超音波工業(株)製:AC−F5センサー)を(2)に浸漬し、試料の温度と減衰量を読み取る。
[Measurement of ultrasonic attenuation]
(1) Add sample to beaker.
(2) Place the weighed sample in an oil bath and heat to 40 ° C.
(3) A sensor capable of measuring the attenuation of ultrasonic waves (Ultrasonic Industry Co., Ltd .: AC-F5 sensor) is immersed in (2), and the temperature and attenuation of the sample are read.

[超音波音速の測定]
(1)試料をビーカーに秤量する。
(2)秤量した試料をオイルバスに入れ、95℃になるように加温する。
(3)超音波の音速を測定できるセンサー(富士工業(株)製:FUD−1 Model−12)を(2)に浸漬する。
(4)試料の温度と超音波の伝播速度を読み取る。
[Measurement of ultrasonic velocity]
(1) Weigh the sample into a beaker.
(2) Place the weighed sample in an oil bath and heat to 95 ° C.
(3) A sensor (FUD-1 Model-12, manufactured by Fuji Kogyo Co., Ltd.) capable of measuring the speed of ultrasonic waves is immersed in (2).
(4) Read the sample temperature and ultrasonic wave propagation speed.

[溶剤不溶分の測定]
(1)試料2.0gをフラスコにとり、精秤する(W1)。
(2)試料の入ったフラスコに上記測定溶媒(例えばキノリン)を100ml加え、冷却器を取り付け、110℃のオイルバスに入れる(トルエンは130℃にする)。フラスコ内の溶液を攪拌しながら、30分間加熱し、試料を溶解させる。
(3)あらかじめ精秤しておいたろ過器(W2)に(2)の溶液を注ぎ、吸引ろ過を行う。
(4)ろ過残渣に60℃の測定溶媒100mlを注ぎ、溶解、洗浄する。この操作を4回繰り返す。
(5)ろ過残渣の乗ったろ過器を110℃の乾燥機に入れ、60分間乾燥させる。
(6)ろ過残渣の乗ったろ過器を乾燥機から取り出し、デシケーター内で30分放冷した後、その重量を精秤する(W3)。
(7)溶剤不溶分を以下の式により計算する。
溶剤不溶分(重量%)=(溶解後残渣重量/試料重量)×100
=((W3−W2)/W1)×100
[Measurement of solvent insolubles]
(1) A 2.0 g sample is placed in a flask and precisely weighed (W1).
(2) Add 100 ml of the measurement solvent (for example, quinoline) to the flask containing the sample, attach a cooler, and place in a 110 ° C. oil bath (toluene is 130 ° C.). While stirring the solution in the flask, it is heated for 30 minutes to dissolve the sample.
(3) The solution of (2) is poured into a filter (W2) that has been precisely weighed in advance, and suction filtration is performed.
(4) Pour 100 ml of the measuring solvent at 60 ° C. into the filtration residue, dissolve and wash. This operation is repeated 4 times.
(5) The filter carrying the filtration residue is put in a dryer at 110 ° C. and dried for 60 minutes.
(6) The filter carrying the filtration residue is taken out of the dryer and allowed to cool in a desiccator for 30 minutes, and then its weight is precisely weighed (W3).
(7) The solvent insoluble content is calculated by the following formula.
Solvent insoluble content (% by weight) = (residue weight after dissolution / sample weight) × 100
= ((W3-W2) / W1) × 100

(実施例1)
溶媒で希釈したコールタールピッチ(Qi成分(キノリン不溶分)含有量:(1)1.88重量%、(2)5.86重量%、(3)11.05重量%)をそれぞれ、40℃に加温し、超音波の減衰量を測定できるセンサーを試料溶液に浸漬し、3MHzの超音波を試料に照射してその減衰量を測定した。
その結果、超音波の減衰量はそれぞれ、(1)9.5dB、(2)13.5dB、(3)19.2dBであった。得られた測定値からQiとの相関係数を求めた結果、0.9997であった。結果を図1に示す。
Example 1
Coal tar pitch diluted with a solvent (Qi component (quinoline insoluble content) content: (1) 1.88 wt%, (2) 5.86 wt%, (3) 11.05 wt%) was respectively 40 ° C. A sensor capable of measuring the attenuation amount of ultrasonic waves was immersed in the sample solution, and the attenuation amount was measured by irradiating the sample with 3 MHz ultrasonic waves.
As a result, the attenuation amounts of the ultrasonic waves were (1) 9.5 dB, (2) 13.5 dB, and (3) 19.2 dB, respectively. As a result of obtaining a correlation coefficient with Qi from the obtained measured value, it was 0.9997. The results are shown in FIG.

(実施例2)
コールタールピッチ(Qi成分含有量:(1)3.82重量%、(2)11.59重量%、(3)21.16重量%)をそれぞれ、95℃に加温して超音波の伝播速度を測定できるセンサーを試料溶液に浸漬し、700KHzの超音波を試料に照射してその伝播速度を測定した。
その結果、超音波の伝播速度はそれぞれ、(1)1539.6m/s、(2)1568.6m/s、(3)1604.3m/sであった。得られた測定値からQiとの相関係数を求めた結果、1.000であった。結果を図2に示す。
(Example 2)
Coal tar pitch (Qi component content: (1) 3.82% by weight, (2) 11.59% by weight, (3) 21.16% by weight) is heated to 95 ° C. to propagate ultrasonic waves. A sensor capable of measuring the velocity was immersed in the sample solution, and the propagation velocity was measured by irradiating the sample with 700 KHz ultrasonic waves.
As a result, the propagation speeds of the ultrasonic waves were (1) 1539.6 m / s, (2) 1568.6 m / s, and (3) 1604.3 m / s, respectively. As a result of obtaining a correlation coefficient with Qi from the obtained measured value, it was 1.000. The results are shown in FIG.

Claims (3)

コールタール、コールタールピッチ類又は石油から発生する石油系ピッチ類と溶剤とを混合した測定試料中の溶剤不溶分の含有割合を測定する方法であって、
前記測定試料に前記超音波センサーを用いて超音波を照射し、該測定試料の超音波減衰量及び超音波伝播速度を計測し、該超音波減衰量又は超音波伝播速度から溶剤不溶分を算出する溶剤不溶分の含有割合測定方法。
Coal tar, coal tar pitch or a method for measuring the content of solvent insolubles in a measurement sample in which petroleum pitches generated from petroleum and a solvent are mixed,
Irradiate the measurement sample with ultrasonic waves using the ultrasonic sensor, measure the ultrasonic attenuation and ultrasonic propagation velocity of the measurement sample, and calculate the solvent-insoluble content from the ultrasonic attenuation or ultrasonic propagation velocity. To measure the content of solvent-insoluble components.
前記測定試料に含まれる溶剤不溶分含有割合が0.1%以上、70%以下である該測定試料に対して、前記超音波センサーを用いて、超音波を照射し、該測定試料の超音波減衰量及び超音波伝播速度を計測し、該超音波減衰量又は超音波伝播速度から溶剤不溶分の含有割合を算出する請求項に記載の溶剤不溶分の含有割合測定方法。 Using the ultrasonic sensor, the ultrasonic wave of the measurement sample is irradiated to the measurement sample whose solvent-insoluble content in the measurement sample is 0.1% or more and 70% or less. The method for measuring the content ratio of a solvent-insoluble component according to claim 1 , wherein the attenuation amount and the ultrasonic propagation velocity are measured, and the content ratio of the solvent-insoluble component is calculated from the ultrasonic attenuation amount or the ultrasonic propagation velocity. 前記溶剤不溶分がキノリン不溶分である請求項1又は2に記載の溶剤不溶分の含有割合測定方法。

The method for measuring a content ratio of a solvent insoluble matter according to claim 1 or 2 , wherein the solvent insoluble matter is a quinoline insoluble matter.

JP2012274391A 2012-12-17 2012-12-17 Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches Active JP6107112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274391A JP6107112B2 (en) 2012-12-17 2012-12-17 Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274391A JP6107112B2 (en) 2012-12-17 2012-12-17 Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches

Publications (2)

Publication Number Publication Date
JP2014119338A JP2014119338A (en) 2014-06-30
JP6107112B2 true JP6107112B2 (en) 2017-04-05

Family

ID=51174295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274391A Active JP6107112B2 (en) 2012-12-17 2012-12-17 Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches

Country Status (1)

Country Link
JP (1) JP6107112B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627820B2 (en) * 1974-04-30 1981-06-27
JPH049664A (en) * 1989-11-22 1992-01-14 Nippon Steel Chem Co Ltd Method for measuring solvent-insoluble matter of coal tar and pitches
JPH0454270A (en) * 1990-06-23 1992-02-21 Mitsubishi Heavy Ind Ltd Mixing proportion controller for fuel oil
JPH06288993A (en) * 1993-03-31 1994-10-18 Japan Tobacco Inc Ultrasonic multicomponent concentration meter
JPH08101100A (en) * 1994-09-30 1996-04-16 Cosmo Toreede & Service:Kk Method and equipment for conditioning bituminous sample on-line

Also Published As

Publication number Publication date
JP2014119338A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
CN103196776A (en) Measuring method of catalytic cracking slurry solid content
Arega et al. Characteristics of asphalt binders foamed in the laboratory to produce warm mix asphalt
ES2804329T3 (en) Application of tools for analysis of viscosity reducers to optimize performance
CN103630459A (en) Method used for detecting asphalt content of asphalt mixtures
EP3147649B1 (en) Method for determining a settling rate of at least one foulant in oil-based fluids
US7223603B2 (en) Continuous on-line process control of residua distillation
JP6107112B2 (en) Method for measuring the content of solvent insolubles in coal tar, coal tar pitches or petroleum pitches
JP6619736B2 (en) Method for monitoring control parameters relating to a polymerization reaction and associated apparatus for carrying out the method
US9772269B2 (en) Process for determining the incompatibility of crudes mixtures containing asphaltene
Benne et al. Water solubility in haplobasaltic melts
JP5891936B2 (en) Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches
Guan et al. Terahertz-dependent evaluation of water content in high-water-cut crude oil using additive-manufactured samplers
CN107703020A (en) A kind of method for determining wax tailings solid content
Kosior et al. Determination of the settling rate of aggregates using the ultrasound method during paraffinic froth treatment
JP6036891B2 (en) Coke production method
JP6405642B2 (en) Method and apparatus for measuring the solvent-insoluble content in coal tar, coal tar pitches or petroleum pitches
Ihara et al. Application of ultrasonic Doppler velocimetry to molten glass by using broadband phase difference method
JP2014130027A (en) Measuring device of content of solvent insoluble part of coulter or coulter pitch group
CN107860721A (en) With the method for sulfur content in ICP test sample product
CN103063554A (en) Rapid and qualitative measurement method for magnetic suspension solution concentration based on transmittance
JP2013079888A (en) Automatic analyzer
EP3751252A1 (en) Particle size and concentration measuring sensor for inline industrial process monitoring
JP2016109492A (en) Measuring method of solvent-insoluble content in heavy oil
CN111380822A (en) System for measuring oil content in water in petroleum production process
JPH055693A (en) Quantitative method of solvent insoluble component in bituminous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350