JP6091391B2 - 太陽電池パネルの診断方法 - Google Patents

太陽電池パネルの診断方法 Download PDF

Info

Publication number
JP6091391B2
JP6091391B2 JP2013200259A JP2013200259A JP6091391B2 JP 6091391 B2 JP6091391 B2 JP 6091391B2 JP 2013200259 A JP2013200259 A JP 2013200259A JP 2013200259 A JP2013200259 A JP 2013200259A JP 6091391 B2 JP6091391 B2 JP 6091391B2
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
frequency
impedance
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013200259A
Other languages
English (en)
Other versions
JP2014186022A (ja
Inventor
睦 津田
睦 津田
正和 滝
正和 滝
保聡 屋敷
保聡 屋敷
知弘 池田
知弘 池田
本並 薫
薫 本並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013200259A priority Critical patent/JP6091391B2/ja
Publication of JP2014186022A publication Critical patent/JP2014186022A/ja
Application granted granted Critical
Publication of JP6091391B2 publication Critical patent/JP6091391B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

本発明は、太陽電池パネルの診断方法に関する。
太陽光発電は、火力発電や原子力発電の代替エネルギーとして大いに期待されており、単結晶あるいは多結晶シリコン基板を用いる結晶系太陽電池パネルやガラス基板上にシリコン等の薄膜を堆積して太陽電池セルを形成する薄膜太陽電池パネルの生産量は、近年飛躍的に増加している。現在では、これらの太陽電池パネルを複数個、目的に合わせて直並列に接続した太陽光発電システムが、一般の家庭用発電に留まらず、1MW以上の発電量を持つ大規模発電所にも使用されるようになってきている。
太陽電池パネルは、機械的に動作する部分が少なく、その寿命は一般に20年以上と言われているが、実際には、様々な原因により運転開始から数年足らずで不具合が発生することが多数報告されている。太陽電池セル内の発電層の劣化、電極・配線部の腐食による抵抗増大、太陽電池セルと金属製フレームとの間に充填している封止材の絶縁劣化、太陽電池パネルを固定している金属製架台の接地不良、等により、太陽電池パネルの特性劣化が起こり、最終的には動作不良に至る場合もある。太陽電池の更なる普及のためにも、このような太陽電池パネルの劣化状態を早期に検知できる診断技術が求められている。太陽電池パネルの劣化状態を早期に検知できれば、太陽光発電システム内の一部の太陽電池パネルに劣化が生じている場合に、適切なタイミングで太陽電池パネルの修理や交換を行えば、その太陽電池パネルが故障してシステム全体に及ぶ不具合が発生することを回避できる。そのためにもパネルの劣化診断や故障予測技術が重要である。
太陽電池パネルの発電量は、その時の日射量や気象条件などの外的要因によって大きく変化するため、太陽電池パネルの電流・電圧や発電量をモニタリングするだけでは、パネルが正常に動作しているかどうかを判断するのは難しい。このような発電量モニタリングでは、パネルが“動作している”/“動作していない”、のようにいわゆる“0”/“1”判定は可能であるが、日射量が刻々変動している実際の設置環境では、発電量が低下してもパネルに異常が発生したかどうかを判断することは困難である。また、太陽光発電システムを施工する際、施工が完了した時点で、パネルの結線に不具合がある、あるいは製品自体に問題があるかどうかをその場で判断することも難しい。
特許文献1には、太陽電池モジュール裏面の屋根用鋼板をアース線で接地極に接続し、太陽電池モジュールのプラス端子と接地極とにLCRメータを接続し、太陽電池セルと接地極間の静電容量の測定を行うことが記載されている。これにより、特許文献1によれば、太陽電池モジュールから接地極に接続が行われていない場合には接続が行われている場合に比べて静電容量測定値が大幅に小さくなるので、太陽電池モジュールが接地極に接続されているかどうかを確認できるとされている。
特許文献2には、複数の太陽電池モジュールが直列に接続された太陽電池ストリングの端子にLCRメータの入力端を接続し、対地間静電容量を測定することが記載されている。これにより、特許文献2によれば、(断線箇所までの太陽電池モジュール枚数)=(故障時の静電容量/健全時の静電容量)×(太陽電池ストリング中の太陽電池モジュール枚数)の式で、太陽電池モジュール間の断線位置を容易に特定できるとされている。
特許第3450701号公報 特許第4604250号公報
特許文献1及び特許文献2に記載の技術は、いずれも、LCRメータを用いて太陽電池パネルの出力端子とアース(大地)間との静電容量を測定することが前提となっている。このため、特許文献1及び特許文献2に記載の技術では、太陽電池パネル間の断線状況やパネルを取付けている架台や太陽電池パネルのフレームとの接地不良を検知することはできても、太陽電池セルの発電層の劣化、電極・配線部の抵抗不良、太陽電池セルの絶縁不良等の太陽電池パネル自体の不具合や問題点を検知することは困難であると考えられる。
また、特許文献1及び特許文献2に記載の技術では、静電容量の測定自体も精度が不充分であると考えられる。例えば、太陽電池ストリングのパネル間の断線の有無を判定することは可能であるとしても、断線に至る途中の劣化度合いを定量的に検知することが困難である。
本発明は、上記に鑑みてなされたものであって、太陽電池パネルの劣化度合いを定量的に診断できる太陽電池パネルの診断方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる太陽電池パネルの診断方法は、複数枚の太陽電池パネルが直列あるいは並列に接続された太陽電池ストリングの中の1枚の太陽電池パネルの出力端子に測定周波数が掃引可能であるインピーダンス測定器を接続し、前記太陽電池パネルと直接接続されている両隣の2枚の太陽電池パネルとの間に干渉防止用のダイオードが挿入された状態で、前記インピーダンス測定器を用いて前記太陽電池パネルのインピーダンスの周波数依存性を測定し、前記測定された周波数依存性における共振周波数及び共振特性に基づいて、前記太陽電池パネルの等価回路定数を決定し、前記決定された等価回路定数の値と前記太陽電池パネルが正常であるときとの値とを比較して、前記太陽電池パネルの劣化の程度を検知することを特徴とする。
本発明によれば、太陽電池パネルの出力端子に測定周波数が掃引可能であるインピーダンス測定器を接続し、インピーダンス測定器を用いて太陽電池パネルのインピーダンスの周波数依存性を測定する。これにより、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性を把握できる。そして、把握された共振周波数及び共振特性に基づいて、太陽電池パネルの等価回路定数を決定する。例えば、太陽電池パネルに対応する等価回路モデルから求められるインピーダンスの周波数依存性における共振周波数及び共振特性を、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性にフィッティングさせることで、太陽電池パネルの等価回路定数を決定できる。そして、決定された等価回路定数の値と太陽電池パネルが正常であるときとの値とを比較して、太陽電池パネルの劣化の程度を検知する。これにより、太陽電池パネル自体の状態を数値的に把握できるとともに、正常であるときとの値と数値的に比較できるので、太陽電池パネルの劣化度合いを定量的に診断できる。
図1は、実施の形態1にかかる太陽電池パネルの劣化・故障診断方法を模式的に示す概略構成図である。 図2は、実施の形態1にかかる太陽電池パネルの劣化・故障診断方法を用いて測定した、太陽電池パネルの高周波インピーダンスZPVの強度と位相の周波数に対する依存性の一例を示す図である。 図3は、実施の形態1における太陽電池パネルの高周波等価回路モデルを示す図である。 図4は、実施の形態1にかかる太陽電池パネルの劣化・故障診断方法を用いて太陽電池パネルのインピーダンスを測定し、等価回路解析を行った結果の一例を示す図である。 図5は、実施の形態1にかかる太陽電池パネルの劣化・故障診断方法を用いて太陽電池パネルの劣化度合いを診断した結果の一例を示す図である。 図6は、実施の形態2にかかる太陽電池パネルの劣化・故障診断方法の概略構成を模式的に示す図である。 図7は、実施の形態3にかかる太陽電池パネルの劣化・故障診断方法の概略構成を模式的に示す図である。 図8は、実施の形態4にかかる太陽電池パネルの劣化・故障診断方法の概略構成を模式的に示す図である。 図9は、実施の形態5にかかる太陽電池パネルの劣化・故障診断方法の概略構成を模式的に示す図である。 図10は、実施の形態5にかかる太陽電池パネルの劣化・故障診断方法を用いて評価した、測定回路全体の高周波インピーダンスZtotalの強度と位相の周波数に対する依存性の一例を示す図である。 図11は、実施の形態6にかかる太陽電池パネルの劣化・故障診断方法の概略構成を模式的に示す図である。
以下に、本発明にかかる太陽電池パネルの診断方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
実施の形態1にかかる太陽電池パネルの診断方法について説明する。
診断すべき太陽電池パネルは、例えば、薄膜又は結晶系の太陽電池セルを含む太陽電池パネルである。太陽電池パネルの診断方法の診断対象は、例えば、太陽電池パネルの故障だけでなく、故障に至る途中段階の劣化についても含む。太陽電池パネルの診断方法の診断対象は、例えば、太陽電池パネルの劣化の程度を検知する。
具体的には、例えば図1に示すように、太陽電池パネル11の出力端子にインピーダンス測定器15を接続する。図1は、実施の形態1による太陽電池パネルの劣化診断方法を示す概略図である。
太陽電池パネル11は、例えば、薄膜太陽電池パネルである。太陽電池パネル11では、ガラス基板12上に、シリコン等の発電層や透明電極膜などが積層されて太陽電池セルが形成されている。太陽電池パネル11は、例えば、太陽電池パネル11の周囲に金属製フレームを配置しないフレームレスのタイプである。また、太陽電池パネル11の裏面側には、電力を取り出すための出力端子ボックス13が配置されている。
この出力端子ボックス13の一方の端子(正極側)13aには、パネルの劣化診断のため、インピーダンス測定器15の測定ポート16に接続された同軸ケーブル17の中心導体18を接続する。出力端子ボックス13の他方の端子(負極側)13bには、同軸ケーブル17の外部導体19が接続される。同軸ケーブル17では、外部導体19が誘電体20を介して中心導体18と電気的に絶縁されている。
インピーダンス測定器15は、測定周波数が実質的に掃引可能であり、測定周波数を実質的に掃引(例えば、連続的に掃引、又は所定間隔(例えば、一定間隔)で離散的に掃引)する機能を有する。インピーダンス測定器15は、例えば、ネットワークアナライザ、インピーダンスアナライザ、コンビネーションアナライザなどである。
次に、この太陽電池パネル11のインピーダンス測定に関し詳細に説明する。ここではインピーダンス測定器15として、ネットワークアナライザを使用し、1ポート反射法によりインピーダンスを測定する方法について説明する。
インピーダンス測定器15の測定ポート16から微弱な高周波信号を太陽電池パネル11に送り、その入射波の電力と、太陽電池パネル11からインピーダンス測定器15に戻ってきた反射波の電力とをそれぞれ測定する。インピーダンス測定器15では、この入射波と反射波との振幅比から反射係数(強度、位相)を求め、最終的には太陽電池パネル11のインピーダンスZPVを得ることができる。この測定では、高周波信号の周波数Fを、ある範囲(F<F<F)で掃引し、太陽電池パネル11のインピーダンスZPVの周波数F依存性を得る(図2(a)、(b)参照)。
図1に示した診断方法を用いて、太陽電池パネル11のインピーダンスZPVを測定した結果の一例を図2に示す。図2(a)は、インピーダンスZPVの強度の周波数Fに対する依存性を表し、図2(b)は、インピーダンスZPVの位相の周波数Fに対する依存性を表している。図2は、この測定を、例えば、太陽電池パネル11における太陽電池セルが発電しない夜間帯(暗状態)に行い、例えば、下限周波数をF=300kHz、上限周波数をF=10MHzに設定し、周波数FをFからFまで増加させながら、太陽電池パネル11のインピーダンスZPVを測定した結果である。
周波数をF=300kHzから徐々に増加させると、図2(a)に示す太陽電池パネル11のインピーダンスZPVの強度は、初め減少し、周波数がF〜1.5MHzで最小を示した後、再び増加している。そして、周波数がF>5MHzでほぼ平坦な特性を示している。一方、図2(b)に示すインピーダンスZPVの位相は、周波数がF〜1.5MHzで、−90°(容量性の負荷)から+90°(誘導性の負荷)に急激に変化している。そして、周波数がF>2MHzでほぼ平坦な特性を示している。
図2(a)、(b)に示されるように、本実施例で測定した太陽電池パネル11のインピーダンスZPVの周波数依存性は、F〜1.5MHzで共振特性を示し、ZPVの強度が最小で、その位相が0°になるときの周波数(すなわち共振周波数)を求めると、この太陽電池パネル11では、共振周波数はFres=1.48MHzであった。また、インピーダンスの最小値はZPV=7.3Ω(@1.48MHz)であった。
共振周波数や最小インピーダンスの値は太陽電池パネルの状態により決定されるので、これらの数値を把握することで、太陽電池パネルの状態(例えば、劣化の程度)を把握・管理することができる。
ここで、これらの数値(例えば、共振周波数、及びインピーダンスの最小値)が変化しても、太陽電池パネル11のどの箇所に問題が生じているかは直接的に分からない。不具合箇所を特定するためには、太陽電池パネル11を等価回路に置き換えればよい。等価回路中の特定の素子(例えばシリーズ抵抗)の値が変化すれば、この素子に対応する箇所(電極や配線部)に不具合が生じたと考えることができる。このように、太陽電池パネル11固有の等価回路定数を把握・管理することは有効である。
図3は、図1に示す太陽電池パネル11の暗状態における等価回路モデルを表す。太陽電池パネル11内の電極・配線部11aは、シリーズ抵抗rと寄生インダクタンスLとの直列接続で表せる。また、太陽電池セル部(電極/発電層/電極)11bは、電極部のシリーズ抵抗rと発電層のシャント抵抗Rshに加え、光照射が無い暗状態では、発電層のpn接合部の接合容量Cを用いて、図3に示すような直列並列回路で表すことができる。よって、出力端子ボックス13から見た太陽電池パネル11の全インピーダンスZPVは、次の数式(1)により表せると考えられる。
Figure 0006091391
数式(1)で、ωは角周波数(F=ω/(2π))、jは複素数の虚数単位を表し、ωと回路定数(L、Rsh、C)の値がωL−ωRsh /{1+(ωRsh}=0の関係を満たすときに、ZPVの虚部の値はゼロになり、このときZPVの強度は最小、位相は0°になる。すなわち、これが回路の共振条件であり、L、Rsh、Cの値が与えられているときには、共振周波数Fresは次の数式(2)により得られる。
Figure 0006091391
太陽電池パネル11のインピーダンスZPVは、周波数範囲を適切に選ぶと、図2(a)に示すような共振特性を示し、共振周波数Fresの前後の周波数領域でZPVの強度が大きく変化するので、この領域で数式(1)および数式(2)を実測値にフィッティングさせる(図4参照)。これにより、数式(1),(2)中のフィッティング・パラメータである4つの回路定数(r、Rsh、L、C)を比較的容易に求めることができる。
なお、数式(1)をフィッティングする際、必ずしもこのような共振特性を利用する必要はないが、フィッティングの精度を向上させるには共振周波数Fresの前後の周波数領域でフィッティングを行うのが望ましい。
具体例として、図2において、共振周波数(Fres=1.48MHz)を含む領域として、周波数がF=300kHzから4MHzまでの周波数領域でフィッティングを行った結果を図4に示す。ここで、丸印はインピーダンスZPVの実測値であり、実線は数式(1)をフィッティングした結果である。実測値とフィッティングの結果とは比較的良く一致しているのがわかる。このフィッティングにより得られた等価回路定数の値は、シリーズ抵抗r=7.1Ω、寄生インダクタンスL=2.8μH、シャント抵抗Rsh=4.3kΩ、接合容量C=4.0nFであった。このようにして太陽電池パネルの等価回路定数を求めることができる。
なお、本実施の形態では、太陽電池パネル11の正極側の端子13aにネットワークアナライザの測定ポート16を接続した測定方法を例示しているが、逆に太陽電池パネル11の負極側の端子13bにネットワークアナライザの測定ポート16を接続してもよく、同様の結果が得られる。
次に、本実施の形態で示した太陽電池パネル11の診断方法を用いて、太陽電池パネル11の劣化度合いを診断した結果について説明する。ここでは、1つの太陽電池パネルに高温・高湿試験(気温:+85℃、湿度:85%RH)を時間を変えて実施し、試験後にパネルの発電特性および高周波特性を評価した結果について例示的に説明する。
なお、高温・高湿試験時間は1000時間および2000時間とし、試験前の初期値も含めて、計3回特性評価を行った。また、高周波特性評価の結果から、図3および図4で述べた計測・解析方法により太陽電池パネルの等価回路定数(r、Rsh、L、C)を求めた。
図5は、太陽電池パネルに高温・高湿試験(1000時間、2000時間)を実施した後のパネルの等価回路定数(L、r、C、Rsh)と変換効率(η)の変化を示している。ここで、回路定数や変換効率の値は、試験前の初期値で規格化している。試験前の初期値は、太陽電池パネルが正常であるときの値として用いている。すなわち、回路定数や変換効率の値を試験前の初期値で規格化することは、等価的に、回路定数や変換効率の値を太陽電池パネル11が正常であるときの値と比較することに相当する。
図5に示すように、1000時間の高温・高湿試験では、太陽電池パネルの変換効率ηは殆ど変化していない。しかしながら、パネルの回路定数に関しては、太陽電池セルの発電層の接合容量Cの値とシャント抵抗Rshの値とが試験前と比較して少し低下している。すなわち、1000時間の高温・高湿試験では、太陽電池パネルの発電特性には殆ど変化は認められないが、発電層には早くも僅かな劣化が発生していることが認められる。
この太陽電池パネルに高温・高湿試験を継続すると、図5に示すように、2000時間後には、変換効率ηは0.86にまで大きく低下した。一方、回路定数に関しては、配線の寄生インダクタンスLや配線や電極部のシリーズ抵抗rは相変わらず殆ど変化していないが、発電層の接合容量Cは0.87に、シャント抵抗Rshは0.91に、大きく低下した。これらの結果から、発電層の劣化が変換効率ηの低下を引き起こしたといえる。また、配線や電極部に対応するシリ−ズ抵抗rの値が一定であることから、2000時間までの高温・高湿試験では、金属の腐食は起こっていないといえる。
このように、太陽電池パネルの変換効率が低下する前に、早くもCやRshの低化を検知していることから、従来の発電量モニタリングに比べ、本実施の形態の診断方法では、太陽電池パネルの劣化度合いをより敏感に且つ定量的に診断することが可能であると結論される。
例えば、図5では、等価回路定数(L、r、C、Rsh)及び変換効率(η)が、初期値(太陽電池パネル11が正常であるときの値)で規格化されている。これらの規格化された各値は、太陽電池パネル11が正常であるときの値との比較結果に相当するものであるとともに、劣化度合いを定量的に示す値にもなっている。
これにより、例えば、等価回路定数(L、r、C、Rsh)及び変換効率(η)の規格化された値を閾値と比較することで、太陽電池パネル11の修理や交換が必要か否かを判断できる。例えば、変換効率(η)の値が変換効率用の閾値THηより大きく、寄生インダクタンスLの値が寄生インダクタンス用の閾値THLより大きく、シリ−ズ抵抗rの値がシリ−ズ抵抗用の閾値THrより大きい場合でも、接合容量Cが接合容量用の閾値THC以下になること(第1の条件)と、シャント抵抗Rshがシャント抵抗用の閾値THRsh以下になること(第2の条件)との少なくとも一方が満たされた場合に、太陽電池パネルの修理や交換が必要であると判断できる。また、太陽電池パネル11の修理や交換が必要であると判断した場合に、ユーザに太陽電池パネル11の修理や交換を促すように(例えば、メッセージ表示やランプ点灯などの視覚的な方法で)報知できる。なお、第1の条件及び第2の条件がいずれも満たされない場合には、太陽電池パネル11の修理や交換が不要であると判断できる。このように、太陽電池パネル11の劣化度合いを定量的に診断できる。
なお、等価回路定数(L、r、C、Rsh)及び変換効率(η)の規格化された値について複数の時間(例えば、1000時間後、及び2000時間後)の間の変化率をみることで、太陽電池パネル11の故障時期を予測することもできる。この場合、予測された故障時期をユーザに(例えば、メッセージ表示やランプ点灯などの視覚的な方法で)報知できる。
ここで、仮に、測定周波数が掃引可変でないインピーダンス測定器(例えば、LCRメータ)を用いて太陽電池パネル11の特性を測定する場合を考える。この場合、太陽電池パネル11とアース(大地)との間の静電容量しか把握できず、太陽電池パネル11の劣化度合いを定量的に診断することが困難である。
それに対して、実施の形態1では、太陽電池パネル11の出力端子に測定周波数が掃引可能であるインピーダンス測定器15を接続し、インピーダンス測定器15を用いて太陽電池パネル11のインピーダンスの周波数依存性を測定する。これにより、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性を把握できる。そして、把握された共振周波数及び共振特性に基づいて、太陽電池パネル11の等価回路定数を決定する。例えば、等価回路定数に対応した回路モデルに応じたインピーダンスの周波数依存性における共振周波数及び共振特性を、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性にフィッティングさせることで、太陽電池パネル11の等価回路定数を決定できる。そして、決定された等価回路定数の値と太陽電池パネル11が正常であるときとの値とを比較して、太陽電池パネル11の劣化の程度を検知する。これにより、太陽電池パネル自体の状態を数値的に把握できるとともに、正常であるときとの値と数値的に比較できるので、太陽電池パネルの劣化度合いを定量的に診断できる。
また、実施の形態1では、太陽電池パネル11の等価回路定数を把握・監視することにより、太陽電池パネル11の僅かな劣化を検知することができる。これにより、故障に至る前に適切なタイミングで太陽電池パネル11の修理や交換をユーザに促すことができる。これにより、重大故障に至る前に太陽電池パネル11を修理あるいは取替えることが可能となるので、太陽電池パネル11を複数含む太陽電池システム全体の保全を効率よく行えるという効果を有する。
また、実施の形態1では、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性に基づいて、太陽電池パネル11の複数の等価回路定数を決定する。これにより、複数の等価回路定数のそれぞれの値の太陽電池パネル11が正常であるときからの変化を監視することで、太陽電池パネル11における劣化箇所を特定することも可能である。
また、実施の形態1では、太陽電池パネル11のインピーダンスの周波数依存性の測定は、太陽電池パネル11が発電していない夜間帯に行われる。これにより、等価回路定数に対応した回路モデルを高精度に想定できるので、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性に基づいて、太陽電池パネル11の複数の等価回路定数を高精度に決定できる。
また、実施の形態1では、等価回路定数を決定する際に用いる共振特性が、共振周波数よりも高い周波数における特性と共振周波数よりも低い周波数における特性とを含む。これにより、等価回路定数に対応した回路モデルに応じたインピーダンスの周波数依存性における共振周波数及び共振特性を、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性に高精度にフィッティングさせることができ、等価回路定数を決定する際の精度を向上できる。
また、実施の形態1では、インピーダンスの周波数依存性の測定は、測定周波数が100Hz以上10MHz以下の範囲に含まれる。例えば、インピーダンスの周波数依存性の測定では、300Hz以上10MHz以下の範囲を含む周波数範囲で測定周波数を掃引させる。これにより、インピーダンスの周波数依存性における共振周波数よりも高い周波数における特性と共振周波数よりも低い周波数における特性と広範囲に含ませながらインピーダンスの周波数依存性の測定を行うことができる。この結果、等価回路定数に対応した回路モデルに応じたインピーダンスの周波数依存性における共振周波数及び共振特性を、測定されたインピーダンスの周波数依存性における共振周波数及び共振特性に高精度にフィッティングさせることができる。
実施の形態2.
次に、実施の形態2にかかる太陽電池パネルの診断方法について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、図1に示すように、インピーダンス測定器15の測定ポート16が太陽電池パネル11の出力端子ボックス13と直接接続されているため、暗状態では支障なく測定できるが、太陽電池パネル11の受光面に光が入射すると、太陽電池パネル11が発電し、インピーダンス測定器15の測定ポート16には例えば〜数10V程度の直流電圧が印加されてしまう可能性がある。このため、屋外に設置されている実際の環境では、たとえ夜間帯の測定であっても、偶発的に外部の光が太陽電池パネル11に当たる場合を考慮すると、太陽電池パネル11に接続されているインピーダンス測定器15が故障する可能性がある。
そこで、実施の形態2では、図6に示すように、太陽電池パネル11の出力端子ボックス13(正極側の端子13a)とインピーダンス測定器15との間にブロッキングキャパシタ21を挿入する。これにより、測定ポート16から太陽電池パネル11へ供給される測定のための高周波信号は、周波数が充分に高いためにブロッキングキャパシタ21を容易に通過し、太陽電池パネル11にまで伝播することができるが、太陽電池パネル11で発生する直流の電圧・電流はブロッキングキャパシタ21によりカットされる。この結果、太陽電池パネル11で発生した過電圧によるインピーダンス測定器15の故障を防ぐことができる。なお、太陽電池パネル11の負極側の端子13bとリターン側のノード22とは、電気的に接続されている。
また、複数の太陽電池パネル11−1〜11−3を含む太陽光発電システムSに組み込まれている太陽電池パネル11−2を診断する際、図6に示すようにブロッキングキャパシタ21をインピーダンス測定器15との間に挿入しておく。これにより、太陽電池パネル11−2が発電している昼間帯においても、発電により生じた直流電流がインピーダンス測定器15に流れ込むことを抑制でき、インピーダンス測定器15を保護することができる。
以上のように、実施の形態2では、インピーダンスの周波数依存性の測定は、太陽電池パネル11の出力端子ボックス13(正極側の端子13a)とインピーダンス測定器15との間にブロッキングキャパシタ21が挿入された状態で行う。これにより、例えば、夜間帯の測定において偶発的に外部の光が太陽電池パネル11に当たった場合に、太陽電池パネル11で発生した過電圧がインピーダンス測定器15に流れ込むことを抑制でき、太陽電池パネル11で発生した過電圧によるインピーダンス測定器15の故障を防ぐことができる。
また、実施の形態2では、インピーダンス測定器15がブロッキングキャパシタ21を介して太陽電池パネル11のインピーダンスの周波数依存性を測定するため、インピーダンス測定器15が直流的に太陽電池パネル11から切り離されているので、太陽電池セルが発電中(すなわち明状態)にも測定することが可能である。これにより、等価回路定数を決定するための回路解析が容易である。
実施の形態3.
次に、実施の形態3にかかる太陽電池パネルの診断方法について説明する。以下では、実施の形態2と異なる部分を中心に説明する。
実施の形態2では、太陽電池パネル11−2の負極側の端子13bやインピーダンス測定器15のリターン側のノード22は接地されておらず、インピーダンス測定器15は電気的に浮いた状態になっている。このため、太陽電池パネル11が発電しているときにインピーダンスを計測する場合には、負極側の直流電圧がインピーダンス測定器15のリターン側のノード22に印加されていることに注意する必要がある。
そこで、実施の形態3では、測定時の安全性を考慮して、図7に示すように、同軸ケーブル17のリターン側のノード22と太陽電池パネル11−2との間にもブロッキングキャパシタ23を挿入する。さらに、アース線24を介してインピーダンス測定器15の筐体を接地するようにしてもよい。また、太陽電池パネル11が発電しているときの等価回路では、太陽電池セルの発電層のpn接合部はキャパシタではなく、ショートした状態になっていることに注意して、価回路定数を決定するための回路解析を行う必要がある。
以上のように、実施の形態3では、インピーダンスの周波数依存性の測定は、太陽電池パネル11の正極側の端子13aとインピーダンス測定器15との間にブロッキングキャパシタ21が挿入されるとともに、太陽電池パネル11の負極側の端子13bとインピーダンス測定器15(のリターン側のノード22)との間にブロッキングキャパシタ23が挿入された状態で行う。これにより、測定時の安全性を向上できる。
実施の形態4.
次に、実施の形態4にかかる太陽電池パネルの診断方法について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、太陽電池パネル11のインピーダンスを測定するインピーダンス測定器15としてネットワークアナライザを使用する場合を例示しているが、実施の形態4では、図8に示すように、周波数が掃引可能である高周波信号発生器26を太陽電池パネル11の出力端子ボックス13(すなわち、正極側の端子13a及び負極側の端子13bのそれぞれ)と接続し、その接続位置の近くに電流・電圧センサ27を設け、波形観測・演算部25を用いて電流・電圧の高周波波形を観測してもよい。すなわち、高周波信号発生器26、電流・電圧センサ27、及び波形観測・演算部25は、協働してインピーダンス測定器15(図1参照)と同様に動作できるインピーダンス測定器28を構成できる。
例えば、観測された波形から電流・電圧の振幅(I、V)と位相差(θ)を求めれば、太陽電池パネル11のインピーダンスZPVを次の数式(3)より求めることができる。
Figure 0006091391
このような電流・電圧測定からインピーダンスを求める方法では、測定用信号の周波数が高い場合には、電流と電圧の位相差θを正確に測定するのは容易ではなく、この場合にはインピーダンスZPVに誤差が含まれやすいことに注意する必要がある。
以上のように、実施の形態4では、高周波信号発生器26が太陽電池パネル11に印加する微弱な高周波信号の周波数を掃引し、その入射波の電流・電圧と反射波の電流・電圧とが合成された電流・電圧の波形を電流・電圧センサ27が観測し、波形観測・演算部25が観測された波形から電流・電圧の振幅(I、V)と位相差(θ)を求めて太陽電池パネル11のインピーダンスZPVを求める。これにより、太陽電池パネル11の出力端子に測定周波数が掃引可能であるインピーダンス測定器15と等価なインピーダンス測定器28を接続でき、インピーダンス測定器28を用いて太陽電池パネル11のインピーダンスの周波数依存性を測定できる。
実施の形態5.
次に、実施の形態5にかかる太陽電池パネルの診断方法について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態5では、図9に示すように、太陽電池パネル11の出力端子ボックス13(正極側の端子13a)とインピーダンス測定器15との間の測定ライン中に共振点調整用のインダクタ29を挿入する。これにより、インピーダンス測定器15からみた測定回路全体のインピーダンスZtotalは、太陽電池パネル11のインピーダンスZPVに加え、共振点調整用のインダクタ29のインピーダンスも考慮する必要がある。共振点調整用のインダクタ29の等価回路は、インダンクタンス成分Lcoilと抵抗成分Rcoilの直列回路と考えられるので、測定回路全体のインピーダンスZtotalは次の数式(4)により表される。
Figure 0006091391
また、Ztotalの虚部の値がゼロになるときの周波数、すなわち共振周波数Fresは、次の数式(5)により得られる。
Figure 0006091391
このように、測定回路全体の共振特性は共振点調整用のインダクタ29の影響を受ける。一例を図10に示す。図10(a)は、インピーダンスZtotalの強度の周波数Fに対する依存性を表し、図10(b)は、インピーダンスZtotalの位相の周波数Fに対する依存性を表している。ここで、数式(4)中の太陽電池パネルの回路定数(C=10nF、Rsh=10kΩ、L=0.2μH、R=1Ω)を固定し、共振点調整用のインダクタ29の抵抗成分をゼロ(Rcoil=0)と仮定してインダクタンス成分の値をLcoil=0〜4.8μHの範囲で変化させてインピーダンスZtotalを計算した。
図10に示されるように、測定ライン中にインダクタを挿入しない場合には、周波数が約3.5MHzで共振が起こっているが、これは太陽電池パネルのL(=0.2μH)とC(=10nF)による直列共振である。次に、インダクタを挿入し、そのLcoilの値を最大4.8μHまで増加させると、共振周波数は約3.5MHzから約0.7MHzにまで大きく低下している。このように、挿入するインダクタのLcoilの値を選ぶことにより、共振周波数を広い範囲で調整することができる。
太陽電池パネルのセルの材料・構造やパネルの大きさが異なると、パネルの回路定数が異なり、共振周波数もパネルにより異なる。よって、様々な種類の太陽電池パネルを同一のインピーダンス測定器15を用いて診断しようとすると、周波数の掃引範囲を充分に広くしておく必要があり、インピーダンス測定器のコストを上げてしまう。これに対し、共振点調整用のインダクタ29を組み込むと、太陽電池パネルの種類や寸法に応じてLcoilの値を適当に選べば、同一のインピーダンス測定器で殆ど全てのパネルをカバーすることができる。
また、Lcoilの値を充分大きくとると(例えば、Lcoil=数10〜数100μH)、共振周波数はFres=数kHz〜数10kHzの周波数帯にまで下げることができる。このような低周波数では、インピーダンスの測定が著しく容易になり、インピーダンス測定器の大幅な低コスト化が可能となる。
また、図10に示されるように、Lcoilの値が大きい場合には、共振周波数の近傍でのインピーダンスの変化が激しくなっている。このような場合には、共振周波数の値をグラフから求めたり、実測データとのカーブフィッティングにより、等価回路定数を求めたりする際、精度を高めることができ、大変都合がよい。
実施の形態6.
次に、実施の形態6にかかる太陽電池パネルの診断方法について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態6では、複数枚の太陽電池パネルが直列に接続されたストリング内の特定の1枚の太陽電池パネルを診断する方法について、図11を用いて説明する。実施の形態3と同様、太陽電池パネル11の出力端子ボックス13(正極側の端子13a)とインピーダンス測定器15との間にブロッキングキャパシタ21が挿入されており、また同軸ケーブル17のリターン側のノード22と太陽電池パネル11との間にもブロッキングキャパシタ23が挿入されている。インピーダンス測定器15から太陽電池パネル11に供給される測定のための高周波信号は、周波数が充分に高いために(逆に言えば、キャパシタの容量が充分に大きいために)ブロッキングキャパシタ21を容易に通過し、太陽電池パネル11にまで伝播することができるが、太陽電池パネル11で発生する直流の電圧・電流はブロッキングキャパシタ21および23によりカットされる。この結果、太陽電池パネル11で発生した過電圧によるインピーダンス測定器15の故障を防ぐことができる。また、同軸ケーブル17のリターン側のノード22もブロッキングキャパシタ23により電気的に切り離されているので、アース線24を介してインピーダンス測定器15の筐体を接地して、感電を防止することもできる。
また、ストリング中の隣り合う太陽電池パネルとの接続部には、図11に示すように、干渉防止用のダイオード30が各パネル毎に挿入されている。インピーダンスを測定する夜間帯においては、太陽電池パネルは発電していないので、このダイオード30の両端には電圧は発生しておらず、ダイオード30はオフ状態となる。よって、インピーダンス測定器15から特定の太陽電池パネル11に供給される高周波信号は、このパネルに隣り合う他のパネルには伝搬することができず、結果として、測定対象である太陽電池パネルのみのインピーダンス測定が可能となる。一方、太陽電池パネルが発電している昼間帯では、このダイオード30の両端には電圧が発生するのでダイオード30はオン状態となり、ストリング中の太陽電池パネルは全て電気的に接続された状態になる。なお、このような状態で太陽電池パネルのインピーダンス測定を行うと、測定対象のパネル以外(特に両隣のパネル)の影響も受けてしまい、測定が困難になる。
以上のように、実施の形態6では、複数枚の太陽電池パネルが直列に接続された太陽電池ストリングにおいて、隣り合うパネルとの間にダイオードが挿入されているので、インピーダンス測定を行う夜間帯には、これらのダイオードがオフ状態となり、各々のパネルは電気的に切り離される。これにより、太陽電池パネルのインピーダンス測定において、他の太陽電池パネルからの干渉を防止することができる。
さらに、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、上記実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。
以上のように、本発明にかかる太陽電池パネルの診断方法は、太陽電池パネルの劣化や故障の診断に有用である。
11 太陽電池パネル、12 ガラス基板、13 出力端子ボックス、15,28 インピーダンス測定器、16 測定ポート、17 同軸ケーブル、18 中心導体、19 外部導体、20 誘電体、21,23 ブロッキングキャパシタ、22 リターン側のノード、24 アース線、25 波形観測・演算部、26 高周波信号発生器、27 電流・電圧センサ、29 共振点調整用のインダクタ、30 干渉防止用ダイオード、31 接続コネクタ。

Claims (1)

  1. 複数枚の太陽電池パネルが直列あるいは並列に接続された太陽電池ストリングの中の1枚の太陽電池パネルの出力端子に測定周波数が掃引可能であるインピーダンス測定器を接続し、
    前記太陽電池パネルと直接接続されている両隣の2枚の太陽電池パネルとの間に干渉防止用のダイオードが挿入された状態で、前記インピーダンス測定器を用いて前記太陽電池パネルのインピーダンスの周波数依存性を測定し、
    前記測定された周波数依存性における共振周波数及び共振特性に基づいて、前記太陽電池パネルの等価回路定数を決定し、
    前記決定された等価回路定数の値と前記太陽電池パネルが正常であるときとの値とを比較して、前記太陽電池パネルの劣化の程度を検知する
    ことを特徴とする太陽電池パネルの診断方法。
JP2013200259A 2013-02-22 2013-09-26 太陽電池パネルの診断方法 Active JP6091391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200259A JP6091391B2 (ja) 2013-02-22 2013-09-26 太陽電池パネルの診断方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013033740 2013-02-22
JP2013033740 2013-02-22
JP2013200259A JP6091391B2 (ja) 2013-02-22 2013-09-26 太陽電池パネルの診断方法

Publications (2)

Publication Number Publication Date
JP2014186022A JP2014186022A (ja) 2014-10-02
JP6091391B2 true JP6091391B2 (ja) 2017-03-08

Family

ID=51833708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200259A Active JP6091391B2 (ja) 2013-02-22 2013-09-26 太陽電池パネルの診断方法

Country Status (1)

Country Link
JP (1) JP6091391B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918390B2 (ja) * 2013-12-10 2016-05-18 株式会社アイテス 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
JP6611435B2 (ja) * 2015-01-15 2019-11-27 日東工業株式会社 太陽光発電設備の異常検出システム
JP6407100B2 (ja) * 2015-06-05 2018-10-17 三菱電機株式会社 太陽電池モジュールの検査装置および太陽電池モジュールの検査方法
JP6387904B2 (ja) * 2015-06-10 2018-09-12 三菱電機株式会社 太陽電池モジュールのはんだ接合評価装置及び評価方法
JP6702168B2 (ja) 2016-12-14 2020-05-27 オムロン株式会社 太陽光発電システムの検査装置および検査方法
US20220224287A1 (en) * 2019-06-03 2022-07-14 Mitsubishi Electric Corporation Deterioration diagnosis device for solar cell string and photovoltaic power generation system provided with the same
JP7306605B2 (ja) * 2019-11-25 2023-07-11 株式会社アイテス 太陽電池ストリングの検査装置、及び検査方法
JP7466502B2 (ja) 2021-06-25 2024-04-12 三菱電機株式会社 測定装置
CN115099290B (zh) * 2022-08-29 2022-11-01 瀚能太阳能(山东)集团有限公司 一种太阳能电池板生产质量检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450697B2 (ja) * 1998-02-13 2003-09-29 キヤノン株式会社 太陽電池モジュールの接地状態測定方法および装置
JP2002131347A (ja) * 2000-10-24 2002-05-09 Nippon Telegraph & Telephone East Corp 接地抵抗測定装置及び接地抵抗測定方法
JP5167527B2 (ja) * 2005-10-18 2013-03-21 国立大学法人東京農工大学 電気特性測定装置
JP2013527613A (ja) * 2010-05-18 2013-06-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システム及び装置の接点の診断方法
JP2012089789A (ja) * 2010-10-22 2012-05-10 Mitsubishi Heavy Ind Ltd 太陽電池アレイの検査装置及びこれを用いた検査方法
KR101150624B1 (ko) * 2010-12-06 2012-05-30 주식회사 에프티랩 공진주파수 변이를 이용한 정전용량방식 터치스크린패널의 전기적 특성 검사장치
US20140111220A1 (en) * 2011-05-11 2014-04-24 Emazys Technologies Aps Method for fault diagnosis on solar modules
JP5774386B2 (ja) * 2011-06-28 2015-09-09 日置電機株式会社 インピーダンス測定装置
JP5691891B2 (ja) * 2011-07-04 2015-04-01 日立金属株式会社 太陽光発電用接続箱
JP2013036747A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 太陽電池アレイ検査装置および太陽電池アレイ検査方法
JP5797055B2 (ja) * 2011-08-08 2015-10-21 日置電機株式会社 等価回路解析装置及び等価回路解析方法

Also Published As

Publication number Publication date
JP2014186022A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6091391B2 (ja) 太陽電池パネルの診断方法
Triki-Lahiani et al. Fault detection and monitoring systems for photovoltaic installations: A review
Madeti et al. A comprehensive study on different types of faults and detection techniques for solar photovoltaic system
JP5872128B1 (ja) 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
US8446043B1 (en) Photovoltaic array systems, methods, and devices and improved diagnostics and monitoring
JP4780416B2 (ja) 太陽電池アレイ故障診断方法
CN102362360B (zh) 用于太阳能发电***的故障检测方法
JP4604250B2 (ja) 太陽電池アレイ故障診断方法
JP2014165232A (ja) 太陽光発電モジュールおよび太陽光発電システム
US20130088252A1 (en) Method for diagnosis of contacts of a photovoltaic system and apparatus
US10833628B2 (en) Failure diagnostic method and failure diagnostic device of solar cell string
CN107078690B (zh) 在dc***中检测和定位故障的方法和***
Madeti et al. Online modular level fault detection algorithm for grid-tied and off-grid PV systems
JP2014514582A (ja) ソーラモジュールに関する故障診断のための方法
Takashima et al. Disconnection detection using earth capacitance measurement in photovoltaic module string
CN102998529A (zh) 绝缘电阻的测试方法
KR101270534B1 (ko) 태양광 전지 어레이의 모니터링 방법 및 장치
JP6312081B2 (ja) 欠陥診断装置
JP5205530B1 (ja) 太陽電池アレイの検査システム
CN107508549B (zh) 一种组串的pid衰减的检测方法
JP6214845B1 (ja) 太陽電池ストリングの故障診断方法及び故障診断装置
JP6586649B2 (ja) 絶縁抵抗表示方法および絶縁抵抗計
JP7115639B2 (ja) 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム
CN114282468A (zh) 一种基于阻抗特性的光伏组件性能失效预判方法
CN118017936A (zh) 基于i-v曲线特征参数的光伏组串故障诊断方法及***

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250