JP6094577B2 - Transparent gas barrier film, method for producing the same, and electronic device - Google Patents

Transparent gas barrier film, method for producing the same, and electronic device Download PDF

Info

Publication number
JP6094577B2
JP6094577B2 JP2014512591A JP2014512591A JP6094577B2 JP 6094577 B2 JP6094577 B2 JP 6094577B2 JP 2014512591 A JP2014512591 A JP 2014512591A JP 2014512591 A JP2014512591 A JP 2014512591A JP 6094577 B2 JP6094577 B2 JP 6094577B2
Authority
JP
Japan
Prior art keywords
gas barrier
group
layer
barrier layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014512591A
Other languages
Japanese (ja)
Other versions
JPWO2013161785A1 (en
Inventor
河村 朋紀
朋紀 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2013161785A1 publication Critical patent/JPWO2013161785A1/en
Application granted granted Critical
Publication of JP6094577B2 publication Critical patent/JP6094577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Description

本発明は、新規の透明ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスに関する。 The present invention relates to a novel transparent gas barrier film , a method for producing the same, and an electronic device using the same.

有機材料のエレクトロルミネッセンス(electroluminescence、以下、ELと略記す。)を利用した有機電界発光素子、いわゆる有機EL素子や液晶表示素子などの有機材料を構成要素として用いた電子デバイスにおいては、構成に用いる有機材料や電極は、水分や酸素に対し極めて耐性が低く、外部から侵入したこれらのガス(例えば、水蒸気、空気)によって劣化が生じ易い。上記問題に対し、例えば、光透過性を有するバリアー膜を用いることにより、発光光の外部取り出しを損ねることなく、有機電界発光素子へのこれらのガスの侵入を抑える構成が検討されている。   In an electronic device using an organic material such as an organic electroluminescence element utilizing electroluminescence (hereinafter abbreviated as EL) of an organic material, such as a so-called organic EL element or a liquid crystal display element, the structure is used. Organic materials and electrodes have extremely low resistance to moisture and oxygen, and are easily deteriorated by these gases (for example, water vapor and air) that have entered from the outside. In order to deal with the above problem, for example, a configuration has been studied in which the penetration of these gases into the organic electroluminescent element is suppressed without impairing the external extraction of the emitted light by using a light-transmitting barrier film.

このような光透過性を有するバリアー膜としては、例えば、無機酸化物を含む蒸着薄膜層/水溶性高分子を含むガスバリアー性被膜層/金属アルミニウムを含む蒸着薄膜層/水溶性高分子を含むガスバリアー性被膜層を、この順に積層した構成の透明積層体が開示されている(例えば、特許文献1参照。)。また、水溶性高分子を用いた塗布膜の表面をプラズマ処理することによって強密着処理層を形成し、この上部にアルミニウム、ニッケル、又はチタンを用いた金属薄膜層を設けることにより、ガスバリアー性の向上が図られた構成が開示されている(例えば、特許文献2参照。)。   Examples of such a light-transmitting barrier film include a vapor-deposited thin film layer containing an inorganic oxide / a gas barrier film layer containing a water-soluble polymer / a vapor-deposited thin film layer containing metal aluminum / a water-soluble polymer. A transparent laminate having a configuration in which gas barrier coating layers are laminated in this order is disclosed (for example, see Patent Document 1). In addition, the surface of the coating film using a water-soluble polymer is subjected to plasma treatment to form a strong adhesion treatment layer, and a metal thin film layer using aluminum, nickel, or titanium is provided on top of this to provide gas barrier properties. (See, for example, Patent Document 2).

しかしながら、上記特許文献1及び特許文献2に開示されているガスバリアー膜は、いずれも高温高湿環境下で保存した後において、十分な光透過性と水分や酸素に対する十分なバリアー性との両立を図ることが困難であった。   However, the gas barrier films disclosed in Patent Document 1 and Patent Document 2 both have sufficient light permeability and sufficient barrier properties against moisture and oxygen after being stored in a high-temperature and high-humidity environment. It was difficult to plan.

このような問題に対応した技術として、シランカップリング剤をアンカーコート層として設けた積層型のガスバリアーフィルムが提案されている。(例えば、特許文献3参照。)。特許文献3に開示されている方法の技術的な思想は、いわゆるアンカーコート層を特定の構成とすることにより、長期間にわたり層間密着性を確保すると同時に、耐環境試験を施しても、試験後の性能劣化が生じない積層フィルムを提供することにある。   As a technique corresponding to such a problem, a laminated gas barrier film in which a silane coupling agent is provided as an anchor coat layer has been proposed. (For example, refer to Patent Document 3). The technical idea of the method disclosed in Patent Document 3 is that a so-called anchor coat layer has a specific configuration to ensure interlayer adhesion over a long period of time, and at the same time, even after an environmental resistance test, An object of the present invention is to provide a laminated film that does not cause deterioration in performance.

しかしながら、このようなガスバリアーフィルムを、有機EL素子等に適用する場合には、ガスバリアー性を有すると同時に導電性を兼ね備え、耐久性の高い積層フィルムが望まれているが、引用文献3で開示されているガスバリアーフィルムでは、基材と特定機能層との接着性及び耐久性は達成できるものの、ガスバリアー層やITOなどの透明導電層等複数の特定機能層を形成する場合に、それぞれの界面の相互接着性、耐久性を確保することが困難であった。   However, when such a gas barrier film is applied to an organic EL element or the like, a laminated film having gas barrier properties and conductivity and having high durability is desired. In the disclosed gas barrier film, adhesion and durability between the base material and the specific functional layer can be achieved, but when forming a plurality of specific functional layers such as a transparent conductive layer such as a gas barrier layer or ITO, It was difficult to ensure mutual adhesion and durability at the interface.

特開2004−330669号公報JP 2004-330669 A 特開2011−5837号公報JP 2011-5837 A 特開2010−5817号公報JP 2010-5817 A

本発明は、上記問題に鑑みてなされたものであり、有機EL素子の様な各種電子デバイスの基板として用いられ、高いガスバリアー性能を有するとともに、耐久性(折り曲げ耐性)に優れた透明ガスバリアーフィルムとその製造方法、そのガスバリアーフィルムを用いた電子デバイスを提供することである。 The present invention has been made in view of the above problems, and is used as a substrate for various electronic devices such as organic EL elements. The transparent gas barrier has high gas barrier performance and excellent durability (bending resistance). It is providing the electronic device using the film, its manufacturing method, and its gas barrier film.

本発明者は、上記課題に鑑み鋭意検討を進めた結果、基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で有し、平滑層と金属層との間に、更に、窒素原子を含有した下地層を有することを特徴とする透明ガスバリアーフィルムにより、高いガスバリアー性及び優れた耐久性(折り曲げ耐性)を備えた透明ガスバリアーフィルムを実現することができることを見出し、本発明に至った。 The present inventor has proceeded with extensive study in view of the above problems, on the substrate, at least, a gas barrier layer, the smoothing layer and the metal layer possess in this order, between the smoothing layer and the metal layer, further , it found that a transparent gas barrier film characterized in that to have a base layer containing nitrogen atoms, it is possible to realize a transparent gas barrier film having high gas barrier properties and excellent durability (bending resistance) The present invention has been reached.

すなわち、本発明の上記課題は、下記の手段により解決される。   That is, the said subject of this invention is solved by the following means.

1.基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で有し、前記金属層が、銀又は銀を主成分とした合金を用いて形成された層であり、前記平滑層と、金属層との間に、更に、窒素原子をヘテロ原子とした複素環を有する化合物を含有した下地層を有し、かつ前記平滑層がウレタン結合を有する化合物を含有することを特徴とする透明ガスバリアーフィルム。 1. On the substrate, at least a gas barrier layer, a smooth layer, and a metal layer are provided in this order, and the metal layer is a layer formed using silver or an alloy containing silver as a main component, and the smooth layer If, between the metal layer, further, a nitrogen atom have a base layer containing a compound having a heterocyclic ring and hetero atoms, and the smoothing layer is characterized by containing a compound having a urethane bond Transparent gas barrier film.

2.前記窒素原子をヘテロ原子とした複素環を有する化合物が、下記一般式(2)で表される化合物であることを特徴とする第1項に記載の透明ガスバリアーフィルム。

Figure 0006094577
〔式中、Y は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E 51 〜E 66 、E 71 〜E 88 は、各々、C(R )または窒素原子を表し、R は水素原子または置換基を表す。但し、E 1〜E 79 の少なくとも1つ及びE 80 〜E 88 の少なくとも1つは、窒素原子を表す。n3及びn4は、各々0〜4の整数を表すが、n3+n4は2以上の整数である。〕 2. 2. The transparent gas barrier film according to item 1, wherein the compound having a heterocycle having a nitrogen atom as a heteroatom is a compound represented by the following general formula (2) .
Figure 0006094577
[ Wherein Y 5 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof. E 51 to E 66 and E 71 to E 88 each represent C (R 3 ) or a nitrogen atom, and R 3 represents a hydrogen atom or a substituent. Provided that at least one of the at least one and E 80 to E 88 in E 7 1 through E 79 represents a nitrogen atom. n3 and n4 each represents an integer of 0 to 4, but n3 + n4 is an integer of 2 or more. ]

.前記ガスバリアー層が、ポリシラザン改質層であることを特徴とする第1項又は第2項に記載の透明ガスバリアーフィルム。 3 . 3. The transparent gas barrier film according to item 1 or 2 , wherein the gas barrier layer is a polysilazane modified layer .

.前記ガスバリアー層が、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たす構成のガスバリアー層Bであることを特徴とする第1項から第項までのいずれか一項に記載の透明ガスバリアーフィルム。 4 . The gas barrier layer B includes a carbon atom, a silicon atom, and an oxygen atom, the composition continuously changes in the layer thickness direction, and satisfies the requirements defined in the following (1) and (2). transparent gas barrier film according to any one of the first term, wherein up to the third term that is.

(1)前記ガスバリアー層BについてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層Bの層厚方向における前記ガスバリアー層Bの表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、2つ以上の極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3.0at%以上である。   (1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer B, the gas barrier layer B in the layer thickness direction of the gas barrier layer B In the carbon distribution curve showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms (referred to as “carbon atom ratio (at%)”). The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 3.0 at% or more.

(2)前記ガスバリアー層Bの全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。   (2) In a region of 90% or more of the total thickness of the gas barrier layer B, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or It has an order of magnitude relationship represented by (B).

式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
.前記ガスバリアー層が少なくとも2層で構成され、基材側に位置する第1のガスバリアー層が前記ガスバリアー層Bであり、最表層側に位置する第2のガスバリアー層が、前記ガスバリアー層B上に形成されたポリシラザン改質層であることを特徴とする第項に記載の透明ガスバリアーフィルム。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
5 . The gas barrier layer is composed of at least two layers, the first gas barrier layer located on the substrate side is the gas barrier layer B, and the second gas barrier layer located on the outermost layer side is the gas barrier. The transparent gas barrier film according to item 4, which is a modified polysilazane layer formed on the layer B.

.前記平滑層の厚さが、20〜500nmの範囲内であることを特徴とする第1項から第項までのいずれか一項に記載の透明ガスバリアーフィルム。
.基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で設ける透明ガスバリアーフィルムの製造方法であって、前記金属層が、銀又は銀を主成分とした合金を用いて形成された層であり、前記平滑層と、金属層との間に、更に、窒素原子をヘテロ原子とした複素環を有する化合物を含有した下地層を設け、かつ前記平滑層がウレタン結合を有する化合物を含有することを特徴とする透明ガスバリアーフィルムの製造方法。
.前記ガスバリアー層を、基材上にポリシラザン含有塗布液を塗布したのち、改質処理を施して形成することを特徴とする第項に記載の透明ガスバリアーフィルムの製造方法。
.前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化させ、下記(1)及び(2)で規定する要件を満たす構成のガスバリアー層Bとすることを特徴とする第項又は第項に記載の透明ガスバリアーフィルムの製造方法。
(1)前記ガスバリアー層BについてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層Bの層厚方向における前記ガスバリアー層Bの表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、2つ以上の極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3.0at%以上とする。
(2)前記ガスバリアー層Bの全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
.前記ガスバリアー層を少なくとも2層で形成し、基材側に位置する第1のガスバリアー層を前記ガスバリアー層Bとし、最表層側に位置する第2のガスバリアー層を、前記ガスバリアー層B上にポリシラザン含有塗布液を塗布したのち、改質処理を施して形成することを特徴とする第項に記載の透明ガスバリアーフィルムの製造方法。
6 . The thickness of the smoothing layer, a transparent gas barrier film of any one of up to fifth term from the first term, which is a range of 20 to 500 nm.
7 . A method for producing a transparent gas barrier film in which at least a gas barrier layer, a smooth layer, and a metal layer are provided in this order on a substrate, wherein the metal layer is formed using silver or an alloy containing silver as a main component. A layer comprising a compound having a heterocyclic ring with a nitrogen atom as a heteroatom , further provided between the smooth layer and the metal layer , and the smooth layer has a urethane bond the method for producing a transparent gas barrier film characterized that you contain.
8 . The method for producing a transparent gas barrier film according to claim 7 , wherein the gas barrier layer is formed by applying a polysilazane-containing coating solution on a substrate and then performing a modification treatment.
9 . The gas barrier layer contains a carbon atom, a silicon atom, and an oxygen atom, the composition is continuously changed in the layer thickness direction, and the gas barrier layer B is configured to satisfy the requirements defined in the following (1) and (2) The manufacturing method of the transparent gas barrier film of Claim 7 or 8 characterized by these.
(1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer B, the gas barrier layer B in the layer thickness direction of the gas barrier layer B In the carbon distribution curve showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms (referred to as “carbon atom ratio (at%)”). The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 3.0 at% or more.
(2) In a region of 90% or more of the total thickness of the gas barrier layer B, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or It has an order of magnitude relationship represented by (B).
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
1 0 . The gas barrier layer is formed of at least two layers, the first gas barrier layer located on the substrate side is the gas barrier layer B, and the second gas barrier layer located on the outermost layer side is the gas barrier layer. 10. The method for producing a transparent gas barrier film according to item 9 , wherein a polysilazane-containing coating solution is applied onto B and then subjected to a modification treatment.

.第1項から第項までのいずれか一項に記載の透明ガスバリアーフィルムを具備することを特徴とする電子デバイス。 1 1 . An electronic device comprising the transparent gas barrier film according to any one of items 1 to 6 .

.前記電子デバイスが、有機エレクトロルミネッセンス素子であることを特徴とする第1項に記載の電子デバイス。 1 2 . Said electronic device, an electronic device according to a first item 1, characterized in that the organic electroluminescent device.

本発明によれば、有機EL素子の様な各種電子デバイスの基板として用いられ、高いガスバリアー性能を有するとともに、耐久性(折り曲げ耐性)に優れた透明ガスバリアーフィルムとそのガスバリアーフィルムを用い、ガスバリアー性及び耐久性(ダークスポット耐性)に優れた電子デバイスを得ることができる。   According to the present invention, a transparent gas barrier film having high gas barrier performance and excellent durability (bending resistance) and its gas barrier film are used as substrates for various electronic devices such as organic EL elements. An electronic device having excellent gas barrier properties and durability (dark spot resistance) can be obtained.

本発明で規定する構成により、上記問題を解決することができたのは、以下の理由によるものと推測している。   It is presumed that the above problem can be solved by the configuration defined in the present invention for the following reason.

本発明の透明ガスバリアーフィルムは、導電性を付与するための金属層を有している。この金属層は、層の膜厚が厚いほど導電性としては安定しやすくなる反面、フィルムの透明性が低下しやすくなり、薄い場合はその逆の関係となる。透明性を高くするために金属層の膜厚を薄くすると、金属層の連続性が、それを支持する基材表面の平滑性に左右されやすくなり、基材表面の粗さが小さいほどガスバリアーフィルムの透明性と導電性の両立がし易くなる。また、平滑性のみならず、金属層が形成される表面の組成に、窒素原子を有する化合物を使用すると、金属層の厚さが薄い場合でも良好な導電性が得られることが本発明者らによって明らかとなった。また、ガスバリアー層を形成する場合、物理的、又は化学的蒸着などの方法で形成されたガスバリアー層よりも、ガスバリアー層を形成するための前駆体素材を塗布により基材上に積層して、改質処理を行って形成したガスバリアー層の方が、更に良好な表面平滑性が得られる。その結果、導電性を付与する金属層の厚さを更に薄膜化することが可能となり、極めて透明性の高いガスバリアーフィルム、及び発光効率の高い発光素子や受光効率が良好な光電変換素子等の各種電子デバイスを得ることができることを見出した。   The transparent gas barrier film of the present invention has a metal layer for imparting conductivity. The thickness of the metal layer is likely to be stable as the conductivity is increased, but the transparency of the film is likely to be lowered. If the thickness of the metal layer is reduced in order to increase transparency, the continuity of the metal layer tends to be affected by the smoothness of the surface of the substrate that supports it, and the smaller the roughness of the surface of the substrate, the more gas barrier It becomes easy to achieve both transparency and conductivity of the film. In addition to smoothness, the present inventors have found that when a compound having a nitrogen atom is used for the composition of the surface on which the metal layer is formed, good conductivity can be obtained even when the metal layer is thin. It became clear by. In addition, when forming a gas barrier layer, a precursor material for forming a gas barrier layer is laminated on a substrate by coating rather than a gas barrier layer formed by a method such as physical or chemical vapor deposition. Thus, a better surface smoothness can be obtained with the gas barrier layer formed by the modification treatment. As a result, it is possible to further reduce the thickness of the metal layer that imparts conductivity, such as a highly transparent gas barrier film, a light emitting device with high light emission efficiency, and a photoelectric conversion device with good light reception efficiency. It has been found that various electronic devices can be obtained.

本発明の透明ガスバリアーフィルムの層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the transparent gas barrier film of the present invention 本発明の透明ガスバリアーフィルムの層構成の他の一例を示す概略断面図Schematic sectional view showing another example of the layer structure of the transparent gas barrier film of the present invention 本発明の透明ガスバリアーフィルムの層構成の他の一例を示す概略断面図Schematic sectional view showing another example of the layer structure of the transparent gas barrier film of the present invention 本発明に係る貸すバリアー層の形成に適用可能な磁場を印加したローラー間放電プラズマCVD装置の一例を示す概略図Schematic which shows an example of the discharge plasma CVD apparatus between rollers which applied the magnetic field applicable to formation of the barrier layer to lend based on this invention 本発明に係るガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフThe graph which shows an example of the silicon distribution curve of the gas barrier layer which concerns on this invention, an oxygen distribution curve, and a carbon distribution curve 本発明の透明ガスバリアーフィルムと有機EL素子を具備した電子デバイスの一例を示す断面図Sectional drawing which shows an example of the electronic device which comprised the transparent gas barrier film and organic electroluminescent element of this invention 実施例で作製した電子デバイス(有機EL素子)の断面図Sectional drawing of the electronic device (organic EL element) produced in the Example

本発明の透明ガスバリアーフィルムは、基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で有し、前記金属層が、銀又は銀を主成分とした合金を用いて形成された層であり、前記平滑層と、金属層との間に、更に、窒素原子をヘテロ原子とした複素環を有する化合物を含有した下地層を有し、かつ前記平滑層がウレタン結合を有する化合物を含有することを特徴とし、高いガスバリアー性能を有するとともに、耐久性(折り曲げ耐性)に優れた透明ガスバリアーフィルムを実現することができる。この特徴は、請求項1から請求項1に係る発明に共通する技術的特徴である。 The transparent gas barrier film of the present invention has at least a gas barrier layer, a smooth layer, and a metal layer in this order on a substrate, and the metal layer is formed using silver or an alloy containing silver as a main component. a layer which is, and the smoothing layer, between the metal layer, further, a nitrogen atom have a base layer containing a compound having a heterocyclic ring and hetero atoms, and the smoothing layer has a urethane bond A transparent gas barrier film characterized by containing a compound and having high gas barrier performance and excellent durability (bending resistance) can be realized. This feature is technical feature common to the invention according to claim 1, claim 1 2.

また、本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、平滑層が、窒素原子をヘテロ原子とした複素環を有する化合物として、前記一般式(2)で表される化合物を含有することが好ましい。また、ガスバリアー層が、基材上にポリシラザン含有塗布液を塗布したのち、改質処理を施して形成されていることが好ましい。また、平滑層が、ウレタン結合を有する化合物を含有することが好ましい。また、平滑層の厚さが、20〜500nmの範囲内であることが好ましい。更には、本発明の電子デバイスは、本発明の透明ガスバリアーフィルムを具備することを特徴とする。 In addition, as an embodiment of the present invention, from the viewpoint that the effect intended by the present invention can be further expressed, the smooth layer is represented by the general formula (2) as a compound having a heterocycle having a nitrogen atom as a hetero atom. preferably contains a compound which Ru is. The gas barrier layer is preferably formed by applying a polysilazane-containing coating solution on a substrate and then performing a modification treatment. Moreover, it is preferable that a smooth layer contains the compound which has a urethane bond. Moreover, it is preferable that the thickness of a smooth layer exists in the range of 20-500 nm. Furthermore, the electronic device of the present invention comprises the transparent gas barrier film of the present invention.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。   Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In addition, "-" shown in the following description is used with the meaning which includes the numerical value described before and behind that as a lower limit and an upper limit.

また、本発明を実施するための好ましい形態について図面を用いて説明するが、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   Further, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The embodiments described below are provided with various technically preferred limitations for carrying out the present invention. This range is not limited to the following embodiments and illustrated examples.

《透明ガスバリアーフィルム》
本発明の透明ガスバリアーフィルムは、基材上に、少なくとも、ガスバリアー層、平滑層、及び銀又は銀を主成分とした合金を用いて形成された金属層をこの順で有することを特徴とする。
<Transparent gas barrier film>
The transparent gas barrier film of the present invention is characterized by having, on the base material, at least a gas barrier layer, a smooth layer, and a metal layer formed using silver or a silver-based alloy in this order. To do.

本発明でいう透明とは、JIS K 7361−1:1997(プラスチック−透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が、70%以上であることをいう。   The term “transparent” as used in the present invention means that the total light transmittance in a visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (a test method for the total light transmittance of plastic-transparent material) is 70% or more. It means that.

本発明の透明ガスバリアーフィルム(以下、単にガスバリアーフィルムあるいはバリアーフィルムともいう。)は、樹脂フィルムなどの基材上に、プラズマCVD法などの蒸着法によって形成された金属酸化物を含有するガスバリアー層、あるいはポリシラザンを含む液体を湿式塗布方式で塗布、乾燥した後、真空紫外光等を照射して形成されたポリシラザン改質層等からなるガスバリアー層を有し、その上に、平滑層を、更にその上に銀又は銀を主成分とした合金を用いて形成された金属層を有する構成であることを特徴とする。   The transparent gas barrier film of the present invention (hereinafter also simply referred to as a gas barrier film or a barrier film) is a gas containing a metal oxide formed on a substrate such as a resin film by a vapor deposition method such as a plasma CVD method. A barrier layer or a gas barrier layer composed of a polysilazane modified layer formed by applying a liquid containing polysilazane by a wet coating method, drying, and then irradiating vacuum ultraviolet light or the like, and a smooth layer thereon And a metal layer formed by using silver or an alloy containing silver as a main component.

図1は、本発明の透明ガスバリアーフィルムの層構成の代表例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing a representative example of the layer structure of the transparent gas barrier film of the present invention.

図1Aは、本発明のガスバリアーフィルム1の基本的な構成を示しており、基材2上に、ガスバリアー層3、平滑層4及び金属層5が積層された構成を示してある。   FIG. 1A shows a basic configuration of a gas barrier film 1 of the present invention, in which a gas barrier layer 3, a smooth layer 4 and a metal layer 5 are laminated on a substrate 2.

本発明のガスバリアーフィルム1の特徴としては、図1Bに示すように、平滑層4と金属層5との間に、更に下地層6を有する構成である。 As a feature of the gas barrier film 1 of the present invention, as shown in FIG. 1B, the gas barrier film 1 further includes a base layer 6 between the smooth layer 4 and the metal layer 5.

更に、本発明のガスバリアーフィルム1のその他の構成としては、図1Cに示すように、基材2の平滑性や基材2に対するガスバリアー層2(蒸着層やポリシラザン改質層)の密着性を向上させるため、中間層としてアンカーコート層7を設けてもよい。また、基材2のガスバリアー層等が有する面とは反対側の面(裏面ともいう)には、傷や汚れが付くことを防止する目的で、ブリードアウト防止層8を基材2上に設けてもよい。   Furthermore, as other structure of the gas barrier film 1 of this invention, as shown to FIG. 1C, the adhesiveness of the gas barrier layer 2 (a vapor deposition layer and a polysilazane modified layer) with respect to the smoothness of the base material 2 and the base material 2 is shown. Therefore, the anchor coat layer 7 may be provided as an intermediate layer. In addition, a bleed-out prevention layer 8 is provided on the base 2 for the purpose of preventing the surface (also referred to as the back side) opposite to the side of the gas barrier layer of the base 2 from being scratched or soiled. It may be provided.

以下、本発明のガスバリアーフィルムの各構成層の詳細について説明する。   Hereinafter, the detail of each structural layer of the gas barrier film of this invention is demonstrated.

〔基材〕
本発明のガスバリアーフィルム1における基材2は、可撓性を有する折り曲げ可能な透明な樹脂フィルムであることが好ましい。基材2としては、ガスバリアー性を有するガスバリアー層3(例えば、蒸着層、ポリシラザン改質層等)を保持することができる材料であれば、特に限定されるものではない。
〔Base material〕
The base material 2 in the gas barrier film 1 of the present invention is preferably a flexible resin film that can be bent. The substrate 2 is not particularly limited as long as it is a material that can hold a gas barrier layer 3 having gas barrier properties (for example, a vapor deposition layer, a polysilazane modified layer, etc.).

基材2としては、例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂材料からなる樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(例えば、製品名Sila−DEC、チッソ株式会社製)、更には上記のフィルム材料を2層以上積層して構成される積層樹脂フィルム等を用いることもできる。   As the base material 2, for example, acrylic ester, methacrylic ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene ( PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide resin film, organic-inorganic hybrid A heat-resistant transparent film (eg, product name Sila-DEC, manufactured by Chisso Corporation) having a silsesquioxane having a structure as a basic skeleton, and a laminated resin film formed by laminating two or more layers of the above film materials. It can also be used Lum and the like.

これら樹脂フィルムのうち、経済性や入手容易性の観点からは、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等のフィルムが好ましく用いられる。また、光学的透明性、耐熱性、ガスバリアー層3(例えば、蒸着層、ポリシラザン改質層等)との密着性等の観点からは、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムも好ましく用いられる。   Among these resin films, films of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used from the viewpoints of economy and availability. From the viewpoint of optical transparency, heat resistance, adhesion to the gas barrier layer 3 (for example, a vapor deposition layer, a polysilazane modified layer, etc.), etc., a silsesquioxane having an organic-inorganic hybrid structure is used as a basic skeleton. A heat-resistant transparent film prepared is also preferably used.

この基材2の厚さは、5〜500μmの範囲内であることが好ましく、更に好ましくは25〜250μmの範囲内である。   The thickness of the substrate 2 is preferably in the range of 5 to 500 μm, more preferably in the range of 25 to 250 μm.

また、基材2は、透明であることが好ましい。基材2が透明であって、かつ基材2上に形成する各層も同様に高い光透過性を有する膜とすることにより、優れた光透過性を備えたガスバリアーフィルムとすることが可能となる。基材2が光透過性を有することにより、有機EL素子の発光光を透過させたり、太陽電池へ向かう太陽光を通過させたりすることが可能になるので、有機EL素子や太陽電池を封止する封止フィルム(透明基板)としても好適に用いることができる。また、上記の樹脂材料を用いた基材2は、未延伸フィルムでもよく、延伸フィルムでもよい。   Moreover, it is preferable that the base material 2 is transparent. By making the base material 2 transparent and each layer formed on the base material 2 also having a high light transmittance, a gas barrier film with excellent light transmittance can be obtained. Become. Since the base material 2 has a light-transmitting property, it is possible to transmit light emitted from the organic EL element or to allow the sunlight toward the solar cell to pass through. Therefore, the organic EL element and the solar cell are sealed. It can also be suitably used as a sealing film (transparent substrate). Moreover, the base material 2 using the above resin material may be an unstretched film or a stretched film.

また、上記の樹脂材料から構成される基材2は、従来公知の一般的な製膜法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の搬送方法(縦軸)方向、又は基材の搬送方向と直角(横軸)の方向に延伸することにより、延伸基材を製造することができる。この場合の延伸倍率は、基材を構成する樹脂の特性に合わせて適宜選択することできるが、延伸倍率としては縦軸方向及び横軸方向にそれぞれ2〜10倍の範囲内であることが好ましい。   Moreover, the base material 2 comprised from said resin material can be manufactured by a conventionally well-known general film forming method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched substrate is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, and other known methods, such as a substrate transport method (vertical axis) direction, Or the extending | stretching base material can be manufactured by extending | stretching in the direction of a right angle (horizontal axis) with the conveyance direction of a base material. The draw ratio in this case can be appropriately selected according to the characteristics of the resin constituting the substrate, but the draw ratio is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively. .

また、この基材2においては、ガスバリアー層3などを形成する前に、基材表面に、コロナ処理等の公知の親水化処理を施してもよい。   Moreover, in this base material 2, before forming the gas barrier layer 3 etc., you may give well-known hydrophilic treatment, such as a corona treatment, to the base-material surface.

〔アンカーコート層〕
本発明のガスバリアーフィルムにおいては、本発明に適用する基材2の表面には、その上に形成するガスバリアー層3(例えば、蒸着層やポリシラザン改質層)との密着性を向上させる目的から、アンカーコート層7(図1Cに記載)を形成してもよい。
[Anchor coat layer]
In the gas barrier film of the present invention, the surface of the substrate 2 applied to the present invention has an object of improving adhesion to the gas barrier layer 3 (for example, a vapor deposition layer or a polysilazane modified layer) formed thereon. From this, an anchor coat layer 7 (described in FIG. 1C) may be formed.

アンカーコート層7は、微小な突起等が存在する基材2の粗面を平坦化し、基材2表面の突起等によって基材2に成膜するガスバリアー層3などに凹凸やピンホールが生じないようにするために設けられる。   The anchor coat layer 7 flattens the rough surface of the substrate 2 on which minute protrusions and the like exist, and irregularities and pinholes are generated in the gas barrier layer 3 and the like formed on the substrate 2 by the protrusions on the surface of the substrate 2. It is provided in order not to exist.

このアンカーコート層に用いられるアンカーコート層形成用材料としては、例えば、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を、1種又は2種以上併せて使用することができる。これらのアンカーコート層形成用材料には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート材料を、適当な溶媒等で溶解してアンカーコート層塗布液を調製した後、当該アンカーコート層塗布液を、ローラーコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の湿式塗布方法により基材上にコーティングし、溶媒、希釈剤等を乾燥除去することにより、アンカーコート層を形成することができる。   As an anchor coat layer forming material used for this anchor coat layer, for example, polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, And alkyl titanates can be used alone or in combination of two or more. Conventionally known additives can be added to these anchor coat layer forming materials. And after dissolving said anchor coat material with a suitable solvent etc. and preparing an anchor coat layer coating liquid, the said anchor coat layer coating liquid is a roller coat, a gravure coat, a knife coat, a dip coat, a spray coat, etc. An anchor coat layer can be formed by coating on a substrate by a known wet coating method and removing the solvent, diluent and the like by drying.

このアンカーコート層形成用材料の塗布量としては、乾燥状態で0.1〜5.0g/mの範囲内が好ましい。The application amount of this anchor coat layer forming material is preferably within a range of 0.1 to 5.0 g / m 2 in a dry state.

一方、本発明においては、アンカーコート層を、例えば、感光性樹脂を硬化させて形成してもよい。このアンカーコート層の形成に用いられる感光性樹脂としては、例えば、ラジカル反応性不飽和結合を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性モノマーを含有している感光性樹脂であれば特に制限はない。反応性モノマーは、1種又は2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。   On the other hand, in the present invention, the anchor coat layer may be formed, for example, by curing a photosensitive resin. Examples of the photosensitive resin used for forming the anchor coat layer include a resin composition containing an acrylate compound having a radical reactive unsaturated bond, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Further, any mixture of the above resin compositions can be used, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There is no particular limitation. A reactive monomer can be used as a 1 type, 2 or more types of mixture, or a mixture with another compound.

また、この感光性樹脂の組成物は、光重合開始剤を含有することが好ましい。光重合開始剤は、1種又は2種以上の組み合わせで使用することができる。   Moreover, it is preferable that the composition of this photosensitive resin contains a photoinitiator. A photoinitiator can be used 1 type or in combination of 2 or more types.

この様な感光性樹脂組成物を用いて、アンカーコート層7を基材2表面に形成する方法は、特に制限はないが、例えば、上記のようにスピンコート、スプレーコート、ブレードコート、ディップコート等の湿式塗布方法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。   A method for forming the anchor coat layer 7 on the surface of the base material 2 using such a photosensitive resin composition is not particularly limited. For example, as described above, spin coating, spray coating, blade coating, dip coating are used. It is preferably formed by a wet coating method such as vapor deposition or a dry coating method such as vapor deposition.

上記のような感光性樹脂組成物を用いてアンカーコート層を形成する際、必要に応じて、上記した感光性樹脂に酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、形成したアンカーコート層への成膜性向上や、アンカーコート層に成膜された膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。   When forming the anchor coat layer using the photosensitive resin composition as described above, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the photosensitive resin as necessary. . In addition, an appropriate resin or additive may be used for improving the film formability on the formed anchor coat layer or preventing pinholes from being formed on the anchor coat layer.

なお、感光性樹脂を溶媒に溶解又は分散させた塗布液を用いてアンカーコート層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。   In addition, as a solvent used when forming an anchor coat layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent, alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol are used. , Terpenes such as α- or β-terpineol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, toluene, xylene, tetramethylbenzene, etc. Aromatic hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carb Acetic esters such as tall acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate , Diethylene glycol dialkyl ether, dipropylene Glycol dialkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.

また、アンカーコート層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10〜30nmの範囲内であることが好ましい。Rtが10nm以上であれば、後述する珪素化合物(ポリシラザン溶液)を塗布する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式でアンカーコート層表面に塗工手段が接触する場合に、塗布性が損なわれることがない。また、Rtが30nm以下であれば、後述する珪素化合物(ポリシラザン溶液)を塗布した後の凹凸を平滑化することができ、好ましい。   Further, the smoothness of the anchor coat layer is a value expressed by the surface roughness defined by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably in the range of 10 to 30 nm. If Rt is 10 nm or more, the coating property is impaired when the coating means comes into contact with the surface of the anchor coat layer by a coating method such as a wire bar or a wireless bar at the stage of coating a silicon compound (polysilazane solution) described later. It will not be. Moreover, if Rt is 30 nm or less, the unevenness | corrugation after apply | coating the silicon compound (polysilazane solution) mentioned later can be smoothed, and it is preferable.

また、アンカーコート層を形成する際に加える添加剤としての好ましい態様のひとつは、感光性樹脂中に、表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むものである。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に適宜汎用の希釈溶剤を混合することによって固形分を調整したものを用いることができる。   In addition, one of the preferred embodiments as an additive to be added when forming the anchor coat layer is a reactive silica particle (hereinafter simply referred to as “photosensitive resin group having a photopolymerizable reactivity” introduced on the surface thereof). (Also referred to as “reactive silica particles”). Here, examples of the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group. The photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be. Moreover, as a photosensitive resin, what adjusted solid content by mixing a general-purpose dilution solvent suitably with such a reactive silica particle or the unsaturated organic compound which has a polymerizable unsaturated group can be used.

ここで、反応性シリカ粒子の平均粒子径としては、0.001〜0.1μmの平均粒子径の範囲内であることが好ましい。平均粒子径をこのような範囲にすることにより、後述する平均粒子径1〜10μmの無機粒子からなるマット剤と組合せて用いることによって、防眩性と解像性とをバランスよく満たす光学特性と、ハードコート性とを兼ね備えたアンカーコート層を形成し易くなる。なお、このような効果をより得易くする観点からは、更に平均粒子径が0.001〜0.01μmの範囲内にある反応性シリカ粒子を用いることがより好ましい。   Here, the average particle diameter of the reactive silica particles is preferably within the range of 0.001 to 0.1 μm average particle diameter. By making the average particle diameter in such a range, by using it in combination with a matting agent made of inorganic particles having an average particle diameter of 1 to 10 μm, which will be described later, optical properties satisfying a good balance between antiglare property and resolution. It becomes easy to form an anchor coat layer having both hard coat properties. From the viewpoint of making it easier to obtain such an effect, it is more preferable to use reactive silica particles having an average particle diameter in the range of 0.001 to 0.01 μm.

本発明において、アンカーコート層中には、上述の様な無機粒子をアンカーコート層全質量に対し、20〜60質量%の範囲内で含有することが好ましい。無機粒子を20質量%以上含有させることにより、ガスバリアー層との密着性が向上する。一方、無機粒子の含有率が60質量%以下であれば、フィルムを湾曲させたり、加熱処理を行った場合のクラックの発生を防止し、ガスバリアーフィルムの透明性や屈折率等の光学的物性に安定して維持することができる。   In this invention, it is preferable to contain the above inorganic particles in the range of 20-60 mass% with respect to the total mass of an anchor coat layer in an anchor coat layer. By containing 20% by mass or more of inorganic particles, the adhesion with the gas barrier layer is improved. On the other hand, if the content of the inorganic particles is 60% by mass or less, the film is bent or cracks are prevented when heat treatment is performed, and optical properties such as transparency and refractive index of the gas barrier film are prevented. Can be stably maintained.

なお、本発明においては、重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。   In the present invention, the polymerizable unsaturated group-modified hydrolyzable silane forms a silyloxy group and is chemically bonded to the silica particles by the hydrolysis reaction of the hydrolyzable silyl group. Such can be used as reactive silica particles. Examples of the hydrolyzable silyl group include a carboxylylate silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oxime silyl group, and a hydridosilyl group. Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.

本発明において、アンカーコート層の厚さとしては、1〜10μmの範囲内が好ましく、更には2〜7μmの範囲内が好ましい。アンカーコート層の厚さを1μm以上にすることにより、アンカーコート層を設けることにより、ガスバリアーフィルムとしての平滑性を十分なものにし易くなり、10μm以下にすることにより、ガスバリアーフィルムの光学特性のバランスを調整し易くなると共に、アンカーコート層をガスバリアーフィルムの一方の面にのみ設けた場合におけるガスバリアーフィルムのカールを抑え易くすることができるようになる。   In the present invention, the thickness of the anchor coat layer is preferably in the range of 1 to 10 μm, and more preferably in the range of 2 to 7 μm. By providing the anchor coat layer to a thickness of 1 μm or more, providing the anchor coat layer facilitates sufficient smoothness as a gas barrier film, and by reducing the thickness to 10 μm or less, the optical characteristics of the gas barrier film. The balance of the gas barrier film can be easily adjusted, and curling of the gas barrier film when the anchor coat layer is provided only on one surface of the gas barrier film can be easily suppressed.

〔ブリードアウト防止層〕
また、本発明のガスバリアーフィルムにおいては、図1Cに例示した様に、基材2の裏面(ガスバリアー層を形成する面とは反対側に面)には、ブリードアウト防止層8を形成してもよい。
[Bleed-out prevention layer]
In the gas barrier film of the present invention, as illustrated in FIG. 1C, a bleed-out prevention layer 8 is formed on the back surface of the substrate 2 (the surface opposite to the surface on which the gas barrier layer is formed). May be.

ブリードアウト防止層8は、樹脂から構成されるフィルム状の基材を加熱した際に、基材中から表面に未反応のオリゴマー等が移行して、基材の表面を汚染する現象を抑制する目的で、アンカーコート層を有する基材2の反対面に設けることができる。ブリードアウト防止層8は、上記現象の抑制機能を有していれば、基本的には、上述したアンカーコート層7と同じ構成をとっても構わない。   The bleed-out prevention layer 8 suppresses a phenomenon in which, when a film-like substrate composed of a resin is heated, unreacted oligomers or the like migrate from the substrate to the surface and contaminate the surface of the substrate. For the purpose, it can be provided on the opposite surface of the substrate 2 having an anchor coat layer. The bleed-out prevention layer 8 may basically have the same configuration as the anchor coat layer 7 described above as long as it has a function of suppressing the above phenomenon.

ブリードアウト防止層8には、ハードコート材料を添加することができる。ハードコート材料としては、可能な重合性不飽和基を有する不飽和有機化合物等を挙げることができ、例えば、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。   A hard coat material can be added to the bleed-out prevention layer 8. Examples of the hard coat material may include unsaturated organic compounds having a polymerizable unsaturated group, such as a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or Mention may be made of unitary unsaturated organic compounds having one polymerizable unsaturated group in the molecule.

ブリードアウト防止層に適用することができるその他の添加剤として、マット剤を挙げることができる。マット剤としては、平均粒子径が0.1〜5μmの範囲にある無機粒子が好ましい。このような無機粒子としては、例えば、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。なお、無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。   Examples of other additives that can be applied to the bleed-out prevention layer include a matting agent. As the matting agent, inorganic particles having an average particle diameter in the range of 0.1 to 5 μm are preferable. As such inorganic particles, for example, one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like should be used in combination. Can do. The matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 18 parts per 100 parts by mass of the solid content of the hard coat agent. It is desirable that they are mixed in a proportion of not more than part by mass, more preferably not more than 16 parts by mass.

また、ブリードアウト防止層には、ハードコート剤及びマット剤の他に、例えば、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。   In addition to the hard coat agent and matting agent, the bleed-out prevention layer may contain, for example, a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like.

熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。   Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like. Vinyl resins, acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonate resins Etc.

熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。   Examples of the thermosetting resin include a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicon resin.

電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種又は2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線又は電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。   The ionizing radiation curable resin is cured by irradiating an ionizing radiation (ultraviolet ray or electron beam) to an ionizing radiation curable paint in which one or more of a photopolymerizable prepolymer or a photopolymerizable monomer is mixed. Things can be used. Here, as the photopolymerizable prepolymer, an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used. As this acrylic prepolymer, urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used. Further, as the photopolymerizable monomer, the polyunsaturated organic compounds described above can be used.

光重合開始剤としては、例えば、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。   Examples of the photopolymerization initiator include acetophenone, benzophenone, Michler ketone, benzoin, benzyl methyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, α-acyloxime ester, thioxanthone and the like.

以上のようなブリードアウト防止層は、ハードコート剤、マット剤及び必要に応じて添加される他の成分を配合して、所定の希釈溶剤を加えて塗布液として調製し、その塗布液を基材2の表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する手段、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する手段により行うことができる。   The bleed-out prevention layer as described above is prepared by adding a hard coating agent, a matting agent, and other components added as necessary, and adding a predetermined dilution solvent to prepare a coating solution. It can form by apply | coating to the surface of the material 2 with a conventionally well-known application | coating method, and then irradiating with ionizing radiation and hardening. As a method of irradiating with ionizing radiation, means for irradiating ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like, or It can be performed by means of irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.

本発明においては、ブリードアウト防止層の厚さとしては、1〜10μmの範囲内が好ましく、更に好ましくは2〜7μmの範囲内である。ブリードアウト防止層の厚さを1μm以上にすることにより、ガスバリアーフィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、ガスバリアーフィルムの光学特性のバランスを調整し易くなると共に、平滑層をガスバリアーフィルムの一方の面に設けた場合におけるガスバリアーフィルムのカールを抑え易くすることができるようになる。   In the present invention, the thickness of the bleed-out prevention layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm. By making the thickness of the bleed-out prevention layer 1 μm or more, it becomes easy to make the heat resistance as a gas barrier film sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of the optical properties of the gas barrier film. At the same time, curling of the gas barrier film when the smooth layer is provided on one surface of the gas barrier film can be easily suppressed.

〔ガスバリアー層〕
本発明のガスバリアーフィルム1においては、基材2上あるいはアンカーコート層7を介して、ガスバリアー層3が形成されている。本発明に係るガスバリアー層3としては、その形成方法に制限はなく、例えば、蒸着法によって形成された金属酸化物から構成されるガスバリアー層や、ポリシラザン化合物を含む塗布液を湿式塗布した後、形成したポリシラザン層に真空紫外光を照射して改質処理を施して形成するガスバリアー層を挙げることができる。
[Gas barrier layer]
In the gas barrier film 1 of the present invention, the gas barrier layer 3 is formed on the substrate 2 or via the anchor coat layer 7. The formation method of the gas barrier layer 3 according to the present invention is not limited. For example, after the gas barrier layer composed of a metal oxide formed by a vapor deposition method or a coating solution containing a polysilazane compound is wet-coated. A gas barrier layer formed by irradiating the formed polysilazane layer with vacuum ultraviolet light and subjecting it to a modification treatment can be mentioned.

(1)ガスバリアー層の形成方法1
基材2に、蒸着法によりガスバリアー層3を形成する際に、適用可能な蒸着法としては、物理気相成長法及び化学気相成長法が挙げられる。
(1) Gas barrier layer forming method 1
Examples of applicable vapor deposition methods when forming the gas barrier layer 3 on the substrate 2 by vapor deposition include physical vapor deposition and chemical vapor deposition.

物理気相成長法とは、気相中で基材2の表面に物理的手法により目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、これらの方法としては、蒸着(抵抗加熱法、電子ビーム蒸着、分子線エピタキシー)法、また、イオンプレーティング法、スパッタ法等がある。   The physical vapor deposition method is a method in which a target substance, for example, a thin film such as a carbon film is deposited on the surface of the substrate 2 in the gas phase by a physical method. There are a heating method, electron beam evaporation, molecular beam epitaxy) method, ion plating method, sputtering method and the like.

一方、化学気相成長法(化学蒸着法、Chemical Vapor Deposition)は、気相中で、基材2に目的とする薄膜の形成成分を含む原料ガスを励起した放電ガスに混合して供給し、基材表面あるいは気相中で、化学反応により、基材2上に薄膜を堆積する方法である。特に、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等がある。   On the other hand, the chemical vapor deposition method (chemical vapor deposition) is a gas phase mixed with a source gas containing a target thin film forming component and supplied to an excited discharge gas in a gas phase, In this method, a thin film is deposited on the substrate 2 by chemical reaction on the substrate surface or in the gas phase. In particular, there is a method of generating plasma etc. for the purpose of activating the chemical reaction. Known CVD methods such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD method, atmospheric pressure plasma CVD method, etc. Etc.

本発明においては、基材2にガスバリアー層を形成する方法としては、成膜速度や処理面積の観点からプラズマCVD法を適用することができ、一つの方法としては真空を必要としない大気圧プラズマCVD法も好ましい。   In the present invention, as a method of forming a gas barrier layer on the substrate 2, a plasma CVD method can be applied from the viewpoint of film formation speed and processing area, and one method is atmospheric pressure that does not require a vacuum. A plasma CVD method is also preferable.

大気圧又は大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧という高圧力条件下では、ガスの平均自由工程が非常に短いために極めて均質の膜が得られる。   The atmospheric pressure plasma CVD method for performing plasma CVD processing at or near atmospheric pressure does not need to be reduced in pressure and has higher productivity than the plasma CVD method under vacuum, and also has a high plasma density. Therefore, the film formation rate is high, and further, under a high pressure condition of atmospheric pressure, compared with the conditions of a normal CVD method, the mean free path of gas is very short, so that a very homogeneous film can be obtained.

本発明でいう大気圧もしくはその近傍の圧力とは、20kPa〜110kPaの圧力範囲内であり、本発明に記載の良好な効果を得るためには、93kPa〜104kPaであることが好ましい。また、本発明でいう励起したガスとは、エネルギーを得ることによって、ガス中の分子の少なくとも一部が、今ある状態からより高いエネルギー状態へ移ることをいい、励起ガス分子、ラジカル化したガス分子、イオン化したガス分子を含むガスがこれに該当する。   The atmospheric pressure referred to in the present invention or the pressure in the vicinity thereof is within a pressure range of 20 kPa to 110 kPa, and is preferably 93 kPa to 104 kPa in order to obtain the good effects described in the present invention. The excited gas as used in the present invention means that at least part of the molecules in the gas move from the existing state to a higher energy state by obtaining energy, and the excited gas molecules, radicalized gas This includes molecules and gas containing ionized gas molecules.

本発明において、蒸着法により金属酸化物を含有するガスバリアー層3を形成する方法は、大気圧もしくはその近傍の圧力下で高周波電界を発生させた放電空間に、珪素などの金属元素を含有する原料ガスを、励起した放電ガスと混合して二次励起ガスを形成し、この二次励起ガスに基材2を晒すことによって、基材2上に無機膜(セラミック膜)を形成するプラズマCVD法である。すなわち、対向電極間(放電空間)を大気圧もしくはその近傍の圧力とし、放電ガスを対向電極間に導入し、高周波電圧を対向電極間に印加して放電ガスをプラズマ状態とし、続いてプラズマ状態になった放電ガスと原料ガスとを放電空間外で混合させて供給し、この混合ガス(二次励起ガス)に基材2を晒して、基材2上にガスバリアー層3を形成する。   In the present invention, the method for forming the gas barrier layer 3 containing a metal oxide by vapor deposition includes a metal element such as silicon in a discharge space where a high-frequency electric field is generated under atmospheric pressure or a pressure in the vicinity thereof. Plasma CVD for forming an inorganic film (ceramic film) on the base material 2 by mixing the source gas with the excited discharge gas to form a secondary excitation gas and exposing the base material 2 to the secondary excitation gas. Is the law. That is, the pressure between the counter electrodes (discharge space) is set to atmospheric pressure or a pressure in the vicinity thereof, a discharge gas is introduced between the counter electrodes, a high frequency voltage is applied between the counter electrodes, and the discharge gas is changed to a plasma state, and then the plasma state The discharge gas and the raw material gas are mixed and supplied outside the discharge space, and the base material 2 is exposed to this mixed gas (secondary excitation gas) to form the gas barrier layer 3 on the base material 2.

なお、本発明におけるプラズマCVD法により形成される金属酸化物を含有するガスバリアー層3は、金属酸化物、金属窒化物、金属炭化物等の複合化合物であってもよい。   In addition, the gas barrier layer 3 containing a metal oxide formed by the plasma CVD method in the present invention may be a composite compound such as a metal oxide, a metal nitride, and a metal carbide.

プラズマCVD法、大気圧プラズマCVD法により得られるガスバリアー層は、原料である有機又は無機の金属化合物の選択、分解ガス、分解温度、投入電力などの条件の選択を行うことにより、その目的に応じて、金属酸化物のセラミック膜、また金属酸化物と金属炭化物、金属窒化物、金属硫化物等の混合物のセラミック膜を適宜形成することができる。例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば珪素酸化物のセラミック膜が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに二硫化炭素を用いれば硫化亜鉛のセラミック膜が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。   The gas barrier layer obtained by the plasma CVD method or the atmospheric pressure plasma CVD method is selected by selecting the organic or inorganic metal compound as the raw material, the conditions such as the decomposition gas, decomposition temperature, input power, etc. Accordingly, a ceramic film of a metal oxide or a mixture of a metal oxide and a metal carbide, a metal nitride, a metal sulfide, or the like can be appropriately formed. For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, a silicon oxide ceramic film is formed. Further, if a zinc compound is used as a raw material compound and carbon disulfide is used as a decomposition gas, a zinc sulfide ceramic film is formed. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.

このような無機膜(セラミック膜)の原料としては、典型元素又は遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。また、溶媒によって希釈して使用してもよく、溶媒としては、例えば、メタノール、エタノール、n−ヘキサンなどの有機溶媒及びこれらの混合溶媒を使用できる。なお、これらの希釈溶媒は、プラズマ放電処理中において分子状、原子状に分解されるため、成膜への影響は殆ど無視することができる。   As a raw material for such an inorganic film (ceramic film), it may be in a gas, liquid, or solid state at normal temperature and pressure as long as it has a typical element or a transition metal element. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. Moreover, you may dilute and use by a solvent and can use organic solvents, such as methanol, ethanol, n-hexane, and these mixed solvents, for example. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence on the film formation can be almost ignored.

また、金属元素を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、例えば、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。   In addition, as a decomposition gas for decomposing a raw material gas containing a metal element to obtain an inorganic compound, for example, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, suboxide Examples thereof include nitrogen gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, and chlorine gas.

金属元素を含む原料ガスと、分解ガスを適宜選択することで、金属酸化物、また金属酸化物と金属炭化物、金属窒化物、金属ハロゲン化物、金属硫化物等の混合物のセラミック膜を得ることができる。   By appropriately selecting a source gas containing a metal element and a decomposition gas, a ceramic film of a metal oxide or a mixture of a metal oxide and a metal carbide, a metal nitride, a metal halide, a metal sulfide, etc. can be obtained. it can.

蒸着法によるガスバリアー層3の形成に際し、原料ガスと分解ガスの反応性ガスに対して、プラズマ状態になりやすい放電ガスを混合し、プラズマ放電処理装置に混合ガスを送りこむ。このような放電ガスとしては、窒素ガス及び/又は周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも、窒素、ヘリウム、アルゴンが好ましく用いられ、特に、窒素がコストも安く好ましい。   When the gas barrier layer 3 is formed by the vapor deposition method, a discharge gas that tends to be in a plasma state is mixed with the reactive gas of the raw material gas and the decomposition gas, and the mixed gas is sent to the plasma discharge processing apparatus. As such a discharge gas, nitrogen gas and / or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.

放電ガスと反応性ガスを混合した混合ガスをプラズマ放電処理装置に供給することで、蒸着膜であるガスバリアー層3を形成する。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給することが好ましい。   The gas barrier layer 3 which is a vapor deposition film is formed by supplying a mixed gas obtained by mixing the discharge gas and the reactive gas to the plasma discharge processing apparatus. Although the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, it is preferable to supply the reactive gas with the ratio of the discharge gas being 50% or more of the entire mixed gas.

以上のように、上記原料ガス(反応性ガス)を放電ガスと共に使用することにより、様々な無機膜(セラミック膜)を形成することができる。本発明においては、蒸着法により形成するガスバリアー層3は、これらの条件を変えた複数の層から構成されてもよく、また放電ガスと反応性ガスの比率や、放電の条件を連続的に変化させた、膜厚方向に不均質な膜から構成されてもよい。   As described above, various inorganic films (ceramic films) can be formed by using the source gas (reactive gas) together with the discharge gas. In the present invention, the gas barrier layer 3 formed by the vapor deposition method may be composed of a plurality of layers in which these conditions are changed, and the ratio of the discharge gas to the reactive gas and the discharge conditions are continuously set. It may be composed of a changed film that is non-uniform in the film thickness direction.

(2)ガスバリアー層の形成方法2:大気圧プラズマ法
ここで、本発明のガスバリアーフィルムを製造する方法において用いることのできる大気圧プラズマCVD法について、更に詳細に説明する。
(2) Gas Barrier Layer Formation Method 2: Atmospheric Pressure Plasma Method Here, the atmospheric pressure plasma CVD method that can be used in the method for producing the gas barrier film of the present invention will be described in more detail.

CVD法(化学的気相成長法)は、揮発・昇華した有機金属化合物が高温の支持体(基材2)表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成されるというものである。このような通常のCVD法(熱CVD法とも称する)では、通常500℃以上の基板温度が必要であるため、プラスチック製の基材2への製膜には使用することが難しい。   In CVD (Chemical Vapor Deposition), volatilized and sublimated organometallic compounds adhere to the surface of the high temperature support (base material 2), a thermal decomposition reaction occurs, and a thermally stable inorganic thin film is formed. Is generated. Such a normal CVD method (also referred to as a thermal CVD method) normally requires a substrate temperature of 500 ° C. or higher, and thus is difficult to use for film formation on a plastic substrate 2.

一方、プラズマCVD法は、支持体(基材2)近傍の空間に電界を印加し、プラズマ状態となった気体が存在する空間(プラズマ空間)を発生させ、揮発・昇華した有機金属化合物がこのプラズマ空間に導入されて分解反応が起きた後、支持体(基材2)上に吹きつけられることにより、無機物の薄膜を形成するというものである。プラズマ空間内では、数%の高い割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン・ラジカルなどの励起状態のガスと接するために、無機膜の原料である有機金属化合物は低温でも分解することができる。従って、無機物を製膜する支持体(基材2)についても低温化することができ、プラスチック製の基材2(樹脂フィルム)へも十分製膜することが可能な製膜方法である。このプラズマCVD法によれば、樹脂フィルム(基材2)上にセラミック膜を形成させたときの膜密度が緻密であり、安定した性能を有する薄膜が得られる。また、残留応力が圧縮応力で、0.01〜20MPaという範囲のセラミック膜が安定に得られることが特徴である。   On the other hand, in the plasma CVD method, an electric field is applied to a space in the vicinity of the support (base material 2) to generate a space (plasma space) in which a gas in a plasma state is present. After being introduced into the plasma space and undergoing a decomposition reaction, it is sprayed onto the support (base material 2) to form an inorganic thin film. In the plasma space, a high percentage of gas is ionized into ions and electrons, and although the temperature of the gas is kept low, the electron temperature is very high, so this high temperature electron or low temperature Is in contact with an excited state gas such as ions or radicals, the organometallic compound as the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, it is a film forming method that can lower the temperature of the support (base material 2) on which the inorganic material is formed, and can sufficiently form the film on the plastic base material 2 (resin film). According to this plasma CVD method, a thin film having a stable performance can be obtained with a dense film density when a ceramic film is formed on the resin film (base material 2). Further, the residual stress is compressive stress, and a ceramic film having a range of 0.01 to 20 MPa can be stably obtained.

なお、本発明に適用できるプラズマ放電処理装置としては、例えば、特開2004−68143号公報、同2003−49272号公報、国際公開第02/48428号等に記載されている装置を挙げることができる。   Examples of the plasma discharge treatment apparatus that can be applied to the present invention include apparatuses described in Japanese Patent Application Laid-Open Nos. 2004-68143, 2003-49272, and WO 02/48428. .

(3)ガスバリアー層の形成方法3:磁場印加プラズマCVD法
本発明に係るガスバリアー層としては、層厚方向で構成原子配分を精緻に制御したガスバリアー層を好ましく適用することができる。本発明に係るガスバリアー層の形成方法としては、特に制限はないが、緻密に元素分布が制御させたガスバリアー層を形成することができる観点からは、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法が好ましい。本発明では、このガスバリアー層形成方式を、磁場印加プラズマCVD法あるいはローラーCVD法ともいう。
(3) Gas Barrier Layer Formation Method 3: Magnetic Field Applied Plasma CVD Method As the gas barrier layer according to the present invention, a gas barrier layer in which constituent atom distribution is precisely controlled in the layer thickness direction can be preferably applied. The method for forming the gas barrier layer according to the present invention is not particularly limited, but from the viewpoint of forming a gas barrier layer in which the element distribution is precisely controlled, a source gas containing an organosilicon compound and an oxygen gas And a method of forming by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied. In the present invention, this gas barrier layer forming method is also referred to as a magnetic field applied plasma CVD method or a roller CVD method.

本発明に係るガスバリアー層としては、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を同時に満たす構成であることが好ましい。   The gas barrier layer according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2) simultaneously: Is preferred.

すなわち、
(1)ガスバリアー層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5at%以上である。
That is,
(1) The distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer In the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”), And the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more.

(2)ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。   (2) In a region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is expressed by the following formula (A) or (B ) In the order of magnitude.

式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
なお、基材界面領域における測定精度は、基材の構成原子のノイズ等でやや精度が低下するため、上記式(A)又は式(B)で規定する関係を満たす領域としては、ガスバリアー層の全層厚の90〜95%の範囲内の領域であることが好ましい。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
In addition, since the measurement accuracy in the base material interface region slightly decreases due to noise of constituent atoms of the base material, the gas barrier layer is used as the region satisfying the relationship defined by the above formula (A) or formula (B). It is preferable that it is a region within a range of 90 to 95% of the total layer thickness.

また、より好ましい態様としては、本発明に係るガスバリアー層の層厚が、50〜1000nmの範囲内であることが好ましい。   Moreover, as a more preferable aspect, the thickness of the gas barrier layer according to the present invention is preferably in the range of 50 to 1000 nm.

以下、本発明に係るガスバリアー層の詳細について説明する。   Hereinafter, the details of the gas barrier layer according to the present invention will be described.

本発明において、本発明に係るガスバリアー層内における炭素原子の含有比率の平均値は、後述するXPSデプスプロファイルの測定によって求めることができる。   In the present invention, the average value of the content ratio of carbon atoms in the gas barrier layer according to the present invention can be obtained by measuring an XPS depth profile described later.

以下、本発明に係る真空蒸着法により形成するガスバリアー層の詳細について更に説明する。   Hereinafter, the details of the gas barrier layer formed by the vacuum deposition method according to the present invention will be further described.

(3.1)ガスバリアー層における炭素元素プロファイル
本発明に係るガスバリアー層は、ガスバリアー層の構成元素として炭素原子、ケイ素原子及び酸素原子を含み、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5at%以上であることが好ましい。
(3.1) Carbon Element Profile in Gas Barrier Layer The gas barrier layer according to the present invention contains carbon atoms, silicon atoms and oxygen atoms as constituent elements of the gas barrier layer, and the composition continuously changes in the layer thickness direction. Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy, the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer, the silicon atom, the oxygen atom And a carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”), and having an extreme value, the carbon atom ratio The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is preferably 5 at% or more.

また、本発明に係るガスバリアー層においては、炭素原子比率がガスバリアー層の特定の領域において、濃度勾配を有して連続的に変化する構成を有することが、ガスバリアー性と屈曲性を両立する観点から好ましい態様である。   In addition, the gas barrier layer according to the present invention has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the gas barrier layer, so that both gas barrier properties and flexibility are achieved. Therefore, this is a preferred embodiment.

このような炭素原子分布プロファイルを有する本発明に係るガスバリアー層においては、層内における炭素分布曲線が少なくとも一つの極値を有することが好ましく、更に、少なくとも2つの極値を有することがより好ましく、少なくとも三つの極値を有することが特に好ましい。前記炭素分布曲線が極値を有さない場合には、得られるガスバリアー性フィルムのフィルムを屈曲させた場合におけるガスバリアー性が不十分となる。また、このように少なくとも二つ又は三つの極値を有する場合においては、前記炭素分布曲線が有する一つの極値及び該極値に隣接する極値における前記ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。   In the gas barrier layer according to the present invention having such a carbon atom distribution profile, the carbon distribution curve in the layer preferably has at least one extreme value, and more preferably has at least two extreme values. It is particularly preferred to have at least three extreme values. When the carbon distribution curve does not have an extreme value, the gas barrier property when the obtained film of the gas barrier film is bent is insufficient. In the case of having at least two or three extreme values as described above, the gas in the thickness direction of the gas barrier layer at one extreme value and the extreme value adjacent to the extreme value that the carbon distribution curve has. The absolute value of the difference in distance from the surface of the barrier layer is preferably 200 nm or less, and more preferably 100 nm or less.

なお、本発明において分布曲線の極値とは、ガスバリアー層の層厚方向における、ガスバリアー層の表面からの距離に対する元素の原子比率の極大値又は極小値の測定値のことをいう。   In the present invention, the extreme value of the distribution curve means a measured value of the maximum value or the minimum value of the atomic ratio of the element to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.

本発明において極大値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる点であって、かつその点の元素の原子比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比率の値が3at%以上減少する点のことをいう。   In the present invention, the maximum value is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed, and from the value of the atomic ratio of the element at that point. This also means that the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 20 nm from that point is reduced by 3 at% or more.

さらに、本発明において極小値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点であり、且つその点の元素の原子比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。   Further, in the present invention, the minimum value is a point where the value of the atomic ratio of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the value of the atomic ratio of the element at that point Rather, the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer from this point is further changed by 20 nm increases by 3 at% or more.

本発明に係るガスバリアー層においては、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5at%以上であることが好ましい態様である。   The gas barrier layer according to the present invention preferably has an extreme value, and the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is preferably 5 at% or more. It is an aspect.

(3.2)ガスバリアー層における各元素プロファイル
本発明に係るガスバリアー層においては、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、それぞれの原子の比率と、最大値及び最小値についての好ましい態様を、以下に説明する。
(3.2) Each element profile in the gas barrier layer The gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements, and the ratio of each atom, Preferred embodiments for the maximum and minimum values are described below.

〈3.2.1〉炭素原子比率の最大値と最小値の関係
本発明に係るガスバリアー層では、炭素分布曲線における炭素原子比率の最大の極値(極大値)と最小の極値(極小値)の差が5at%以上であることが好ましい。また、このようなガスバリアー層においては、炭素原子比率の最大値及び最小値の差の絶対値が6at%以上であることがより好ましく、7at%以上であることが特に好ましい。炭素原子比率の最大値及び最小値の差を5at%以上とすることにより、作製したガスバリアー性フィルムを屈曲させた際のガスバリアー性が十分となる。
<3.2.1> Relationship between Maximum Value and Minimum Value of Carbon Atom Ratio In the gas barrier layer according to the present invention, the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve. Value) is preferably 5 at% or more. In such a gas barrier layer, the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio is more preferably 6 at% or more, and particularly preferably 7 at% or more. By setting the difference between the maximum value and the minimum value of the carbon atom ratio to 5 at% or more, the gas barrier property when the produced gas barrier film is bent is sufficient.

〈3.2.2〉酸素原子比率の最大値と最小値の関係
本発明に係るガスバリアー層においては、酸素分布曲線における最大値及び最小値の差の絶対値が5at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることが特に好ましい。前記絶対値が5at%以上では、得られるガスバリアー性フィルムを屈曲させた場合におけるガスバリアー性が十分となる。
<3.2.2> Relationship between Maximum Value and Minimum Value of Oxygen Atomic Ratio In the gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is 5 at% or more. Preferably, it is 6 at% or more, more preferably 7 at% or more. When the absolute value is 5 at% or more, the gas barrier property when the obtained gas barrier film is bent is sufficient.

〈3.2.3〉ケイ素原子比率の最大値と最小値の関係
本発明に係るガスバリアー層においては、ケイ素分布曲線における最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が5at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性及び機械的強度が十分となる。
<3.2.3> Relationship between maximum value and minimum value of silicon atomic ratio In the gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve may be less than 5 at%. Preferably, it is less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are sufficient.

〈3.2.4〉酸素原子+炭素原子の合計量の比率
本発明に係るガスバリアー層においては、層厚方向における該層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子及び炭素原子の合計量の比率(酸素−炭素合計の原子比率という。)である酸素−炭素合計の分布曲線(酸素炭素分布曲線ともいう。)において、前記酸素−炭素合計の原子比率の最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が5at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性が十分となる。
<3.2.4> Ratio of the total amount of oxygen atoms + carbon atoms In the gas barrier layer according to the present invention, the distance from the surface of the layer in the layer thickness direction and the total of silicon atoms, oxygen atoms and carbon atoms In the oxygen-carbon total distribution curve (also referred to as oxygen-carbon distribution curve), which is the ratio of the total amount of oxygen atoms and carbon atoms to the amount (referred to as the atomic ratio of oxygen-carbon total), the oxygen-carbon total atoms The absolute value of the difference between the maximum value and the minimum value of the ratio is preferably less than 5 at%, more preferably less than 4 at%, and particularly preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is sufficient.

なお、後述する図3に示すような炭素原子分布プロファイル(ケイ素分布曲線、酸素分布曲線及び炭素分布曲線)に関する上記説明において、「ケイ素原子、酸素原子及び炭素原子の合計量」とは、ケイ素原子、酸素原子及び炭素原子の合計at%を意味し、「炭素原子の量」とは、炭素原子数を意味する。本発明でいうat%とは、ケイ素原子、酸素原子及び炭素原子の総原子数を100%としたときの各原子の原子数比率を意味する。また、図3及び図4に示すようなケイ素分布曲線、酸素分布曲線及び酸素炭素分布曲線についての「ケイ素原子の量」及び「酸素原子の量」についても同様である。   In the above description regarding the carbon atom distribution profile (silicon distribution curve, oxygen distribution curve and carbon distribution curve) as shown in FIG. 3 to be described later, “the total amount of silicon atoms, oxygen atoms and carbon atoms” means silicon atoms. Represents the total at% of oxygen atoms and carbon atoms, and “amount of carbon atoms” means the number of carbon atoms. The term “at%” in the present invention means the atomic ratio of each atom when the total number of silicon atoms, oxygen atoms and carbon atoms is 100%. The same applies to “amount of silicon atoms” and “amount of oxygen atoms” for the silicon distribution curve, oxygen distribution curve, and oxygen carbon distribution curve as shown in FIGS.

〈3.2.5〉表面から層厚方向での全層厚領域における元素分布
本発明に係るガスバリアー層においては、ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することが好ましい態様である。
<3.2.5> Element distribution in the entire layer thickness region from the surface to the layer thickness direction In the gas barrier layer according to the present invention, silicon atoms and oxygen are present in a region of 90% or more of the total layer thickness of the gas barrier layer. It is a preferable aspect that the average atomic ratio of each atom with respect to the total amount of atoms and carbon atoms (100 at%) has an order magnitude relationship represented by the following formula (A) or (B).

式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
(3.3)X線光電子分光法による深さ方向の元素分布測定
ガスバリアー層の層厚方向におけるケイ素分布曲線、酸素分布曲線、及び炭素分布曲線、及び酸素−炭素合計の分布曲線等は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
(3.3) Element distribution measurement in the depth direction by X-ray photoelectron spectroscopy The silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the layer thickness direction of the gas barrier layer, the distribution curve of oxygen-carbon total, etc. Created by so-called XPS depth profile measurement, in which X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering of argon or the like are used together to sequentially analyze the surface composition while exposing the inside of the sample. be able to. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time in this way, the etching time generally correlates with the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer in the layer thickness direction. , “Distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer” as calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement Can be adopted. In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).

また、本発明においては、膜面全体において均一で、かつ優れたガスバリアー性を有するガスバリアー層を形成するという観点から、ガスバリアー層が膜面方向(ガスバリアー層の表面に平行な方向)において実質的に一様であることが好ましい。本発明において、ガスバリアー層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりガスバリアー層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素−炭素合計の分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5at%以内の差であることをいう。   In the present invention, from the viewpoint of forming a gas barrier layer that is uniform over the entire film surface and has excellent gas barrier properties, the gas barrier layer is in the film surface direction (direction parallel to the surface of the gas barrier layer). Is substantially uniform. In the present invention, that the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement. When the oxygen-carbon total distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the atomic ratio of carbon in each carbon distribution curve The absolute value of the difference between the maximum value and the minimum value is the same or within 5 at%.

本発明に係るガスバリアー性フィルムは、本発明で規定する前記要件(1)及び(2)を同時に満たすガスバリアー層を少なくとも1層備えることが好ましい態様であるが、そのような条件を満たす層を、2層以上を備えていてもよい。さらに、このようなガスバリアー層を2層以上備える場合には、複数のガスバリアー層の材質は、同一であってもよく、異なっていてもよい。また、このようなガスバリアー層を2層以上備える場合には、このようなガスバリアー層は前記基材の一方の表面上に形成されていてもよく、前記基材の両方の表面上に形成されていてもよい。また、このような複数のガスバリアー層としては、ガスバリアー性を必ずしも有しないガスバリアー層を含んでいてもよい。   The gas barrier film according to the present invention preferably includes at least one gas barrier layer that simultaneously satisfies the requirements (1) and (2) defined in the present invention. May have two or more layers. Furthermore, when two or more such gas barrier layers are provided, the materials of the plurality of gas barrier layers may be the same or different. Further, when two or more such gas barrier layers are provided, such a gas barrier layer may be formed on one surface of the base material, and is formed on both surfaces of the base material. May be. Moreover, as such a plurality of gas barrier layers, a gas barrier layer not necessarily having a gas barrier property may be included.

また、前記ケイ素分布曲線、前記酸素分布曲線及び前記炭素分布曲線において、ケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子比率は、19〜40at%の範囲であることが好ましく、30〜40at%の範囲であることがより好ましい。また、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子比率は、33〜67at%の範囲であることが好ましく、41〜62at%の範囲であることがより好ましい。さらに、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子比率は、1〜19at%の範囲であることが好ましく、3〜19at%の範囲であることがより好ましい。   In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve, the silicon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms is preferably in the range of 19 to 40 at%, and 30 to 40 at%. % Is more preferable. Further, the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, and more preferably in the range of 41 to 62 at%. Furthermore, the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%.

(3.4)ガスバリアー層の厚さ
本発明に係る真空蒸着法で形成されるガスバリアー層の厚さは、5〜1000nmの範囲内であることが好ましく、10〜1000nmの範囲内であることより好ましく、100〜1000nmの範囲内であることが特に好ましい。ガスバリアー層の厚さが前記範囲内であれば、酸素ガスバリアー性、水蒸気バリアー性等のガスバリアー性に優れ、屈曲によるガスバリアー性の低下がみられない。
(3.4) Thickness of gas barrier layer The thickness of the gas barrier layer formed by the vacuum deposition method according to the present invention is preferably in the range of 5 to 1000 nm, and in the range of 10 to 1000 nm. More preferably, it is particularly preferably within the range of 100 to 1000 nm. When the thickness of the gas barrier layer is within the above range, the gas barrier properties such as oxygen gas barrier property and water vapor barrier property are excellent, and the gas barrier property is not deteriorated by bending.

ガスバリアー層の厚さの合計値が前記範囲内であると、所望の平面性を実現することができると共に、酸素ガスバリアー性、水蒸気バリアー性等のガスバリアー性が十分であり、屈曲によりガスバリアー性も低下しにくい傾向にある。   When the total thickness of the gas barrier layer is within the above range, desired flatness can be realized, and gas barrier properties such as oxygen gas barrier property and water vapor barrier property are sufficient. The barrier property tends to be difficult to decrease.

(3.5)ガスバリアー層の形成方法
本発明に係るガスバリアー層の形成方法としては、本発明で規定する元素プロファイルを実現することができる薄膜形成方法であれば特に制限はないが、緻密に元素分布が制御させたガスバリアー層を形成することができる観点からは、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法が好ましい。
(3.5) Gas Barrier Layer Formation Method The gas barrier layer formation method according to the present invention is not particularly limited as long as it is a thin film formation method capable of realizing the element profile defined in the present invention. From the viewpoint of forming a gas barrier layer in which the element distribution is controlled, a discharge plasma chemical gas having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and an oxygen gas. A method of forming by a phase growth method is preferable.

より詳しくは、本発明に係るガスバリアー層は、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材を一対の成膜ローラーに巻き回し、一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電してプラズマ化学気相成長法により形成される層である。また、このように一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。更に、このようなプラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。また、本発明に係るガスバリアー性フィルムにおいては、ガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。   More specifically, the gas barrier layer according to the present invention uses an inter-roller discharge plasma processing apparatus to which a magnetic field is applied, winds a resin base material around a pair of film forming rollers, and forms a film forming gas between the pair of film forming rollers. It is a layer formed by plasma chemical vapor deposition by plasma discharge while being supplied. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Further, as a film forming gas used in such a plasma chemical vapor deposition method, a source gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is within the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the total amount of the organosilicon compound. In the gas barrier film according to the present invention, the gas barrier layer is preferably a layer formed by a continuous film forming process.

次に、本発明に係るガスバリアー層の具体的な形成方法について説明する。   Next, a specific method for forming the gas barrier layer according to the present invention will be described.

本発明に適用可能な磁場を印加したローラー間放電プラズマ化学気相成長法(以下、磁場印加プラズマCVD法、あるいはローラーCVD法ともいう。)においては、プラズマを発生させる際に、複数の成膜ローラー間に磁場を印加しながら、形成した放電空間にプラズマ放電を発生させることが好ましく、本発明では一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに樹脂基材を巻き回して、当該一対の成膜ローラー間に、磁場を印加した状態で放電してプラズマを発生させることが好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に樹脂基材を巻き回して、かかる一対の成膜ローラー間にプラズマ放電することにより、樹脂基材と成膜ローラーとの間の距離が変化することによって、前記炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化するようなガスバリアー層を形成することが可能となる。   In the inter-roller discharge plasma chemical vapor deposition method (hereinafter also referred to as a magnetic field-applied plasma CVD method or a roller CVD method) to which a magnetic field is applied that can be applied to the present invention, a plurality of films are formed when plasma is generated. It is preferable to generate a plasma discharge in the formed discharge space while applying a magnetic field between the rollers. In the present invention, a pair of film forming rollers is used, and a resin substrate is wound around each of the pair of film forming rollers. It is preferable to generate plasma by discharging in a state where a magnetic field is applied between the pair of film forming rollers. Thus, by using a pair of film forming rollers, winding the resin base material on the pair of film forming rollers, and performing plasma discharge between the pair of film forming rollers, the resin base material and the film forming roller By changing the distance between the gas barrier layer and the gas barrier layer, it is possible to form a gas barrier layer in which the carbon atom ratio has a concentration gradient and continuously changes in the layer.

また、成膜時に一方の成膜ローラー上に存在する樹脂基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する樹脂基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記要件(1)及び(2)を同時に満たすガスバリアー層を形成することが可能となる。   It is also possible to form a film on the surface part of the resin substrate that exists on the other film forming roller while forming a film on the surface part of the resin substrate that exists on one film formation roller. In addition to efficiently producing a thin film, the film formation rate can be doubled, and a film having the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled. It is possible to form a gas barrier layer that satisfies the requirements (1) and (2) simultaneously.

また、このようなプラズマ化学気相成長法によりガスバリアー層を形成する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の磁場を印加する装置を具備した成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマ化学気相成長法を利用しながらロールツーロール方式で、ガスバリアー性フィルムを製造することができる。   In addition, as an apparatus that can be used when forming a gas barrier layer by such a plasma chemical vapor deposition method, although not particularly limited, a film forming roller provided with an apparatus that applies at least a pair of magnetic fields; The apparatus preferably includes a plasma power source and is configured to be capable of discharging between a pair of film forming rollers. For example, when the manufacturing apparatus shown in FIG. A gas barrier film can be produced by a roll-to-roll method using a phase growth method.

以下、図2を参照しながら、本発明に係るガスバリアー層の形成方法についてより詳細に説明する。なお、図2は、本発明に係るガスバリアー層の形成において好適に利用することができる磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。   Hereinafter, the gas barrier layer forming method according to the present invention will be described in more detail with reference to FIG. FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the formation of the gas barrier layer according to the present invention is applied.

図2に示す磁場を印加したローラー間放電プラズマCVD装置(以下、プラズマCVD装置ともいう。)は、主には、送り出しローラー111と、搬送ローラー121、122、123及び124と、成膜ローラー131及び132と、成膜ガス供給管141と、プラズマ発生用電源151と、成膜ローラー131及び132の内部に設置された磁場発生装置161及び162と、巻取りローラー171とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー131及び132と、成膜ガス供給管141と、プラズマ発生用電源151と、磁場発生装置161及び162とが、図示を省略した真空チャンバー内に配置されている。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。   An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 111, transport rollers 121, 122, 123, and 124, and a film formation roller 131. And 132, a film forming gas supply pipe 141, a plasma generating power source 151, magnetic field generators 161 and 162 installed inside the film forming rollers 131 and 132, and a winding roller 171. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 131 and 132, the film forming gas supply pipe 141, the plasma generating power supply 151, and the magnetic field generating apparatuses 161 and 162 are not shown in the vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.

このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー131と成膜ローラー132)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源151に接続されている。一対の成膜ローラー(成膜ローラー131と成膜ローラー132)に、プラズマ発生用電源151より電力を供給することにより、成膜ローラー131と成膜ローラー132との間の空間に放電することが可能となり、これにより成膜ローラー131と成膜ローラー132との間の空間(放電空間ともいう。)にプラズマを発生させることができる。なお、このように、成膜ローラー131と成膜ローラー132を電極として利用することになるため、電極として利用可能な材質や設計を適宜変更すればよい。また、このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー131及び132)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー131及び132)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。   In such a plasma CVD manufacturing apparatus, each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 131 and the film forming roller 132) can function as a pair of counter electrodes. The power supply 151 is connected. By supplying power to the pair of film formation rollers (the film formation roller 131 and the film formation roller 132) from the plasma generation power supply 151, the space between the film formation roller 131 and the film formation roller 132 can be discharged. Accordingly, plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 131 and the film formation roller 132. In addition, since the film-forming roller 131 and the film-forming roller 132 are used as electrodes in this way, materials and designs that can be used as electrodes may be changed as appropriate. In such a plasma CVD manufacturing apparatus, it is preferable that the pair of film forming rollers (film forming rollers 131 and 132) be arranged so that their central axes are substantially parallel on the same plane. In this way, by arranging a pair of film forming rollers (film forming rollers 131 and 132), the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled.

また、成膜ローラー131及び成膜ローラー132の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置161及び162がそれぞれ設けられている。   Further, inside the film forming roller 131 and the film forming roller 132, magnetic field generators 161 and 162, which are fixed so as not to rotate even when the film forming roller rotates, are respectively provided.

さらに、成膜ローラー131及び成膜ローラー132としては、適宜公知のローラーを用いることができる。成膜ローラー131及び132としては、より効率よく薄膜を形成することができる観点から、直径が同一のものを使うことが好ましい。また、成膜ローラー131及び132の直径としては、放電条件、チャンバーのスペース等の観点から、直径が100〜1000mmφの範囲、特に100〜700mmφの範囲が好ましい。直径が100mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量がフィルムにかかることを回避でき、残留応力が大きくなりにくく好ましい。一方、直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。   Furthermore, as the film formation roller 131 and the film formation roller 132, known rollers can be used as appropriate. As the film forming rollers 131 and 132, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rollers 131 and 132 are preferably in the range of 100 to 1000 mmφ, particularly in the range of 100 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 100 mmφ or more, it is preferable that the plasma discharge space is not reduced, the productivity is not deteriorated, the total amount of heat of the plasma discharge can be prevented from being applied to the film in a short time, and the residual stress is hardly increased. On the other hand, a diameter of 1000 mmφ or less is preferable because practicality can be maintained in terms of device design including uniformity of the plasma discharge space.

また、このようなプラズマCVD製造装置に用いる送り出しローラー111及び搬送ローラー121、122、123及び124としては、公知のローラーを適宜選択して用いることができる。また、巻取りローラー171としても、ガスバリアー層を形成した樹脂基材1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。   Further, as the feed roller 111 and the transport rollers 121, 122, 123, and 124 used in such a plasma CVD manufacturing apparatus, known rollers can be appropriately selected and used. The winding roller 171 is not particularly limited as long as it can wind the resin base material 1 on which the gas barrier layer is formed, and a known roller can be used as appropriate.

成膜ガス供給管141としては、原料ガス及び酸素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源151としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源151は、これに接続された成膜ローラー131と成膜ローラー132に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源151としては、より効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源151としては、より効率よくプラズマCVD法を実施することが可能となることから、印加電力を100W〜10kWの範囲とすることができ、かつ交流の周波数を50Hz〜500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置161及び62としては、適宜公知の磁場発生装置を用いることができる。   As the film forming gas supply pipe 141, one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used. Further, as the plasma generating power source 151, a conventionally known power source of a plasma generating apparatus can be used. Such a plasma generating power supply 151 supplies power to the film forming roller 131 and the film forming roller 132 connected thereto, and makes it possible to use these as counter electrodes for discharge. As such a plasma generating power supply 151, a plasma CVD method can be carried out more efficiently, so that the polarity of a pair of film forming rollers can be alternately reversed (AC power supply or the like). Is preferably used. In addition, since such a plasma generating power source 151 can perform the plasma CVD method more efficiently, the applied power can be in the range of 100 W to 10 kW, and the AC frequency is 50 Hz. It is more preferable that it can be in the range of ˜500 kHz. As the magnetic field generators 161 and 62, known magnetic field generators can be used as appropriate.

図2に示すようなプラズマCVD装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力、成膜ローラーの直径、並びに、樹脂基材の搬送速度を適宜調整することにより、本発明に係るガスバリアー層を形成することができる。すなわち、図2に示すプラズマCVD装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー131及び132)間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー131上の樹脂基材101の表面上並びに成膜ローラー132上の樹脂基材101の表面上に、本発明に係るガスバリアー層がプラズマCVD法により形成される。なお、このような成膜に際しては、樹脂基材101が送り出しローラー111や成膜ローラー131等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより樹脂基材101の表面上に前記ガスバリアー層が形成される。   Using the plasma CVD apparatus as shown in FIG. 2, for example, the type of source gas, the power of the electrode drum of the plasma generator, the strength of the magnetic field generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the resin The gas barrier layer according to the present invention can be formed by appropriately adjusting the conveyance speed of the substrate. That is, using the plasma CVD apparatus shown in FIG. 2, a magnetic field is generated between a pair of film forming rollers (film forming rollers 131 and 132) while supplying a film forming gas (raw material gas) into the vacuum chamber. By performing plasma discharge, the film forming gas (raw material gas or the like) is decomposed by plasma, and on the surface of the resin base material 101 on the film forming roller 131 and on the surface of the resin base material 101 on the film forming roller 132. The gas barrier layer according to the present invention is formed by the plasma CVD method. In such film formation, the resin base material 101 is transported by the delivery roller 111, the film formation roller 131, and the like, respectively, so that the resin base material 101 is formed by a roll-to-roll continuous film formation process. The gas barrier layer is formed on the surface.

〈3.5.1〉原料ガス
本発明に係るガスバリアー層の形成に用いる成膜ガスを構成する原料ガスは、少なくともケイ素を含有する有機ケイ素化合物を用いることが好ましい。
<3.5.1> Source gas It is preferable to use an organosilicon compound containing at least silicon as the source gas constituting the film forming gas used for forming the gas barrier layer according to the present invention.

本発明に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3−テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られるガスバリアー層のガスバリアー性等の観点から、ヘキサメチルジシロキサン、1,1,3,3−テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。   Examples of the organosilicon compound applicable to the present invention include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethyl. Examples thereof include silane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling in film formation and gas barrier properties of the obtained gas barrier layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.

また、前記成膜ガスは、原料ガスの他に反応ガスとして、酸素ガスを含有することを特徴とする。酸素ガスは、前記原料ガスと反応して酸化物等の無機化合物となるガスである。   The film-forming gas contains oxygen gas as a reaction gas in addition to the source gas. The oxygen gas is a gas that reacts with the raw material gas to become an inorganic compound such as an oxide.

前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。   As the film forming gas, a carrier gas may be used as necessary to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.

このような成膜ガスが、ケイ素を含有する有機ケイ素化合物を含む原料ガスと酸素ガスを含有する場合、原料ガスと酸素ガスの比率としては、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。酸素ガスの比率を過剰にし過ぎてしまうと、本発明で目的とするガスバリアー層が得られにくい。よって、所望したバリアー性フィルムとしての性能が得る上では、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下とすることが好ましい。   When such a film forming gas contains a raw material gas containing an organosilicon compound containing silicon and an oxygen gas, the ratio of the raw material gas to the oxygen gas is such that the raw material gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively higher than the theoretically required oxygen gas ratio. If the ratio of oxygen gas is excessive, it is difficult to obtain the target gas barrier layer in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount necessary for complete oxidation.

〈3.5.2〉真空度
真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa〜100Paの範囲とすることが好ましい。
<3.5.2> Degree of vacuum The pressure (degree of vacuum) in the vacuum chamber can be adjusted as appropriate according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 100 Pa.

〈3.5.3〉ローラー成膜
図2に示すようなプラズマCVD装置等を用いたプラズマCVD法においては、成膜ローラー131及び132間に放電するために、プラズマ発生用電源151に接続された電極ドラム(図2においては、成膜ローラー131及び132に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概にいえるものでないが、0.1〜10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生も見られず、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による、樹脂基材の熱変形、熱による性能劣化や成膜時の皺の発生もない。また、熱で樹脂基材が溶けて、裸の成膜ローラー間に大電流の放電が発生することによる成膜ローラーに対する損傷等を防止することができる。
<3.5.3> Roller Film Formation In the plasma CVD method using a plasma CVD apparatus or the like as shown in FIG. 2, it is connected to a plasma generation power source 151 in order to discharge between the film formation rollers 131 and 132. The power applied to the electrode drum (installed in the film forming rollers 131 and 132 in FIG. 2) can be adjusted as appropriate according to the type of source gas and the pressure in the vacuum chamber. Although it cannot be generally stated, it is preferably within a range of 0.1 to 10 kW. If the applied power is in such a range, no generation of particles (illegal particles) is observed, and the amount of heat generated during film formation is within the control range. There is no thermal deformation of the base material, performance deterioration due to heat, and no wrinkles during film formation. In addition, damage to the film forming roller due to melting of the resin base material by heat and generation of a large current discharge between the bare film forming rollers can be prevented.

樹脂基材101の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25〜100m/minの範囲内とすることが好ましく、0.5〜20m/minの範囲内とすることがより好ましい。ライン速度が前記範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成されるガスバリアー層の厚さも十分に制御可能となる。   Although the conveyance speed (line speed) of the resin base material 101 can be suitably adjusted according to the kind of raw material gas, the pressure in a vacuum chamber, etc., it is preferable to set it as the range of 0.25-100 m / min. More preferably, it is in the range of 0.5 to 20 m / min. When the line speed is within the above range, wrinkles due to the heat of the resin base material hardly occur, and the thickness of the formed gas barrier layer can be sufficiently controlled.

以上のようにして形成される本発明に係るガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の各元素プロファイルの一例を図3に示す。   FIG. 3 shows an example of each element profile in the layer thickness direction based on the XPS depth profile of the gas barrier layer according to the present invention formed as described above.

図3は、本発明に係るガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフである。   FIG. 3 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve of the gas barrier layer according to the present invention.

図3において、符号A〜Dは、Aが炭素分布曲線、Bがケイ素分布曲線、Cが酸素分布曲線、Dが酸素炭素分布曲線を表す。図3に示すグラフであるように、本発明に係るガスバリアー層が、極値を有し、炭素原子比率の最大の極大値と最小の極大値との差が5at%以上であり、かつガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、前式(A)又は(B)で規定する序列の大小関係を満たしていることが分かる。   In FIG. 3, symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as an oxygen carbon distribution curve. As shown in the graph of FIG. 3, the gas barrier layer according to the present invention has an extreme value, the difference between the maximum maximum value and the minimum maximum value of the carbon atom ratio is 5 at% or more, and the gas In a region of 90% or more of the total thickness of the barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is defined by the above formula (A) or (B). It can be seen that the order of magnitude is satisfied.

(ガスバリアー層の形成方法3:ポリシラザン改質法による形成)
本発明のガスバリアーフィルム1は、ポリシラザン改質法により、ガスバリアー層3を基材2上に直接設けること、あるいはアンカーコート層7を介して基材2上に設けることができる。
(Gas barrier layer formation method 3: Polysilazane modification method)
The gas barrier film 1 of the present invention can be provided on the substrate 2 by directly providing the gas barrier layer 3 on the substrate 2 or through the anchor coat layer 7 by a polysilazane modification method.

本発明におけるポリシラザン改質法とは、ポリシラザン化合物の一部又は大部分部を、改質処理により、酸化珪素又は酸化窒化珪素へ転化する処理をいう。   The polysilazane modification method in the present invention refers to a process of converting a part or most of a polysilazane compound into silicon oxide or silicon oxynitride by a modification process.

この改質処理は、本発明のガスバリアーフィルム1を作製するに際し、プラスチック基板への適応という観点から、より低温で、転化反応が可能な紫外光を適用した転化反応が好適に用いられる。   In the modification treatment, when the gas barrier film 1 of the present invention is produced, a conversion reaction using ultraviolet light capable of a conversion reaction at a lower temperature is preferably used from the viewpoint of adaptation to a plastic substrate.

ポリシラザン改質法により形成するガスバリアー層3は、ポリシラザンを含む液体を塗布及び乾燥した後、真空紫外光を照射して改質処理を施すことにより形成されており、形成するガスバリアー層3としては、珪素酸化物を含有している。   The gas barrier layer 3 formed by the polysilazane modification method is formed by applying and drying a liquid containing polysilazane and then applying a modification treatment by irradiation with vacuum ultraviolet light. Contains silicon oxide.

〈ポリシラザン化合物を含む塗布液による塗布〉
本発明に係るポリシラザン化合物とは、珪素−窒素結合を有するポリマーで、Si−N、Si−H、N−H等の結合を有するSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
<Coating with coating solution containing polysilazane compound>
The polysilazane compound according to the present invention is a polymer having a silicon-nitrogen bond, SiO 2 having a bond such as Si—N, Si—H, or N—H, Si 3 N 4 and both intermediate solid solutions SiO x N y. Such as a ceramic precursor inorganic polymer.

当該ポリシラザン化合物を含む塗布液を塗布する塗布方法としては、従来公知の適切な湿式塗布方法を採用することができる。具体例としては、スピンコート法、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。   As a coating method for coating the coating liquid containing the polysilazane compound, a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating, roller coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing.

本発明において、ガスバリアー層3の厚さは、目的に応じて適切に設定することができる。例えば、乾燥後の厚さとしては、1nm〜100μmの範囲内であることが好ましく、更に好ましくは10nm〜10μmの範囲内であり、最も好ましくは10nm〜1μmの範囲内である。   In the present invention, the thickness of the gas barrier layer 3 can be appropriately set according to the purpose. For example, the thickness after drying is preferably in the range of 1 nm to 100 μm, more preferably in the range of 10 nm to 10 μm, and most preferably in the range of 10 nm to 1 μm.

また、ポリシラザン化合物としては、基材2の性状を損なわないように塗布するため、比較的低温でセラミック化してシリカに変性する化合物が好ましく、例えば、特開平8−112879号公報に記載の下記一般式(1)で表される単位からなる主骨格を有する化合物が好ましい。   Further, the polysilazane compound is preferably a compound that is ceramicized at a relatively low temperature and modified to silica so that the properties of the base material 2 are not impaired. For example, the following general compounds described in JP-A-8-112879 A compound having a main skeleton composed of units represented by the formula (1) is preferred.

Figure 0006094577
Figure 0006094577

上記一般式(1)において、R、R及びRは、それぞれ独立して、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. Represent.

本発明では、得られるガスバリアー膜としての緻密性の観点から、R、R、及びRの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。In the present invention, perhydropolysilazane in which all of R 1 , R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a gas barrier film to be obtained.

また、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンでは、メチル基等のアルキル基を有することにより、下地である基材2との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、膜厚(平均膜厚)をより厚くした場合でも、クラックの発生が抑えられる利点がある。そこで用途に応じて適宜、パーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。   In addition, in the organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like, by having an alkyl group such as a methyl group, the adhesiveness with the base material 2 as a base is improved, In addition, the ceramic film made of polysilazane, which is hard and brittle, can be toughened, and even when the film thickness (average film thickness) is made thicker, the occurrence of cracks can be suppressed. Accordingly, perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.

パーヒドロポリシラザンは、直鎖構造と、6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は、数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。これらの化合物は、有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。   Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there is a liquid or solid substance, and its state varies depending on the molecular weight. These compounds are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.

低温でセラミック化するポリシラザン化合物の他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、珪素アルコキシドを反応させて得られる珪素アルコキシド付加ポリシラザン(例えば、特開平5−238827号公報参照。)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6−122852号公報参照。)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6−240208号公報参照。)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6−299118号公報参照。)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6−306329号公報参照。)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7−196986号公報参照。)等が挙げられる。   As another example of the polysilazane compound that is ceramicized at a low temperature, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of the unit represented by the general formula (1) (for example, a special compound) No. 5-238827), a glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), and an alcohol-added polysilazane obtained by reacting an alcohol (eg, JP-A-6-6). -240208), a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and a metal-containing acetylacetonate complex. Acetylacetonate complex-added polysilazane ( In example, JP-A 6-306329 JP reference.), Fine metal particles of the metal particles added polysilazane obtained by adding (e.g., JP-A-7-196986 JP reference.), And the like.

ポリシラザン化合物を含有するガスバリアー層形成用塗布液を調製する有機溶媒としては、ポリシラザン化合物と容易に反応するようなアルコール系や水分を含有するものを用いることは好ましくない。従って、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒や、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。詳しくは、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の特性にあわせて選択し、複数の有機溶媒を混合してもよい。   As an organic solvent for preparing a gas barrier layer-forming coating solution containing a polysilazane compound, it is not preferable to use an alcohol or water-containing one that easily reacts with the polysilazane compound. Therefore, specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. . Specifically, there are hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.

ポリシラザン化合物を含有するガスバリアー層形成用塗布液中におけるポリシラザン濃度は、目的とするポリシラザン改質層の膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%の範囲内であることが好ましい。   The concentration of polysilazane in the coating liquid for forming a gas barrier layer containing a polysilazane compound varies depending on the film thickness of the target polysilazane modified layer and the pot life of the coating liquid, but is within the range of 0.2 to 35% by mass. Preferably there is.

ポリシラザン化合物を含有するガスバリアー層形成用塗布液には、酸化珪素化合物への転化を促進するため、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。   An amine or metal catalyst may be added to the gas barrier layer forming coating solution containing a polysilazane compound in order to promote conversion to a silicon oxide compound. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.

本発明に用いるポリシラザン化合物を含有するガスバリアー層形成用塗布液により形成されたポリシラザン改質層(ガスバリアー層)は、改質処理前又は改質処理中に水分が除去されていることが好ましい。そのために、ポリシラザン改質層中の有機溶媒の除去を目的とする第一乾燥工程と、それに続くポリシラザン改質層中の水分の除去を目的とする第二乾燥工程とに分かれていてもよい。   The polysilazane modified layer (gas barrier layer) formed by the gas barrier layer forming coating solution containing the polysilazane compound used in the present invention preferably has moisture removed before or during the modification treatment. . Therefore, it may be divided into a first drying step for the purpose of removing the organic solvent in the polysilazane modified layer and a second drying step for the purpose of removing the water in the polysilazane modified layer.

第一乾燥工程においては、主に有機溶媒を取り除くため、乾燥条件を熱処理等の方法で適宜決めることができ、このときに水分が除去される条件であってもよい。熱処理温度は迅速処理の観点から高い温度であることが好ましいが、樹脂フィルムである基材2に対する熱ダメージを考慮し、温度と処理時間を適宜決定することが好ましい。例えば、基材2として、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を用いる場合には、熱処理温度は150℃以下を設定することが好ましい。処理時間は溶媒が除去され、かつ基材2への熱ダメージが少なくなるように短時間に設定することが好ましく、熱処理温度が150℃以下であれば30分以内に設定することができる。   In the first drying step, mainly the organic solvent is removed, and therefore, the drying conditions can be appropriately determined by a method such as heat treatment, and the conditions may be such that moisture is removed at this time. The heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature and treatment time in consideration of thermal damage to the substrate 2 that is a resin film. For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used as the substrate 2, the heat treatment temperature is preferably set to 150 ° C. or less. The treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate 2 is reduced. If the heat treatment temperature is 150 ° C. or less, the treatment time can be set within 30 minutes.

第二乾燥工程は、ポリシラザン改質層(ガスバリアー層3)の水分を取り除くための工程で、水分を除去する方法としては低湿度環境に維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−8℃(温度25℃/湿度10%)以下、更に好ましい露点温度は−31℃(温度25℃/湿度1%)以下である。また、水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧〜0.1MPaの範囲内で選ぶことができる。   The second drying step is a step for removing moisture from the polysilazane modified layer (gas barrier layer 3). As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −8 ° C. (temperature 25 ° C./humidity 10%) or less, and a more preferable dew point temperature is −31 ° C. (temperature 25 ° C./temperature). Humidity 1%) or less. Moreover, you may dry under reduced pressure in order to make it easy to remove a water | moisture content. The pressure in vacuum drying can be selected within the range of normal pressure to 0.1 MPa.

第一乾燥工程の条件に対する第二乾燥工程の好ましい条件としては、例えば、第一乾燥工程として温度60〜150℃、処理時間1分〜30分間の範囲で溶媒を除去したときには、第二乾燥工程としては、露点は4℃以下で、処理時間は5分〜120分により水分を除去する条件を選ぶことができる。   As a preferable condition of the second drying step with respect to the condition of the first drying step, for example, when the solvent is removed in the range of a temperature of 60 to 150 ° C. and a processing time of 1 to 30 minutes as the first drying step, the second drying step The dew point is 4 ° C. or less, and the treatment time is 5 minutes to 120 minutes.

本発明に係るポリシラザン改質層(ガスバリアー層3)は、第二乾燥工程により水分が取り除かれた後も、その状態を維持しながら改質処理を施すことが好ましい。   The polysilazane modified layer (gas barrier layer 3) according to the present invention is preferably subjected to a modification treatment while maintaining its state even after moisture is removed by the second drying step.

〈ポリシラザン層の改質処理及び真空紫外光照射処理〉
本発明におけるポリシラザン層の改質処理とは、ポリシラザン化合物の一部又は全部が、酸化珪素又は酸化窒化珪素への転化する反応をいう。
<Polysilazane layer modification treatment and vacuum ultraviolet light irradiation treatment>
The modification treatment of the polysilazane layer in the present invention refers to a reaction in which part or all of the polysilazane compound is converted into silicon oxide or silicon oxynitride.

ガスバリアー層の形成に用いる改質処理は、ポリシラザン化合物の転化反応に基づく公知の方法を選ぶことができる。ポリシラザン化合物の置換反応による酸化珪素膜又は酸化窒化珪素膜の形成には、通常450℃以上の高温が必要であり、樹脂フィルムを基材2に用いたフレキシブル基板においては、その適応が難しい。従って、本発明のガスバリアーフィルムを作製するに際しては、プラスチック基板への適応という観点から、より低温で、転化反応が可能な真空紫外光を用いた転化反応が好ましい。   As the modification treatment used for forming the gas barrier layer, a known method based on the conversion reaction of the polysilazane compound can be selected. The formation of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a polysilazane compound usually requires a high temperature of 450 ° C. or higher, and it is difficult to adapt to a flexible substrate using a resin film as the base material 2. Therefore, when producing the gas barrier film of the present invention, a conversion reaction using vacuum ultraviolet light capable of a conversion reaction at a lower temperature is preferable from the viewpoint of adaptation to a plastic substrate.

本発明に係るガスバリアーフィルム1の製造方法において、水分が取り除かれたポリシラザン塗膜に対して、紫外光照射による改質処理が施される。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温環境下で、高い緻密性と絶縁性を有する酸化珪素膜や酸化窒化珪素膜等を形成することが可能である。   In the method for producing the gas barrier film 1 according to the present invention, the polysilazane coating film from which moisture has been removed is subjected to a modification treatment by ultraviolet light irradiation. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and form high-density and insulating silicon oxide films and silicon oxynitride films under low-temperature environments. Is possible.

この紫外光照射により、セラミックス化に寄与するOとHOや、紫外線吸収剤、ポリシラザン化合物自身が励起、活性化される。そして、励起したポリシラザン化合物のセラミックス化が促進され、得られるセラミックス膜が緻密になる。紫外光照射は、塗膜形成後であればいずれの時点で実施しても有効である。This ultraviolet light irradiation excites and activates O 2 and H 2 O, UV absorbers, and polysilazane compounds themselves that contribute to ceramicization. And the ceramicization of the excited polysilazane compound is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.

本発明での真空紫外光の照射処理には、常用されているいずれの紫外線発生装置を使用することが可能である。なお、本発明でいう紫外光とは、一般には、真空紫外光とよばれる10〜200nmの範囲内に波長を有する電磁波を含む紫外光をいう。   Any commonly used ultraviolet ray generator can be used for the vacuum ultraviolet ray irradiation treatment in the present invention. The ultraviolet light referred to in the present invention generally refers to ultraviolet light containing electromagnetic waves having a wavelength in the range of 10 to 200 nm called vacuum ultraviolet light.

真空紫外光の照射は、照射される改質前のポリシラザン層を担持している基材2がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。   In the irradiation with vacuum ultraviolet light, it is preferable to set the irradiation intensity and the irradiation time within a range in which the base material 2 carrying the polysilazane layer to be irradiated is not damaged.

基材2としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmの範囲内になるように、基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の範囲内で照射を行うことができる。Taking the case where a plastic film is used as the base material 2, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / The distance between the substrate and the ultraviolet irradiation lamp can be set so as to be within the range of cm 2 , and irradiation can be performed within the range of 0.1 second to 10 minutes.

一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、変形したりその強度が劣化したりするなど、基材2の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムなどの場合には、より高温での改質処理が可能である。従って、この紫外線照射時の基材温度としては、一般的な上限はなく、基材2の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。   In general, when the substrate temperature during the ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the substrate 2 are impaired in the case of a plastic film or the like such as deformation or deterioration of its strength. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of the substrate 2. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.

このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線を、改質前のポリシラザン層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから改質前のポリシラザン層に当てる方式が望ましい。   Examples of such ultraviolet ray generating means include, but are not limited to, a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, and a UV light laser. In addition, when irradiating the pre-modified polysilazane layer with the generated ultraviolet light, from the viewpoint of achieving improved efficiency and uniform irradiation, the ultraviolet light from the source is reflected by the reflector and then before the modification. A method of applying to the polysilazane layer is desirable.

紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材2の形状によって適宜選定することができる。ポリシラザンの改質処理により形成するガスバリアー層3を有する基材2が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材2やガスバリアー層3の組成、濃度にもよるが、一般に0.1秒〜10分の範囲であり、好ましくは0.5秒〜3分の範囲である。   The ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate 2 to be used. When the base material 2 having the gas barrier layer 3 formed by the modification treatment of polysilazane is in the form of a long film, ultraviolet rays are continuously produced in the drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. Can be converted to ceramics. The time required for ultraviolet irradiation depends on the composition and concentration of the base material 2 and gas barrier layer 3 to be used, but is generally in the range of 0.1 second to 10 minutes, preferably in the range of 0.5 second to 3 minutes. It is.

また、真空紫外光(VUV)を照射する際の、酸素濃度は300〜10000ppm(1%)の範囲内とすることが好ましく、更に好ましくは、500〜5000ppmの範囲内である。このような酸素濃度の範囲に調整することにより、酸素過多のガスバリアー層の生成を防止して、ガスバリアー性の劣化を防止することができる。真空紫外光(VUV)照射時には、これら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特に、経済性の観点からは乾燥窒素ガスにすることが好ましい。   Moreover, it is preferable to make oxygen concentration in the range of 300-10000 ppm (1%) at the time of irradiating vacuum ultraviolet light (VUV), More preferably, it exists in the range of 500-5000 ppm. By adjusting to such an oxygen concentration range, it is possible to prevent the formation of a gas barrier layer containing excess oxygen and to prevent the deterioration of gas barrier properties. At the time of vacuum ultraviolet light (VUV) irradiation, it is preferable to use a dry inert gas as the gas other than oxygen, and it is particularly preferable to use a dry nitrogen gas from the viewpoint of economy.

酸素濃度の調整は、照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。具体的に、本発明に係る改質前のポリシラザン層の改質処理方法は、真空紫外光照射による処理である。真空紫外光照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で酸化珪素膜の形成を行う方法である。これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。   The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio. Specifically, the modification treatment method for the polysilazane layer before modification according to the present invention is treatment by irradiation with vacuum ultraviolet light. The treatment by vacuum ultraviolet light irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and the bonding of atoms is called a photon process called a photon process. This is a method in which a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by only the action. As a vacuum ultraviolet light source required for this, a rare gas excimer lamp is preferably used.

なお、Xe、Kr、Ar、Ne等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は、他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe
Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに、172nmのエキシマ光(真空紫外光)を発光する。
Note that rare gas atoms such as Xe, Kr, Ar, and Ne are referred to as inert gases because they are not chemically bonded to form molecules. However, a rare gas atom (excited atom) that has gained energy by discharge or the like can combine with other atoms to form a molecule. When the rare gas is xenon,
e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light (vacuum ultraviolet light) of 172 nm is emitted.

エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。更には、始動及び再始動に時間を要さないので、瞬時の点灯及び点滅が可能である。   A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.

エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電である。   In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. This is a very thin discharge called micro discharge.

また、効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外には、無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリアー放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電は、このように空間的にまた時間的に一様な放電が得られる。   In addition to dielectric barrier discharge, electrodeless field discharge is also known as a method for efficiently obtaining excimer light emission. The electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge. The lamp and electrodes and their arrangement may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. In the electrodeless field discharge, a spatially and temporally uniform discharge can be obtained in this way.

そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは、能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。従って、波長185nm、254nmの紫外光を発する低圧水銀ランプやプラズマ洗浄と比べて、高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。   The Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating organic bonds has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time. Therefore, compared to low-pressure mercury lamps and plasma cleaning that emit ultraviolet light with wavelengths of 185 nm and 254 nm, shortening process time, equipment area, organic materials, plastic substrates, resin films, etc. that are easily damaged by heat, etc. Irradiation is possible.

また、エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等の樹脂フィルムを基材2とするガスバリアーフィルムへの照射に適している。   In addition, since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed. For this reason, it is suitable for the irradiation to the gas barrier film which makes the base material 2 resin films, such as a polyethylene terephthalate considered to be easy to receive the influence of a heat | fever.

本発明に係るガスバリアー層は、ポリシラザン化合物を含有するガスバリアー層形成用塗布液により形成されたポリシラザン膜に改質処理を施して形成したガスバリアー層が好ましく用いられる。基材上に形成されるガスバリアー層としては、蒸着法で形成されたガスバリアー層よりも、ポリシラザン化合物の改質処理により形成されたガスバリアー層は、表面の微細な凹凸を解消する効果がより大きく、その後の平滑層で平滑化する際の負荷を低減できる。   As the gas barrier layer according to the present invention, a gas barrier layer formed by subjecting a polysilazane film formed by a gas barrier layer forming coating solution containing a polysilazane compound to a modification treatment is preferably used. As a gas barrier layer formed on a substrate, a gas barrier layer formed by a modification treatment of a polysilazane compound has an effect of eliminating fine irregularities on the surface, rather than a gas barrier layer formed by a vapor deposition method. It is larger and the load at the time of smoothing with the subsequent smooth layer can be reduced.

(複数層から構成されるガスバリアー層ユニット)
本発明に係るガスバリアー層の構成としては、上記説明した化学蒸着法により形成するガスバリアー層、あるいはポリシラザン改質法による形成するガスバリアー層であってもよいが、更に好ましい態様は、ガスバリアー層が少なくとも2層で構成され、基材側に位置する第1のガスバリアー層が、上記説明した炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、前記要件(1)及び(2)を同時に満たす構成であガスバリアー層Bであり、最表層側に位置する第2のガスバリアー層が、ガスバリアー層B上に上記説明したポリシラザン含有塗布液を塗布したのち、改質処理を施して形成されたガスバリアー層であるハイブリッドガスバリアー層ユニットであることが好ましい。
(Gas barrier layer unit consisting of multiple layers)
The configuration of the gas barrier layer according to the present invention may be a gas barrier layer formed by the above-described chemical vapor deposition method or a gas barrier layer formed by a polysilazane modification method, but a more preferable embodiment is a gas barrier layer. The layer is composed of at least two layers, and the first gas barrier layer located on the substrate side contains the carbon atom, silicon atom and oxygen atom described above, and the composition continuously changes in the layer thickness direction, The gas barrier layer B is configured to satisfy the requirements (1) and (2) at the same time, and the second gas barrier layer located on the outermost layer side has the polysilazane-containing coating liquid described above on the gas barrier layer B. A hybrid gas barrier layer unit, which is a gas barrier layer formed by applying a modification treatment after coating, is preferable.

〔平滑層〕
本発明のガスバリアーフィルムにおいては、上記説明したガスバリアー層3の表面に、平滑層4を有することを特徴とする。本発明においては、平滑層は、ウレタン結合を有する化合物を含有することを特徴とする。ウレタン結合を有する化合物、例えば、ポリオール化合物とイソシアネート基を有する化合物とを含有する平滑層形成用塗布液を、ガスバリアー層3上に塗布乾燥することにより、平滑層4を形成することが好ましい態様である。本発明のガスバリアーフィルム1においては、平滑層4は基材2の少なくとも一方の面上に形成されている。
[Smooth layer]
The gas barrier film of the present invention has a smooth layer 4 on the surface of the gas barrier layer 3 described above. In the present invention, the smooth layer contains a compound having a urethane bond. It is preferable that the smooth layer 4 is formed by coating and drying a coating solution for forming a smooth layer containing a compound having a urethane bond , for example, a polyol compound and a compound having an isocyanate group, on the gas barrier layer 3. It is. In the gas barrier film 1 of the present invention, the smooth layer 4 is formed on at least one surface of the substrate 2.

平滑層4は、微小な突起等が存在するガスバリアー層3の粗表面を平坦化し、ガスバリアー層3表面の突起等によってガスバリアー層3上に成膜する、後述する下地層6や金属層5などに凹凸やピンホールが生じないようにするために設けられる。このような平滑層4を形成する化合物としては、ウレタン結合を有する化合物であることを特徴とし、例えば、ポリマー骨格中に少なくとも1つのウレタン結合を有する化合物などが好ましく用いられ、具体的には1分子中に少なくとも2つ以上のヒドロキシ基を有する公知のポリオール化合物と、1分子中にイソシアネート基を2つ以上有する公知の多官能イソシアネート化合物を用いて、ウレタン架橋した硬化樹脂であることが好ましい。この様な範囲にはイソシアネート化合物で架橋硬化したフェノキシ樹脂及びその共重合体や、ポリビニルアセタール樹脂も含まれる。 The smooth layer 4 flattens the rough surface of the gas barrier layer 3 where minute protrusions and the like exist, and forms a film on the gas barrier layer 3 by protrusions on the surface of the gas barrier layer 3. It is provided in order to prevent unevenness and pinholes from occurring in 5 etc. The compound forming such a smooth layer 4 is a compound having a urethane bond, and for example, a compound having at least one urethane bond in the polymer skeleton is preferably used. A urethane-cured cured resin using a known polyol compound having at least two or more hydroxy groups in the molecule and a known polyfunctional isocyanate compound having two or more isocyanate groups in one molecule is preferable. Such a range includes a phenoxy resin cross-linked and cured with an isocyanate compound, a copolymer thereof, and a polyvinyl acetal resin.

平滑層のもうひとつの目的は、無機性の高い金属酸化物等からなるガスバリアー層3と、後述の必要に応じて設ける下地層6との間の接着性を向上させ、高温環境や長期の時間経過後でも良好な層間密着性を維持させることができる。   Another purpose of the smooth layer is to improve the adhesion between the gas barrier layer 3 made of a highly inorganic metal oxide or the like and the base layer 6 provided as necessary, which will be described later. Even after the passage of time, good interlayer adhesion can be maintained.

更には、フレキシブルな樹脂基材で、ガスバリアー層3表面に平滑層4を積層することで、ロールtoロールで製造される場合の搬送や巻取り、あるいは、バリアーフィルムとして曲げたりする取り扱い時のガスバリアー層3の物理的破壊を抑制する効果が期待できる。   Furthermore, by laminating the smooth layer 4 on the surface of the gas barrier layer 3 with a flexible resin base material, it can be conveyed and wound when manufactured in a roll-to-roll manner, or bend as a barrier film. An effect of suppressing physical destruction of the gas barrier layer 3 can be expected.

本発明に係る平滑層において、特に好ましく用いられる窒素原子を有する化合物として、ウレタン結合を有する化合物の例を下記に示す。   In the smooth layer according to the present invention, examples of the compound having a urethane bond are shown below as the compound having a nitrogen atom particularly preferably used.

〈ポリオール化合物〉
本発明のガスバリアーフィルムにおいて、平滑層4の形成に用いられるポリオール化合物は、分子内にヒドロキシ基を2つ以上有するものであり、代表的なものとしては、ポリエステルポリオール、アクリルポリオール、ポリウレタンポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール等が挙げられる。
<Polyol compound>
In the gas barrier film of the present invention, the polyol compound used for forming the smooth layer 4 has two or more hydroxy groups in the molecule. Typical examples thereof include polyester polyol, acrylic polyol, polyurethane polyol, Examples include polyether polyol and polycaprolactone polyol.

具体的な化合物としては、例えば、ポリエステルポリオールとしては、日本ポリウレタン工業株式会社製のニッポラン NIPPOLLAN 121E、NIPPOLLAN 125P、NIPPOLLAN 133EP、NIPPOLLAN 139、NIPPOLLAN 179P、NIPPOLLAN 131、NIPPOLLAN 800、NIPPOLLAN 1100、NIPPOLLAN 4040、NIPPOLLAN 4009、NIPPOLLAN 4010、NIPPOLLAN 3027、NIPPOLLAN 164、NIPPOLLAN 4073、NIPPOLLAN 136、NIPPOLLAN 152、NIPPOLLAN 1004、NIPPOLLAN 141、NIPPOLLAN 4042等が挙げられる。   Specific examples of the polyester polyol include, for example, Nippon Polyurethane Industry Co., Ltd. NIPPOLAN NIPPOLLAN 121E, NIPPOLLAN 125P, NIPPOLLAN 133EP, NIPPOLLAN 139, NIPPOLLAN 179P, NIPPOLLAN 131, NIPPOLLAN 800, NIPPOLLAN 1100, IPOLLAN 1100, 4009, NIPPOLLAN 4010, NIPPOLLAN 3027, NIPPOLLAN 164, NIPPOLLAN 4073, NIPPOLLAN 136, NIPPOLLAN 152, NIPPOLLAN 1004, NIPPOLLAN 141, NIPPOLLAN 4042, and the like.

また、アクリルポリオールの例としては、東レ・ファインケミカル株式会社製のアクリルポリオール樹脂、例えば、コ−タックス LHシリーズのLH−455、LH−681、LH−404、LH−307、LH−649、LH−677、LH−591、LH−650、LH−629、LH−601、LH−633、LH−613、LH−408、LH−615、LH−635等が例示化合物として挙げられる。   Examples of the acrylic polyol include an acrylic polyol resin manufactured by Toray Fine Chemical Co., Ltd., for example, Cotax LH series LH-455, LH-681, LH-404, LH-307, LH-649, LH- 677, LH-591, LH-650, LH-629, LH-601, LH-633, LH-613, LH-408, LH-615, LH-635 and the like are exemplified.

また、ウレタンポリオールとしては、ジイソシアネート化合物とヒドロキシ基含有化合物から製造することができる。ジイソシアネート化合物としては、耐光黄変性の点から、例えば、ヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、水添キシリレンジイソシアネート(H6XDI)、イソホロンジイソシアネート(IPDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、水添ジフェニルメタンジイソシアネート(H12MDI)などの脂肪族、脂環族、芳香脂肪族ジイソシアネート化合物が好ましい。また、ヒドロキシ基含有化合物としては、低分子量のジオールやトリオール、マクロポリオールが耐候性、耐加水分解性、屈曲性の点から好ましい。   The urethane polyol can be produced from a diisocyanate compound and a hydroxy group-containing compound. Examples of the diisocyanate compound include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), hydrogenated xylylene diisocyanate (H6XDI), isophorone diisocyanate (IPDI), and tetramethylxylylene diisocyanate (TMXDI) from the viewpoint of light yellowing resistance. ), Aliphatic, alicyclic and araliphatic diisocyanate compounds such as hydrogenated diphenylmethane diisocyanate (H12MDI) are preferred. As the hydroxy group-containing compound, low molecular weight diols, triols, and macropolyols are preferable from the viewpoint of weather resistance, hydrolysis resistance, and flexibility.

低分子量のジオールやトリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ブチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオールなどが挙げられる。   Examples of the low molecular weight diol and triol include ethylene glycol, diethylene glycol, triethylene glycol, butylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, glycerin, Examples thereof include trimethylolpropane and hexanetriol.

前記マクロポリオールとしては、例えば、ポリオキシプロピレングリコール、ポリオキシエチレングリコール、ポリオキシテトラメチレングリコール及びオキシアルキレンの共重合体などのポリエーテルポリオール;ジカルボン酸とグリコールとの重縮合物、ε−カプロラクトンの開環重合物などのポリエステルポリオール;ポリカーボネートポリオール;ポリブタジエン、水添ポリブタジエン、ポリイソプレンなどのポリオレフィンのポリオール誘導体などのポリオレフィンポリオール;エポキシポリオールなどが挙げられる。これらのなかでも、耐屈曲性、耐光黄変性の点から、ポリカーボネートポリオール、ポリエーテルポリオールが好ましい。なお、マクロポリオールの分子量としては、500〜5000の範囲、更には500〜2000の範囲のものが好ましい。   Examples of the macropolyol include polyether polyols such as polyoxypropylene glycol, polyoxyethylene glycol, polyoxytetramethylene glycol and oxyalkylene copolymers; polycondensates of dicarboxylic acid and glycol, and ε-caprolactone. Polyester polyols such as ring-opening polymers; polycarbonate polyols; polyolefin polyols such as polyol derivatives of polyolefins such as polybutadiene, hydrogenated polybutadiene, and polyisoprene; and epoxy polyols. Among these, polycarbonate polyols and polyether polyols are preferable from the viewpoint of bending resistance and light yellowing resistance. The molecular weight of the macropolyol is preferably in the range of 500 to 5000, and more preferably in the range of 500 to 2000.

前記ポリウレタンポリオールは、主鎖にウレタン結合を有し、末端にヒドロキシ基を有する。   The polyurethane polyol has a urethane bond in the main chain and a hydroxyl group at the terminal.

ポリエーテルポリオールとしては、例えば、アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等)及び/又は複素環式エーテル(テトラヒドロフラン等)を重合又は共重合して得られるもの、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン−ポリプロピレングリコール(ブロツク又はランダム共重合体)、ポリエチレン−テトラメチレングリコール(ブロツク又はランダム共重合体)、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール、ポリ−γ−バレロラクトンポリオール等や、更に、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6−ヘキサントリオール、1,2,4−ブタントリオール等の多価アルコールを開始剤とし、これにアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等)を付加してなるもの等を挙げることができる。   Examples of polyether polyols include those obtained by polymerizing or copolymerizing alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.) and / or heterocyclic ethers (tetrahydrofuran, etc.), specifically, polyethylene glycol. , Polypropylene glycol, polyethylene-polypropylene glycol (block or random copolymer), polyethylene-tetramethylene glycol (block or random copolymer), polytetramethylene ether glycol, polyhexamethylene ether glycol, poly-γ-valerolactone polyol Furthermore, polyvalent amines such as glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, etc. And initiator call, this alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) may be mentioned those such as formed by adding a.

本発明のガスバリアーフィルムを構成する平滑層においては、上記各化合物の中でもポリエステルポリオールがより好ましく用いられる。   In the smooth layer constituting the gas barrier film of the present invention, among the above compounds, polyester polyol is more preferably used.

〈イソシアネート基を有する化合物〉
本発明のガスバリアーフィルムにおいて、平滑層の形成に用いられるイソシアネート基を有する化合物としては、ポリイソシアネート類を用いることが好ましい。具体的には、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどの脂肪族ポリイソシアネートや、キシレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ポリイソシアネート等が挙げられる。特に2官能以上のポリイソシアネートが好ましい。
<Compound having an isocyanate group>
In the gas barrier film of the present invention, polyisocyanates are preferably used as the compound having an isocyanate group used for forming the smooth layer. Specific examples include aliphatic polyisocyanates such as hexamethylene diisocyanate and dicyclohexylmethane diisocyanate, and aromatic polyisocyanates such as xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylene diisocyanate, tolidine diisocyanate, and naphthalene diisocyanate. Can be mentioned. In particular, a polyisocyanate having 2 or more functional groups is preferable.

具体的なポリイソシアネートとしては、例えば、TDI(トリレンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、HDI(ヘキサメチレンジイソシアネート)等のイソシアネート基を有する日本ポリウレタン工業株式会社から販売されているコロネート、ミリオネートの各種の汎用タイプ、速乾タイプ、湿気硬化タイプ、無黄変タイプ、ブロックタイプ等を単独もしくは混合して用いる方法が挙げられる。   Specific polyisocyanates include, for example, various coronates and millionates sold by Nippon Polyurethane Industry Co., Ltd. having isocyanate groups such as TDI (tolylene diisocyanate), MDI (diphenylmethane diisocyanate), and HDI (hexamethylene diisocyanate). General-purpose type, quick-drying type, moisture-curing type, non-yellowing type, block type, etc. may be used alone or in combination.

本発明に係る平滑層に用いられる、その他の窒素原子を有する化合物としては、例えば、ポリアミドイミド、ポリエーテルイミド、ナイロン、メラミン系樹脂、ベンゾグアナミン系樹脂などのアミノ樹脂、アルキル基等で置換されたオルガノポリシラザン、アミノ基で変性された、エポキシ、ポリエステル、アクリル系樹脂などが挙げられる。   Examples of the other nitrogen atom-containing compounds used in the smooth layer according to the present invention include, for example, polyamideimide, polyetherimide, nylon, melamine resin, benzoguanamine resin and other amino resins, alkyl groups, and the like. Examples include organopolysilazane and epoxy, polyester, and acrylic resins modified with amino groups.

本発明に係る平滑層に窒素原子を有する化合物を含有させることにより、必要に応じて設ける隣接する下地層との相互作用で、層間密着性を安定化させることができ、各種デバイスに適用したときに、長期にわたって良好な導電性を維持できるガスバリアーフィルムとなる。   By including a compound having a nitrogen atom in the smooth layer according to the present invention, the interlayer adhesion can be stabilized by the interaction with an adjacent base layer provided as necessary, and when applied to various devices. In addition, the gas barrier film can maintain good conductivity over a long period of time.

本発明に係る平滑層4を基材2の表面に形成する方法は、特に制限はないが、例えば、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウェットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。   The method for forming the smooth layer 4 according to the present invention on the surface of the substrate 2 is not particularly limited. For example, a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a vapor deposition method. It is preferable to form by a dry coating method such as.

また、平滑層4を形成する際には、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、形成した平滑層4への成膜性向上や、平滑層4に成膜された膜のピンホール発生防止等のため、適切な樹脂や添加剤を使用してもよい。なお、樹脂を溶媒に溶解又は分散させた塗布液を用いて平滑層4を形成する際に使用する溶媒としては、イソシアネート基との反応性が低いものを用いることが好ましく、例えば、α−もしくはβ−テルピネオール等のテルペン類、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類等を挙げることができる。   Moreover, when forming the smooth layer 4, additives, such as antioxidant, a ultraviolet absorber, a plasticizer, can be added as needed. In addition, an appropriate resin or additive may be used for improving the film formability on the formed smooth layer 4 and preventing pinholes from being formed on the film formed on the smooth layer 4. In addition, as a solvent used when forming the smooth layer 4 using the coating liquid which melt | dissolved or disperse | distributed resin in the solvent, it is preferable to use what has low reactivity with an isocyanate group, for example, α- or Terpenes such as β-terpineol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone and 4-heptanone, and aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene , Ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoe Examples thereof include acetates such as tilether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, and 3-methoxybutyl acetate.

また、平滑層4の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、80nm以下であることが好ましい。Rtが80nm以下であれば、後述する金属層5あるいは必要に応じて設ける下地層6を積層した後に、それらの層の表面を平滑化することができる。   The smoothness of the smooth layer 4 is a value expressed by the surface roughness defined by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 80 nm or less. If Rt is 80 nm or less, after laminating a metal layer 5 described later or a base layer 6 provided as necessary, the surfaces of those layers can be smoothed.

本発明においては、平滑層4の厚さとしては、好ましくは20〜500nmの範囲内であり、より好ましくは100〜300nmの範囲内である。平滑層4の厚さを20nm以上にすることにより、ガスバリアー層表面の凹凸を効率よく平坦化することができ、500nm以下にすることにより、ガスバリアーフィルムの光学特性のバランスを調整し易くなると共に、平滑層4をガスバリアーフィルムの一方の面にのみ設けた場合におけるそのガスバリアーフィルムのカールを抑え易くすることができるようになる。   In the present invention, the thickness of the smooth layer 4 is preferably in the range of 20 to 500 nm, more preferably in the range of 100 to 300 nm. By setting the thickness of the smooth layer 4 to 20 nm or more, unevenness on the surface of the gas barrier layer can be efficiently flattened, and by setting it to 500 nm or less, it becomes easy to adjust the balance of the optical characteristics of the gas barrier film. At the same time, when the smooth layer 4 is provided only on one surface of the gas barrier film, curling of the gas barrier film can be easily suppressed.

〔下地層〕
本発明のガスバリアーフィルムにおいては、平滑層4と、後述する金属層5との間に、更に、下地層6を有することが特徴の一つである。
[Underlayer]
One feature of the gas barrier film of the present invention is that a base layer 6 is further provided between the smooth layer 4 and a metal layer 5 described later.

本発明に係る下地層6は、窒素原子をヘテロ原子とした複素環を有する化合物を含有することを特徴とする。窒素原子をヘテロ原子とした複素環を有する化合物のうち、その上に形成する金属層5、例えば、銀(Ag)との間に、特定の関係を有する化合物を用いて構成された層であることが好ましい。 The underlayer 6 according to the present invention contains a compound having a heterocyclic ring in which a nitrogen atom is a heteroatom . Among the compounds having a heterocycle having a nitrogen atom as a heteroatom, the metal layer 5 formed thereon, for example, a layer formed using a compound having a specific relationship with silver (Ag) It is preferable.

下地層の層厚は、5nm〜1μmの範囲内であることが好ましく、10〜500nmの範囲内であることがより好ましい。   The thickness of the underlayer is preferably in the range of 5 nm to 1 μm, and more preferably in the range of 10 to 500 nm.

(1)窒素原子を含有する化合物:一般式(2)、一般式(3)で表される化合物
下地層6を構成する窒素原子をヘテロ原子とした複素環を有する化合物において、窒素原子をヘテロ原子とした複素環としては、アジリジン、アジリン、アゼチジン、アゼト、アゾリジン、アゾール、アジナン、ピリジン、アゼパン、アゼピン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、アクリジン、カルバゾール、ベンゾ−C−シンノリン、ポルフィリン、クロリン、コリン等が挙げられる。
(1) Compound containing nitrogen atom: Compound represented by general formula (2), general formula (3) In a compound having a heterocycle having a nitrogen atom constituting the underlayer 6 as a heteroatom , the nitrogen atom is heterogeneous. Atomidine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, isoindole, benzo Examples include imidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline and the like.

更には、窒素原子をヘテロ原子とした複素環を有する化合物として好ましく用いられる化合物は、例えば、下記一般式(2)で表される化合物や、以降に示す一般式(3)で表される化合物が例示される。   Furthermore, the compound preferably used as the compound having a heterocyclic ring having a nitrogen atom as a hetero atom is, for example, a compound represented by the following general formula (2) or a compound represented by the following general formula (3): Is exemplified.

本発明の透明ガスバリアーフィルム1において、本発明に係る下地層6には、これらの一般式(2)又は一般式(3)で表される化合物を選択して用いることが好ましい。   In the transparent gas barrier film 1 of the present invention, it is preferable to select and use the compound represented by the general formula (2) or the general formula (3) for the underlayer 6 according to the present invention.

Figure 0006094577
Figure 0006094577

上記一般式(2)において、Y5は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。E51〜E66、E71〜E88は、各々、C(R)又は窒素原子を表し、Rは水素原子又は置換基を表す。但し、E71〜E79の少なくとも1つ及びE80〜E88の少なくとも1つは、窒素原子を表す。n3及びn4は、各々0〜4の整数を表すが、n3+n4は2以上の整数である。In the said General formula (2), Y5 represents the bivalent coupling group which consists of an arylene group, heteroarylene group, or those combination. E51 to E66 and E71 to E88 each represent C (R 3 ) or a nitrogen atom, and R 3 represents a hydrogen atom or a substituent. However, at least one of E71 to E79 and at least one of E80 to E88 represent a nitrogen atom. n3 and n4 each represents an integer of 0 to 4, but n3 + n4 is an integer of 2 or more.

一般式(2)において、Y5で表されるアリーレン基としては、例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1′−ビフェニル]−4,4′−ジイル基、3,3′−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。   In the general formula (2), examples of the arylene group represented by Y5 include an o-phenylene group, a p-phenylene group, a naphthalenediyl group, an anthracenediyl group, a naphthacenediyl group, a pyrenediyl group, a naphthylnaphthalenediyl group, and a biphenyldiyl group. Groups (for example, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.), terphenyldiyl group, quaterphenyldiyl group And kinkphenyldiyl group, sexiphenyldiyl group, septiphenyldiyl group, octiphenyldiyl group, nobiphenyldiyl group, deciphenyldiyl group and the like.

また一般式(2)において、Y5で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。   In the general formula (2), examples of the heteroarylene group represented by Y5 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of the carbon atoms constituting the carboline ring is nitrogen. The ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring. And the like.

Y5で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基又はジベンゾチオフェン環から導出される基が好ましい。   As a preferred embodiment of the divalent linking group consisting of an arylene group, a heteroarylene group or a combination thereof represented by Y5, among the heteroarylene groups, a condensed aromatic heterocycle formed by condensation of three or more rings. A group derived from a condensed aromatic heterocyclic ring formed by condensing three or more rings is preferably included, and a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable. Are preferred.

一般式(2)において、E51〜E66、E71〜E88で各々表されるC(R)におけるRで表される置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。In the general formula (2), examples of the substituent represented by R 3 in C (R 3 ) represented by E51 to E66 and E71 to E88 are alkyl groups (for example, methyl group, ethyl group, propyl group). Group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group Mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, full Renyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group) , Thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc.) , Heterocyclic groups (for example, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy groups (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group) Group), cycloalco Si group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group, naphthyloxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, Octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxy) Carbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group) Phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyl group) Si group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, Pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylamino) Carbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylamino Sulfonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, Cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2- Ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (example) For example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2 -Pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2- Pyridylamino group, piperidyl group (also referred to as piperidinyl group), 2,2,6,6-tetramethylpiperidinyl group, etc., halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (For example, fluoro Til group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, Phenyldiethylsilyl group, etc.), phosphoric acid ester groups (eg, dihexyl phosphoryl group, etc.), phosphite ester groups (eg, diphenylphosphinyl group, etc.), phosphono groups, and the like.

これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。   These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.

一般式(2)において、E51〜E58のうちの6つ以上及びE59〜E66のうちの6つ以上が、各々C(R)で表されることが好ましい。In the general formula (2), it is preferable that 6 or more of E51 to E58 and 6 or more of E59 to E66 are each represented by C (R 3 ).

一般式(2)において、E75〜E79の少なくとも1つ及びE84〜E88の少なくとも1つが、窒素原子を表すことが好ましい。   In the general formula (2), it is preferable that at least one of E75 to E79 and at least one of E84 to E88 represent a nitrogen atom.

更には、一般式(2)において、E75〜E79のいずれか1つ及びE84〜E88のいずれか1つが、窒素原子を表すことが好ましい。   Furthermore, in General formula (2), it is preferable that any one of E75-E79 and any one of E84-E88 represent a nitrogen atom.

また、一般式(2)において、E71〜E74及びE80〜E83が、各々C(R3)で表されることが好ましい態様として挙げられる。   Moreover, in General formula (2), it is mentioned as a preferable aspect that E71-E74 and E80-E83 are respectively represented by C (R3).

更に、一般式(2)で表される化合物において、E53がC(R)で表され、かつRが連結部位を表すことが好ましく、更に、E61も同時にC(R)で表され、かつRが連結部位を表すことが好ましい。Furthermore, in the compound represented by the general formula (2), it is preferable that E53 is represented by C (R 3 ) and R 3 represents a linking site, and E61 is also represented by C (R 3 ) at the same time. And R 3 preferably represents a linking moiety.

更に、E75及びE84が各々窒素原子で表されることが好ましく、E71〜E74及びE80〜E83が、各々C(R)で表されることが好ましい。Further, E75 and E84 are each preferably represented by a nitrogen atom, and E71 to E74 and E80 to E83 are each preferably represented by C (R 3 ).

また、下地層6を構成する化合物の他の例として下記一般式(3)で表される化合物が用いられる。   Further, as another example of the compound constituting the underlayer 6, a compound represented by the following general formula (3) is used.

Figure 0006094577
Figure 0006094577

上記一般式(3)において、T11及びT12のうちの少なくとも1つは窒素原子であり、T21〜T25のうちの少なくとも1つは窒素原子であり、T31〜T35のうちの少なくとも1つは窒素原子である。   In the general formula (3), at least one of T11 and T12 is a nitrogen atom, at least one of T21 to T25 is a nitrogen atom, and at least one of T31 to T35 is a nitrogen atom. It is.

また、一般式(3)において、Rは置換基を表す。Rで表される置換基の例としては、一般式(2)におけるRと同様のものが挙げられる。これらの置換基は、上記の置換基によって更に置換されていてもよい。Moreover, in General formula (3), R represents a substituent. Examples of the substituent represented by R include those similar to R 3 in the general formula (2). These substituents may be further substituted with the above substituents.

また、本発明に係る下地層には、上記説明した般式(2)又は一般式(3)で表される化合物のほかに、以下に説明する窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を、適宜選択して含有することができる。   Moreover, in addition to the compound represented by the general formula (2) or the general formula (3) described above, the underlayer according to the present invention includes at least one selected from a nitrogen atom and a sulfur atom described below. The organic compound having the above-mentioned atoms can be appropriately selected and contained.

(2)窒素原子を有する低分子有機化合物
本発明において、窒素原子を有する低分子有機化合物とは、融点が80℃以上であり、分子量Mが150〜1200の範囲内である化合物であれば、特に制限されることなく使用することができるが、銀又は銀の合金との相互作用が大きい化合物であることが好ましく、例えば、含窒素複素環化合物、フェニル基置換アミン化合物等が挙げられる。
(2) Low molecular organic compound having a nitrogen atom In the present invention, the low molecular organic compound having a nitrogen atom is a compound having a melting point of 80 ° C or higher and a molecular weight M in the range of 150 to 1200. Although it can use without being restrict | limited especially, it is preferable that it is a compound with large interaction with silver or a silver alloy, for example, a nitrogen-containing heterocyclic compound, a phenyl group substituted amine compound, etc. are mentioned.

また、窒素原子を有する有機化合物は、有効非共有電子対含有率[n/M](窒素原子を有する有機化合物の分子量Mに対する有効非共有電子対の数nの割合)が、2.0×10−3以上となるように選択された化合物であり、3.9×10−3以上であることがより好ましい。The organic compound having a nitrogen atom has an effective unshared electron pair content [n / M] (ratio of the number n of effective unshared electron pairs to the molecular weight M of the organic compound having a nitrogen atom) is 2.0 ×. 10 is a selected compound such that the -3 or more, more preferably 3.9 × 10 -3 or more.

ここで、有効非共有電子対とは、化合物を構成する窒素原子が有する非共有電子対のうち、芳香族性に関与せず、かつ金属に配位していない非共有電子対であることとする。   Here, the effective unshared electron pair is an unshared electron pair that does not participate in aromaticity and is not coordinated to the metal among the unshared electron pairs of the nitrogen atoms constituting the compound. To do.

ここでの芳香族性とは、π電子を持つ原子が環状に配列された不飽和環状構造をいい、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(nは0以上の整数)個であることを条件としている。   The aromaticity here means an unsaturated cyclic structure in which atoms having π electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and is included in the π electron system on the ring. Is 4n + 2 (n is an integer of 0 or more).

以上のような有効非共有電子対は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かに関わらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は有効非共有電子対の一つとしてカウントされる。   The effective unshared electron pair as described above is such that the unshared electron pair possessed by the nitrogen atom is aromatic regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a heteroatom constituting the aromatic ring. It is selected based on whether or not it is involved in the family. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is an effective unshared electron pair. Counted as one of

これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は有効非共有電子対としてカウントされることはない。   In contrast, even if a nitrogen atom is not a heteroatom that constitutes an aromatic ring, if all of the non-shared electron pairs of the nitrogen atom are involved in aromaticity, the nitrogen atom is not shared. An electron pair is not counted as a valid unshared electron pair.

なお、各化合物において、有効非共有電子対の数nは、有効非共有電子対を有する窒素原子の数と一致する。   In each compound, the number n of effective unshared electron pairs coincides with the number of nitrogen atoms having effective unshared electron pairs.

下地層が、複数の窒素原子を有する有機化合物を用いて構成されている場合、有効非共有電子対含有率[n/M]は、各化合物の混合比に基づき、混合化合物の分子量Mと有効非共有電子対の数nを算出し、この分子量Mに対しての有効非共有電子対の数nの割合を有効非共有電子対含有率[n/M]とし、この値が上述した所定範囲であることが好ましい。   When the underlayer is composed of an organic compound having a plurality of nitrogen atoms, the effective unshared electron pair content [n / M] is based on the mixing ratio of each compound and the effective molecular weight M of the mixed compound. The number n of unshared electron pairs is calculated, and the ratio of the number n of effective unshared electron pairs to the molecular weight M is defined as the effective unshared electron pair content [n / M], and this value is within the predetermined range described above. It is preferable that

以下に、下地層を構成する窒素原子を有する低分子有機化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10−3以上である例示化合物No.1〜45を示すが、特にこれに限定されるものではない。なお、例示化合物No.31の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち、銅に配位していない窒素原子の非共有電子対が有効非共有電子対としてカウントされる。下記に例示する化合物には、前述の一般式(2)、一般式(3)で表される化合物を含む。Hereinafter, as the low-molecular organic compound having a nitrogen atom constituting the underlayer, the above-mentioned effective compound number [n / M] is 2.0 × 10 −3 or more as exemplified compound No. 1 to 45 are shown, but the present invention is not particularly limited thereto. In addition, Exemplified Compound No. In 31 copper phthalocyanine, among the unshared electron pairs of nitrogen atoms, the unshared electron pairs of nitrogen atoms not coordinated to copper are counted as effective unshared electron pairs. The compounds exemplified below include the compounds represented by the aforementioned general formula (2) and general formula (3).

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

上記例示化合物No.1〜45について、有効非共有電子対の数n、分子量M及び有効非共有電子対含有率[n/M]を表1に示す。   The above exemplified compound No. Table 1 shows the number n of effective unshared electron pairs, the molecular weight M, and the effective unshared electron pair content [n / M] for 1 to 45.

Figure 0006094577
Figure 0006094577

(3)窒素原子を有するポリマー
本発明においては、窒素原子を有する有機化合物として、ポリマーを用いることもできる。
(3) Polymer having a nitrogen atom In the present invention, a polymer can also be used as the organic compound having a nitrogen atom.

窒素原子を有するポリマーは、重量平均分子量が1000〜1000000の範囲内であることが好ましい。   The polymer having a nitrogen atom preferably has a weight average molecular weight in the range of 1,000 to 1,000,000.

窒素原子を有するポリマーとしては、下記一般式(P1)で表される部分構造、又は下記一般式(P2)で表される部分構造を有するポリマーであることが好ましい。   The polymer having a nitrogen atom is preferably a polymer having a partial structure represented by the following general formula (P1) or a partial structure represented by the following general formula (P2).

Figure 0006094577
Figure 0006094577

一般式(P1)中、Aは、2価の窒素原子含有基を表す。Yは、2価の有機基又は結合手を表す。n1は、重量平均分子量が1000〜1000000の範囲内となる繰り返し数を表す。In General Formula (P1), A 1 represents a divalent nitrogen atom-containing group. Y 1 represents a divalent organic group or a bond. n1 represents the number of repetitions in which the weight average molecular weight is in the range of 1,000 to 1,000,000.

Figure 0006094577
Figure 0006094577

一般式(P2)中、Aは、1価の窒素原子含有基を表す。n2は、1以上の整数を表す。n2は、銀との相互作用性の点から1〜3の整数であることが好ましく、合成容易性の点から1又は2であることがより好ましい。n2が2以上である場合、複数のAは、それぞれ同一であってもよいし、異なっていてもよい。A及びAは、2価の窒素原子含有基を表す。A及びAは、同一であってもよいし、異なっていてもよい。n3及びn4は、それぞれ独立に、0又は1を表す。Yは、(n2+2)価の有機基を表す。n1は、重量平均分子量が1000〜1000000の範囲内となる繰り返し数を表す。In General Formula (P2), A 2 represents a monovalent nitrogen atom-containing group. n2 represents an integer of 1 or more. n2 is preferably an integer of 1 to 3 from the viewpoint of interaction with silver, and more preferably 1 or 2 from the viewpoint of ease of synthesis. When n2 is 2 or more, the plurality of A 2 may be the same or different. A 3 and A 4 represent a divalent nitrogen atom-containing group. A 3 and A 4 may be the same or different. n3 and n4 each independently represents 0 or 1. Y 2 represents an (n2 + 2) valent organic group. n1 represents the number of repetitions in which the weight average molecular weight is in the range of 1,000 to 1,000,000.

上記一般式(P1)又は(P2)で表される部分構造を有するポリマーは、上記一般式(P1)又は(P2)由来の単一の構成単位のみから構成される単独重合体(ホモポリマー)であってもよいし、上記一般式(P1)及び/又は(P2)由来の2種以上の構成単位のみから構成される共重合体(コポリマー)であってもよい。   The polymer having the partial structure represented by the general formula (P1) or (P2) is a homopolymer composed of only a single structural unit derived from the general formula (P1) or (P2). It may be a copolymer (copolymer) composed of only two or more structural units derived from the above general formulas (P1) and / or (P2).

また、上記一般式(P1)又は(P2)で示される構造単位に加えて、更に窒素原子含有基を有さない他の構造単位を有して共重合体を形成していてもよい。   Further, in addition to the structural unit represented by the general formula (P1) or (P2), the copolymer may be formed by further having another structural unit having no nitrogen atom-containing group.

窒素原子を有するポリマーが窒素原子含有基を有していない他の構造単位を有する場合、当該他の構造単位由来の単量体の含有量は、本発明に係る窒素原子を有するポリマーによる効果を損なわない程度であれば特に制限されないが、全構造単位由来の単量体中、好ましくは10〜75モル%の範囲内、より好ましくは20〜50モル%の範囲内である。   When the polymer having a nitrogen atom has another structural unit not having a nitrogen atom-containing group, the content of the monomer derived from the other structural unit has the effect of the polymer having a nitrogen atom according to the present invention. Although it will not restrict | limit especially if it is a grade which is not impaired, Preferably it exists in the range of 10-75 mol% in the monomer derived from all the structural units, More preferably, it exists in the range of 20-50 mol%.

一般式(P1)又は(P2)で表される部分構造を有するポリマーの末端は、特に制限されず、使用される原料(単量体)の種類によって適宜規定されるが、通常、水素原子である。   The terminal of the polymer having the partial structure represented by the general formula (P1) or (P2) is not particularly limited and is appropriately defined depending on the type of raw material (monomer) used. is there.

一般式(P2)において、Aで表される1価の窒素原子含有基は、窒素原子を有する有機基であれば特に制限されない。そのような窒素原子含有基としては、例えば、アミノ基、ジチオカルバメート基、チオアミド基、シアノ基(−CN)、イソニトリル基(−N≡C)、イソシアナート基(−N=C=O)、チオイソシアナート基(−N=C=S)、又は置換若しくは無置換の含窒素芳香族環を含む基が挙げられる。In the general formula (P2), the monovalent nitrogen atom-containing group represented by A 2 is not particularly limited as long as it is an organic group having a nitrogen atom. Examples of such nitrogen atom-containing groups include amino groups, dithiocarbamate groups, thioamide groups, cyano groups (—CN), isonitrile groups (—N + ≡C ), isocyanate groups (—N═C═O). ), A thioisocyanate group (—N═C═S), or a group containing a substituted or unsubstituted nitrogen-containing aromatic ring.

以下に、本発明に適用可能な窒素原子を有するポリマーを構成するモノマーの具体例(PN1〜41)を示すが、特にこれに限定されるものではない。なお、窒素原子を有するポリマーは、下記に示すモノマーを重量平均分子量が1000〜1000000となる範囲の繰り返し数で構成されている。   Although the specific example (PN1-41) of the monomer which comprises the polymer which has a nitrogen atom applicable to this invention below is shown, it is not specifically limited to this. In addition, the polymer which has a nitrogen atom is comprised by the repeating number of the range from which the monomer shown below becomes a weight average molecular weight 1000-1 million.

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

本発明において、下地層に適用可能な窒素原子を有する低分子有機化合物及びポリマーは、公知、周知の方法で合成することができる。   In the present invention, low molecular organic compounds and polymers having nitrogen atoms that can be applied to the underlayer can be synthesized by known methods.

(4)硫黄原子を有する有機化合物
本発明において、下地層に適用可能な硫黄原子を有する有機化合物としては、分子内に、スルフィド結合、ジスルフィド結合、メルカプト基、スルホン基、チオカルボニル結合等を有している。これらの中でも、スルフィド結合又はメルカプト基を有していることが好ましい。
(4) Organic Compound Having Sulfur Atom In the present invention, the organic compound having a sulfur atom applicable to the underlayer has a sulfide bond, disulfide bond, mercapto group, sulfone group, thiocarbonyl bond, etc. in the molecule. doing. Among these, it is preferable to have a sulfide bond or a mercapto group.

硫黄原子を有する有機化合物としては、下記一般式(A)〜(D)で表される化合物であることが好ましい。   The organic compound having a sulfur atom is preferably a compound represented by the following general formulas (A) to (D).

一般式(A)
−S−R
一般式(A)において、R及びRは、それぞれ独立に、置換基を表す。
Formula (A)
R 1 —S—R 2
In General Formula (A), R 1 and R 2 each independently represent a substituent.

一般式(B)
−S−S−R
一般式(B)において、R及びRは、それぞれ独立に、置換基を表す。
General formula (B)
R 3 —S—S—R 4
In the general formula (B), R 3 and R 4 each independently represent a substituent.

一般式(C)
−S−H
一般式(C)において、Rは置換基を表す。
General formula (C)
R 5 —S—H
In the general formula (C), R 5 represents a substituent.

Figure 0006094577
Figure 0006094577

一般式(D)において、Rは置換基を表す。In the general formula (D), R 6 represents a substituent.

一般式(A)において、R及びRで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えば、ジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。In the general formula (A), examples of the substituent represented by R 1 and R 2 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group). Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg, vinyl group, allyl group etc.), alkynyl group (eg, Ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group , Azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl Group, biphenylyl group, etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group , A carbolinyl group, a diazacarbazolyl group (in which one of carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (for example, a pyrrolidyl group) Imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, , Cyclopentyloxy group, cyclohexyl Ruoxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio Groups (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio groups (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxy) Carbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, Ruaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group Etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridyl) Carbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyl) Oxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylamino) Carbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, Dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group) Group, phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group) Group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butyne) Sulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group and the like), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group and the like), amino group (for example, , Amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (also called piperidinyl group) , 2,2,6,6-tetramethylpiperidinyl group), halogen atom (for example, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (for example, fluoromethyl group, trifluoromethyl group, etc.) , Pentafluoroethylene Group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (For example, dihexyl phosphoryl group), phosphite group (for example, diphenylphosphinyl group), phosphono group and the like.

これらの置換基は、更にこれらの置換基によって置換されていてもよいし、互いに連結して環を形成していてもよい。   These substituents may be further substituted with these substituents, or may be linked to each other to form a ring.

一般式(B)において、R及びRで表される置換基としては、一般式(A)において、R及びRで表される置換基と同様の置換基が挙げられる。In the general formula (B), examples of the substituent represented by R 3 and R 4 include the same substituents as the substituents represented by R 1 and R 2 in the general formula (A).

一般式(C)において、Rで表される置換基としては、一般式(A)において、R及びRで表される置換基と同様の置換基が挙げられる。In the general formula (C), examples of the substituent represented by R 5 include the same substituents as the substituents represented by R 1 and R 2 in the general formula (A).

一般式(D)において、Rで表される置換基としては、一般式(A)において、R及びRで表される置換基と同様の置換基が挙げられる。In the general formula (D), examples of the substituent represented by R 6 include the same substituents as the substituents represented by R 1 and R 2 in the general formula (A).

以下に、下地層を構成する硫黄原子を有する有機化合物の例示化合物(1−1)〜(4−1)を示すが、特にこれに限定されるものではない。   Although the exemplary compounds (1-1) to (4-1) of organic compounds having a sulfur atom constituting the underlayer are shown below, they are not particularly limited thereto.

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

Figure 0006094577
Figure 0006094577

(5)硫黄原子を有するポリマー
本発明においては、硫黄原子を有する有機化合物として、ポリマーを用いることもできる。
(5) Polymer having a sulfur atom In the present invention, a polymer may be used as the organic compound having a sulfur atom.

硫黄原子を有するポリマーは、重量平均分子量が1000〜1000000の範囲内であることが好ましい。   The polymer having a sulfur atom preferably has a weight average molecular weight in the range of 1,000 to 1,000,000.

以下に、硫黄原子を有するポリマーを構成するモノマーの具体例(PS1〜14)を示すが、特にこれに限定されるものではない。   Although the specific example (PS1-14) of the monomer which comprises the polymer which has a sulfur atom below is shown, it is not specifically limited to this.

なお、硫黄原子を有するポリマーは、下記に示すモノマーを重量平均分子量が1000〜1000000となる範囲の繰り返し数で構成されている。また、括弧外に付記した数値は、それぞれのモノマー単位の構成比率(モル比、組成比ともいう。)を表している。   In addition, the polymer which has a sulfur atom is comprised by the repeating number of the range from which the monomer shown below becomes a weight average molecular weight 1000-1 million. In addition, the numerical values added outside the parentheses represent the constituent ratio (also referred to as molar ratio or composition ratio) of each monomer unit.

Figure 0006094577
Figure 0006094577

上記したモノマー単位からなるポリマーの重量平均分子量を表2に示す。   Table 2 shows the weight average molecular weight of the polymer comprising the above monomer units.

Figure 0006094577
Figure 0006094577

本発明に適用可能な硫黄原子を有する有機化合物及びポリマーは、公知、周知の方法で合成することができる。   The organic compound and polymer having a sulfur atom applicable to the present invention can be synthesized by a known and well-known method.

なお、本発明に適用可能な窒素原子又は硫黄原子を有するポリマーの重量平均分子量は、室温(25℃)の環境下で、下記の測定条件にて測定を行った値である。   In addition, the weight average molecular weight of the polymer which has a nitrogen atom or sulfur atom applicable to this invention is the value which measured on the following measurement conditions in the environment of room temperature (25 degreeC).

〈測定条件〉
装置:東ソー高速GPC装置 HLC−8220GPC
カラム:TOSOH TSKgel Super HM−M
検出器:RI及び/又はUV
溶出液流速:0.6ml/分
温度:30℃
試料濃度:0.1質量%
試料量:100μl
検量線:標準ポリスチレンにて作製(標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500までの13サンプルを用いて検量線(校正曲線ともいう。)を作成し、測定対象物の重量平均分子量の算出に使用した。ここで、サンプルに用いたポリスチレンの重量平均分子量は、ほぼ等間隔に設定した。)
(6)下地層の形成
下地層の形成方法としては、蒸着法、CVD法、塗布法(例えば、キャスト法、スピンコート法等)等の通常使用することができる方法が挙げられる。中でも、塗布法は、製造速度にも優れていることから好ましい。
<Measurement condition>
Equipment: Tosoh High Speed GPC Equipment HLC-8220GPC
Column: TOSOH TSKgel Super HM-M
Detector: RI and / or UV
Eluent flow rate: 0.6 ml / min Temperature: 30 ° C
Sample concentration: 0.1% by mass
Sample volume: 100 μl
Calibration curve: Prepared with standard polystyrene (standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 100000 to 500, a calibration curve (also referred to as calibration curve) was created, and the measurement object was measured. (This was used to calculate the weight average molecular weight. Here, the weight average molecular weight of the polystyrene used in the sample was set at approximately equal intervals.)
(6) Formation of the underlayer Examples of the formation method of the underlayer include methods that can be usually used, such as a vapor deposition method, a CVD method, and a coating method (for example, a cast method, a spin coat method, etc.). Among these, the coating method is preferable because of its excellent production rate.

塗布法による下地層の形成方法としては、例えば、本発明に係る有機化合物を適当な溶媒に溶解して溶液を調製し、この溶液を透明支持体上に塗布し、乾燥した後、加熱処理する方法がある。溶液中には、必要に応じて、他の添加物(界面活性剤、粘度調整剤、防腐剤等)を加えてもよい。   As a method for forming a base layer by a coating method, for example, a solution is prepared by dissolving the organic compound according to the present invention in a suitable solvent, this solution is coated on a transparent support, dried, and then heat-treated. There is a way. Other additives (surfactant, viscosity modifier, preservative, etc.) may be added to the solution as necessary.

溶媒としては、有機化合物等を溶解できるものであれば特に制限されないが、イソプロパノール、n−ブタノール等のアルコール、ヘキサフルオロイソプロパノール、テトラフルオロプロパノール等のアルコールの水素原子がハロゲン原子で置換された含ハロゲンアルコール、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。   The solvent is not particularly limited as long as it can dissolve an organic compound or the like, but is an alcohol such as isopropanol or n-butanol, or a halogen-containing halogen atom substituted with a hydrogen atom in an alcohol such as hexafluoroisopropanol or tetrafluoropropanol. Examples include alcohol, dimethyl sulfoxide, dimethylformamide and the like. These may be used alone or in combination of two or more.

これらの中でも、アルコール、含ハロゲンアルコール、又はこれらの混合溶媒であることが好ましい。   Among these, alcohol, halogen-containing alcohol, or a mixed solvent thereof is preferable.

この際の溶液中の有機化合物(他の添加物を含む。)の濃度(固形分濃度)は、特に制限されないが、0.005〜0.5質量%の範囲内であることが好ましい。   The concentration (solid content concentration) of the organic compound (including other additives) in the solution at this time is not particularly limited, but is preferably in the range of 0.005 to 0.5 mass%.

塗布法としては、特に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。   Although there is no restriction | limiting in particular as an application | coating method, For example, the spin coat method, the cast method from a solution, the dip coat method, the blade coat method, the wire bar coat method, the gravure coat method, the spray coat method etc. are mentioned. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.

また、塗布後の加熱処理条件としては、下地層を形成できる条件であれば特に制限されないが、好ましくは室温(25℃)〜180℃の範囲内、より好ましくは60〜120℃の範囲内である。   In addition, the heat treatment conditions after coating are not particularly limited as long as the underlayer can be formed, but are preferably in the range of room temperature (25 ° C.) to 180 ° C., more preferably in the range of 60 to 120 ° C. is there.

また、加熱処理時間としては、好ましくは10秒〜10分の範囲内、より好ましくは30秒〜5分の範囲内である。
を用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
The heat treatment time is preferably in the range of 10 seconds to 10 minutes, more preferably in the range of 30 seconds to 5 minutes.
And the like. Of these, the vapor deposition method is preferably applied.

〔金属層〕
本発明のガスバリアーフィルムにおいては、図1の(a)に示すように、平滑層4上に金属層5を有することを特徴とする。通常、金属層を構成する金属として、例えば、銅、錫、鉛、アルミニウム、白金、パラジウム、イリジウム、金、亜鉛、ニッケル、チタン、ジルコニウム、銀又はそれらの合金、あるいはそれらの酸化物等が挙げられるが、本発明においては、金属層が、銀又は銀を主成分とした合金を用いて形成された層であることを特徴とする。
[Metal layer]
The gas barrier film of the present invention is characterized by having a metal layer 5 on the smooth layer 4 as shown in FIG. Usually, the metal constituting the metal layer includes, for example, copper, tin, lead, aluminum, platinum, palladium, iridium, gold, zinc, nickel, titanium, zirconium, silver or an alloy thereof, or an oxide thereof. However, the present invention is characterized in that the metal layer is a layer formed using silver or an alloy containing silver as a main component.

以下、本発明に係る銀又は銀を主成分とした合金を用いた金属層の詳細について説明する。   Hereinafter, the details of the metal layer using silver or an alloy containing silver as a main component according to the present invention will be described.

本発明に係る金属層5は、銀又は銀を主成分とした合金を用いて構成された層である。本発明に係る金属層5は、図1の(a)に示すように、平滑層4上に、あるいは図1の(b)及び(c)に示すように下地層6上に成膜される層である。   The metal layer 5 according to the present invention is a layer formed using silver or an alloy containing silver as a main component. The metal layer 5 according to the present invention is formed on the smooth layer 4 as shown in FIG. 1 (a) or on the underlayer 6 as shown in FIGS. 1 (b) and 1 (c). Is a layer.

本発明に係る金属層5の成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などを適宜選択して形成することができる。上記成膜方法の中でも、蒸着法が好ましく適用される。また、金属層5は、平滑層4、あるいは下地層6上に成膜されることにより、成膜後の高温アニール処理等がなくても、十分な導電性を有することができるが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。   As a method for forming the metal layer 5 according to the present invention, a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. A method using a dry process such as the above can be selected as appropriate. Among the film forming methods, the vapor deposition method is preferably applied. In addition, the metal layer 5 can be formed on the smooth layer 4 or the underlayer 6 so that it can have sufficient conductivity without a high-temperature annealing treatment after the film formation. Accordingly, high-temperature annealing treatment or the like after film formation may be performed.

金属層5を構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)などが挙げられる。   Examples of the alloy mainly composed of silver (Ag) constituting the metal layer 5 include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.

以上のような金属層5は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。   The metal layer 5 as described above may have a configuration in which silver or an alloy layer containing silver as a main component is divided into a plurality of layers as necessary.

更にこの金属層5は、膜厚が4〜12nmの範囲内にあることが好ましい。膜厚が12nm以下であれば、層の吸収成分又は反射成分を制御でき、透明ガスバリアーフィルムの高い透過性を維持することができる。   Further, the metal layer 5 preferably has a thickness in the range of 4 to 12 nm. If the film thickness is 12 nm or less, the absorption component or reflection component of the layer can be controlled, and the high permeability of the transparent gas barrier film can be maintained.

《電子デバイス:有機ELパネル》
上記説明した本発明のガスバリアーフィルムは、太陽電池、液晶表示素子、有機EL素子等の電子デバイスを封止する封止フィルムとして用いることができる。
<< Electronic device: Organic EL panel >>
The gas barrier film of the present invention described above can be used as a sealing film for sealing electronic devices such as solar cells, liquid crystal display elements, and organic EL elements.

以下、本発明のガスバリアーフィルムの代表的な適用例として、有機EL素子への適用について説明する。   Hereinafter, application to an organic EL element will be described as a typical application example of the gas barrier film of the present invention.

〔有機EL素子〕
有機EL素子の一例として、ボトムエミッション型の有機電界発光素子について説明する。
[Organic EL device]
As an example of the organic EL element, a bottom emission type organic electroluminescence element will be described.

(有機電界発光素子の構成)
図4は、本発明の電子デバイスの一例であり、本発明の透明ガスバリアーフィルムを適用した有機電界発光素子の一例を示す断面構成図である。
(Configuration of organic electroluminescence device)
FIG. 4 is an example of an electronic device of the present invention, and is a cross-sectional configuration diagram illustrating an example of an organic electroluminescent element to which the transparent gas barrier film of the present invention is applied.

図4に示す有機電界発光素子は、透明基板2上に透明ガスバリアーフィルム1を設け、この上部に発光機能層10と対向電極16とをこの順に積層した構成である。   The organic electroluminescent element shown in FIG. 4 has a configuration in which a transparent gas barrier film 1 is provided on a transparent substrate 2 and a light emitting functional layer 10 and a counter electrode 16 are laminated on the transparent gas barrier film 1 in this order.

更に詳しく説明すると、図4に示す有機電界発光素子20は、透明基板2上に設けられており、透明基板2側から順に、ガスバリアー層3、平滑層4、下地層6、金属層5、発光機能層10、及び対向電極16が積層されている。   More specifically, the organic electroluminescent element 20 shown in FIG. 4 is provided on the transparent substrate 2, and in order from the transparent substrate 2 side, the gas barrier layer 3, the smooth layer 4, the base layer 6, the metal layer 5, The light emitting functional layer 10 and the counter electrode 16 are laminated.

この有機電界発光素子20では、透明ガスバリアーフィルム1の金属層5がアノードとして用いられている。このような有機電界発光素子20は、少なくとも透明基板2側から発光光hを取り出すボトムエミッション型として構成されている。透明基板2としては、本発明の透明ガスバリアーフィルム1を構成する基材2として、光透過性を有する透明なものが選択して用いられる。   In this organic electroluminescent element 20, the metal layer 5 of the transparent gas barrier film 1 is used as an anode. Such an organic electroluminescent element 20 is configured as a bottom emission type in which emitted light h is extracted from at least the transparent substrate 2 side. As the transparent substrate 2, a transparent material having optical transparency is selected and used as the base material 2 constituting the transparent gas barrier film 1 of the present invention.

このような有機電界発光素子20の全体的な層構造は、限定されることはなく、一般的な層構造であって良い。図4に示す構成では、アノードとして機能する透明ガスバリアーフィルム1の金属層5の上部に、正孔注入層11/正孔輸送層12/発光層13/電子輸送層14/電子注入層15がこの順に積層され、更にこの上部にカソードとなる対向電極16が積層された構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層13を有することが必須の構成要件である。また、電子輸送層14は、電子注入層15を兼ねたもので、電子注入性を有する電子輸送層14として設けられていても良い。   The overall layer structure of the organic electroluminescent element 20 is not limited and may be a general layer structure. In the configuration shown in FIG. 4, the hole injection layer 11 / hole transport layer 12 / light emitting layer 13 / electron transport layer 14 / electron injection layer 15 are formed on the metal layer 5 of the transparent gas barrier film 1 functioning as an anode. A configuration in which the counter electrode 16 serving as a cathode is stacked on top of each other in this order is exemplified. However, among these, it is an indispensable constituent requirement to have at least the light emitting layer 13 made of an organic material. The electron transport layer 14 also serves as the electron injection layer 15 and may be provided as the electron transport layer 14 having electron injection properties.

なお、発光機能層10は、これらの層の他にも、必要に応じたさまざまな構成層が採用され、ここでの図示を省略したが、例えば、正孔阻止層や電子阻止層等が設けられても良い。   In addition to these layers, the light emitting functional layer 10 employs various constituent layers as necessary, and illustration thereof is omitted. For example, a hole blocking layer or an electron blocking layer is provided. May be.

以上のような構成において、本発明の透明ガスバリアーフィルム1と対向電極16とで発光機能層13が挟持された部分が、有機電界発光素子20における発光領域となる。   In the configuration as described above, a portion where the light emitting functional layer 13 is sandwiched between the transparent gas barrier film 1 of the present invention and the counter electrode 16 becomes a light emitting region in the organic electroluminescent element 20.

また、本発明に係る有機電界発光素子20においては、アノードとして機能する金属層5上に、直接、発光機能層3が設けられる。   In the organic electroluminescent element 20 according to the present invention, the light emitting functional layer 3 is provided directly on the metal layer 5 functioning as an anode.

また以上のような層構成においては、アノードとして用いられる透明ガスバリアーフィルム1の金属層5における低抵抗化を図ることを目的とし、金属層5に接して補助電極17が設けられていても良い。   In the layer configuration as described above, the auxiliary electrode 17 may be provided in contact with the metal layer 5 for the purpose of reducing the resistance of the metal layer 5 of the transparent gas barrier film 1 used as the anode. .

更に、発光機能層10の上方にカソードとして設けられる対向電極16は、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物等により構成される。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。Further, the counter electrode 16 provided as a cathode above the light emitting functional layer 10 is made of a metal, an alloy, an organic or inorganic conductive compound, a mixture thereof, or the like. Specific examples include metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .

以上のような対向電極16は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜として形成することにより作製することができる。また、対向電極16としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm〜5μmの範囲内であり、好ましくは5〜200nmの範囲内で選ばれる。   The counter electrode 16 as described above can be produced by forming these conductive materials as a thin film by a method such as vapor deposition or sputtering. Further, the sheet resistance as the counter electrode 16 is preferably several hundred Ω / □ or less, and the film thickness is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm.

また、このようなボトムエミッション型の有機電界発光素子20を封止する封止材18としては、特に光透過性を有している必要はない。   Further, the sealing material 18 for sealing the bottom emission type organic electroluminescent element 20 does not need to have a light transmission property.

封止材18は、有機電界発光素子20を覆うものであって、板状(フィルム状)の封止部材であって、接着剤19によって透明基板2側に固定されるものであって、あるいは封止膜であっても良い。このような封止材18は、有機電界発光素子20における透明ガスバリアーフィルム1の金属層5及び対向電極16の端子部分を露出させた状態で、少なくとも発光機能層3を覆う形態で設けられている。   The sealing material 18 covers the organic electroluminescent element 20, is a plate-shaped (film-shaped) sealing member, and is fixed to the transparent substrate 2 side by the adhesive 19, or It may be a sealing film. Such a sealing material 18 is provided so as to cover at least the light emitting functional layer 3 in a state where the metal layer 5 of the transparent gas barrier film 1 and the terminal portion of the counter electrode 16 in the organic electroluminescent element 20 are exposed. Yes.

板状(フィルム状)の封止材18としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板材料を更に薄膜状フィルムにして用いても良い。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。   Specific examples of the plate-like (film-like) sealing material 18 include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrate materials may be used as a thin film. Examples of the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

なかでも、有機電界発光素子を薄膜化できるということから、封止材としてポリマー基板や金属基板を薄膜のフィルム状にしたものを好ましく使用することができる。   Especially, since an organic electroluminescent element can be made into a thin film, what made the polymer substrate and the metal substrate into the film form of the thin film as a sealing material can be used preferably.

更には、フィルム状としたポリマー基板は、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。Furthermore, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method based on the above is 1 × 10 −3 g / (m 2 · 24 h) or less. It is preferable.

また、以上のような基板材料は、凹板状に加工して封止材18として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。   Further, the above substrate material may be processed into a concave plate shape and used as the sealing material 18. In this case, the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.

また、このような板状の封止材18を、透明ガスバリアーフィルム1、あるいは対向電極16側に固定するための接着剤19は、封止材18と透明基板2との間に挟持された有機電界発光素子20を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。   An adhesive 19 for fixing such a plate-shaped sealing material 18 to the transparent gas barrier film 1 or the counter electrode 16 side was sandwiched between the sealing material 18 and the transparent substrate 2. It is used as a sealant for sealing the organic electroluminescent element 20. Specifically, such an adhesive 19 is a photocuring and thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer, a methacrylic acid-based oligomer, a moisture-curing type such as 2-cyanoacrylic acid ester, or the like. Can be mentioned.

また、このような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Moreover, as such an adhesive agent 19, the heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機電界発光素子20を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。   In addition, the organic material which comprises the organic electroluminescent element 20 may deteriorate with heat processing. For this reason, the adhesive 19 is preferably one that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.

接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   Application | coating of the adhesive agent 19 to an adhesion | attachment part may use a commercially available dispenser, and may print it like screen printing.

以下、具体的な実施例を挙げて本発明のガスバリアーフィルムを詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   Hereinafter, although the specific example is given and the gas barrier film of this invention is demonstrated in detail, this invention is not limited to these. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

《ガスバリアーフィルムの作製》
〔ガスバリアーフィルム1の作製:本発明〕
(基材の作製)
両面に易接着加工を施した厚さが75μmのポリエステルフィルム(東洋紡績株式会社製、コスモシャインA4300)を支持体として用い、下記に示す方法に従って、裏面側(ガスバリアー層を形成する面とは反対側の面)にブリードアウト防止層、表面側(ガスバリアー層等の形成面)にアンカーコート層を形成して、基材を作製した。
<Production of gas barrier film>
[Production of Gas Barrier Film 1: Present Invention]
(Preparation of base material)
Using a polyester film with a thickness of 75 μm with easy adhesion processing on both sides (Toyobo Co., Ltd., Cosmo Shine A4300) as a support, according to the method shown below, what is the back side (the surface on which the gas barrier layer is formed) A bleed-out prevention layer was formed on the opposite side), and an anchor coat layer was formed on the surface side (formation surface of the gas barrier layer, etc.) to prepare a substrate.

〈ブリードアウト防止層の形成〉
上記支持体の裏面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材であるOPSTAR Z7535を、塗布及び乾燥後の膜厚が4μmとなる条件でワイヤーバーを用いて塗布した後、80℃で3分間の乾燥を行った後、大気雰囲気下で高圧水銀ランプを使用し、1.0J/cmの硬化条件で塗膜を硬化して、ブリードアウト防止層を形成した。
<Formation of bleed-out prevention layer>
After applying OPSTA Z7535, which is a UV curable organic / inorganic hybrid hard coat material manufactured by JSR Corporation, on the back side of the support using a wire bar under the condition that the film thickness after application and drying is 4 μm. After drying at 80 ° C. for 3 minutes, the coating film was cured under a curing condition of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.

〈アンカーコート層の形成〉
次いで、上記支持体の表面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材であるOPSTAR Z7501を、塗布及び乾燥後の膜厚が4μmとなる条件でワイヤーバーを用いて塗布した後、80℃で3分間の乾燥を行った後、大気雰囲気下で高圧水銀ランプを使用して1.0J/cmの硬化条件で硬化して、アンカーコート層を形成した。
<Formation of anchor coat layer>
Next, on the surface side of the support, OPSTA Z7501 which is a UV curable organic / inorganic hybrid hard coat material manufactured by JSR Corporation was applied using a wire bar under the condition that the film thickness after application and drying was 4 μm. Then, after drying at 80 ° C. for 3 minutes, it was cured under a curing condition of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form an anchor coat layer.

得られたアンカーコート層は、JIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)は16nmであった。   The obtained anchor coat layer was measured according to the surface roughness specified by JIS B 0601. As a result, the maximum cross-sectional height Rt (p) in the roughness curve was 16 nm.

(ガスバリアー層の形成)
次いで、パーヒドロポリシラザン(アクアミカ NN120−10、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液と、アミン触媒のN,N,N′,N′−テトラメチル−1,6−ジアミノヘキサンの10質量%ジブチルエーテル溶液を、99:1の割合で混合したガスバリアー層形成用塗布液を、ロッドの表面に一定の幅、深さを有する溝を一定ピッチで設けたワイヤレスバーを用いて、乾燥後の(平均)膜厚が、250nmとなる条件で、上記作製した基材のアンカーコート層上に塗布し、温度50℃、露点−5℃の乾燥空気で1分間乾燥した。次いで、温度95℃、露点−5℃の乾燥空気で2分間処理し、基材のアンカーコート層上にポリシラザン含有層を形成した。
(Formation of gas barrier layer)
Next, a 10% by weight dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, manufactured by AZ Electronic Materials Co., Ltd.) and an amine catalyst N, N, N ′, N′-tetramethyl-1,6-diamino Using a wireless bar in which a gas barrier layer forming coating solution in which a 10% by mass dibutyl ether solution of hexane is mixed at a ratio of 99: 1 is provided with grooves having a constant width and depth on the rod surface at a constant pitch. Then, under the condition that the (average) film thickness after drying was 250 nm, it was applied onto the anchor coat layer of the prepared substrate, and dried for 1 minute with dry air at a temperature of 50 ° C. and a dew point of −5 ° C. Subsequently, it was treated with dry air at a temperature of 95 ° C. and a dew point of −5 ° C. for 2 minutes to form a polysilazane-containing layer on the anchor coat layer of the substrate.

〈ポリシラザン層の改質処理〉
上記形成したポリシラザン層表面に、下記装置及び改質条件で真空紫外光照射(エキシマ改質処理)を行い、ポリシラザン層を改質してガスバリアー層を形成した。
<Modification treatment of polysilazane layer>
The surface of the formed polysilazane layer was irradiated with vacuum ultraviolet light (excimer modification treatment) using the following apparatus and modification conditions to modify the polysilazane layer to form a gas barrier layer.

・改質処理装置
(株)エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200
波長:172nm
ランプ封入ガス:Xe
・改質処理条件
平均エキシマ光強度:130mW/cm(172nm)
試料と光源の距離:2mm
ステージ加熱温度:95℃
照射装置内の酸素濃度:0.1%以下を維持
エキシマ光照射時のステージ搬送速度:10mm/秒
エキシマ光照射時のステージ搬送回数:試料表面へのエキシマ光露光量の積算量が5000mj/cmとなるように調整した。
・ Modification processing equipment Excimer irradiation equipment MODEL: MECL-M-1-200 manufactured by M.D.
Wavelength: 172nm
Lamp filled gas: Xe
-Modification treatment conditions Average excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Stage heating temperature: 95 ° C
Oxygen concentration in the irradiation apparatus: maintained at 0.1% or less Stage transport speed during excimer light irradiation: 10 mm / sec Number of stage transport times during excimer light irradiation: Accumulated amount of excimer light exposure on the sample surface is 5000 mj / cm It adjusted so that it might be set to 2 .

(平滑層の形成)
上記形成したガスバリアー層上に、二液型ポリウレタン樹脂塗料(第1液:ワシンコート MP−6103A(固形分濃度40質量%の酸ノルマルブチル溶液)/トリレンジイソシアネート系変性イソシアネート樹脂(イソシアネート基を有する素材)、第2液:ワシンコート MP−6103B(固形分濃度30質量%のトルエン・メチルエチルケトン混合溶液)/変性ポリエステル樹脂(ポリオール))を混合し、塗布液としての固形分濃度が10質量%になるように、メチルエチルケトン:メチルイソブチルケトンの1:1の混合溶媒で希釈して、平滑層形成用塗布液を調製した。
(Formation of smooth layer)
On the gas barrier layer formed above, a two-component polyurethane resin coating (first liquid: Washin coat MP-6103A (solid normal acid solution having a solid content of 40% by mass) / tolylene diisocyanate-based modified isocyanate resin (having an isocyanate group) Material), 2nd liquid: Washin coat MP-6103B (toluene / methyl ethyl ketone mixed solution with a solid content concentration of 30% by mass) / modified polyester resin (polyol)) is mixed, and the solid content concentration as a coating solution becomes 10% by mass As described above, a coating solution for forming a smooth layer was prepared by diluting with a 1: 1 mixed solvent of methyl ethyl ketone: methyl isobutyl ketone.

この平滑層形成用塗布液を用いて、乾燥後の膜厚が200nmになる条件で、ワイヤーバーを用いて塗布した後、乾燥条件として80℃、3分間乾燥し、その後、40℃の環境下で48時間放置した。   Using this coating solution for forming a smooth layer, after coating using a wire bar under the condition that the film thickness after drying is 200 nm, drying is performed at 80 ° C. for 3 minutes as a drying condition, and then in an environment of 40 ° C. And left for 48 hours.

得られた平滑層のJIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)は20nm以下であった。   As a result of measuring according to the surface roughness specified by JIS B 0601 of the obtained smooth layer, the maximum cross-sectional height Rt (p) in the roughness curve was 20 nm or less.

表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出し、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さとして求めた。   The surface roughness is calculated from an uneven cross-sectional curve continuously measured by a detector having a stylus having a minimum tip radius with an AFM (atomic force microscope), and the measurement direction is 30 μm with a stylus having a minimum tip radius. The inside of the section was measured many times, and the average roughness regarding the amplitude of fine unevenness was obtained.

(下地層及び金属層の形成)
上記平滑層まで形成した基材を、真空蒸着装置の基材ホルダーに、蒸着領域がパターン状に形成するための蒸着マスクを対面させて固定した。次いで、下記に示す化合物Aをタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
(Formation of underlayer and metal layer)
The base material formed up to the smooth layer was fixed to a base material holder of a vacuum vapor deposition apparatus by facing a vapor deposition mask for forming a vapor deposition region in a pattern. Subsequently, the compound A shown below was put into a resistance heating boat made of tantalum. These substrate holder and heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.

この状態で、先ず、第1真空槽を4×10−4Paまで減圧した後、下記化合物Aの入った加熱ボートに通電して加熱し、蒸着速度0.1〜0.2nm/秒で、平滑層上に膜厚25nmの下地層を設けた。In this state, first, after reducing the pressure of the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing the following compound A was energized and heated, and the deposition rate was 0.1 to 0.2 nm / second. An underlayer having a thickness of 25 nm was provided on the smooth layer.

次に、下地層まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10−4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1〜0.2nm/秒の範囲内で銀から構成される膜厚5nmの金属層を形成し、ガスバリアーフィルム1を作製した。Next, the base material formed up to the base layer was transferred to the second vacuum chamber while maintaining a vacuum, and the second vacuum chamber was depressurized to 4 × 10 −4 Pa, and then the heating boat containing silver was energized and heated. . Thereby, the metal layer with a film thickness of 5 nm comprised from silver was formed in the range of 0.1-0.2 nm / sec of vapor deposition speed, and the gas barrier film 1 was produced.

Figure 0006094577
Figure 0006094577

〔ガスバリアーフィルム2の作製:比較例〕
上記ガスバリアーフィルム1の作製において、平滑層の形成を除いた以外は同様にして、ガスバリアーフィルム2を作製した。
[Production of Gas Barrier Film 2: Comparative Example]
A gas barrier film 2 was produced in the same manner as in the production of the gas barrier film 1 except that the smooth layer was not formed.

〔ガスバリアーフィルム3の作製:本発明〕
上記ガスバリアーフィルム1の作製において、下地層の形成を除いた以外は同様にして、ガスバリアーフィルム3を作製した。
[Production of Gas Barrier Film 3: Present Invention]
A gas barrier film 3 was produced in the same manner as in the production of the gas barrier film 1 except that the formation of the underlayer was omitted.

〔ガスバリアーフィルム4の作製:比較例〕
上記ガスバリアーフィルム1の作製において、下地層及び金属層を、下記の方法に従って形成した透明導電膜(ITO膜)に変更した以外は同様にして、ガスバリアーフィルム4を作製した。
[Production of Gas Barrier Film 4: Comparative Example]
In the production of the gas barrier film 1, a gas barrier film 4 was produced in the same manner except that the base layer and the metal layer were changed to a transparent conductive film (ITO film) formed according to the following method.

(透明導電膜(iTO膜)の形成)
プラズマ放電装置としては、電極対が平行平板型のものを用い、この電極間に、ガスバリアー層まで形成した基材を載置し、混合ガスを導入して薄膜形成を行った。なお、アース(接地)電極としては、200mm×200mm×2mmのステンレス板に高密度、高密着性のアルミナ溶射膜を被覆し、その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させて封孔処理を行い、このようにして被覆した誘電体表面を研磨し、平滑にしてRmaxが5μmとなるように加工した電極を用いた。また、印加電極としては、中空の角型の純チタンパイプに対し、アース電極と同様の条件にて誘電体を被覆した電極を用いた。印加電極は複数作製し、アース電極に対向した位置に複数個設けて放電空間を形成した。また、プラズマ発生に用いる電源は、パール工業(株)製の高周波電源CF−5000−13Mを用い、周波数13.56MHzで、5W/cmの電力を供給した。
(Formation of transparent conductive film (iTO film))
As the plasma discharge device, a parallel plate type electrode pair was used. A base material formed up to the gas barrier layer was placed between the electrodes, and a mixed gas was introduced to form a thin film. In addition, as a ground (ground) electrode, a 200 mm × 200 mm × 2 mm stainless steel plate is coated with a high-density, high-adhesion alumina sprayed film, and then a solution obtained by diluting tetramethoxysilane with ethyl acetate is applied and dried. The electrode was cured by ultraviolet irradiation and sealed, and the dielectric surface thus coated was polished, smoothed, and processed to have an Rmax of 5 μm. Further, as the application electrode, an electrode obtained by coating a dielectric on a hollow square pure titanium pipe under the same conditions as the ground electrode was used. A plurality of application electrodes were prepared, and a plurality of application electrodes were provided at positions facing the ground electrode to form a discharge space. Moreover, the power source used for plasma generation was a high frequency power source CF-5000-13M manufactured by Pearl Industry Co., Ltd., and 5 W / cm 2 of power was supplied at a frequency of 13.56 MHz.

上記電極間に、下記組成の混合ガスを流入して、プラズマ状態とし、上記基材を大気圧プラズマ処理し、ガスバリアー層上に錫ドープ酸化インジウム(ITO)膜を100nmの厚さで成膜し、ガスバリアーフィルム4を作製した。   A mixed gas having the following composition is introduced between the electrodes to form a plasma state, the substrate is subjected to atmospheric pressure plasma treatment, and a tin-doped indium oxide (ITO) film is formed to a thickness of 100 nm on the gas barrier layer. Then, a gas barrier film 4 was produced.

〈混合ガス組成〉
放電ガス:ヘリウム 98.5体積%
反応性ガス1:酸素 0.25体積%
反応性ガス2:インジウムアセチルアセトナート 1.2体積%
反応性ガス3:ジブチル錫ジアセテート 0.05体積%
〔ガスバリアーフィルム5の作製:本発明〕
上記ガスバリアーフィルム1の作製において、ガスバリアー層の形成方法を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム5を作製した。
<Mixed gas composition>
Discharge gas: Helium 98.5% by volume
Reactive gas 1: 0.25% by volume of oxygen
Reactive gas 2: Indium acetylacetonate 1.2% by volume
Reactive gas 3: Dibutyltin diacetate 0.05% by volume
[Preparation of Gas Barrier Film 5: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 5 was produced in the same manner except that the method for forming the gas barrier layer was changed to the following method.

(ガスバリアー層の形成)
プラズマ放電処理ユニット(特開2008−56967号公報の図3に記載されているロールtoロール方式の大気圧プラズマ放電処理装置)を用いて、大気圧プラズマ法により、以下の条件で3層構成の蒸着法によるガスバリアー層(蒸着層)を形成した。
(Formation of gas barrier layer)
Using a plasma discharge processing unit (a roll-to-roll type atmospheric pressure plasma discharge processing apparatus described in FIG. 3 of JP-A-2008-56967), an atmospheric pressure plasma method has a three-layer structure under the following conditions: A gas barrier layer (deposition layer) was formed by an evaporation method.

第1から第3の蒸着層は、それぞれ金属酸化物(酸化珪素)を含有しており、第1から第3の蒸着層の厚さは、それぞれ100nm、30nm、30nmで、合計160nmであった。   The first to third vapor deposition layers each contained a metal oxide (silicon oxide), and the thicknesses of the first to third vapor deposition layers were 100 nm, 30 nm, and 30 nm, respectively, for a total of 160 nm. .

〈第1蒸着層の形成〉
ガス組成;
放電ガス :Nガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.5%
成膜条件;
第1電極側 電源種類 応用電機製 80kHz
周波数 80kHz
出力密度 8W/cm
電極温度 115℃
第2電極側 電源種類 パール工業製 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm
電極温度 95℃
〈第2蒸着層の形成〉
ガス組成;
放電ガス :Nガス
反応ガス1:酸素ガスを全ガスに対し5%
反応ガス2:TEOSを全ガスに対し0.1%
成膜条件;
第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm
電極温度 120℃
第2電極側 電源種類 パール工業製 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm
電極温度 95℃
〈第3蒸着層の形成〉
ガス組成;
放電ガス :Nガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOSを全ガスに対し0.5%
成膜条件;
第1電極側 電源種類 応用電機製 80kHz
周波数 80kHz
出力密度 8W/cm
電極温度 120℃
第2電極側 電源種類 パール工業製 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm
電極温度 100℃
上記作製したガスバリアーフィルム4において、平滑層まで積層した後のJIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)は60nm以下であった。
<Formation of first vapor deposition layer>
Gas composition;
Discharge gas: N 2 gas Reaction gas 1: 1% of hydrogen gas with respect to the total gas
Reaction gas 2: 0.5% TEOS (tetraethoxysilane) with respect to the total gas
Film formation conditions;
1st electrode side Power supply type
Frequency 80kHz
Output density 8W / cm 2
Electrode temperature 115 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 95 ° C
<Formation of second vapor deposition layer>
Gas composition;
Discharge gas: N 2 gas Reaction gas 1: Oxygen gas 5% of total gas
Reaction gas 2: TEOS is 0.1% of the total gas
Film formation conditions;
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 95 ° C
<Formation of third vapor deposition layer>
Gas composition;
Discharge gas: N 2 gas Reaction gas 1: 1% of hydrogen gas with respect to the total gas
Reaction gas 2: 0.5% of TEOS with respect to the total gas
Film formation conditions;
1st electrode side Power supply type
Frequency 80kHz
Output density 8W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 100 ° C
In the gas barrier film 4 produced as described above, the maximum cross-sectional height Rt (p) in the roughness curve was 60 nm or less as a result of measurement according to the surface roughness specified in JIS B 0601 after lamination to the smooth layer. It was.

〔ガスバリアーフィルム6の作製:本発明〕
上記ガスバリアーフィルム1の作製において、平滑層の形成方法を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム6を作製した。
[Production of Gas Barrier Film 6: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 6 was produced in the same manner except that the method for forming the smooth layer was changed to the following method.

(平滑層の形成)
上記基材に形成したガスバリアー層上に、アミノ基置換シランカップリング剤である3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−903)をブタノールで固形分濃度が10質量%になるように希釈して調製した平滑層形成用塗布液を用いて、乾燥後の膜厚が0.2μmになるようにスピンコーターで塗布した後、乾燥条件として80℃で3分間乾燥し、その後、40℃の環境下で48時間放置して、平滑層を形成した。
(Formation of smooth layer)
On the gas barrier layer formed on the base material, 3-aminopropyltrimethoxysilane (KBE-903, manufactured by Shin-Etsu Chemical Co., Ltd.), which is an amino group-substituted silane coupling agent, is butanol and the solid content concentration is 10% by mass. After coating with a spin coater so that the film thickness after drying is 0.2 μm, using a coating solution for smooth layer formation prepared by diluting to be dried at 80 ° C. for 3 minutes, Then, it was left for 48 hours in an environment of 40 ° C. to form a smooth layer.

得られた平滑層のJIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)として30nm以下であった。   As a result of measuring according to the surface roughness prescribed | regulated by JISB0601 of the obtained smooth layer, it was 30 nm or less as maximum cross-sectional height Rt (p) in a roughness curve.

〔ガスバリアーフィルム7の作製:本発明〕
上記ガスバリアーフィルム1の作製において、平滑層の形成方法を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム7を作製した。
[Production of Gas Barrier Film 7: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 7 was produced in the same manner except that the method for forming the smooth layer was changed to the following method.

(平滑層の形成)
上記基材に形成したガスバリアー層上に、エポキシ基変性シランカップリング剤として3−グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製、KBE−403)を、ブタノールで固形分濃度が10質量%になるように希釈して調製した平滑層形成用塗布液を用いて、乾燥後の膜厚が0.2μmになるようにスピンコーターで塗布した後、乾燥条件として80℃で3分間乾燥し、その後、40℃の環境下で48時間放置して、平滑層を形成した。
(Formation of smooth layer)
On the gas barrier layer formed on the base material, 3-glycidoxypropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-403) as an epoxy group-modified silane coupling agent, butanol has a solid content concentration of 10 Using a coating solution for forming a smooth layer prepared by diluting to a mass%, the film thickness after drying is applied with a spin coater to 0.2 μm, and then dried at 80 ° C. for 3 minutes as drying conditions. Then, it was left for 48 hours in an environment of 40 ° C. to form a smooth layer.

得られた平滑層のJIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)は40nm以下であった。   As a result of measuring according to the surface roughness specified by JIS B 0601 of the obtained smooth layer, the maximum cross-sectional height Rt (p) in the roughness curve was 40 nm or less.

〔ガスバリアーフィルム8の作製:本発明〕
上記ガスバリアーフィルム1の作製において、平滑層の形成方法を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム8を作製した。
[Production of Gas Barrier Film 8: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 8 was produced in the same manner except that the method for forming the smooth layer was changed to the following method.

(平滑層の形成)
上記基材に形成したガスバリアー層上に、ポリエステル樹脂(バイロン200 東洋紡績(株)製)の脱水メチルエチルケトン/メチルイソブチルケトン=1/1の10質量%溶液を用い、これを平滑層形成用塗布液とし、乾燥後の膜厚が0.2μmになるようにスピンコーターで塗布した後、乾燥条件として80℃で3分間乾燥し、その後、40℃の環境下で48時間放置して、平滑層を形成した。
(Formation of smooth layer)
On the gas barrier layer formed on the base material, a 10% by mass solution of dehydrated methyl ethyl ketone / methyl isobutyl ketone = 1/1 in polyester resin (Byron 200 manufactured by Toyobo Co., Ltd.) was used, and this was applied to form a smooth layer. After coating with a spin coater so that the film thickness after drying is 0.2 μm, the film is dried at 80 ° C. for 3 minutes as a drying condition, and then left for 48 hours in an environment of 40 ° C. Formed.

得られた平滑層のJIS B 0601で規定される表面粗さに準じて測定した結果、粗さ曲線における最大断面高さRt(p)は40nm以下であった。   As a result of measuring according to the surface roughness specified by JIS B 0601 of the obtained smooth layer, the maximum cross-sectional height Rt (p) in the roughness curve was 40 nm or less.

〔ガスバリアーフィルム9〜15の作製:本発明〕
上記ガスバリアーフィルム1の作製において、形成する平滑層の厚さを、表1に記載の厚さに変更した以外は同様にして、ガスバリアーフィルム9〜15を作製した。
[Preparation of Gas Barrier Films 9-15: Present Invention]
In the production of the gas barrier film 1, gas barrier films 9 to 15 were produced in the same manner except that the thickness of the smooth layer to be formed was changed to the thickness shown in Table 1.

〔ガスバリアーフィルム16の作製:本発明〕
上記ガスバリアーフィルム1の作製において、金属層の形成で用いる金属を、銀に代えて、銅を用いた以外は同様にして、ガスバリアーフィルム16を作製した。
[Production of Gas Barrier Film 16: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 16 was produced in the same manner except that the metal used for forming the metal layer was replaced with silver instead of silver.

〔ガスバリアーフィルム17の作製:本発明〕
ガスバリアーフィルム1の作製において、ガスバリアー層の形成及び下地層の形成を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム17を作製した。
[Preparation of Gas Barrier Film 17: Present Invention]
In the production of the gas barrier film 1, a gas barrier film 17 was produced in the same manner except that the formation of the gas barrier layer and the formation of the underlayer were changed to the following methods.

(ガスバリアー層の形成)
次いで下記の方法に従って、磁場印加方式のプラズマCVD法を用いて、ガスバリアー層を形成した。
(Formation of gas barrier layer)
Then, according to the following method, a gas barrier layer was formed using a plasma CVD method using a magnetic field application method.

図2に記載の磁場を印加したローラー間放電プラズマCVD装置を用い、樹脂基材のアンカー層を形成した面とは反対側の面が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカー層上にガスバリアー層を、厚さが300nmとなる条件で成膜した。   Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied, the surface of the resin substrate opposite to the surface on which the anchor layer is formed is in contact with the film forming roller. And a gas barrier layer was formed on the anchor layer under the following film formation conditions (plasma CVD conditions) under the condition that the thickness was 300 nm.

〈プラズマCVD条件〉
原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O)の供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
樹脂基材の搬送速度:2m/min
〈元素分布プロファイルの測定〉
上記形成したガスバリアー層について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層の表面からの距離における、ケイ素元素分布、酸素元素分布、炭素元素分布及び酸素炭素分布を得た。
<Plasma CVD conditions>
Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Resin substrate transport speed: 2 m / min
<Measurement of element distribution profile>
The XPS depth profile measurement was performed on the formed gas barrier layer under the following conditions to obtain a silicon element distribution, an oxygen element distribution, a carbon element distribution, and an oxygen carbon distribution at a distance from the surface of the thin film layer in the layer thickness direction. .

エッチングイオン種:アルゴン(Ar
エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形
以上のようにして測定した全層領域におけるケイ素元素分布、酸素元素分布、炭素元素分布及び酸素炭素分布より、各元素組成における連続変化領域の有無、極値の有無、炭素の原子比率の最大値と最小値の差、全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の平均原子比率を求めた。
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 × 400 μm ellipse From the silicon element distribution, oxygen element distribution, carbon element distribution and oxygen carbon distribution in the whole layer region measured as described above, the continuous change region in each element composition Presence / absence, presence / absence of extreme value, difference between maximum and minimum values of carbon atomic ratio, and average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness.

その結果、図3に示すように、組成における連続変化領域及び極値が有り、炭素の原子比率の最大値と最小値の差が16at%で、ケイ素原子、酸素原子及び炭素原子の平均原子比率が、全層厚の90%以上の領域で、式(A)で規定する関係、すなわち(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)の関係を満たしていることを確認した。   As a result, as shown in FIG. 3, there is a continuous change region and an extreme value in the composition, the difference between the maximum value and the minimum value of the carbon atomic ratio is 16 at%, and the average atomic ratio of silicon atoms, oxygen atoms and carbon atoms However, in a region of 90% or more of the total layer thickness, the relationship defined by the formula (A), that is, the relationship of (carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio) is satisfied. It was confirmed.

(下地層の形成)
ガスバリアーフィルム1の作製に記載の下地層の形成において、下地層形成材料として、化合物Aに代えて、例示化合物NO.44を用いた以外は同様にして、下地層を形成した。
(Formation of underlayer)
In the formation of the underlayer described in the preparation of the gas barrier film 1, instead of the compound A, the example compound NO. A base layer was formed in the same manner except that 44 was used.

〔ガスバリアーフィルム18の作製:本発明〕
ガスバリアーフィルム17の作製において、ガスバリアー層の形成及び下地層の形成を、下記の方法に変更した以外は同様にして、ガスバリアーフィルム18を作製した。
[Production of Gas Barrier Film 18: Present Invention]
A gas barrier film 18 was produced in the same manner as in the production of the gas barrier film 17 except that the formation of the gas barrier layer and the formation of the underlayer were changed to the following methods.

(ガスバリアー層の形成)
上記ガスバリアーフィルム17と同様のガスバリアー層(磁場印加方式のプラズマCVD法)を第1のガスバリアー層を形成した後、その上に、上記ガスバリアーフィルム1と同様のガスバリアー層(ポリシラザン/エキシマ改質処理)を第2のガスバリアー層として積層した。
(Formation of gas barrier layer)
After the first gas barrier layer is formed on the same gas barrier layer as the gas barrier film 17 (magnetic field application type plasma CVD method), the same gas barrier layer (polysilazane / polysilazane) as that on the gas barrier film 1 is formed thereon. Excimer modification treatment) was laminated as a second gas barrier layer.

(下地層の形成)
ガスバリアーフィルム1の作製に記載の下地層の形成において、下地層形成材料として、化合物Aに代えて、例示化合物NO.45を用いた以外は同様にして、下地層を形成した。
(Formation of underlayer)
In the formation of the underlayer described in the preparation of the gas barrier film 1, instead of the compound A, the example compound NO. A base layer was formed in the same manner except that 45 was used.

《ガスバリアーフィルムの評価》
以上のように作製したガスバリアーフィルム1〜18について、下記の性能評価を行った。
<< Evaluation of gas barrier film >>
The following performance evaluation was performed about the gas barrier films 1-18 produced as mentioned above.

ガスバリアーフィルムの性能評価は、水蒸気バリアー性(作製直後の水蒸気透過率と折り曲げ処理後の水蒸気透過率の測定)と、ガスバリアーフィルムを用いて有機EL素子を作製し、ガスバリアーフィルムに起因する有機EL素子の発光ムラ耐性(ダークスポット耐性)の評価を行った。   The performance evaluation of the gas barrier film is caused by the water barrier property (measurement of the water vapor transmission rate immediately after the production and the water vapor transmission rate after the bending treatment) and the organic EL device using the gas barrier film, resulting from the gas barrier film. Evaluation of light emission unevenness resistance (dark spot resistance) of the organic EL element was performed.

〔ガスバリアーフィルムの水蒸気バリアー性の評価〕
(作製直後の水蒸気透過度の測定)
以下の測定方法に従って、各ガスバリアーフィルムの水蒸気バリアー性(水蒸気透過度;WVTR)を測定した。
[Evaluation of water vapor barrier property of gas barrier film]
(Measurement of water vapor permeability immediately after production)
According to the following measurement method, the water vapor barrier property (water vapor transmission rate; WVTR) of each gas barrier film was measured.

〈測定装置〉
蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
〈水蒸気バリアー性評価用セルの作製〉
真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、ガスバリアーフィルム1〜16のガスバリアー層(蒸着層、ポリシラザン改質層)面に金属カルシウムを蒸着させた。その後、乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介して金属カルシウム蒸着面を対面させて接着し、紫外線を照射することで、評価用セルを作製した。
<measuring device>
Vapor deposition apparatus: Vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular)
<Manufacture of water vapor barrier property evaluation cell>
Metallic calcium was vapor-deposited on the gas barrier layer (deposition layer, polysilazane modified layer) surfaces of the gas barrier films 1 to 16 using a vacuum evaporation apparatus (vacuum evaporation apparatus JEE-400 manufactured by JEOL Ltd.). After that, in a dry nitrogen gas atmosphere, the metal calcium vapor deposition surface is bonded and bonded to quartz glass having a thickness of 0.2 mm via a sealing ultraviolet curable resin (manufactured by Nagase ChemteX) and irradiated with ultraviolet rays. An evaluation cell was produced.

得られた試料(評価用セル)を40℃、90%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。   The obtained sample (evaluation cell) was stored under high temperature and high humidity of 40 ° C. and 90% RH, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.

なお、ガスバリアーフィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアーフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な40℃、90%RHの高温高湿下保存を行い、10000時間経過後でも金属カルシウム腐食が発生しないことを確認した。   In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under the same high temperature and high humidity conditions of 40 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 10000 hours.

こうして測定された各ガスバリアーフィルムの水分量を下記の5段階に分類し、水蒸気バリアー性を評価した。   The water content of each gas barrier film thus measured was classified into the following five stages, and the water vapor barrier property was evaluated.

5:水分量が、1×10−5g/m/day未満
4:水分量が、1×10−5g/m/day以上、1×10−4g/m/day未満
3:水分量が、1×10−4g/m/day以上、1×10−3g/m/day未満
2:水分量が、1×10−3g/m/day以上、1×10−2g/m/day未満
1:水分量が、1×10−2g/m/day以上
(折り曲げ処理後の水蒸気透過度の測定:折り曲げ耐性の評価)
各ガスバリアーフィルムを、5mmの曲率半径になるように、ガスバリアー層形成面を外側にして100回の屈曲を繰り返した後、上記と同様の方法で水蒸気透過度を測定し、屈曲処理前後での水蒸気透過度の変化より、下式に従って水蒸気透過度の劣化率を測定し、下記の基準に従って折り曲げ耐性を評価した。
5: Water content is less than 1 × 10 −5 g / m 2 / day 4: Water content is 1 × 10 −5 g / m 2 / day or more and less than 1 × 10 −4 g / m 2 / day 3 : Moisture content is 1 × 10 −4 g / m 2 / day or more, less than 1 × 10 −3 g / m 2 / day 2: Moisture content is 1 × 10 −3 g / m 2 / day or more, 1 × 10 −2 g / m 2 / day less than 1: water content is 1 × 10 −2 g / m 2 / day or more (measurement of water vapor permeability after bending treatment: evaluation of bending resistance)
After each gas barrier film was bent 100 times with the gas barrier layer forming surface facing outward so that the radius of curvature was 5 mm, the water vapor permeability was measured by the same method as above, before and after the bending treatment. From the change in water vapor permeability, the deterioration rate of water vapor permeability was measured according to the following formula, and bending resistance was evaluated according to the following criteria.

水蒸気透過度の劣化度=〔(屈曲試験後の水蒸気透過度−屈曲試験前の水蒸気透過度)/屈曲試験前の水蒸気透過度)〕×100(%)
この水蒸気透過度の劣化度について、下記の5段階に分類して評価した。
Degradation degree of water vapor transmission rate = [(water vapor transmission rate after bending test−water vapor transmission rate before bending test) / water vapor transmission rate before bending test)] × 100 (%)
The degree of deterioration of the water vapor transmission rate was evaluated by classifying into the following five stages.

5:水蒸気透過度の劣化度が、5%未満である
4:水蒸気透過度の劣化度が、5%以上、15%未満である
3:水蒸気透過度の劣化度が、15%以上、50%未満である
2:水蒸気透過度の劣化度が、50%以上、90%未満である
1:水蒸気透過度の劣化度が、90%以上である
《有機EL素子への適用及び評価》
上記ガスバリアーフィルムの評価で作製した屈曲処理を施していない未処理のガスバリアーフィルム1A〜18Aと、屈曲処理を施したガスバリアーフィルム1B〜18Bを用いて、下記の方法に従って、図5に記載の構成からなる有機EL素子1A〜18A(ガスバリアーフィルム未屈曲処理)及び有機EL素子1B〜18B(ガスバリアーフィルム屈曲処理有)を作製し、ガスバリアーフィルムに起因する有機EL素子の発光斑(ダークスポット耐性)について評価した。
5: Deterioration degree of water vapor permeability is less than 5% 4: Deterioration degree of water vapor permeability is 5% or more and less than 15% 3: Deterioration degree of water vapor permeability is 15% or more, 50% 2: Deterioration degree of water vapor permeability is 50% or more and less than 90% 1: Degradation degree of water vapor permeability is 90% or more << Application and Evaluation to Organic EL Element >>
FIG. 5 shows the unprocessed gas barrier films 1A to 18A that have not been subjected to the bending treatment and the gas barrier films 1B to 18B that have been subjected to the bending treatment according to the following method. Organic EL elements 1A to 18A (gas barrier film unbent treatment) and organic EL elements 1B to 18B (with gas barrier film bent process) having the structure described above were produced, and the light emission spots of the organic EL elements due to the gas barrier film ( Dark spot resistance) was evaluated.

〔有機EL素子の作製〕
図5に記載の構成からなる有機EL素子を作製した。
[Production of organic EL elements]
An organic EL device having the configuration shown in FIG. 5 was produced.

上記作製したガスバリアーフィルム1A〜18A及び試料1B〜18Bを100mm×80mmに断裁してガスバリアーフィルム基板(1)とし、これにパターニングを行った後、この金属層を有するガスバリアーフィルム基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した。   The produced gas barrier films 1A to 18A and samples 1B to 18B are cut to 100 mm × 80 mm to form a gas barrier film substrate (1). After patterning the gas barrier film substrate (1), the gas barrier film substrate having the metal layer is isopropyl. It was ultrasonically cleaned with alcohol and dried with dry nitrogen gas.

このガスバリアーフィルム基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてCBPを200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートにIr−1を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。This gas barrier film substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus. Meanwhile, 200 mg of α-NPD is put into a molybdenum resistance heating boat, and 200 mg of CBP as a host compound is put into another resistance heating boat made of molybdenum. 200 mg of Bathocuproin (BCP) is put into a resistance heating boat made of molybdenum, 100 mg of Ir-1 is put into another resistance heating boat made of molybdenum, and 200 mg of Alq 3 is put into another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus. It was.

Figure 0006094577
Figure 0006094577

次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に、中央に位置する様に80mm×60mmの面積で蒸着し、正孔輸送層を設けた。更にCBPとIr−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して発光層を設けた。なお、蒸着時の基板温度は室温であった。更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。その上に、更にAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して、更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。Next, after reducing the pressure of the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing α-NPD was energized and heated, and the deposition rate was 0.1 nm / sec. The film was vapor-deposited in an area of 80 mm × 60 mm to provide a hole transport layer. Further, the heating boat containing CBP and Ir-1 was energized and heated, and co-evaporated on the hole transport layer at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively, to provide a light emitting layer. . In addition, the substrate temperature at the time of vapor deposition was room temperature. Further, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a hole blocking layer having a thickness of 10 nm. Further, the heating boat containing Alq 3 is further heated by energization, and is deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further provide an electron transport layer having a thickness of 40 nm. It was. In addition, the substrate temperature at the time of vapor deposition was room temperature.

引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、それぞれ透明導電膜付の試料1A〜18A及び試料1B〜18Bを用いた有機EL素子1A〜18A(ガスバリアーフィルム未屈曲処理)及び有機EL素子1B〜18B(ガスバリアーフィルム屈曲処理有)を作製した。   Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and organic EL elements 1A to 18A (gas barrier film unbent) using samples 1A to 18A and samples 1B to 18B with transparent conductive films, respectively. Treatment) and organic EL elements 1B to 18B (with gas barrier film bending treatment) were produced.

(有機EL素子の封止)
窒素ガス(不活性ガス)によりパージされた環境下で、上記作製した有機EL素子1A〜18A及び有機EL素子1B〜18Bのアルミニウム蒸着面と、厚さ100μmのアルミ箔を対面させる様にして、ナガセケムテックス社製エポキシ系接着剤を介して、基材端部の4辺をそれぞれ10mm幅で接着させて封止を行った。
(Sealing of organic EL elements)
In an environment purged with nitrogen gas (inert gas), the aluminum vapor deposition surfaces of the organic EL elements 1A to 18A and the organic EL elements 1B to 18B produced as described above face each other with an aluminum foil having a thickness of 100 μm. Sealing was performed by adhering the four sides of the base material with a width of 10 mm through an epoxy adhesive manufactured by Nagase ChemteX Corporation.

〔有機EL素子の評価〕
(ダークスポット耐性の評価)
封止された有機EL素子1A〜18A及び有機EL素子1B〜18Bを、40℃、90%RHの環境下で通電を行い、ダークスポットの発生や発光ムラの状況を0日から120日までの変化を観察し、下記の基準に従って、ダークスポット耐性の評価を行った。
[Evaluation of organic EL elements]
(Evaluation of dark spot resistance)
The encapsulated organic EL elements 1A to 18A and the organic EL elements 1B to 18B are energized in an environment of 40 ° C. and 90% RH, and the occurrence of dark spots and light emission unevenness are observed from 0 to 120 days. The change was observed, and dark spot resistance was evaluated according to the following criteria.

5:0日目でダークスポットや輝度ムラは観察されない。120日経過後に非発光領域が全発光面積の0.1%未満であり、発生したダークスポットは全て目視では容易に観察できない大きさ(0.1mm以下)であった。   No dark spots or uneven brightness are observed on the 5th day. After 120 days, the non-light-emitting area was less than 0.1% of the total light-emitting area, and all the generated dark spots had a size (0.1 mm or less) that cannot be easily observed visually.

4:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、また輝度ムラは観察されない。120日経過後に非発光領域が全発光面積の0.1%以上、2.0%未満であり、発生したダークスポットは目視では容易に観察できない大きさ(0.1mm以下)を維持した。   4: Dark spots generated on the 0th day have a size (0.1 mm or less) that cannot be easily observed visually, and no luminance unevenness is observed. After 120 days, the non-light-emitting area was 0.1% or more and less than 2.0% of the total light-emitting area, and the generated dark spot maintained a size (0.1 mm or less) that was not easily observable by visual observation.

3:0日目に目視で判別可能な輝度ムラが観察されず、発生したダークスポットは全て目視では容易に観察できない大きさ(0.1mm以下)であった。120日経過後に非発光領域が全発光面積の2.0%以上、10%未満であった。   On the third day, no visually observable luminance unevenness was observed, and all the generated dark spots had a size (0.1 mm or less) that could not be easily observed visually. After 120 days, the non-light emitting area was 2.0% or more and less than 10% of the total light emitting area.

2:0日目に目視で判別可能な輝度ムラやダークスポットが観察され、120日経過後にダークスポットの総非発光領域が、全発光面積の2.0%以上、10%未満であった。   On the second day, luminance unevenness and dark spots that were visually observable were observed, and after 120 days, the total non-light-emitting area of the dark spots was 2.0% or more and less than 10% of the total light-emitting area.

1:0日目に目視で判別可能なダークスポットや輝度ムラの非発光領域が全発光面積の1.0%を超えて観察され、120日以内に非発光領域が全発光面積の10%を超えた。   1 day, dark spots and non-luminous areas with uneven brightness that can be visually identified are observed to exceed 1.0% of the total light emitting area, and within 120 days, the non-light emitting area accounts for 10% of the total light emitting area. Beyond.

以上により得られたガスバリアーフィルムの評価及び有機EL素子に適用した際の評価結果を、表1に示す。   Table 1 shows the evaluation results of the gas barrier film obtained as described above and the evaluation results when applied to an organic EL device.

Figure 0006094577
Figure 0006094577

に記載の結果より明らかなように、本発明で規定する構成からなる透明ガスバリアーフィルムは、比較例に対し、水蒸気バリアー性及び耐久性(折り曲げ耐性)に優れていることがわかる。更に、この透明ガスバリアーフィルムを適用した電子デバイス(有機EL素子)は、比較例に対し、ダークスポット耐性、耐久性(折り曲げ耐性)に優れ、輝度ムラの発生が低減していることがわかる。 As is apparent from the results shown in Table 3 , it can be seen that the transparent gas barrier film having the structure defined in the present invention is superior in water vapor barrier properties and durability (bending resistance) to the comparative example. Furthermore, it can be seen that the electronic device (organic EL element) to which the transparent gas barrier film is applied is superior in dark spot resistance and durability (bending resistance) to the comparative example, and the occurrence of uneven brightness is reduced.

本発明の透明ガスバリアーフィルムは、高いガスバリアー性能を有するとともに、耐久性(折り曲げ耐性)に優れた特性を備え、有機EL素子の様な各種電子デバイスのガスバリアー性及び耐久性(ダークスポット耐性)に優れた基板として好適に利用できる。   The transparent gas barrier film of the present invention has high gas barrier performance and has excellent durability (bending resistance), and gas barrier properties and durability (dark spot resistance) of various electronic devices such as organic EL elements. The substrate can be suitably used as an excellent substrate.

1 ガスバリアーフィルム
2 基材
3 ガスバリアー層
4 平滑層
5 金属層
6 下地層
7 アンカーコート層
8 ブリードアウト防止層
10 発光機能層
11 正孔注入層
12 正孔輸送層
13 発光層
14 電子輸送層
15 電子注入層
16 対向電極
17 補助電極
18 封止材
19 接着剤
20 電子デバイス(有機EL素子)
DESCRIPTION OF SYMBOLS 1 Gas barrier film 2 Base material 3 Gas barrier layer 4 Smooth layer 5 Metal layer 6 Underlayer 7 Anchor coat layer 8 Bleed-out prevention layer 10 Light emitting functional layer 11 Hole injection layer 12 Hole transport layer 13 Light emitting layer 14 Electron transport layer 14 15 Electron Injection Layer 16 Counter Electrode 17 Auxiliary Electrode 18 Sealing Material 19 Adhesive 20 Electronic Device (Organic EL Element)

Claims (12)

基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で有し、前記金属層が、銀又は銀を主成分とした合金を用いて形成された層であり、前記平滑層と、金属層との間に、更に、窒素原子をヘテロ原子とした複素環を有する化合物を含有した下地層を有し、かつ前記平滑層がウレタン結合を有する化合物を含有することを特徴とする透明ガスバリアーフィルム。 On the substrate, at least a gas barrier layer, a smooth layer, and a metal layer are provided in this order, and the metal layer is a layer formed using silver or an alloy containing silver as a main component, and the smooth layer If, between the metal layer, further, a nitrogen atom have a base layer containing a compound having a heterocyclic ring and hetero atoms, and the smoothing layer is characterized by containing a compound having a urethane bond Transparent gas barrier film. 前記窒素原子をヘテロ原子とした複素環を有する化合物が、下記一般式(2)で表される化合物であることを特徴とする請求項1に記載の透明ガスバリアーフィルム。
Figure 0006094577
〔式中、Y は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E 51 〜E 66 、E 71 〜E 88 は、各々、C(R )または窒素原子を表し、R は水素原子または置換基を表す。但し、E 1〜E 79 の少なくとも1つ及びE 80 〜E 88 の少なくとも1つは、窒素原子を表す。n3及びn4は、各々0〜4の整数を表すが、n3+n4は2以上の整数である。〕
The transparent gas barrier film according to claim 1, wherein the compound having a hetero ring having a nitrogen atom as a hetero atom is a compound represented by the following general formula (2) .
Figure 0006094577
[ Wherein Y 5 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof. E 51 to E 66 and E 71 to E 88 each represent C (R 3 ) or a nitrogen atom, and R 3 represents a hydrogen atom or a substituent. Provided that at least one of the at least one and E 80 to E 88 in E 7 1 through E 79 represents a nitrogen atom. n3 and n4 each represents an integer of 0 to 4, but n3 + n4 is an integer of 2 or more. ]
前記ガスバリアー層が、ポリシラザン改質層であることを特徴とする請求項1又は請求項2に記載の透明ガスバリアーフィルム。   The transparent gas barrier film according to claim 1, wherein the gas barrier layer is a polysilazane modified layer. 前記ガスバリアー層が、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たす構成のガスバリアー層Bであることを特徴とする請求項1から請求項3までのいずれか一項に記載の透明ガスバリアーフィルム。
(1)前記ガスバリアー層BについてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層Bの層厚方向における前記ガスバリアー層Bの表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、2つ以上の極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3.0at%以上である。
(2)前記ガスバリアー層Bの全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
The gas barrier layer B includes a carbon atom, a silicon atom, and an oxygen atom, the composition continuously changes in the layer thickness direction, and satisfies the requirements defined in the following (1) and (2). The transparent gas barrier film according to any one of claims 1 to 3, wherein the transparent gas barrier film is.
(1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer B, the gas barrier layer B in the layer thickness direction of the gas barrier layer B In the carbon distribution curve showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms (referred to as “carbon atom ratio (at%)”). The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 3.0 at% or more.
(2) In a region of 90% or more of the total thickness of the gas barrier layer B, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or It has an order of magnitude relationship represented by (B).
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
前記ガスバリアー層が少なくとも2層で構成され、基材側に位置する第1のガスバリアー層が前記ガスバリアー層Bであり、最表層側に位置する第2のガスバリアー層が、前記ガスバリアー層B上に形成されたポリシラザン改質層であることを特徴とする請求項4に記載の透明ガスバリアーフィルム。   The gas barrier layer is composed of at least two layers, the first gas barrier layer located on the substrate side is the gas barrier layer B, and the second gas barrier layer located on the outermost layer side is the gas barrier. The transparent gas barrier film according to claim 4, which is a polysilazane modified layer formed on the layer B. 前記平滑層の厚さが、20〜500nmの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の透明ガスバリアーフィルム。 The thickness of the smoothing layer, a transparent gas barrier film of any one of claims 1 to 5, characterized in der Rukoto the range of 20 to 500 nm. 基材上に、少なくとも、ガスバリアー層、平滑層及び金属層をこの順で設ける透明ガスバリアーフィルムの製造方法であって、前記金属層が、銀又は銀を主成分とした合金を用いて形成された層であり、前記平滑層と、金属層との間に、更に、窒素原子をヘテロ原子した複素環を有する化合物を含有した下地層を設け、かつ前記平滑層がウレタン結合を有する化合物を含有することを特徴とする透明ガスバリアーフィルムの製造方法 A method for producing a transparent gas barrier film in which at least a gas barrier layer, a smooth layer, and a metal layer are provided in this order on a substrate, wherein the metal layer is formed using silver or an alloy containing silver as a main component. An underlayer containing a compound having a heterocyclic ring in which a nitrogen atom is heteroatom is further provided between the smooth layer and the metal layer, and the smooth layer has a urethane bond A method for producing a transparent gas barrier film, comprising: 前記ガスバリアー層を、基材上にポリシラザン含有塗布液を塗布したのち、改質処理を施して形成することを特徴とする請求項7に記載の透明ガスバリアーフィルムの製造方法。 The method for producing a transparent gas barrier film according to claim 7, wherein the gas barrier layer is formed by applying a polysilazane-containing coating solution on a substrate and then performing a modification treatment . 前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化させ、下記(1)及び(2)で規定する要件を満たす構成のガスバリアー層Bとすることを特徴とする請求項7又は請求項8に記載の透明ガスバリアーフィルムの製造方法。
(1)前記ガスバリアー層BについてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層Bの層厚方向における前記ガスバリアー層Bの表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、2つ以上の極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3.0at%以上とする。
(2)前記ガスバリアー層Bの全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
式(A)
(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B)
(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
The gas barrier layer contains a carbon atom, a silicon atom, and an oxygen atom, the composition is continuously changed in the layer thickness direction, and the gas barrier layer B is configured to satisfy the requirements defined in the following (1) and (2) The method for producing a transparent gas barrier film according to claim 7 or 8, wherein:
(1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer B, the gas barrier layer B in the layer thickness direction of the gas barrier layer B In the carbon distribution curve showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms (referred to as “carbon atom ratio (at%)”). The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 3.0 at% or more.
(2) In a region of 90% or more of the total thickness of the gas barrier layer B, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or It has an order of magnitude relationship represented by (B).
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
前記ガスバリアー層を少なくとも2層で形成し、基材側に位置する第1のガスバリアー層を前記ガスバリアー層Bとし、最表層側に位置する第2のガスバリアー層を、前記ガスバリアー層B上にポリシラザン含有塗布液を塗布したのち、改質処理を施して形成することを特徴とする請求項9に記載の透明ガスバリアーフィルムの製造方法。 The gas barrier layer is formed of at least two layers, the first gas barrier layer located on the substrate side is the gas barrier layer B, and the second gas barrier layer located on the outermost layer side is the gas barrier layer. The method for producing a transparent gas barrier film according to claim 9, wherein after forming a polysilazane-containing coating solution on B, a modification treatment is performed . 請求項1から請求項6までのいずれか一項に記載の透明ガスバリアーフィルムを具備することを特徴とする電子デバイス An electronic device comprising the transparent gas barrier film according to any one of claims 1 to 6 . 前記電子デバイスが、有機エレクトロルミネッセンス素子であることを特徴とする請求項11に記載の電子デバイス。 Said electronic device, an electronic device according to claim 11, wherein the Oh Rukoto organic electroluminescence device.
JP2014512591A 2012-04-26 2013-04-23 Transparent gas barrier film, method for producing the same, and electronic device Expired - Fee Related JP6094577B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012100844 2012-04-26
JP2012100844 2012-04-26
PCT/JP2013/061845 WO2013161785A1 (en) 2012-04-26 2013-04-23 Transparent gas barrier film and electronic device

Publications (2)

Publication Number Publication Date
JPWO2013161785A1 JPWO2013161785A1 (en) 2015-12-24
JP6094577B2 true JP6094577B2 (en) 2017-03-15

Family

ID=49483098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512591A Expired - Fee Related JP6094577B2 (en) 2012-04-26 2013-04-23 Transparent gas barrier film, method for producing the same, and electronic device

Country Status (2)

Country Link
JP (1) JP6094577B2 (en)
WO (1) WO2013161785A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014148407A1 (en) * 2013-03-21 2017-02-16 コニカミノルタ株式会社 Transparent conductor
WO2015083706A1 (en) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 Gas barrier film and method for producing same
US20160319432A1 (en) * 2013-12-26 2016-11-03 Sumitomo Chemical Company, Limited Laminate film, organic electroluminescent device, photoelectric conversion device, and liquid crystal display
KR102374491B1 (en) 2013-12-26 2022-03-14 스미또모 가가꾸 가부시끼가이샤 Laminated film and flexible electronic device
JPWO2015115510A1 (en) * 2014-01-31 2017-03-23 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JPWO2015147221A1 (en) * 2014-03-27 2017-04-13 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film
JP6544832B2 (en) * 2014-03-31 2019-07-17 リンテック株式会社 Gas barrier laminate, member for electronic device and electronic device
JPWO2016174950A1 (en) * 2015-04-28 2018-02-22 コニカミノルタ株式会社 Organic electroluminescence device
KR20240038897A (en) * 2022-09-16 2024-03-26 삼성디스플레이 주식회사 Display device and method for fabrication thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058896A (en) * 2000-02-01 2006-03-02 Mitsui Chemicals Inc Filter for plasma display, and display device and method for manufacturing the same
JP2001358495A (en) * 2000-06-16 2001-12-26 Toppan Printing Co Ltd Transparent electromagnetic-wave shielding film treated to be contamination preventive
JP4241017B2 (en) * 2002-12-04 2009-03-18 大日本印刷株式会社 Gas barrier laminate and method for producing the same
JP4300842B2 (en) * 2003-03-27 2009-07-22 パナソニック電工株式会社 LIGHT REFLECTOR AND LIGHTING APPARATUS HAVING THE LIGHT REFLECTOR
US8728615B2 (en) * 2004-09-13 2014-05-20 Sumitomo Metal Mining Co., Ltd. Transparent conductive film and method of fabricating the same, transparent conductive base material, and light-emitting device
JP2007168085A (en) * 2005-12-19 2007-07-05 Toppan Printing Co Ltd Laminate having high barrier properties
WO2009148045A1 (en) * 2008-06-06 2009-12-10 コニカミノルタホールディングス株式会社 Heat shielding resin base and construction member using the same
JPWO2011078156A1 (en) * 2009-12-21 2013-05-09 コニカミノルタアドバンストレイヤー株式会社 FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME

Also Published As

Publication number Publication date
WO2013161785A1 (en) 2013-10-31
JPWO2013161785A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6094577B2 (en) Transparent gas barrier film, method for producing the same, and electronic device
JP5533585B2 (en) Gas barrier film manufacturing method, gas barrier film, and electronic device
JP5565537B1 (en) Gas barrier film and method for producing gas barrier film
JP6156388B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
WO2014073438A1 (en) Electronic device and gas barrier film fabrication method
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
JP5857452B2 (en) Barrier film manufacturing method
US20160035999A1 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JP5949432B2 (en) Gas barrier film and method for producing gas barrier film
JP5892030B2 (en) Method for producing gas barrier film and gas barrier film
JP5761005B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP6520932B2 (en) Gas barrier film
JP2013226732A (en) Method for manufacturing gas barrier film
JP5768652B2 (en) Barrier film manufacturing method
JP2017077668A (en) Gas barrier laminate and organic electroluminescent element
JPWO2015178069A6 (en) Gas barrier film
JP5966937B2 (en) Gas barrier film and method for producing gas barrier film
JP2016171038A (en) Method for manufacturing electronic device
JP2015205511A (en) Method for producing steam barrier film, steam barrier film, electronic equipment, and organic electroluminescent panel
JPWO2015133286A1 (en) Functional element sealing method and functional element sealed by the sealing method
WO2017168867A1 (en) Light extraction film and organic electroluminescent light emitting device
JP2013039706A (en) Method for producing steam barrier film, steam barrier film and electronic equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees