JP6073661B2 - 磁気共鳴イメージング装置および磁気共鳴イメージング方法 - Google Patents

磁気共鳴イメージング装置および磁気共鳴イメージング方法 Download PDF

Info

Publication number
JP6073661B2
JP6073661B2 JP2012255363A JP2012255363A JP6073661B2 JP 6073661 B2 JP6073661 B2 JP 6073661B2 JP 2012255363 A JP2012255363 A JP 2012255363A JP 2012255363 A JP2012255363 A JP 2012255363A JP 6073661 B2 JP6073661 B2 JP 6073661B2
Authority
JP
Japan
Prior art keywords
image
magnetic resonance
resonance imaging
suppression
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012255363A
Other languages
English (en)
Other versions
JP2014100392A5 (ja
JP2014100392A (ja
Inventor
崇 西原
崇 西原
板垣 博幸
博幸 板垣
瀧澤 将宏
将宏 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012255363A priority Critical patent/JP6073661B2/ja
Publication of JP2014100392A publication Critical patent/JP2014100392A/ja
Publication of JP2014100392A5 publication Critical patent/JP2014100392A5/ja
Application granted granted Critical
Publication of JP6073661B2 publication Critical patent/JP6073661B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明はMagnetic Resonance Imaging(以下、MRI)装置に関し、特に、特定血管の支配領域を確認するTOF(Time−Of−Flight)撮像技術に関する。
MRIの中に、血流などの流れている組織から生じる信号強度が、周りの静止している組織から生じる信号強度とは異なる現象を利用し、血管を描出するTOF撮像と呼ばれる手法がある。
通常のMRIでは、1次元方向に厚みを持った、任意のスライスを選択的に励起するため、RFパルスを傾斜磁場と共に印加する。近年、2次元または3次元領域を選択的に励起する手法が用いられつつある(例えば、非特許文献1参照)。このとき用いられるRFパルスを、2次元選択励起パルス(以下、2DRFパルス)と呼ぶ。
この2DRFパルスをプリサチュレーションパルスとして印加し、TOF撮像を行い、特定の血管内の血液の磁化を抑制し、その血管の支配領域を確認する手法がある(例えば、非特許文献2参照)。このとき、プリサチュレーションパルスとして印加される2DRFパルスを、Beam Satパルスと呼ぶ。
このとき、抑制された血管のみを描出するため、Beam Satパルスを印加(ON)してTOF撮像を行うとともに、非印加(OFF)で同撮像を行い、それぞれ画像を得るSelective TOF MRAと呼ばれる手法がある。
Three‐Dimensional Spectral‐Spatial Excitation, Glen Morrell, Albert Macovski, Magn. Reson. Med., 1997 37 p378−386 Selective TOF MRA using Beam Saturation pulse, Takashi Nishihara, et al., Proc. ISMRM 2012, p2497
Selective TOF MRAでは、通常のTOF撮像に加えて、支配領域を調べる血管数分、Beam Satパルスをプリサチュレーションパルスとして印加する撮像(Beam Sat併用TOF撮像)が必要となる。
TOF撮像にかかる時間は通常5分程である。従って、例えば、左右の内頸動脈2本の支配領域を調べる場合、それぞれの内頚動脈について、Beam Sat併用TOF撮像を行う必要がある。このため、通常のTOF撮像に要する時間に加え、5分×2回の計10分撮像時間が長くなる。撮像時間が長くなると、検査効率が悪いだけではなく、被検体の体動に依存する位置ずれも起き、検査の精度も低下する。
また、上述のように、Selective TOF MRAでは、Beam Satパルスを印加(ON)して得た画像と、非印加(OFF)で得た画像との差分を取る。このとき、前述のような位置ずれがあると、差分の精度が上がらない。
また、Beam Satパルスで抑制した磁化も、T1回復により回復する。従って、抑制した位置から遠い末梢血管では、この効果により抑制率が低下する。このため、差分画像においても、抑制位置から遠い領域は、T1回復の影響が混在した画像になる。
本発明は、上記事情に鑑みてなされたもので、特定領域からの信号を抑制するRFパルスをプリサチュレーションパルスとして印加し、特定の血管の支配領域を確認する撮像において、得られる画像の画質を維持しながら、効果的に信号を取得することで高速撮像を実現するMRI技術を提供することを目的とする。
本発明は、特定領域からの信号を抑制するRFパルスをプリパルスとして印加する撮像であるプリパルス併用撮像で得たデータからマスク画像を生成し、通常の撮像で得た画像にマスキングし、抑制対象の血管(血流)を明瞭化する。このとき、プリパルス併用撮像では、k空間で、抑制対象の血管に寄与する空間周波数帯域のみのデータを取得する。残りの帯域については、通常の撮像で得たデータで補完する。また、マスク画像生成時に、所定の閾値を用いて2値化することにより、抑制対象の血管を特定する。さらに、3Dデータとして信号を取得する場合、プリパルス併用撮像を、投影方向の空間エンコードをカットして実行する。
本発明によれば、特定領域からの信号を抑制するRFパルスをプリサチュレーションパルスとして印加し、特定の血管の支配領域を確認する撮像において、得られる画像の画質を維持しながら、効果的に信号を取得することで高速撮像を実現する。
(a)は、第一の実施形態の磁気共鳴イメージング装置のブロック図である。(b)は、第一の実施形態の制御部の機能ブロック図である。 (a)は、スライス選択パルスシーケンスを説明するための説明図であり、(b)は、2次元空間選択励起シーケンスを説明するための説明図である。 (a)および(b)は、Selective TOF MRAを説明するための説明図である。 第一の実施形態の撮像処理のフローチャートである。 第一の実施形態の各ステップで得られるデータおよび画像を説明するための説明図である。 第一の実施形態の閾値設定画面を説明するための説明図である。 (a)および(b)は、投影方向のエンコードの有無による投影後画像をそれぞれ説明するための説明図である。 第二の実施形態の投影方向設定画面を説明するための説明図である。 第二の実施形態の撮像処理のフローチャートである。
<<第一の実施形態>>
以下、本発明を適用する第一の実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは、基本的に同一符号を付し、その繰り返しの説明は省略する。
まず、本実施形態のMRI装置の構成について説明する。図1は本実施形態のMRI装置100のブロック図である。本実施形態のMRI装置100は、NMR現象を利用して被検体101の断層画像を得る装置である。図1に示すように、静磁場発生磁石102と、傾斜磁場コイル103及び傾斜磁場電源106と、送信RFコイル(送信コイル)104及びRF送信部107と、受信RFコイル(受信コイル)105及び信号検出部108と、信号処理部109と、シーケンサ110と、制御部120と、表示部121と、操作部122と、記憶部123と、被検体101を搭載してその被検体101を静磁場発生磁石102の内部に出し入れするベッド111と、を備える。
静磁場発生磁石102は、静磁場を発生する静磁場発生部として機能する。静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置される。
傾斜磁場コイル103と傾斜磁場電源106とは、静磁場中に配置された被検体101に対し、傾斜磁場を印加する傾斜磁場印加部として機能する。傾斜磁場コイル103は、MRI装置の実空間座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれたコイルである。それぞれの傾斜磁場コイルは、それを駆動する傾斜磁場電源106に接続され、電流が供給される。具体的には、各傾斜磁場コイルの傾斜磁場電源106は、それぞれ後述のシーケンサ110からの命令に従って駆動されて、それぞれの傾斜磁場コイルに電流を供給する。これにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが発生する。
例えば、2次元スライス面の撮像時には、スライス面(撮像断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定される。そのスライス面に直交し、且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)とが印加され、エコー信号にそれぞれの方向の位置情報がエンコードされる。
送信コイル104とRF送信部107とは、被検体101の磁化を所定のフリップ角で励起させる高周波磁場パルス(RFパルス)を送信する高周波磁場送信部として機能する。送信コイル104は、被検体101にRFパルスを照射するコイルであり、RF送信部107に接続され、RF送信部107からRFパルス電流が供給される。送信コイル104から被検体101にRFパルスを照射することにより、被検体101の生体組織を構成する原子の原子核スピンにNMR現象が誘起される。
具体的には、RF送信部107は、後述のシーケンサ110からの命令に従って駆動され、高周波パルスを振幅変調し、増幅し、被検体101に近接して配置される送信コイル104に供給する。供給された高周波パルスが、送信コイル104から被検体101に照射される。
受信コイル105と信号検出部108とは、被検体101が発生するエコー信号を受信する信号受信部として機能する。受信コイル105は、被検体101の生体組織を構成する原子核スピンのNMR現象により放出されるNMR信号(エコー信号)を受信するコイルであり、信号検出部108に接続され、受信したエコー信号を信号検出部106に送る。信号検出部108は、受信コイル105で受信したエコー信号の検出処理を行う。
具体的には、送信コイル104から照射されたRFパルスによって誘起された被検体101の応答のエコー信号は、被検体101に近接して配置された受信コイル105で受信されると、信号検出部108送られる。信号検出部108は、後述のシーケンサ110からの命令に従って、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128,256,512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換し、後述の信号処理部109に送る。このように、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。
信号処理部109は、エコーデータに対して各種の信号処理を行い、処理後のエコーデータを制御部120に送る。
シーケンサ110は、被検体101の断層画像の再構成に必要なデータ収集のための種々の命令を、主に、傾斜磁場電源106と、RF送信部107と、信号検出部108に送信し、これらを制御する。具体的には、シーケンサ110は、後述する制御部120の制御で動作し、撮像シーケンスに従って、傾斜磁場電源106、RF送信部107及び信号検出部108を制御して、被検体101へのRFパルスと傾斜磁場パルスとの印加、および被検体101からのエコー信号の検出を繰り返し実行し、被検体101の撮像領域の画像の再構成に必要なエコーデータを収集する。
制御部120は、シーケンサ110の制御、各種データ処理、処理結果の表示、および保存等の制御を行うものであって、CPU及びメモリを内部に有する。本実施形態では、上述の信号受信部が受信したエコー信号から画像を再構成するとともに、撮像シーケンスに従って、シーケンサ110に傾斜磁場印加部、高周波磁場送信部、信号受信部の動作を制御する指令を与える。なお、撮像シーケンスは、ユーザにより設定された撮像パラメータおよびユーザにより指定されたパルスシーケンスにより生成される。
本実施形態の制御部120は、具体的には、シーケンサ110を制御してエコーデータの収集を実行させ、収集されたエコーデータを、そのエコーデータに印加されたエンコード情報に基づいて、メモリのk空間に相当する領域に記憶する。メモリのk空間に相当する領域に記憶されたエコーデータ群をk空間データともいう。そして、このk空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示部121に表示させると共に記憶部123に記録する。
表示部121および操作部122は、MRI装置100の各種制御情報や演算処理に必要な情報および演算処理結果をユーザとやりとりするインタフェースである。本実施形態のMRI装置100は、表示部121および操作部122を介して、ユーザからの入力を受け付ける。この操作部122は表示部121に近接して配置され、操作者が表示部121を見ながら操作部122を通してインタラクティブにMRI装置100の各種処理を制御する。例えば、表示部121は、再構成された被検体101の画像を表示する。また、操作部122は、入力装置となるトラックボール、マウス、キーボード等の少なくとも1つを備える。
記憶部123は、MRI装置100の動作に必要な情報、処理途中のデータ等が記憶される。例えば、光ディスク、磁気ディスク等で構成される。
なお、図1において、送信コイル104と傾斜磁場コイル103とは、被検体101が挿入される静磁場発生磁石102の静磁場空間内に、垂直磁場方式であれば被検体101に対向して、水平磁場方式であれば被検体101を取り囲むようにして設置される。また、受信コイル105は、被検体101に対向して、或いは取り囲むように設置される。
現在のMRI装置100の撮像対象核種は、臨床で普及しているものとしては、被検体101の主たる構成物質である水素原子核(プロトン)である。MRI装置100では、プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。このとき、MRIでは、特定領域のプロトンのみを励起するため、RFパルスを傾斜磁場とともに印加する。
本実施形態では、特定の血管の支配領域を確認する撮像において、得られる画質を落とすことなく、高速撮像を実現する。本実施形態では、特定の血管の支配領域を確認する撮像として、Selective TOF MRA撮像を用いる場合を例にあげて説明する。
上述のように、一般に、Selective TOF MRA撮像では、プリパルス無しのTOF撮像(通常TOF撮像)で得た画像(通常画像)と、Beam Satパルスをプリパルスとして印加して行うTOF撮像(Beam Sat併用TOF撮像)で得た画像(抑制画像)との差分を取り、差分画像を得、抑制対象の血管(特定血管)の支配領域を明瞭にした画像を得る。
本実施形態では、この中で、Beam Sat併用TOF撮像を効率化することにより、撮像全体にかかる時間を短縮する。さらに、効率化したBeam Sat併用TOF撮像で得られるデータを適切に画像処理することにより、特定血管の支配領域を明瞭にした画像を得る。
まず、Beam Satパルスとして用いる、2次元または3次元的に領域を選択して励起する2次元選択励起パルスを説明する。2次元選択励起パルスの説明に先立ち、通常のスライス選択励起シーケンスに用いるパルスを比較のために説明する。
図2(a)に、1次元方向に厚みを持った任意のスライスを励起するためのパルスシーケンス(スライス選択パルスシーケンス)900を示す。以下、本明細書のパルスシーケンス図において、RF、Gx、Gy,Gzは、それぞれ、RFパルス、x軸方向の傾斜磁場、y軸方向の傾斜磁場、z軸方向の傾斜磁場の印加タイミングを示す。本図に示すように、RFパルス901と同時に、Gx,Gy,Gzのいずれか1方向にスライス選択傾斜磁場902を印加する。ここでは、Gz方向に印加する場合を例示する。これにより、z軸方向の位置のみ特定された所定のスライスが選択的に励起される。
次に、2次元または3次元的に領域を選択して励起するパルスシーケンスを説明する。ここでは、一例として、2次元的に領域を選択励起する2次元空間選択励起シーケンス(2DRFシーケンス)を説明する。図2(b)にこの2DRFシーケンスを示す。
本図に示すように、2DRFシーケンスは、2次元選択励起パルス(以下、2DRFパルス)201と、振動傾斜磁場パルス202とを備える。ここでは、一例として、振動傾斜磁場パルス202を、GxおよびGy方向に印加する場合を示す。これらの2DRFパルス201と振動傾斜磁場パルス202とにより、円筒状の所定の領域のみを選択的に励起する。なお、2DRFパルス201は、円筒状の領域を励起するペンシルビーム型用の励起RFパルスである。
一般に、RFパルスの後にクラッシャー傾斜磁場パルスを印加すると、特定領域の信号が抑制される。Selecive TOF MRAのBeam Sat併用撮像では、2DRFパルス201および振動傾斜磁場パルス202の後に、クラッシャー傾斜磁場パルス203を印加するシーケンス200を、プリパルスシーケンスとして用いる。これにより、2DRFパルス201および振動傾斜磁場パルス202により励起される領域の信号を抑制し、当該領域から流入する血流を選択的に抑制する。
次に、通常TOF撮像とBeam Sat併用TOF撮像とにより描出される血管を説明する。通常TOF撮像では、図3(a)に示すように、撮像領域であるスラブ310内の血管301が描出される。一方、Beam Sat併用TOF撮像では、図3(b)に示すように、Beam Satパルスで抑制した血管302については、スラブ311内で信号が低下する。なお、312は、Beam Satパルスである2DRFパルス、振動傾斜磁場パルス202およびクラッシャー傾斜磁場パルス203により抑制される領域である。
Selective TOF MRAでは、通常TOF撮像と、Beam Sat併用TOF撮像とを行い、スラブ310とスラブ311との再構成像を得る。また、両者の差分をとることにより、抑制された血管のみ描出できる。なお、血管像は、差分後の3Dデータを2次元に投影した投影像で評価する。このとき、最大値投影像(MIP像)等が用いられる。
本実施形態では、このSelective TOF MRAにおいて、画質を向上させ、かつ、撮像時間を短縮する。これを実現するため、図1(b)に示すように、通常TOF撮像を行い、通常画像を得る通常画像取得部410と、Beam Sat併用TOF撮像を行い、抑制画像を得る抑制画像取得部420と、両画像に画像処理を施し、表示画像を生成する表示画像生成部430と、を備える。
上述のように、本実施形態では、画像を取得する本撮像に用いる撮像シーケンスとして、TOF撮像を実現する撮像シーケンス(TOFシーケンス)を用いる。従って、通常画像取得部410は、TOFシーケンスに従って、k空間データを取得し、当該k空間データを再構成することにより、通常画像を得る。一方、抑制画像取得部420は、Beam Satパルス併用撮像を行い、その結果から抑制画像を取得する。
このとき、本実施形態では、抑制画像取得部420は、全k空間データを取得するのではなく、抑制対象血管の構造の描出に寄与する空間周波数帯域である寄与帯域のk空間データ(部分k空間データ)のみ取得する。残りのk空間データは、通常画像取得時に取得したk空間データ(全k空間データ)で補完する。そして、補完後のk空間データを再構成することにより、抑制画像を得る。なお、抑制画像取得部420が本撮像で実行する撮像シーケンスは、k空間データ取得帯域以外の撮像条件は、通常画像取得部410が実行するTOFシーケンスと同じとする。
血管は画像の中では比較的微細な構造物であるため、k空間に配置される計測データ(ローデータ)の中では、空間周波数帯域が中域〜高域のデータが支配的であり、その描出に寄与する。TOFシーケンスにおいて、Kxを周波数エンコード方向、Kyを位相エンコード方向、Kzをスライスエンコード方向とする場合、本実施形態のBeam Satパルス併用TOF撮像では、Ky、Kz方向の取得するデータを、空間周波数帯域が中域〜高域のデータのみとする。
取得するデータ帯域は、予め定めて記憶部123に保持しておく。また、操作者が設定するよう構成してもよい。帯域は、撮像対象物(対象血管)の直径に応じて、経験上、決定する。本実施形態では、血管の構造の描出に寄与するデータが明瞭に取得できるよう、取得するデータの帯域を決定する。
表示画像生成部430は、通常画像と抑制画像との差分画像に閾値処理を行って2値化し、抑制対象血管を抽出する。閾値処理を行うことにより、取得帯域の不足による抑制の不足と、T1緩和と、による影響を低減する。閾値処理に用いる閾値は、予め定め、記憶部123に保持しておく。
上述のように、本実施形態寄与帯域のk空間データのみ取得することにより、全帯域のk空間データを取得する場合に比べ、短時間で1つの血管抑制画像を得ることができる。
以下、本実施形態の制御部120による撮像処理の流れと、取得されるk空間データ、生成される画像を説明する。図4は、本実施形態の撮像処理の処理フローである。また、図5は、各処理により得られるk空間データおよび画像を説明するための図である。ここでは、上述のように本撮像には3次元TOF撮像を用いる場合を例にあげて説明する。プリパルスには、Beam Satパルスを用いる。なお、撮像条件は予めユーザが設定する。
まず、通常画像取得部410は、通常TOF撮像を実行し、全空間周波数帯域のk空間データ(全k空間データ)501を取得する(ステップS1001)。ここでは、kx、ky平面のみ示す。そして、通常画像取得部410は、取得した全k空間データ501から通常画像502を再構成する(ステップS1002)。再構成は、一般的なフーリエ変換などで行う。
次に、抑制画像取得部420は、Beam Sat併用TOF撮像を実行し、予め定めた周波数帯域のデータ(部分k空間データ)503を取得する(ステップS1003)。ここでは、kx、ky平面のみ示す。また、上述のように、中〜高空間周波数帯域のデータを取得する。Beam Sat併用TOF撮像における本撮像(TOF撮像)の撮像条件は、Ky,Kz方向のエンコード量以外は、ステップS1001で実行する通常TOF撮像と同条件とする。
次に、抑制画像取得部420は、ステップS1003で取得した部分k空間データ503の不足分を、ステップS1001で取得した全k空間データ501で補う(ステップS1004)。ここでは、全k空間データ501の中の、寄与帯域のk空間データを、部分k空間データ503に置き換えることで、前述の補填を実現する。補填後のk空間データを置換k空間データと呼ぶ。
そして、抑制画像取得部420は、置換k空間データ504から画像(抑制画像)505を再構成する(ステップS1005)。再構成には、例えば、フーリエ変換を用いる。この抑制画像505では、Beam Sat併用TOF撮像により、全帯域のk空間データを得、そのk空間データから再構成した画像に比べ、Beam Satパルスにより抑制した血管(血流)506の信号強度の抑制は少ない。しかし、通常画像502に比べ、血流信号の値が他の組織より抑えられたものとなる。
次に、表示画像生成部430は、ステップS1003で再構成した通常画像502と、ステップS1005で再構成した抑制画像505との差分をとり、差分画像507を生成する(ステップS1006)。差分画像507では、抑制画像505上で抑制された血管(血流)506のみが高信号となる。
表示画像生成部430は、予め定めた閾値を用い、差分画像507を2値化し、マスク画像508を生成する(ステップS1007)。ここでは、差分画像507の、閾値以上の画素値を有する画素509に予め定めたカラーを付与することにより、マスク画像508を生成する。生成されるマスク画像508は、閾値以上の画素509がカラー化されたカラーマスク像である。これにより、マスク画像508では、Beam Satパルスにより抑制された領域のみカラー化される。
表示画像生成部430は、マスク画像508を、通常画像502に重畳し、表示素画像510を作成する(ステップS1008)。表示素画像510では、通常画像502で、Beam Satパルスで抑制された領域の画素509のみカラー化される。これにより、3次元データである表示素画像510に、血管の支配領域の情報が付加される。
ここで、血管像は一般的に2次元に投影した画像で評価する。このため、表示画像生成部430は、表示素画像510を、予め定めた投影方向に投影処理し、表示画像511を生成する(ステップS1009)。投影処理には、例えば、最大値投影処理(MIP:Maximum intensity Projection)などを用い、表示画像511として、MIP画像を得る。投影処理としてボリュームレンダリングを行い、ボリュームレンダリング(VR)画像を生成してもよい。
なお、本実施形態の本撮像は、例えば、2次元TOF撮像のように2次元撮像であってもよい。この場合は、上記ステップS1009は行わない。また、3次元撮像であっても、ステップS1009を行わなくてもよい。
また、ステップS1007で用いる閾値が小さい場合、抑制対象血管以外の領域、例えば、脳実質領域なども、マスク画像508においてカラー化されることがある。しかしながら、通常画像502上では、カラー化される不要な領域の信号値は低い。また、本実施形態では、通常画像502とマスク画像508とを重畳し、投影処理を行う。このため、表示素画像510上でも低信号となる。この表示素画像510を投影することにより得られる表示画像511上での支配領域の描出には、影響しない。
また、上記処理フローでは、表示素画像510に対して投影処理を行い、表示画像511を得るよう構成しているが、これに限られない。例えば、表示画像生成部430が、通常画像502および抑制画像505に対し、以降の画像処理を行う前に投影処理を行うよう構成してもよい。
この場合、表示画像生成部430は、通常画像502が得られると、予め定めた投影方向に投影する投影処理を行い、投影後の通常画像を得る。また、抑制画像505が得られると、同方向に投影処理を行い、投影後の抑制画像を得る。そして、投影後の通常画像および投影後の抑制画像から、上記と同様の手順でマスク画像を生成する。そして、投影後の通常画像にマスク画像を重畳し、表示画像511を得る。
なお、本実施形態では、本撮像としてTOF撮像を用いる場合を例にあげて説明したが、本撮像に用いる撮像法はこれに限られない。また、プリパルスもBeam Satパルスに限られない。特定血管内の血流の磁化を抑制し、支配領域が明確化される撮像シーケンス、プリパルスであればよい。
また、マスク画像508作成時に用いる閾値を、ユーザが表示画像511(または、表示素画像510)を見ながら設定するようにしてもよい。この場合、制御部120は、受付部をさらに備える。この受付部は、閾値を設定可能なUI画面(閾値設定画面)を表示部121に表示し、ユーザからの設定を受け付ける。このとき表示されるUI画面(閾値設定画面)の一例を図6に示す。
閾値設定画面600は、表示画像511を表示する画像表示領域601と、ユーザが閾値を入力する閾値入力領域602と、設定した閾値確定の意思を受け付ける確定ボタン603と、を備える。受付部は、ユーザが閾値入力領域602を介して閾値を入力する毎に、表示画像生成部430に、当該閾値を用いてマスク画像508、表示素画像510および表示画像511を生成させる。そして、生成した表示画像511により画像表示領域601の表示を更新する。受付部は、確定ボタン03の押下を受け付けた時点で、閾値入力領域602に入力されている閾値を、処理に使用する閾値と設定する。
ユーザは、画像表示領域601の表示を見ながら、最適な閾値を設定する。これにより、ユーザは、撮像対象の血管の直径に最適な(例えば、直径に合致した)閾値を、容易に設定することができる。
以上説明したように、本実施形態のMRI装置は、特定血管の支配領域を識別可能な表示画像を得るMRI装置100であって、予め定めた撮像シーケンスに従って、前記支配領域を含む被検体の関心領域の画像を通常画像として取得する通常画像取得部410と、前記特定血管内の磁化を選択的に抑制するプリパルスを印加しながら前記撮像シーケンスの一部を実行し、当該特定血管の血流信号を抑制した抑制画像を得る抑制画像取得部420と、前記通常画像と抑制画像とから前記表示画像を生成する表示画像生成部430と、を備える。
前記抑制画像取得部420は、前記特定血管の構造の描出に寄与する空間周波数帯域である寄与帯域のk空間データである部分k空間データのみ取得するよう前記撮像シーケンスを実行してもよい。
前記抑制画像取得部420は、前記部分k空間データ以外のk空間データを、前記通常画像取得部410が得たk空間のデータで補填後、前記抑制画像を再構成してもよい。
前記表示画像生成部430は、前記通常画像と前記抑制画像とから差分画像を得、当該差分画像の中の、予め定めた閾値以上の画素値を有する画素を識別可能な態様としたマスク画像を作成し、前記通常画像に前記マスク画像を重畳することにより、前記表示画像を生成してもよい。
前記撮像シーケンスは、3次元空間を計測するシーケンスであり、前記表示画像生成部430は、前記通常画像に前記マスク画像を重畳して得た重畳画像を、予め定めた方向に投影することにより、前記表示画像を生成してもよい。
このため、本実施形態によれば、Selective TOF MRAのBeam Sat併用TOF撮像において、取得するデータを、目的に応じて効率よく制限することにより、撮像時間を短縮する。具体的には、選択的に抑制したい組織の描出に必要な空間周波数領域のk空間データのみ収集する。例えば、撮像対象が血管の場合、k空間の中高空間周波数領域のみデータを収集する。従って、k空間の全てのデータを取得する場合に比べてBeam Sat併用TOF撮像にかかる時間を短縮することができる。
本実施形態の手法では、Beam Sat併用TOF撮像を効率化するため、データ収集量が少ない分、抑制量も抑えられる。しかしながら、本実施形態によれば、通常画像と抑制画像との差分画像において、閾値を用いて高信号となる領域を2値化したマスク画像を得、通常画像に重畳する。閾値を用いて2値化したマスク画像で通常画像をマスキングすることにより、T1回復の影響も排除できる。従って、本実施形態によれば、必要な領域を適切に抑制した画像(素画像)を得ることができる。最終的にこの素画像を投影し、特定の血管の支配領域が明確化された、高い品質の画像を得ることができる。
よって、本実施形態によれば、Selective TOF MRAを効率よく、短時間化でき、更に各血管の支配領域の視認性が向上する。すなわち、本実施形態によれば、画質の低下なく、BeamSat TOF計測を効率よく短時間化できる。
<<第二の実施形態>>
次に、本発明を適用する第二の実施形態を説明する。第一の実施形態では、Beam Sat併用TOF撮像において、抑制対象の血管に応じた空間周波数帯域のデータのみ取得することにより、撮像時間を短縮する。一方、本実施形態では、Beam Sat併用TOF撮像において、投影画像を作成する際に投影方向となる方向のエンコードを省略することにより、撮像時間を短縮する。
3次元TOF撮像では、3方向(例えば、x方向、y方向、およびz方向)に位置情報を付与するエンコードを行う。一方、3次元TOF撮像で得られた画像は、一般に、特定の投影方向に投影して2次元画像としてから診断に用いることが多い。このため、投影方向のデータについては、位置情報は不要である。本実施形態では、この特性を利用し、投影方向を決定後、当該方向に対する位置情報を付与するエンコードを省略し、撮像時間を短縮する。
例えば、投影方向がy方向である場合、図7(a)に示すように、y方向にエンコードを付与して撮像した素画像701から投影処理をして得た画像702と、図7(b)に示すように、y方向にエンコードを付与せず撮像して得た素画像711から投影処理をして得た画像712とは、略同じとなる。図7(a)および図7(b)には、TOF効果が最も得られる軸断(AX)方向で撮像する場合を例示する。y方向は、軸断面に平行な方向とする。
本実施形態のMRI装置100は、基本的に第一の実施形態と同様である。また、本実施形態の制御部120の機能ブロックも、第一の実施形態と同様である。ただし、本実施形態の本撮像で用いる撮像シーケンスは、3次元撮像(3次元TOF撮像)を実現するシーケンスとする。また、抑制画像取得部420による処理および表示画像生成部430による処理が異なる。
本実施形態の抑制画像取得部420は、Beam Sat併用TOF撮像を行う前に、予め定めた投影方向に応じて、Beam Sat併用TOF撮像に用いるTOF撮像シーケンスを決定する。決定するTOF撮像シーケンスは、投影方向のエンコードステップが省略(カット)され、他の2方向については、第一の実施形態同様、抑制対象血管に応じて、必要な空間周波数帯域のデータのみ収集されるものである。
本実施形態では、投影方向は、撮像部位に応じて予め定めておいてもよいし、ユーザが設定するよう構成してもよい。ユーザが設定する場合、抑制画像取得部420は、投影方向設定画面をUI画面として生成し、表示部121に表示する。ユーザは、投影方向設定画面を介して投影方向を設定する。
投影方向設定画面610の一例を図8に示す。本図に示すように、投影方向設定画面610は、通常画像502を表示する通常画像表示領域611と、ユーザから投影方向の入力を受け付ける投影方向入力領域612と、ユーザが入力した投影方向に投影した、投影後の通常画像502pを表示する投影後通常画像表示領域614と、ユーザから確定の意思を受け付ける確定ボタン613とを備える。
ユーザが、投影方向入力領域612を介して投影方向を入力する毎に、表示画像生成部430は、当該投影方向に投影した投影後の通常画像502pを生成し、投影後通常画像表示領域614に表示する。ユーザは、投影後通常画像表示領域614に表示される投影後の通常画像502pを見て、所望の投影方向と判断した場合、確定ボタン613を押下する。抑制画像取得部420は、確定ボタン613が押下されたタイミングで、投影方向入力領域612に入力されている投影方向を採用する。
なお、一般に、頭尾方向、軸断面に平行な方向に投影することが多い。従って、撮像部位に応じて、選択可能な投影方向を1以上、予め登録しておき、ユーザが、その中から選択するよう構成してもよい。また、投影方向は、予め、撮像部位に応じて、記憶部123に記憶しておき、自動的に選択されるよう構成してもよい。
投影方向のエンコードは、必要最低限のS/Nが得られる程度でよく、例えば、1エンコード(エンコード量0)とする。他の2方向については、第一の実施形態同様、抑制対象物の構造描出に寄与するデータが取得できるよう決定する。例えば、抑制対象が血液である場合、血管の構造描出に寄与する、中〜高周波数領域のデータを取得するよう決定する。
抑制画像取得部420は、上記撮像シーケンスによる取得した部分k空間データを、第一の実施形態同様、通常画像取得部410が取得したk空間データで補填し、補填後のk空間データから抑制画像505を再構成する。そして、エンコードを省略した投影方向に投影した、投影後の抑制画像を得る。
表示画像生成部430は、投影後の通常画像と投影後の抑制画像とから、第一の実施形態と略同様の手順で表示画像511を得る。ここでは、投影後の通常画像と投影後の抑制画像とから差分画像を生成し、第一の実施形態同様、閾値を用いて2値化することによりマスク画像を得、投影後の通常画像にマスク画像を重畳することにより表示画像を得る。
本実施形態の制御部120による撮像処理の流れを説明する。図9は、本実施形態の撮像処理の処理フローである。ここでは、ユーザが投影方向設定画面610を介して、投影方向を設定する場合を例にあげて説明する。
まず、通常画像取得部410は、通常TOF撮像を実行し、全空間周波数帯域のk空間データ(全k空間データ)501を取得する(ステップS1101)。そして、通常画像取得部410は、取得した全k空間データ501から通常画像502を再構成する(ステップS1102)。
次に、抑制画像取得部420は、投影方向設定画面610を表示部121に表示し、投影方向の設定を受け付け、投影方向を決定する(ステップS1103)。このとき、表示画像生成部430は、投影方向設定時に生成した、投影後の通常画像502pを記憶部123に保持しておく。
次に、抑制画像取得部420は、ステップS1103で決定した投影方向のエンコードをカットして、Beam Sat併用TOF撮像を実行し、予め定めた周波数帯域のデータ(部分k空間データ)503を取得する(ステップS1104)。ここでは、投影方向については、位置情報が付与されていない部分k空間データを得る。第一の実施形態同様、Beam Sat併用TOF撮像における本撮像(TOF撮像)の撮像条件は、エンコード量以外は、ステップS1101で実行する通常TOF撮像と同条件とする。
次に、抑制画像取得部420は、ステップS1103で取得した部分k空間データ503の不足帯域分を、ステップS1101で取得した全k空間データ501で補完し、置換k空間データ504を生成する(ステップS1105)。そして、抑制画像取得部420は、置換k空間データ504から画像(抑制画像)505を再構成する(ステップS1106)。
次に、表示画像生成部430は、抑制画像505から、ステップS1103で決定した投影方向に投影した、投影後の抑制画像を得る(ステップS1107)。
次に、表示画像生成部430は、ステップS1103で得た投影後の通常画像502pと、ステップS1107で得た投影後の抑制画像との差分をとり、差分画像を生成する(ステップS1108)。そして、表示画像生成部430は、予め定めた閾値を用い、第一の実施形態と同様の手法で、差分画像を2値化し、マスク画像を生成する(ステップS1109)。
そして、表示画像生成部430は、マスク像を、投影後の通常画像502pに重畳し、表示素画像を作成する(ステップS1110)。
なお、投影方向が予め定められている場合は、上記ステップS1103では、通常画像から、予め定められた投影方向に投影した、投影後の通常画像502pを生成する処理のみを行う。また、抑制画像取得部420は、予め定められた投影方向のエンコードを省略し、Bema Sat併用TOF撮像を行う。
また、本実施形態においても、第一の実施形態同様、マスク画像作成時に用いる閾値を、閾値設定画面600を介してユーザが設定するよう構成してもよい。
以上説明したように、本実施形態のMRI装置は、特定血管の支配領域を識別可能な表示画像を得るMRI装置100であって、予め定めた撮像シーケンスに従って、前記支配領域を含む被検体の関心領域の画像を通常画像として取得する通常画像取得部410と、前記特定血管内の磁化を選択的に抑制するプリパルスを印加しながら前記撮像シーケンスの一部を実行し、当該特定血管の血流信号を抑制した抑制画像を得る抑制画像取得部420と、前記通常画像と抑制画像とから前記表示画像を生成する表示画像生成部430と、を備える。
前記抑制画像取得部420は、前記特定血管の構造の描出に寄与する空間周波数帯域である寄与帯域のk空間データである部分k空間データのみ取得するよう前記撮像シーケンスを実行してもよい。
前記抑制画像取得部420は、前記部分k空間データ以外のk空間データを、前記通常画像取得部410が得たk空間のデータで補填後、前記抑制画像を再構成してもよい。
前記表示画像生成部430は、前記通常画像と前記抑制画像とから差分画像を得、当該差分画像の中の、予め定めた閾値以上の画素値を有する画素を識別可能な態様としたマスク画像を作成し、前記通常画像に前記マスク画像を重畳することにより、前記表示画像を生成してもよい。
前記撮像シーケンスは、3次元空間を計測するシーケンスであり、前記表示画像生成部430は、前記表示画像の生成に先立ち、前記通常画像および抑制画像を、予め定めた投影方向に投影した2次元画像をそれぞれ得、得られた各2次元画像を用いて、前記表示画像を生成してもよい。
前記抑制画像取得部420は、前記投影方向のエンコードを省略して前記撮像シーケンスを実行してもよい。
このように、本実施形態によれば、第一の実施形態同様、Selective TOF MRAにおいて、Beam Sat併用TOF撮像において、選択的に抑制したい組織の描出に必要な空間周波数領域のk空間データのみ収集する。このため、k空間の全てのデータを取得する場合に比べてBeam Sat併用TOF撮像にかかる時間を短縮することができる。また、閾値を用いて2値化したマスク画像で通常画像をマスキングすることにより、T1回復の影響も排除できる。従って、本実施形態によれば、必要な領域を適切に抑制した画像(素画像)を得ることができる。
さらに、本実施形態によれば、投影方向の空間エンコードが不要になる。例えば、投影方向のエンコードをカットし、当該方向のデータ収集回数を1回とすると、Beam Sat併用TOF撮像の撮像時間を、第一の実施形態の、1/(投影方向のエンコード数)に短縮できる。例えば、通常256ステップの投影方向のエンコード数を1エンコードとした場合、256分の1に短縮することができる。このため、画質を低下させることなく、さらに高速に、特定の血管の支配領域が明確化された画像を得ることができる。
よって、本実施形態によれば、Selective TOF MRAを効率よく、短時間化でき、更に各血管の支配領域の視認性が向上する。すなわち、本実施形態によれば、画質の低下なく、BeamSat TOF計測を効率よく短時間化できる。
なお、投影方向のエンコード数(データ収集回数)は、1回に限らない。通常のTOF撮像時の、当該方向のエンコード数より少なければよい。データの収集回数は、データの積算数と同じであり、回数を多くすれば、得られるデータのSNRが向上する。
また、本実施形態において、Beam Sat併用TOFにおいて、投影方向のエンコードを省略するだけで、他は、従来のSelective TOF MRAと同様としてもよい。すなわち、Beam Sat併用TOF撮像において、影方向のエンコードを省略し、他の2方向については、全て通常TOF撮像と同等のエンコードを付与して計測を行い、全k空間データを取得する。そして、得られた画像と、通常画像との差分画像を得、差分画像を投影方向に投影することにより、MIP像を得る。
上記各実施形態において、制御部120の各機能は、制御部120が備えるCPUが、記憶部123に予め保持するプログラムを、メモリにロードして実行することにより、実現する。
100:MRI装置、101:被検体、102:静磁場発生磁石、103:傾斜磁場コイル、104:送信コイル、105:受信コイル、106:傾斜磁場電源、106:信号検出部、107:RF送信部、108:信号検出部、109:信号処理部、110:シーケンサ、111:ベッド、120:制御部、121:表示部、122:操作部、123:記憶部、200:シーケンス、201:2DRFパルス、202:振動傾斜磁場パルス、203:クラッシャー傾斜磁場パルス、301:血管、302:血管、310:スラブ、311:スラブ、410:通常画像取得部、420:抑制画像取得部、430:表示画像生成部、501:全k空間データ、502:通常画像、502p:投影後の通常画像、503:部分k空間データ、504:置換k空間データ、505:抑制画像、507:差分画像、508:マスク画像、509:画素、510:表示素画像、511:表示画像、600:閾値設定画面、601:画像表示領域、602:閾値入力領域、603:確定ボタン、610:投影方向設定画面、611:通常画像表示領域、612:投影方向入力領域、613:確定ボタン、614:投影後通常画像表示領域、701:素画像、702:画像、711:素画像、712:画像、901:RFパルス、902:スライス選択傾斜磁場

Claims (19)

  1. 特定血管の支配領域を識別可能な表示画像を得る磁気共鳴イメージング装置であって、
    予め定めた撮像シーケンスに従って、全k空間データを得て、前記支配領域を含む被検体の関心領域の画像を通常画像として取得する通常画像取得部と、
    前記特定血管内の磁化を選択的に抑制するプリパルスを印加して前記関心領域の抑制画像を得る抑制画像取得部と、
    前記通常画像と前記抑制画像とから前記表示画像を生成する表示画像生成部と、
    を備え
    前記撮像シーケンスは、3次元空間を計測するシーケンスであり、
    前記通常画像は、予め定めた投影方向に投影した2次元画像であり、
    前記抑制画像は、前記投影方向に投影した2次元画像であること
    を特徴とする磁気共鳴イメージング装置。
  2. 請求項1に記載の磁気共鳴イメージング装置であって、
    前記抑制画像取得部は、前記プリパルスを印加した後、予め定めた空間周波数帯域のみのデータを取得する撮像シーケンスを実行することにより前記抑制画像を得ることを特徴とする磁気共鳴イメージング装置。
  3. 請求項2に記載の磁気共鳴イメージング装置であって、
    前記抑制画像取得部は、取得した前記予め定めた空間周波数帯域以外の帯域の不足分を、前記通常画像取得部が取得したデータで補って前記抑制画像を得ることを特徴とする磁気共鳴イメージング装置。
  4. 請求項1記載の磁気共鳴イメージング装置であって、
    前記抑制画像取得部は、寄与帯域のk空間データである部分k空間データのみ取得するよう前記撮像シーケンスを実行し、
    前記寄与帯域は、前記特定血管の構造の描出に寄与する空間周波数帯域であること
    を特徴とする磁気共鳴イメージング装置。
  5. 請求項4記載の磁気共鳴イメージング装置であって、
    前記抑制画像取得部は、前記部分k空間データ以外のk空間データを、前記通常画像取得部が得たk空間のデータで補填後、前記抑制画像を再構成すること
    を特徴とする磁気共鳴イメージング装置。
  6. 請求項1から5いずれか1項記載の磁気共鳴イメージング装置であって、
    前記表示画像生成部は、前記通常画像と前記抑制画像とから差分画像を得、当該差分画像の中の、予め定めた閾値以上の画素値を有する画素を識別可能な態様としたマスク画像を作成し、前記通常画像に前記マスク画像を重畳することにより、前記表示画像を生成すること
    を特徴とする磁気共鳴イメージング装置。
  7. 請求項6記載の磁気共鳴イメージング装置であって、
    前記表示画像生成部は、前記通常画像に前記マスク画像を重畳して得た重畳画像を、予め定めた方向に投影することにより、前記表示画像を生成すること
    を特徴とする磁気共鳴イメージング装置。
  8. 請求項1から6いずれか1項記載の磁気共鳴イメージング装置であって、
    前記表示画像生成部は、前記表示画像の生成に先立ち、前記通常画像および前記抑制画像である2次元画像をそれぞれ得、得られた各2次元画像を用いて、前記表示画像を生成すること
    を特徴とする磁気共鳴イメージング装置。
  9. 請求項8記載の磁気共鳴イメージング装置であって、
    前記抑制画像取得部は、前記投影方向のエンコードを省略して前記撮像シーケンスを実行すること
    を特徴とする磁気共鳴イメージング装置。
  10. 請求項1から9いずれか1項記載の磁気共鳴イメージング装置であって、
    前記撮像シーケンスは、タイムオブフライト(TOF)法によるシーケンスであること
    を特徴とする磁気共鳴イメージング装置。
  11. 請求項1から10いずれか1項記載の磁気共鳴イメージング装置であって、
    前記プリパルスは、特定の2方向により限定される領域内を選択的に励起する2次元空間選択励起パルスであること
    を特徴とする磁気共鳴イメージング装置。
  12. 請求項6記載の磁気共鳴イメージング装置であって、
    表示装置と、
    前記表示画像を前記表示装置に表示し、前記閾値の設定を受け付ける閾値設定部と、をさらに備え、
    前記表示画像生成部は、前記閾値が設定される毎に、当該閾値を用いて前記マスク画像を作成すること
    を特徴とする磁気共鳴イメージング装置。
  13. 特定血管の支配領域を識別可能な表示画像を得る磁気共鳴イメージング方法であって、
    予め定めた撮像シーケンスに従って実行して得た全k空間データから、前記支配領域を含む被検体の関心領域の画像を通常画像として得る通常画像取得ステップと、
    前記特定血管内の磁化を選択的に抑制するプリパルスを印加して前記関心領域の抑制画像を得る抑制画像取得ステップと、
    前記通常画像と前記抑制画像とから前記表示画像を生成する表示画像生成ステップと、を含み、
    前記撮像シーケンスは、3次元空間を計測するシーケンスであり、
    前記通常画像は、予め定めた投影方向に投影した2次元画像であり、
    前記抑制画像は、前記投影方向に投影した2次元画像であること
    を特徴とする磁気共鳴イメージング方法。
  14. 請求項13に記載の磁気共鳴イメージング方法であって、
    前記抑制画像取得ステップは、前記プリパルスを印加した後、予め定めた空間周波数帯域のみのデータを取得する撮像シーケンスを実行することにより得たデータから前記抑制画像を得ること
    を特徴とする磁気共鳴イメージング方法。
  15. 請求項14に記載の磁気共鳴イメージング方法であって、
    前記抑制画像取得ステップは、取得した前記予め定めた空間周波数帯域以外の帯域の不足分を、前記通常画像取得ステップが取得した全k空間データにより補って前記抑制画像を得ることを特徴とする磁気共鳴イメージング方法。
  16. 請求項13記載の磁気共鳴イメージング方法であって、
    前記抑制画像取得ステップは、前記特定血管の構造の描出に寄与する空間周波数帯域である寄与帯域のデータを、部分k空間データとして取得し、
    前記抑制画像取得ステップは、
    前記全k空間データの中の、前記寄与帯域のk空間データを、前記部分k空間データで置き換えて置換k空間データを得る置換ステップと、
    前記置換k空間データから画像を再構成し、抑制画像を得る抑制画像取得ステップと、を含み、
    前記表示画像生成ステップは、
    前記通常画像から前記抑制画像を減算し、差分画像を生成する差分画像生成ステップと、
    前記差分画像の中の、予め定めた閾値以上の画素値を有する画素を識別可能としたマスク画像を生成するマスク画像生成ステップと、
    前記通常画像に前記マスク画像を重畳し、得られた重畳画像を前記表示画像とする重畳画像生成ステップと、を含むこと
    を特徴とする磁気共鳴イメージング方法。
  17. 請求項16記載の磁気共鳴イメージング方法であって、
    前記表示画像生成ステップは、前記表示画像を予め定めた方向に投影することにより投影像を得る投影像生成ステップをさらに含むこと
    を特徴とする磁気共鳴イメージング方法。
  18. 請求項16記載の磁気共鳴イメージング方法であって、
    前記部分k空間データは、前記投影方向のエンコードを省略して前記撮像シーケンスを実行することにより得たデータであること
    を特徴とする磁気共鳴イメージング方法。
  19. コンピュータに、
    予め定めた撮像シーケンスに従って、特定血管の支配領域を含む被検体の関心領域の画像を通常画像として取得する通常画像取得機能、
    前記特定血管内の磁化を選択的に抑制するプリパルスを印加して前記関心領域の抑制画像を得る抑制画像取得機能、
    前記通常画像と前記抑制画像とから前記特定血管の支配領域を識別可能な表示画像を得る表示画像生成機能、を実現させるためのプログラムであり、
    前記撮像シーケンスは、3次元空間を計測するシーケンスであり、
    前記通常画像は、予め定めた投影方向に投影した2次元画像であり、
    前記抑制画像は、前記投影方向に投影した2次元画像であること
    を特徴とするプログラム。
JP2012255363A 2012-11-21 2012-11-21 磁気共鳴イメージング装置および磁気共鳴イメージング方法 Active JP6073661B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255363A JP6073661B2 (ja) 2012-11-21 2012-11-21 磁気共鳴イメージング装置および磁気共鳴イメージング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255363A JP6073661B2 (ja) 2012-11-21 2012-11-21 磁気共鳴イメージング装置および磁気共鳴イメージング方法

Publications (3)

Publication Number Publication Date
JP2014100392A JP2014100392A (ja) 2014-06-05
JP2014100392A5 JP2014100392A5 (ja) 2015-12-24
JP6073661B2 true JP6073661B2 (ja) 2017-02-01

Family

ID=51023509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255363A Active JP6073661B2 (ja) 2012-11-21 2012-11-21 磁気共鳴イメージング装置および磁気共鳴イメージング方法

Country Status (1)

Country Link
JP (1) JP6073661B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820302B1 (ko) * 2015-12-21 2018-01-19 삼성전자주식회사 자기 공명 영상 장치 및 그 제어 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849697A (en) * 1988-06-27 1989-07-18 General Electric Company Three-dimensional magnetic resonance flow-contrast angiography with suppression of stationary material
JP4253411B2 (ja) * 1999-11-29 2009-04-15 株式会社東芝 Mri装置
JP4149126B2 (ja) * 2000-12-05 2008-09-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像処理方法、画像処理装置および画像撮影装置
JP2006102353A (ja) * 2004-10-08 2006-04-20 Toshiba Corp 関節動作解析装置、関節動作解析方法及び関節動作解析プログラム
JP4823204B2 (ja) * 2005-08-31 2011-11-24 国立大学法人岐阜大学 医用画像処理装置
JP4717573B2 (ja) * 2005-09-26 2011-07-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
JP5643790B2 (ja) * 2006-09-06 2014-12-17 株式会社東芝 磁気共鳴イメージング装置
JP5395332B2 (ja) * 2007-04-27 2014-01-22 株式会社東芝 磁気共鳴イメージング装置
US9804245B2 (en) * 2007-06-29 2017-10-31 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5215036B2 (ja) * 2008-05-19 2013-06-19 株式会社東芝 医用画像処理装置、及び医用画像処理プログラム
JP5591493B2 (ja) * 2008-07-17 2014-09-17 株式会社東芝 磁気共鳴イメージング装置
JP2010051369A (ja) * 2008-08-26 2010-03-11 Toshiba Corp 磁気共鳴イメージング装置
JP4862073B2 (ja) * 2009-09-14 2012-01-25 株式会社東芝 磁気共鳴イメージング装置および磁気共鳴イメージング収集データの処理方法
CN102018511A (zh) * 2009-09-18 2011-04-20 株式会社东芝 磁共振成像装置以及磁共振成像方法
JP5575695B2 (ja) * 2011-04-26 2014-08-20 東芝医用システムエンジニアリング株式会社 Mri装置
JP5380585B2 (ja) * 2012-07-05 2014-01-08 株式会社東芝 Mri装置

Also Published As

Publication number Publication date
JP2014100392A (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
US5166875A (en) Reconstructing two and three dimensional images by two and three dimensional Fourier transforms in an MRI system
US8878535B2 (en) Method and apparatus for capturing magnetic resonance image
US9151816B2 (en) Method and magnetic resonance system for acquiring magnetic resonance data in a predetermined region of an examination subject
US7256580B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
KR102001063B1 (ko) 자기공명영상 시스템 및 자기공명영상 방법
US20130335080A1 (en) Resonance imaging apparatus and diffusion weighted image acquiring method thereof
JP6084392B2 (ja) 磁気共鳴イメージング装置
RU2702859C2 (ru) Параллельная мультисрезовая мр-визуализация с подавлением артефактов боковой полосы частот
CN103513203B (zh) 在厚片选择性space成像中减少流动伪影的磁共振***和方法
US10120053B2 (en) Magnetic resonance imaging method and apparatus
WO2012077543A1 (ja) 磁気共鳴イメージング装置及びコントラスト強調画像取得方法
KR101625715B1 (ko) 자기 공명 시스템을 제어하는 방법 및 제어 장치
US20170153801A1 (en) Medical imaging apparatus and control method thereof
US8638094B2 (en) Method and magnetic resonance device for imaging of particles
US9841478B2 (en) Method and control device to operate a magnetic resonance system
JP6073661B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
CN112114283A (zh) 用于飞行时间磁共振血管造影中的背景抑制的***和方法
JP2006116299A (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング装置のデータ処理方法
JP2006519650A (ja) Mrイメージング方法
JP4862073B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング収集データの処理方法
JP2017140209A (ja) 磁気共鳴イメージング装置及び画像処理方法
JP6192371B2 (ja) 磁気共鳴イメージング装置及び非撮像領域の励起法
US11927655B2 (en) Magnetic resonance imaging apparatus
JP2012095891A (ja) 磁気共鳴イメージング装置
JP2014033791A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170105

R150 Certificate of patent or registration of utility model

Ref document number: 6073661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250