JP6096065B2 - Manufacturing method of sliding member - Google Patents

Manufacturing method of sliding member Download PDF

Info

Publication number
JP6096065B2
JP6096065B2 JP2013124710A JP2013124710A JP6096065B2 JP 6096065 B2 JP6096065 B2 JP 6096065B2 JP 2013124710 A JP2013124710 A JP 2013124710A JP 2013124710 A JP2013124710 A JP 2013124710A JP 6096065 B2 JP6096065 B2 JP 6096065B2
Authority
JP
Japan
Prior art keywords
dlc
film
sliding
periodic structure
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013124710A
Other languages
Japanese (ja)
Other versions
JP2015000408A (en
Inventor
博司 沢田
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2013124710A priority Critical patent/JP6096065B2/en
Publication of JP2015000408A publication Critical patent/JP2015000408A/en
Application granted granted Critical
Publication of JP6096065B2 publication Critical patent/JP6096065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、摺動部材の製造方法に関する。 The present invention relates to a method for manufacturing a sliding member .

ダイヤモンドライクカーボン(DLC)膜は優れたトライボロジー特性を示す。このため、従来から様々な分野で注目されている。DLC膜と鋼材の摺動では摩擦粉に起因する移着膜が低摩擦化に寄与することが示唆されている。また、低摩擦を示す移着膜では,最表面にDLC由来のグラファイト化されたカーボンが生成されており,低硬度カーボン移着物が低摩擦の要因と考えられている。   Diamond-like carbon (DLC) films exhibit excellent tribological properties. For this reason, it has been attracting attention in various fields. It has been suggested that the transfer film caused by the friction powder contributes to the reduction of friction in sliding between the DLC film and the steel material. Further, in the transfer film showing low friction, graphitized carbon derived from DLC is generated on the outermost surface, and the low hardness carbon transfer product is considered to be a factor of low friction.

シリコンを添加したSi−DLC膜に酸素プラズマ処理を施すと、シリコン酸化物がカーボン移着物を固着させるバインダーの役割を果たし、低摩擦化することが報告されている。このように、低摩擦化を実現するためには低硬度カーボンの生成とともに移着膜の固着性が重要となる。   It has been reported that when an oxygen plasma treatment is performed on a Si-DLC film to which silicon is added, silicon oxide serves as a binder for fixing the carbon transfer material and lowers the friction. As described above, in order to realize low friction, the adhesion of the transfer film is important along with the generation of low hardness carbon.

一方、サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造をDLC膜に付与すると、摺動時にDLC膜と鋼材の微細な摩耗粉が生成され、マイルド摩耗面に似た滑らかで強固に固着した移着膜の形成が期待できる。   On the other hand, when a grating-like periodic structure having a submicron periodic pitch and groove depth is applied to the DLC film, fine wear powder of the DLC film and the steel material is generated during sliding, which is smooth and strong similar to a mild wear surface. The formation of a transfer film adhered to the substrate can be expected.

DLCの摩擦特性を向上させるために、基材の摺動面に成膜されたDLC膜に、フェムト秒レーザ等を照射することで、照射領域をガラス状炭素に改質された改質領域を形成するようにした摺動材(摺動部材)が従来においては提案されている(特許文献1及び特許文献2)。   In order to improve the friction characteristics of DLC, a DLC film formed on the sliding surface of the base material is irradiated with a femtosecond laser or the like, so that the irradiation region is modified to glassy carbon. Conventionally proposed sliding materials (sliding members) are formed (Patent Document 1 and Patent Document 2).

また、従来には、基材の表面に、水素を含有した非晶質炭素被膜を成膜する工程と、非晶質炭素被膜の表面に紫外線を照射する工程とで、摺動部材を製造するものもある(特許文献3)。   Conventionally, a sliding member is manufactured by a process of forming an amorphous carbon film containing hydrogen on the surface of a substrate and a process of irradiating the surface of the amorphous carbon film with ultraviolet rays. There is also a thing (patent document 3).

特開2011−168845号公報JP2011-168845A 特開2007−162045号公報JP 2007-162045 A 特開2010−215950号公報JP 2010-215950 A

前記特許文献1及び特許文献2に示すものでは、DLC層を形成した後、そのDLC層の表面にレーザ照射するものであり、特許文献3では、DLC層を形成した後、そのDLC層の表面に紫外線を照射するものである。このため、レーザ照射等によって、DLCをグラファイト化していることになり、DLC本来の物性が損なわれることになる。また、長期に渡る使用によって、改質層が消滅すれば、摺動部材としての機能を損なうことになっていた。   In Patent Document 1 and Patent Document 2, after the DLC layer is formed, the surface of the DLC layer is irradiated with laser. In Patent Document 3, after the DLC layer is formed, the surface of the DLC layer is formed. Is irradiated with ultraviolet rays. For this reason, DLC is graphitized by laser irradiation or the like, and the original physical properties of DLC are impaired. Further, if the modified layer disappears after long-term use, the function as the sliding member is impaired.

本発明は、上記課題に鑑みて、周期構造が消滅した後の長期に渡って摺動特性が損なうことがない摺動部材及びこのような摺動部材を製造することができる製造方法を提供する。   In view of the above problems, the present invention provides a sliding member that does not impair sliding characteristics over a long period after the periodic structure disappears, and a manufacturing method that can manufacture such a sliding member. .

本発明の摺動部材の製造方法は、第1部材の摺動面に、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜を形成する膜形成工程と、第1部材の摺動面と第2部材の摺動面とを相対的に摺動させて,前記周期構造を犠牲層として摩滅させ、かつ、前記非晶質炭素膜から発生する摩耗粉をグラファイト化させて低硬度カーボンを生成させるとともに第2部材からも摩耗粉を発生させて移着層を形成する摩耗工程とを備えたものである。 The method for manufacturing a sliding member according to the present invention includes an amorphous carbon having a periodic structure of grating-like irregularities in which the height of a convex portion is a non-flat surface and the height continuously changes on the sliding surface of the first member. A film forming step for forming a film, a sliding surface of the first member and a sliding surface of the second member are relatively slid to wear the periodic structure as a sacrificial layer , and the amorphous And a wear process in which the wear powder generated from the carbon film is graphitized to generate low-hardness carbon and the transfer powder is generated from the second member to form a transfer layer .

本発明の摺動部材の製造方法によれば、連続的に高さが変化するグレーティング状凹凸の周期構造を非晶質炭素膜(DLC膜)に設けているため、摺動時に小さな曲率半径をもつ周期構造先端が摩耗し、なじみが進行する。この際,第1部材から発生する微細なDLC膜の摩耗粉はグラファイト化され、低摩擦化の実現に重要な低硬度カーボンの生成が促進される。周期構造を有するDLC膜は微細な加工ツールとして作用し、第2部材からもマイルド摩耗粉のような微細な摩耗粉が発生する。また,周期構造は第2部材に形成される突出した移着粒子を削り落とし、トラップすることで移着粒子の成長を抑制し、摩耗粉の微細化と移着膜の平滑化に寄与する。この段階では顕著な摩擦低減効果は得られないが、周期構造を犠牲層として摩滅させる工程において、微細な摩耗粉が延しつぶされる。   According to the manufacturing method of the sliding member of the present invention, since the periodic structure of the grating-like irregularities whose height continuously changes is provided in the amorphous carbon film (DLC film), a small radius of curvature is provided when sliding. The tip of the periodic structure that it has wears away, and familiarity progresses. At this time, the wear powder of the fine DLC film generated from the first member is graphitized, and the generation of low-hardness carbon important for realizing low friction is promoted. The DLC film having a periodic structure acts as a fine processing tool, and fine wear powder such as mild wear powder is generated from the second member. Further, the periodic structure scrapes off the protruding transfer particles formed on the second member and traps them to suppress the growth of transfer particles, thereby contributing to the refinement of wear powder and the smoothing of the transfer film. At this stage, a significant friction reducing effect cannot be obtained, but fine wear powder is crushed in the process of wearing the periodic structure as a sacrificial layer.

前記非晶質炭素膜は、前記第1部材の基材表面に予め凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状の凹凸の周期構造形成を行った後、成膜して形成するのが好ましい。   The amorphous carbon film is formed on the surface of the base material of the first member after forming a periodic structure of grating-like irregularities whose convex vertices are non-flat surfaces and the height continuously changes. The film is preferably formed.

このように構成することで、形態が異なるだけで通常のDLC膜と組成的には同一な周期構造を有するDLC膜を形成できる。   With this configuration, it is possible to form a DLC film having a periodic structure that is compositionally identical to that of a normal DLC film only in the form.

前記第2部材の少なくとも摺動面が、前記摩耗工程において酸化物の摩耗粉を生じる材質としているのが好ましい。   It is preferable that at least the sliding surface of the second member is made of a material that generates oxide wear powder in the wear process.

前記第1部材の基材表面にあらかじめ形成する周期構造は、加工闘値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成されているのが好ましい。   The periodic structure formed in advance on the substrate surface of the first member is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold value and scanning while overlapping the irradiated portions. It is preferable.

部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜の凹凸が20nm以上100nm以下かつ非晶質炭素膜の膜厚以下であるのが好ましい。 The unevenness of the amorphous carbon film having a periodic structure of grating-like unevenness in which the height of the convex part is a non-flat surface and continuously changes in height is 20 nm or more and 100 nm or less and the film thickness of the amorphous carbon film or less. Is preferred.

凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜の周期ピッチが10μm以下であるのが好ましい。   It is preferable that the periodic pitch of the amorphous carbon film having a periodic structure of grating-like irregularities in which the height of the convex portion is a non-flat surface and the height continuously changes is 10 μm or less.

本発明の摺動部材の製造方法では、周期構造を犠牲層として摩滅させる工程において、微細な摩耗粉が延しつぶされ、強固に固着された低硬度カーボン移着層が形成されるとともにDLC膜が平滑化する。このため、周期構造が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られる。   In the manufacturing method of the sliding member of the present invention, in the step of wearing the periodic structure as a sacrificial layer, fine wear powder is crushed to form a firmly fixed low-hardness carbon transfer layer and a DLC film. Becomes smooth. For this reason, even after the periodic structure disappears, a sliding member having improved sliding characteristics over a long period of time can be obtained.

グレーティング状の凹凸の周期構造形成を行った後、非晶質炭素膜を成膜するものでは、形態が異なるだけで通常のDLC膜と組成的には同一な周期構造を有するDLC膜を形成できる。したがって、硬度低下などの物性変化を生じることなく、DLC膜本来の特性を維持したものとなる。なお、DLC膜の硬度が低下すると、DLC膜の微細な加工ツールとしての作用が低下し、移着粒子の成長抑制や摩耗粉の微細化に支障が生じるため、周期構造が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られない。   In the case of forming an amorphous carbon film after forming a grating-like irregular periodic structure, a DLC film having a periodic structure that is compositionally identical to that of a normal DLC film can be formed only in the form. . Therefore, the original characteristics of the DLC film are maintained without causing changes in physical properties such as a decrease in hardness. When the hardness of the DLC film is reduced, the function of the DLC film as a fine processing tool is reduced, which hinders the growth of transfer particles and the miniaturization of wear powder. Thus, a sliding member with improved sliding characteristics cannot be obtained.

第2部材の摺動面が摩耗工程において酸化物の摩耗粉を生じるものでは、酸素に富んだ微細な摩耗粉が延しつぶされて、摩耗率がシビア摩耗の1/20〜1/1000となるマイルド摩耗面のような移着層を形成することができる。マイルド摩耗面のような移着層は強固にカーボン移着物を第2部材の摺動面に固着させるバインダーの働きをして、摺動特性向上に寄与する。   When the sliding surface of the second member generates oxide wear powder in the wear process, the fine wear powder rich in oxygen is crushed and the wear rate is 1/20 to 1/1000 of severe wear. A transfer layer such as a mild wear surface can be formed. The transfer layer such as the mild wear surface acts as a binder that firmly fixes the carbon transfer material to the sliding surface of the second member, and contributes to the improvement of the sliding characteristics.

加工闘値近傍の照射強度で 直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成するものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さをもつ周期構造を容易に得ることができる。   With a linearly polarized laser beam irradiated at an irradiation intensity in the vicinity of the processing threshold, and scanning with overlapping irradiation parts, it is difficult to machine with submicron periodic pitch and uneven depth, which is difficult to machine. A periodic structure having a thickness can be obtained easily.

非晶質炭素膜(DLC膜)の凹凸が20nm以上100nm以下かつ非晶質炭素膜の膜厚以下とすることで、微細な摩耗粉の発生と周期構造の摩滅を基材が露出することなく効率的に実現できる。   By making the unevenness of the amorphous carbon film (DLC film) 20 nm or more and 100 nm or less and less than the film thickness of the amorphous carbon film, generation of fine wear powder and abrasion of the periodic structure are not exposed. Can be realized efficiently.

非晶質炭素膜(DLC膜)の周期ピッチを10μm以下とすることで,低硬度カーボンの生成促進と移着粒子の成長抑制により,マイルド摩耗面に似た移着層を形成することができる。   By setting the periodic pitch of the amorphous carbon film (DLC film) to 10 μm or less, a transfer layer resembling a mild wear surface can be formed by promoting the generation of low hardness carbon and suppressing the growth of transfer particles. .

本発明の実施形態を示す摺動部材の製造方法の工程を示す簡略ブロック図である。It is a simplified block diagram which shows the process of the manufacturing method of the sliding member which shows embodiment of this invention. 膜形成工程を示す簡略ブロックである。It is a simple block which shows a film formation process. 本発明の実施形態を示す摺動部材の製造方法の斜視図である。It is a perspective view of the manufacturing method of the sliding member which shows embodiment of this invention. 第1部材の摺動面の拡大断面図である。It is an expanded sectional view of the sliding surface of a 1st member. 第1部材の基材表面を示し、(a)は周期構造の拡大平面図であり、(b)は周期構造の断面プロファイル図である。The base material surface of a 1st member is shown, (a) is an enlarged plan view of a periodic structure, (b) is a cross-sectional profile figure of a periodic structure. 第1部材の基材表面の非結晶炭素膜を示し、(a)周期構造の拡大平面図であり、(b)は周期構造の断面プロファイル図である。The amorphous carbon film | membrane of the base material surface of a 1st member is shown, (a) is an enlarged plan view of a periodic structure, (b) is a cross-sectional profile figure of a periodic structure. 前記周期構造形成方法に用いるレーザ表面加工装置の簡略図である。It is a simplified diagram of the laser surface processing apparatus used for the periodic structure forming method. 算術平均粗さの定義を説明するためのグラフ図である。It is a graph for demonstrating the definition of arithmetic mean roughness. 第1部材の周期構造に対して第2部材を直交方向に往復動させた際の往復動回数と摩擦係数との関係を示すグラフ図である。It is a graph which shows the relationship between the frequency | count of a reciprocation when a 2nd member is reciprocated in the orthogonal direction with respect to the periodic structure of a 1st member, and a friction coefficient. 第1部材の周期構造に対して第2部材を平行方向に往復動させた際の往復動回数と摩擦係数との関係を示すグラフ図である。It is a graph which shows the relationship between the frequency | count of a reciprocation when a 2nd member is reciprocated in a parallel direction with respect to the periodic structure of a 1st member, and a friction coefficient. 第2部材の摺動面を示し、(a)は周期構造が形成されていない鏡面DLC膜に対して摺動させたときの拡大図であり、(b)は周期構造が形成されたDLC膜に対して直交方向に摺動させたときの拡大図であり、(c)は周期構造が形成されたDLC膜に対して平行方向に摺動させたときの拡大図である。The sliding surface of a 2nd member is shown, (a) is an enlarged view when making it slide with respect to the mirror surface DLC film in which the periodic structure is not formed, (b) is the DLC film in which the periodic structure was formed It is an enlarged view when it makes it slide in the orthogonal direction with respect to, and (c) is an enlarged view when it makes it slide in a parallel direction with respect to the DLC film in which the periodic structure is formed. 第2部材の摺動面を示し、(a)は周期構造が形成されていない鏡面DLC膜に対して摺動させたときの拡大図およびプロファイル図であり、(b)は周期構造が形成されたDLC膜に対して直交方向に摺動させたときの拡大図およびプロファイル図であり、(c)は周期構造が形成されたDLC膜に対して平行方向に摺動させたときの拡大図およびプロファイル図である。The sliding surface of a 2nd member is shown, (a) is an enlarged view and profile figure when making it slide with respect to the mirror surface DLC film in which the periodic structure is not formed, (b) is a periodic structure formed. (C) is an enlarged view when sliding in the direction parallel to the DLC film on which the periodic structure is formed; It is a profile figure. 第2部材を10000往復させた状態の第1部材の摺動面を示し、(a)は周期構造が形成されていない鏡面DLC膜に対して摺動させたときの拡大図であり、(b)は周期構造が形成されたDLC膜に対して直交方向に摺動させたときの拡大図であり、(c)は周期構造が形成されたDLC膜に対して平行方向に摺動させたときの拡大図である。The sliding surface of the 1st member of the state which made the 2nd member reciprocate 10,000 is shown, (a) is an enlarged view when sliding with respect to the mirror surface DLC film in which the periodic structure is not formed, (b ) Is an enlarged view when sliding in the orthogonal direction with respect to the DLC film formed with the periodic structure, and (c) when sliding in the parallel direction with respect to the DLC film formed with the periodic structure. FIG. 第1部材の摺動面の摩耗粉を示し、(a)は周期構造が形成されていない鏡面DLC膜に対して摺動させたときの拡大図であり、(b)は周期構造が形成されたDLC膜に対して直交方向に摺動させたときの拡大図であり、(c)は周期構造が形成されたDLC膜に対して平行方向に摺動させたときの拡大図である。The abrasion powder of the sliding surface of the first member is shown, (a) is an enlarged view when sliding with respect to the mirror DLC film on which the periodic structure is not formed, and (b) is the periodic structure formed. It is an enlarged view when it is made to slide in the orthogonal direction with respect to the DLC film, (c) is an enlarged view when it is made to slide in a parallel direction with respect to the DLC film in which the periodic structure was formed. 第2部材を10往復させた状態の第1部材の摺動面を示し、(a)は周期構造が形成されていない鏡面DLC膜に対して摺動させたときの拡大図であり、(b)は周期構造が形成されたDLC膜に対して平行方向に摺動させたときの拡大図である。The sliding surface of the 1st member of the state which made the 2nd member reciprocate 10 is shown, (a) is an enlarged view when sliding with respect to the mirror surface DLC film in which the periodic structure is not formed, (b ) Is an enlarged view when sliding in a parallel direction with respect to the DLC film in which the periodic structure is formed. 第2部材の摺動面の移着膜の構造を示し、(a)は基材と第1層と第2層のSEM画像図であり、(b)は第1層と第2層のSEM画像図である。The structure of the transfer film of the sliding surface of a 2nd member is shown, (a) is a SEM image figure of a base material, a 1st layer, and a 2nd layer, (b) is SEM of a 1st layer and a 2nd layer. It is an image figure. 鏡面DLC膜に第2部材を摺動させた場合の第2部材の摺動痕を示し、(a)は10往復時のSEM画像図とEDX分析による酸素分布図であり、(b)は100往復時のSEM画像図とEDX分析による酸素分布図であり、(c)は2000往復時のSEM画像図とEDX分析による酸素分布図であり、(d)は10000往復時のSEM画像図とEDX分析による酸素分布図である。The sliding trace of the 2nd member at the time of making a 2nd member slide to a mirror surface DLC film | membrane is shown, (a) is the SEM image figure at the time of 10 reciprocations, and the oxygen distribution map by EDX analysis, (b) is 100 FIG. 2C is an SEM image diagram at the time of reciprocation and an oxygen distribution diagram by EDX analysis. FIG. 4C is an SEM image diagram at the time of 2000 reciprocation and an oxygen distribution diagram by EDX analysis. FIG. It is an oxygen distribution map by analysis. 周期平行DLC膜に第2部材を摺動させた場合の第2部材の摺動痕を示し、(a)は10往復時のSEM画像図とEDX分析による酸素分布図であり、(b)は100往復時のSEM画像図とEDX分析による酸素分布図であり、(c)は2000往復時のSEM画像図とEDX分析による酸素分布図であり、(d)は10000往復時のSEM画像図とEDX分析による酸素分布図である。The sliding trace of the 2nd member at the time of making a 2nd member slide to a period parallel DLC film is shown, (a) is the SEM image figure at the time of 10 reciprocations, and the oxygen distribution figure by EDX analysis, (b) is FIG. 10 is an SEM image diagram at 100 reciprocations and an oxygen distribution diagram by EDX analysis, (c) is an SEM image diagram at 2000 reciprocations and an oxygen distribution diagram by EDX analysis, and (d) is an SEM image diagram at 10,000 reciprocations. It is an oxygen distribution map by EDX analysis. 周期平行DLCの往復動回数と摩擦係数との関係を示し、(a)は移着膜生成過程の範囲を示すグラフ図であり、(b)は移着膜範囲拡大過程の範囲を示すグラフ図であり、(c)は低摩擦化過程の範囲を示すグラフ図である。The relationship between the frequency | count of reciprocation of a period parallel DLC and a friction coefficient is shown, (a) is a graph which shows the range of a transfer film production | generation process, (b) The graph which shows the range of a transfer film range expansion process (C) is a graph showing the range of the low friction process. 周期平行DLCの摺動面を示し、10往復された状態の拡大図である。It is an enlarged view showing a sliding surface of a periodic parallel DLC and having been reciprocated 10 times. 周期平行DLCの摺動面プロファイルを示し、(a)は10往復時の摺動面プロファイル図であり、(b)は2000往復時の摺動面プロファイル図であり、(c)は10000往復時の摺動面プロファイル図である。The sliding surface profile of period parallel DLC is shown, (a) is a sliding surface profile diagram at 10 reciprocations, (b) is a sliding surface profile diagram at 2000 reciprocations, and (c) is at 10,000 reciprocations. It is a sliding face profile figure.

以下本発明の実施の形態を図1〜図21に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明に係る摺動部材の製造方法を示すブロック図を示し、この製造方法は、膜形成工程P1と摩耗工程P2とを備える。膜形成工程P1は、図3と図4に示すように、第1部材1の摺動面1aにグレーティング状凹凸の周期構造3を有する非晶質炭素膜4(図3参照)を形成するものであり、摩耗工程P2は、第1部材1の摺動面1aと第2部材2の摺動面2aとを相対的に摺動させて、周期構造3を犠牲層として摩滅させるものである。図例における第1部材1は平板体で構成し、第2部材2としては円柱状のピン部材で構成した。また、第1部材1及び第2部材2は、炭素鋼、銅、アルミニウム、白金、超硬合金等であっても、炭化ケイ素や窒化ケイ素等のシリコン系セラミックスであっても、エンジニアプラスチック等であってもよい。第2部材21の摺動面2aとして、球面状であっても、平坦面であってもよい。また、第2部材2としては、後述するように、摩耗工程において酸化物の摩耗粉を生じる材質が好ましい。   FIG. 1 is a block diagram showing a manufacturing method of a sliding member according to the present invention, and this manufacturing method includes a film forming process P1 and a wear process P2. In the film formation step P1, as shown in FIGS. 3 and 4, an amorphous carbon film 4 (see FIG. 3) having a periodic structure 3 with grating-like irregularities on the sliding surface 1a of the first member 1 is formed. In the wear process P2, the sliding surface 1a of the first member 1 and the sliding surface 2a of the second member 2 are relatively slid to wear the periodic structure 3 as a sacrificial layer. The 1st member 1 in the example was comprised with the flat body, and the 2nd member 2 was comprised with the column-shaped pin member. The first member 1 and the second member 2 may be carbon steel, copper, aluminum, platinum, cemented carbide, silicon ceramics such as silicon carbide or silicon nitride, engineer plastic, etc. There may be. The sliding surface 2a of the second member 21 may be spherical or flat. Moreover, as the 2nd member 2, the material which produces the abrasion powder of an oxide in an abrasion process so that it may mention later is preferable.

膜形成工程P1は図2に示すように、周期構造形成工程P1aと成膜工程P1bとを備える。周期構造形成工程P1aは、図5(a)(b)に示すように、微小の凹部5と微小の凸部6とが交互に所定ピッチで配設されてなる周期構造を形成する工程であり、図7に示すように、レーザ発生器11と光学系10とを備えたレーザ表面加工装置を使用して形成する。   As shown in FIG. 2, the film forming process P1 includes a periodic structure forming process P1a and a film forming process P1b. The periodic structure forming step P1a is a step of forming a periodic structure in which minute concave portions 5 and minute convex portions 6 are alternately arranged at a predetermined pitch as shown in FIGS. 5 (a) and 5 (b). As shown in FIG. 7, a laser surface processing apparatus provided with a laser generator 11 and an optical system 10 is used.

このレーザ表面加工装置では、レーザ発生器11は、ミラー12により加工材料Wに向けて折り返され、メカニカルシャッタ13に導かれる。レーザ照射時はメカニカルシャッタ13を開放し、レーザ照射強度は1/2波長板14と偏光ビームスプリッタ16によって調整可能とし、1/2波長板15によって偏光方向を調整し、集光レンズ17によって、XYθステージ19上の加工材料W表面に集光照射することになる。   In this laser surface processing apparatus, the laser generator 11 is folded back toward the processing material W by the mirror 12 and guided to the mechanical shutter 13. At the time of laser irradiation, the mechanical shutter 13 is opened, the laser irradiation intensity can be adjusted by the half-wave plate 14 and the polarization beam splitter 16, the polarization direction is adjusted by the half-wave plate 15, and the condenser lens 17 The surface of the work material W on the XYθ stage 19 is focused and irradiated.

第1工程21では、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成している。すなわち、アブレーション閾値近傍のフルエンスで直線偏光のレーザをワーク(加工材料)Wに照射した場合、入射光と加工材料Wの表面に沿った散乱光またはプラズマ波の干渉により、レーザ波長と同程度の周期間隔で、エネルギ一分布にわずかな粗密が生じる。一般的な加工方法ではレーザ照射面全体が加工されるが、加工閾値近傍のエネルギー密度でレーザ照射することで、高エネルギ一部分を選択的に加工することができる。その結果、1光軸のレーザ照射でありながら、グレーティング状の周期構造が形成される。このとき、加工に用いるレーザのパルス幅が長くなるほど熱影響や加工蒸散物との相互作用によるレーザの散乱によって周期構造に乱れが生じることになる。   In the first step 21, a linearly polarized laser beam is irradiated with an irradiation intensity in the vicinity of the processing threshold, and the irradiated portion is scanned while overlapping to form a self-organized structure. That is, when a workpiece (working material) W is irradiated with a linearly polarized laser beam at a fluence near the ablation threshold, interference between the incident light and the scattered light or plasma wave along the surface of the processing material W is approximately the same as the laser wavelength. At periodic intervals, there is a slight roughness in the energy distribution. In a general processing method, the entire laser irradiation surface is processed, but a portion of high energy can be selectively processed by laser irradiation at an energy density near the processing threshold. As a result, a grating-like periodic structure is formed while performing laser irradiation with one optical axis. At this time, the longer the pulse width of the laser used for processing, the more disturbed the periodic structure is due to the influence of heat and the scattering of the laser due to the interaction with the processed evaporation.

成膜工程P1bは、DLCコーティングであり、例えば、プラズマイオン注入法を採用することができる。プラズマイオン注入法は、高真空中でのプラズマプロセスであるイオン化蒸着により成膜する方法である。すなわち、真空チャンバ中にトルエンガスや他の炭化水素ガスが導入され直流アーク放電プラズマ中で炭化水素イオンが励起されたラジカルが生成される。このため、炭化水素イオンは直流の負電圧にバイアスされた基板(コーティングされる部材)にバイアス電圧に応じたエネルギーで衝突し固体化し成膜する。   The film forming process P1b is DLC coating, and for example, a plasma ion implantation method can be employed. The plasma ion implantation method is a method of forming a film by ionization vapor deposition which is a plasma process in a high vacuum. In other words, toluene gas or other hydrocarbon gas is introduced into the vacuum chamber, and radicals in which hydrocarbon ions are excited in DC arc discharge plasma are generated. For this reason, hydrocarbon ions collide with a substrate (a member to be coated) biased to a negative DC voltage with energy corresponding to the bias voltage to solidify into a film.

非晶質炭素膜4のグレーティング状凹凸の周期構造3は、図6に示すように、連続的に高さが変化するものである。非晶質炭素膜(DLC膜)の凹凸の高低差(凹部5の底部から凸部6の頂点までの高さ)が20nm以上100nm以下かつ非晶質炭素膜の膜厚以下とするのが好ましい。また、非晶質炭素膜(DLC膜)の周期ピッチを10μm以下とするのが好ましい。   The grating-like irregular periodic structure 3 of the amorphous carbon film 4 has a continuously changing height as shown in FIG. It is preferable that the height difference of the unevenness of the amorphous carbon film (DLC film) (height from the bottom of the concave portion 5 to the top of the convex portion 6) is not less than 20 nm and not more than 100 nm and not more than the film thickness of the amorphous carbon film. . In addition, the periodic pitch of the amorphous carbon film (DLC film) is preferably 10 μm or less.

そして、第1部材1の摺動面1aにグレーティング状凹凸の周期構造3を有する非晶質炭素膜4を形成した後は、図3に示すように、この非晶質炭素膜4に対して、第2部材2の摺動面を摺動させる。   Then, after the amorphous carbon film 4 having the grating-like irregular structure 3 is formed on the sliding surface 1a of the first member 1, as shown in FIG. The sliding surface of the second member 2 is slid.

このため、図4に示すように、第1部材1の周期構造先端が摩耗し、この摩耗によって、DLC由来の低硬度カーボンが生成される、また、周期構造により、微細な摩耗粉が生成され、マイルド摩耗面に似た滑らかで強固に固着した移着膜が形成される。   For this reason, as shown in FIG. 4, the tip of the periodic structure of the first member 1 is worn, and this wear produces low-hardness carbon derived from DLC, and fine wear powder is produced by the periodic structure. As a result, a smooth and firm transfer film similar to the mild wear surface is formed.

前記摺動部材の製造方法では、連続的に高さが変化するグレーティング状凹凸の周期構造3を非晶質炭素膜(DLC膜)4に設けているため、摺動時に小さな曲率半径をもつ周期構造先端が摩耗し、なじみが進行する。この際,第1部材1から発生する微細なDLC膜4の摩耗粉はグラファイト化され、低摩擦化の実現に重要な低硬度カーボンの生成が促進される。周期構造3を有するDLC膜4は微細な加工ツールとして作用し、第2部材2からもマイルド摩耗粉のような微細な摩耗粉が発生する。また、周期構造3は第2部材2に形成される突出した移着粒子を削り落とし、トラップすることで移着粒子の成長を抑制し、摩耗粉の微細化と移着膜の平滑化に寄与する。この段階では顕著な摩擦低減効果は得られないが、周期構造3を犠牲層として摩滅させる工程において、微細な摩耗粉が延しつぶされる。これによって、強固に固着された低硬度カーボン移着層が形成されるとともにDLC膜4が平滑化する。周期構造3が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られる。   In the manufacturing method of the sliding member, the periodic structure 3 with grating-like irregularities whose height continuously changes is provided on the amorphous carbon film (DLC film) 4, and therefore a period having a small radius of curvature when sliding. The tip of the structure is worn and the familiarity progresses. At this time, the wear powder of the fine DLC film 4 generated from the first member 1 is graphitized, and the generation of low-hardness carbon important for realizing low friction is promoted. The DLC film 4 having the periodic structure 3 acts as a fine processing tool, and fine wear powder such as mild wear powder is generated from the second member 2. Further, the periodic structure 3 scrapes off the protruding transfer particles formed on the second member 2 and suppresses the growth of the transfer particles by trapping, thereby contributing to the refinement of wear powder and the smoothing of the transfer film. To do. At this stage, no significant friction reducing effect is obtained, but in the process of wearing the periodic structure 3 as a sacrificial layer, fine wear powder is crushed. Thereby, a low-hardness carbon transfer layer firmly fixed is formed and the DLC film 4 is smoothed. Even after the periodic structure 3 disappears, a sliding member having improved sliding characteristics over a long period of time can be obtained.

また、グレーティング状の凹凸の周期構造形成を行った後、非晶質炭素膜4を成膜することで、形態が異なるだけで通常のDLC膜4と組成的には同一な周期構造を有するDLC膜4を形成できる。したがって,硬度低下などの物性変化を生じることなく、DLC膜本来の特性を維持したものとなる。なお、DLC膜4の硬度が低下すると、DLC膜4の微細な加工ツールとしての作用が低下し、移着粒子の成長抑制や摩耗粉の微細化に支障が生じるため、周期構造3が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られない。   In addition, after forming the periodic structure of the grating-like irregularities, the amorphous carbon film 4 is formed, so that the DLC having the same periodic structure in composition as the normal DLC film 4 is different only in form. The film 4 can be formed. Therefore, the original characteristics of the DLC film are maintained without causing changes in physical properties such as a decrease in hardness. Note that when the hardness of the DLC film 4 is lowered, the function of the DLC film 4 as a fine processing tool is lowered, and the growth of transfer particles and the miniaturization of wear powder are hindered, so the periodic structure 3 disappears. A sliding member whose sliding characteristics are improved over a long period of time cannot be obtained.

非晶質炭素膜(DLC膜)4の凹凸が20nm以上100nm以下かつ非晶質炭素膜の膜厚以下とすることで、微細な摩耗粉の発生と周期構造の摩滅を基材が露出することなく効率的に実現できる。   When the irregularity of the amorphous carbon film (DLC film) 4 is 20 nm or more and 100 nm or less and less than the film thickness of the amorphous carbon film, the substrate is exposed to generation of fine wear powder and wear of the periodic structure. Can be realized efficiently.

非晶質炭素膜(DLC膜)4の周期ピッチを10μm以下とすることで,低硬度カーボンの生成促進と移着粒子の成長抑制により、マイルド摩耗面に似た移着層を形成することができる。   By setting the periodic pitch of the amorphous carbon film (DLC film) 4 to 10 μm or less, a transfer layer similar to a mild wear surface can be formed by promoting the generation of low hardness carbon and suppressing the growth of transfer particles. it can.

加工闘値近傍の照射強度で 直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成するものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さをもつ周期構造3を容易に得ることができる。   With a linearly polarized laser beam irradiated at an irradiation intensity in the vicinity of the processing threshold, and scanning with overlapping irradiation parts, it is difficult to machine with submicron periodic pitch and uneven depth, which is difficult to machine. A periodic structure 3 having a thickness can be easily obtained.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、第1部材1を平板体にて構成し、第2部材2をピン部材にて構成したが、第1部材1と第2部材2の形状としても、図例のものに限らず、他の種々の形状のものにて構成できる。   As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to the said embodiment, A various deformation | transformation is possible, for example, in the said embodiment, the 1st member 1 is comprised with a flat body. Although the second member 2 is constituted by a pin member, the shapes of the first member 1 and the second member 2 are not limited to those shown in the drawings, and can be constituted by other various shapes.

周期構造形成工程P1aに使用するレーザとしては、フェムト秒レーザ、ピコ秒レーザ、及びナノ秒レーザといったパルスレーザを使用することができる。また、摩耗工程P2において、第1部材1側を固定して第2部材2を第1部材1に対して摺動させても、逆に、第2部材2側を固定して第1部材1を第2部材2に対して摺動させても、第1部材1と第2部材2とを摺動させてもよい。   As a laser used for the periodic structure forming step P1a, a pulse laser such as a femtosecond laser, a picosecond laser, and a nanosecond laser can be used. Further, in the wear process P2, even if the first member 1 side is fixed and the second member 2 is slid with respect to the first member 1, conversely, the second member 2 side is fixed and the first member 1 is fixed. The first member 1 and the second member 2 may be slid with respect to the second member 2.

また、摺動方向として、周期構造3の配向方向に対して、平行方向であっても、直交方向であっても、さらには、所定角度(例えば、45度程度)に傾斜したものであってもよい。また、摺動方向として直線状ではなく、円形や楕円形状であってもよい。摺動時の荷重、摺動ストローク、往復周波数等も任意に設定できる。   In addition, the sliding direction may be parallel or orthogonal to the orientation direction of the periodic structure 3, and may be inclined at a predetermined angle (for example, about 45 degrees). Also good. Further, the sliding direction is not linear but may be circular or elliptical. The load during sliding, sliding stroke, reciprocating frequency, etc. can be arbitrarily set.

ところで、DLCコーティングの処理には、化学蒸着(CVD,Chemical Vapor Deposition)法および物理蒸着(PVD,Physical Vapor Deposition)法によるプラズマ技術等がある。このため、本発明では、プラズマCVD法、イオン化蒸着法、スパッタ法、アークイオンプレーティング法の従来からある種々の方法で、非晶質炭素膜を形成することができる。   By the way, in the processing of DLC coating, there are a plasma technique using a chemical vapor deposition (CVD) method and a physical vapor deposition (PVD) method. Therefore, in the present invention, the amorphous carbon film can be formed by various conventional methods such as plasma CVD, ionized vapor deposition, sputtering, and arc ion plating.

周期構造を有するDLC膜の作成およびその摺動特性を評価し、移着膜制御による低摩擦化について検証した。   The creation of a DLC film having a periodic structure and its sliding characteristics were evaluated, and the low friction by the transfer film control was verified.

まず、周期構造を有するDLC膜を作成した。この場合、バフ研磨したSUS440C基板(算術平均粗さ:Ra0.02μm)にフェムト秒レーザを加工しきい値近傍のエネルギー密度で照射し,グレーティング状の周期構造(ピッチ約700nm,深さ約200nm)を形成した後、プラズマイオン注入法でa−C:HのDLC膜を成膜した。原料ガスにはトルエン(C78)を用い、中間層としてSi/C傾斜層を設けた。中間層の膜厚は250nm,中間層を含むDLCの膜厚は1μmとした。すなわち、基材の上にこの中間層が形成され、この中間層の上にDLC膜が成膜される。成膜後のDLC表面のAFM像および断面プロファイルを前記図6に示している。 First, a DLC film having a periodic structure was prepared. In this case, a buffed SUS440C substrate (arithmetic average roughness: Ra 0.02 μm) is irradiated with a femtosecond laser at an energy density in the vicinity of the processing threshold, and a grating-like periodic structure (pitch: about 700 nm, depth: about 200 nm) Then, an aC: H DLC film was formed by plasma ion implantation. Toluene (C 7 H 8 ) was used as the source gas, and a Si / C gradient layer was provided as an intermediate layer. The thickness of the intermediate layer was 250 nm, and the thickness of the DLC including the intermediate layer was 1 μm. That is, the intermediate layer is formed on the base material, and the DLC film is formed on the intermediate layer. FIG. 6 shows the AFM image and cross-sectional profile of the DLC surface after film formation.

DLC表面には深さ50nm前後の周期構造形状が認められる。周期構造形成後にDLCを成膜しているため、図6に示す周期構造DLCはレーザ未照射基板に成膜したものと形態が異なるだけで組成的には同一である。   Periodic structure shapes with a depth of around 50 nm are observed on the DLC surface. Since the DLC film is formed after the formation of the periodic structure, the periodic structure DLC shown in FIG. 6 is the same in composition only in the form different from that formed on the laser non-irradiated substrate.

算術平均粗さRaは、図8に示すように、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線mの方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の数1の式によって求められる値をマイクロメートル(μm)で表したものをいう。
As shown in FIG. 8, the arithmetic average roughness Ra is obtained by extracting only the reference length from the roughness curve in the direction of the average line, and the X-axis in the direction of the average line m of the extracted portion in the direction of the vertical magnification. When the Y-axis is taken and the roughness curve is represented by y = f (x), the value obtained by the following equation 1 is represented by micrometers (μm).

実験方法としては、ピンオンプレート試験装置を用いて往復摺動実験を行った。ピン試験片(第2部材2)の材質はSUJ2とし,先端形状は曲率半径5mmの半球形とした。プレート試験片(第1部材1)は周期構造DLCおよびバフ研磨面に成膜した鏡面DLCの2種類とした。ここで、周期構造DLCとは、摺動面にグレーティング状凹凸の周期構造3を有する非晶質炭素膜4を有するものであり、鏡面DLCは、鏡面に仕上げた摺動面にDLC膜を形成したものである。   As an experimental method, a reciprocating sliding experiment was performed using a pin-on-plate test apparatus. The material of the pin test piece (second member 2) was SUJ2, and the tip shape was a hemisphere with a radius of curvature of 5 mm. Two types of plate test pieces (first member 1) were the periodic structure DLC and the mirror surface DLC formed on the buffed surface. Here, the periodic structure DLC has an amorphous carbon film 4 having a periodic structure 3 with grating-like irregularities on the sliding surface, and the mirror surface DLC forms a DLC film on the sliding surface finished as a mirror surface. It is a thing.

周期構造DLCに対する摺動方向は,周期構造の配向方向に対して、平行(周期平行DLC)および直交(周期直交DLC)の2方向とした。摺動条件は荷重5N、ストローク20mm,往復周波数0.5Hzとし、10000往復までの摺動抵抗をロードセルにより測定した。   The sliding directions with respect to the periodic structure DLC were two directions parallel (periodic parallel DLC) and orthogonal (periodic orthogonal DLC) to the orientation direction of the periodic structure. The sliding conditions were a load of 5 N, a stroke of 20 mm, a reciprocation frequency of 0.5 Hz, and the sliding resistance up to 10,000 reciprocations was measured with a load cell.

各種DLC膜の摩擦係数を図9と図10に示す。摩擦係数は、500往復までは、鏡面DLC>周期DLCであり、1000往復〜5000往復までは、鏡面DLC<周期DLCであり、7000往復を越えれば、鏡面DLC>周期DLCであり、10000往復では、鏡面DLC>周期直交DLC≫周期平行DLCである。すなわち、周期平行DLCおよび周期直交DLCはいずれも1000往復〜5000往復付近まで鏡面DLCより高い摩擦係数を示した。10000往復では,周期直交DLCは鏡面DLCの摩擦係数を6%下回るだけであったが、周期平行DLCは鏡面DLCに対して40%を超える顕著な摩擦低減効果が得られた。   The friction coefficients of various DLC films are shown in FIGS. The friction coefficient is specular DLC> period DLC up to 500 reciprocations, specular DLC <period DLC from 1000 reciprocations to 5000 reciprocations, and specular DLC> period DLC over 7000 reciprocations. , Mirror surface DLC> periodic orthogonal DLC >> periodic parallel DLC. That is, both the period parallel DLC and the period orthogonal DLC showed a higher coefficient of friction than that of the mirror DLC from 1000 round trips to 5000 round trips. At 10,000 reciprocations, the periodic orthogonal DLC was only 6% below the friction coefficient of the mirror DLC, but the period parallel DLC had a remarkable friction reduction effect exceeding 40% with respect to the mirror DLC.

図11に各種DLC膜に10000往復させたピン試験片(第2部材2)の摺動面写真を示し、図12はピン試験片の摺動面プロファイル図を示している。図11から、鏡面DLCは摩耗粉が大量・広範囲に付着していることがわかり、周期平行DLCは摩耗粉の幅方向への広がりが少ないことがわかる。また、図12から、鏡面DLCは金属接触によるピン試験片の摩耗発生があり、摩擦係数が低い周期平行DLCは移着膜が薄く平滑で明色部の比率が高いことがわかる。すなわち、鏡面DLCに摺動させたピン中央部は大部分の移着膜が剥離し、ピン試験片の摩耗面が露出していた。一方、周期直交DLCおよび周期平行DLCに摺動させたピン中央部には明色の移着膜が生成されており、後者の移着膜は平滑で明色の比率が高くなった。なお、図12(a)では摩擦係数μが0.196であり、図12(b)では摩擦係数μが0.186であり、図12(c)では摩擦係数μが0.111であった。   FIG. 11 shows a sliding surface photograph of a pin test piece (second member 2) reciprocated 10,000 times on various DLC films, and FIG. 12 shows a sliding surface profile diagram of the pin test piece. From FIG. 11, it can be seen that the mirror surface DLC has a large amount and a wide range of wear powder, and the period parallel DLC has a small spread in the width direction of the wear powder. From FIG. 12, it can be seen that the mirror surface DLC has wear of the pin test piece due to metal contact, and the periodic parallel DLC with a low friction coefficient has a thin transfer film and a smooth ratio with a high light color portion. That is, most of the transfer film peeled off at the center of the pin slid on the mirror surface DLC, and the wear surface of the pin test piece was exposed. On the other hand, a bright transfer film was formed at the center of the pin slid in the periodic orthogonal DLC and the periodic parallel DLC, and the latter transfer film was smooth and the ratio of the bright color was high. In FIG. 12A, the friction coefficient μ is 0.196, in FIG. 12B, the friction coefficient μ is 0.186, and in FIG. 12C, the friction coefficient μ is 0.111. .

図13(ストローク20mm、10000往復)からわかるように、摩耗生成物は、鏡面DLCでは周囲に大量に付着し、周期直交DLCでは周囲に中量に付着し、周期平行DLCでは周囲に少量が付着していた。なお、摺動痕幅は、鏡面DLC、周期直交DLC、及び周期平行DLCともに約130μmである。摺動痕深さは、鏡面DLCでは139nmであり、周期直交DLCでは153nmであり、周期平行DLCでは65nmである。   As can be seen from FIG. 13 (stroke 20 mm, 10000 reciprocation), a large amount of wear product adheres to the periphery in the mirror DLC, a medium amount to the periphery in the period orthogonal DLC, and a small amount to the periphery in the period parallel DLC. Was. The sliding trace width is about 130 μm for both the mirror surface DLC, the periodic orthogonal DLC, and the periodic parallel DLC. The sliding trace depth is 139 nm for mirror DLC, 153 nm for periodic orthogonal DLC, and 65 nm for periodic parallel DLC.

DLC膜摺動痕周囲の摩耗粉の様子を図14(ストローク20mm、10000往復)に示す。鏡面DLCでは移着粒子が成長し、大量の摩耗粉(シビア摩耗粉)が生じた。一方、周期DLCでは摩耗粉が微細化し、摩耗量が低減された。特に周期平行DLCでは大幅に摩耗粉が減少した。摺動面内の周期構造にはトラップされた摩耗粉が観察された。周期構造は突出した移着粒子を削り落とし、トラップすることで移着粒子の成長を抑制し、摩耗粉の微細化と移着膜の平滑化に寄与したと推察される.周期平行DLCでは摩耗粉を摺動面内に拘束する作用が大きいため、摺動痕周囲に散逸する摩耗粉が大幅に減少したと考えられる。   The appearance of the wear powder around the DLC film sliding trace is shown in FIG. 14 (stroke 20 mm, 10,000 reciprocations). In the mirror surface DLC, transfer particles grew and a large amount of wear powder (severe wear powder) was generated. On the other hand, in the period DLC, the wear powder became finer and the amount of wear was reduced. In particular, in the case of the periodic parallel DLC, the wear powder was greatly reduced. Trapped wear powder was observed in the periodic structure in the sliding surface. It is inferred that the periodic structure scraped the protruding transfer particles and trapped them, thereby suppressing the growth of transfer particles and contributing to the refinement of wear powder and smoothing of the transfer film. It is considered that the amount of abrasion powder that dissipates around the sliding trace is greatly reduced because the action of restraining the powder in the sliding surface is large.

図15(ストローク20mm、10往復)に示すように,鏡面DLCでは移着粒子の除去,トラップ作用がないため、僅か10往復で大きく成長した摩耗粉が生成された。EDX分析の結果、摩耗粉はピン由来の金属酸化物が主体であった。また、微細な摩耗粉の方が高い酸素含有率を示した。   As shown in FIG. 15 (stroke 20 mm, 10 reciprocations), the mirror surface DLC has no removal of trapped particles and no trapping action, so that a large amount of wear powder was generated after only 10 reciprocations. As a result of EDX analysis, the wear powder was mainly composed of pin-derived metal oxides. The fine wear powder showed a higher oxygen content.

図16に移着膜剥離部のSEM画像を示す。剥離した移着膜断面から移着膜は2層構造であることがわかる。第1層は金属酸化物(ピンの摩耗粉)とカーボンの混合物、第2層はDLC由来のカーボン移着物と思われる。図17(鏡面DLC)および図18(周期平行DLC)にピン摺動痕のSEM画像とEDX分析による酸素分布を示す。SEM画像の黒い部分はカーボン移着物である。鏡面DLCでは2000往復から10000往復までの間に第1層から剥離し、酸素量が減少した。周期平行DLCでは、酸素に富んだ微細な摩耗粉が延しつぶされ、マイルド摩耗面に似た第1層が10000往復まで強固に固着していることが確認された。マイルド摩耗面に似た第1層は強固にカーボン移着物をピンに固着させるバインダーの働きをしていると考えられる。周期平行DLCは2000往復あたりから平滑化の進行が認められた。周期平行DLCの低摩擦化の原因は強固に固着されたカーボン移着膜の生成とDLC膜・移着膜の平滑化であると考えられる。   FIG. 16 shows an SEM image of the transfer film peeling portion. It can be seen from the cross section of the peeled transfer film that the transfer film has a two-layer structure. The first layer appears to be a mixture of metal oxide (pin wear powder) and carbon, and the second layer is a DLC-derived carbon transfer. FIG. 17 (mirror surface DLC) and FIG. 18 (periodic parallel DLC) show the SEM image of the pin sliding trace and the oxygen distribution by EDX analysis. The black part of the SEM image is a carbon transfer product. The mirror surface DLC peeled off from the first layer between 2000 reciprocations and 10,000 reciprocations, and the amount of oxygen decreased. In the periodic parallel DLC, it was confirmed that fine wear powder rich in oxygen was crushed and the first layer similar to the mild wear surface was firmly fixed up to 10,000 reciprocations. It is considered that the first layer similar to the mild wear surface functions as a binder that firmly fixes the carbon transfer material to the pin. Periodic parallel DLC showed smoothening from around 2000 round trips. The cause of the low friction of the periodic parallel DLC is considered to be the generation of the carbon transfer film firmly fixed and the smoothing of the DLC film / transfer film.

図19に周期平行DLCの往復動回数と摩擦係数との関係を示し、図19(a)の楕円内の範囲は移着膜生成過程を示し、図19(b)の楕円内の範囲は移着膜領域拡大過程を示し、図19(c)の楕円内の範囲は低摩擦化過程を示している。また、図20は周期平行DLCの摺動面を示し、10往復させた場合である。図21は周期平行DLCの摺動面プロファイルを示し、(a)は10往復時の摺動面プロファイル図であり、(b)は2000往復時の摺動面プロファイル図であり、(c)は10000往復時の摺動面プロファイル図である。   FIG. 19 shows the relationship between the number of reciprocations of the periodic parallel DLC and the friction coefficient. The range in the ellipse in FIG. 19A shows the transfer film generation process, and the range in the ellipse in FIG. The film deposition region expansion process is shown, and the range within the ellipse in FIG. 19C shows the low friction process. FIG. 20 shows a sliding surface of the periodic parallel DLC, and is a case where the reciprocation is performed 10 times. FIG. 21 shows a sliding surface profile of a periodic parallel DLC, (a) is a sliding surface profile diagram during 10 reciprocations, (b) is a sliding surface profile diagram during 2000 reciprocations, and (c) is It is a sliding face profile figure at the time of 10,000 reciprocations.

図20では、摩耗粉トラップが移着粒子の成長を抑制し、摩耗粉微細化に寄与することが分かり、図21(a)では、周期構造の多刃工具作用によりピン移着膜は平滑化することが分かる。図21(b)では、半分程度の周期構造が摩耗にて平滑化していることが分かる。図21(c)では、大半の周期構造が摩耗にて平滑化していることが分かる。   In FIG. 20, it can be seen that the wear powder trap suppresses the growth of transfer particles and contributes to the refinement of the wear powder. In FIG. 21A, the pin transfer film is smoothed by the multi-blade tool action of the periodic structure. I understand that In FIG. 21B, it can be seen that about half of the periodic structure is smoothed by wear. In FIG. 21C, it can be seen that most of the periodic structures are smoothed by wear.

周期構造を有するDLC膜の摺動特性を評価した結果、以下の結論を得た。
(1)周期平行DLCは鏡面DLCに対して摩耗粉が微細化し、40%を超える摩擦低減効果が得られる。
(2)周期平行DLCの移着膜は、酸素に富んだ金属酸化物含有層とカーボン移着層の2層構造となる。
(3)周期平行DLCの低摩擦化要因は強固に固着されたカーボン移着膜の生成とDLC膜・移着膜の平滑化であると考えられる。
As a result of evaluating the sliding characteristics of the DLC film having a periodic structure, the following conclusions were obtained.
(1) The periodic parallel DLC has a finer abrasion powder than the mirror surface DLC, and a friction reduction effect exceeding 40% is obtained.
(2) The transfer film of the periodic parallel DLC has a two-layer structure of a metal oxide-containing layer rich in oxygen and a carbon transfer layer.
(3) It is considered that the factor for reducing the friction of the periodic parallel DLC is the generation of the carbon transfer film firmly adhered and the smoothing of the DLC film / transfer film.

1 第1部材
1a 摺動面
2 第2部材
2a 摺動面
3 周期構造部
4 非晶質炭素(DLC)
5 凹部
6 凸部
P1 膜形成工程
P1a 周期構造形成工程
P1b 成膜工程
P2 摩耗工程
DESCRIPTION OF SYMBOLS 1 1st member 1a Sliding surface 2 2nd member 2a Sliding surface 3 Periodic structure part 4 Amorphous carbon (DLC)
5 Concave portion 6 Convex portion P1 Film forming process P1a Periodic structure forming process P1b Film forming process P2 Wear process

Claims (6)

第1部材の摺動面に、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜を形成する膜形成工程と、
第1部材の摺動面と第2部材の摺動面とを相対的に摺動させて,前記周期構造を犠牲層として摩滅させ、かつ、前記非晶質炭素膜から発生する摩耗粉をグラファイト化させて低硬度カーボンを生成させるとともに第2部材からも摩耗粉を発生させて移着層を形成する摩耗工程とを備えたことを特徴とする摺動部材の製造方法。
A film forming step of forming an amorphous carbon film having a periodic structure of grating-like irregularities in which the height of the convex portion is a non-flat surface and the height continuously changes on the sliding surface of the first member;
The sliding surface of the first member and the sliding surface of the second member are relatively slid to wear the periodic structure as a sacrificial layer , and wear powder generated from the amorphous carbon film is graphite. And producing a low hardness carbon, and generating a wear layer from the second member to form a transfer layer, and a method for manufacturing a sliding member.
前記非晶質炭素膜は,前記第1部材の基材表面に予め凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状の凹凸の周期構造形成を行った後、成膜して形成することを特徴とする請求項1に記載の摺動部材の製造方法。   The amorphous carbon film is formed on a surface of the base material of the first member after forming a periodic structure of grating-like irregularities whose convex vertices are non-flat surfaces and continuously change in height. 2. The method for manufacturing a sliding member according to claim 1, wherein the sliding member is formed as a film. 前記第2部材の少なくとも摺動面が,前記摩耗工程において酸化物の摩耗粉を生じる材質としていることを特徴とする請求項1または請求項2に記載の摺動部材の製造方法。   3. The method for manufacturing a sliding member according to claim 1, wherein at least a sliding surface of the second member is made of a material that generates oxide abrasion powder in the wear process. 4. 前記第1部材の基材表面にあらかじめ形成する周期構造は、加工闘値近傍の照射強度で 直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成されていることを特徴とする請求項2又は請求項3のいずれかに記載の摺動部材の製造方法。   The periodic structure formed in advance on the substrate surface of the first member is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning while overlapping the irradiated portions. The method for producing a sliding member according to claim 2, wherein the sliding member is produced. 部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜の凹凸が20nm以上100nm以下かつ非晶質炭素膜の膜厚以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載する摺動部材の製造方法。 The unevenness of the amorphous carbon film having a periodic structure of grating-like unevenness in which the height of the convex part is a non-flat surface and continuously changes in height is 20 nm or more and 100 nm or less and the film thickness of the amorphous carbon film or less. The method for manufacturing a sliding member according to any one of claims 1 to 4, wherein: 凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する非晶質炭素膜の周期ピッチが10μm以下であることを特徴とする請求項5に記載する摺動部材の製造方法。 According to claim 5 in which the period pitch of the amorphous carbon film protrusion vertex has a periodic structure of the grating-like unevenness continuously height in a non-planar surface is changed is equal to or is 10μm or less Manufacturing method of sliding member.
JP2013124710A 2013-06-13 2013-06-13 Manufacturing method of sliding member Active JP6096065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124710A JP6096065B2 (en) 2013-06-13 2013-06-13 Manufacturing method of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124710A JP6096065B2 (en) 2013-06-13 2013-06-13 Manufacturing method of sliding member

Publications (2)

Publication Number Publication Date
JP2015000408A JP2015000408A (en) 2015-01-05
JP6096065B2 true JP6096065B2 (en) 2017-03-15

Family

ID=52295259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124710A Active JP6096065B2 (en) 2013-06-13 2013-06-13 Manufacturing method of sliding member

Country Status (1)

Country Link
JP (1) JP6096065B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443145B (en) * 2011-02-28 2016-06-15 山阳色素株式会社 Jetted ink copolymer, the jetted ink pigment dispersion using it and jetted ink
JP6392130B2 (en) * 2015-01-20 2018-09-19 キヤノンマシナリー株式会社 Manufacturing method of sliding surface structure
JP6920977B2 (en) * 2017-12-18 2021-08-18 キヤノンマシナリー株式会社 Sliding surface structure
JP7417916B2 (en) * 2018-11-06 2024-01-19 株式会社ダイセル Sliding member with carbon transfer film formed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926135B2 (en) * 1990-11-19 1999-07-28 株式会社日立製作所 Magnetic head
JP2001200849A (en) * 2000-01-19 2001-07-27 Toyota Motor Corp Sliding member and two combined sliding members
JP4743067B2 (en) * 2006-09-29 2011-08-10 株式会社デンソー Scroll compressor
JP2011168845A (en) * 2010-02-19 2011-09-01 Japan Science & Technology Agency Sliding material and surface machining method thereof

Also Published As

Publication number Publication date
JP2015000408A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
Kawasegi et al. Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment
JP6096065B2 (en) Manufacturing method of sliding member
Yasumaru et al. Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN
Roch et al. Direct Laser Interference Patterning of tetrahedral amorphous carbon films for tribological applications
Zhang et al. Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface
US20100190036A1 (en) Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc
TWI619830B (en) Protective film and manufacturing method thereof
Kawasegi et al. Single-crystal diamond tools formed using a focused ion beam: Tool life enhancement via heat treatment
TWI387494B (en) Stamping tool and treatment method for stamping tool surface
GB2550694A (en) Master disc for manufacturing microflow channel, transfer product, and method for producing master disc for manufacturing microflow channel
JP7078220B2 (en) Manufacturing method of metal products
WO2006027850A1 (en) Method for enhancing adhesion of thin film
Kameyama et al. Fabrication of micro-textured and plateau-processed functional surface by angled fine particle peening followed by precision grinding
JP2008173693A (en) Mirror finished surface working method
JP2013087325A (en) Hard carbon film, and method for forming the same
JP7349082B2 (en) Hydrogen-containing carbon film
JP5917600B2 (en) Manufacturing method of sliding member
JP2011052313A (en) Nitriding treatment device and nitriding treatment method
JP2012223808A (en) Surface treatment method
JP2016070454A (en) Process of manufacture of slide member
JPWO2020026393A1 (en) Diamond smoothing method
JP2015148263A (en) Sliding surface structure, and sliding surface structure manufacturing method
JP5196301B2 (en) Tribochemical reaction promoting surface structure
JP5721481B2 (en) Method for manufacturing protective film
Ralchenko et al. Nanodiamond seeding for nucleation and growth of CVD diamond films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6096065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250