JP6073512B1 - 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法 - Google Patents

差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法 Download PDF

Info

Publication number
JP6073512B1
JP6073512B1 JP2016047102A JP2016047102A JP6073512B1 JP 6073512 B1 JP6073512 B1 JP 6073512B1 JP 2016047102 A JP2016047102 A JP 2016047102A JP 2016047102 A JP2016047102 A JP 2016047102A JP 6073512 B1 JP6073512 B1 JP 6073512B1
Authority
JP
Japan
Prior art keywords
insulating layer
differential pressure
layer
detecting element
pressure detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016047102A
Other languages
English (en)
Other versions
JP2017161401A (ja
Inventor
隼人 新井
隼人 新井
達也 塩入
達也 塩入
直樹 ▲高▼山
直樹 ▲高▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2016047102A priority Critical patent/JP6073512B1/ja
Application granted granted Critical
Priority to PCT/JP2017/003593 priority patent/WO2017154424A1/ja
Priority to US15/557,018 priority patent/US10175073B2/en
Priority to EP17762769.2A priority patent/EP3428601A4/en
Publication of JP6073512B1 publication Critical patent/JP6073512B1/ja
Publication of JP2017161401A publication Critical patent/JP2017161401A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/06Devices or apparatus for measuring differences of two or more fluid pressure values using electric or magnetic pressure-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0002Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in ohmic resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0161Controlling physical properties of the material
    • B81C2201/0171Doping materials
    • B81C2201/0173Thermo-migration of impurities from a solid, e.g. from a doped deposited layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Abstract

【課題】オフセット状態でのカンチレバー部の初期そり量を低減することでオフセット電圧を小さくした差圧検出素子を提供する。【解決手段】開口111を有する支持基板11と、開口111に突出するように支持基板11に片持ち支持されたカンチレバー部12と、カンチレバー部12の固定端121に設けられたピエゾ抵抗部131,132を含む拡散層13と、拡散層13に電気的に接続された一対の配線部16,17と、拡散層13を覆う第1の絶縁層14と、第1の絶縁層14に積層された第2の絶縁層15と、を備えており、第1の絶縁層14の線膨張係数は、カンチレバー部12を構成する材料の線膨張係数に対して相対的に小さく、第2の絶縁層15の線膨張係数は、第1の絶縁層14の線膨張係数に対して相対的に大きい。【選択図】図3

Description

本発明は、圧力差を検出するための差圧検出素子、その差圧検出素子を用いて流路内の上流と下流の圧力差から流量を求める流量計測装置、及び、その差圧検出素子の製造方法に関するものである。
連通開口が形成されたセンサ本体と、センサ本体に片持ち状に支持された状態で連通開口の内側に配設されたカンチレバーと、カンチレバーの基端部に形成されたピエゾ抵抗と、ピエゾ抵抗に接続された配線部と、ピエゾ抵抗及び配線部を被覆する絶縁膜と、を備えた圧力センサが知られている(例えば特許文献1(段落[0029])参照)。
特開2013−234853号公報
上記の圧力センサのカンチレバーは、SOI基板のシリコン活性層から構成されている。一方、酸化シリコンの線膨張係数はシリコンの線膨張係数と比較して小さいため、上述の絶縁膜をシリコン酸化膜で形成すると、成膜後の冷却過程において、カンチレバーが絶縁膜と比較して大きく収縮してしまう。そのため、オフセット状態(カンチレバーに圧力が印加されていない状態)においてカンチレバーが大きく反ってしまい、カンチレバーの根元に形成されたピエゾ抵抗に大きな初期応力が生じることで、オフセット電圧(オフセット状態における差圧検出素子の出力電圧)が大きくなってしまう、という問題がある。
本発明が解決しようとする課題は、オフセット状態でのカンチレバー部の初期そり量を低減することでオフセット電圧を小さくした差圧検出素子、その差圧検出素子を用いた流量計測装置、及び、その差圧検出素子の製造方法を提供することである。
[1]本発明に係る差圧検出素子は、開口を有する支持部と、前記開口に突出するように前記支持部に片持ち支持されたカンチレバー部と、前記カンチレバー部の固定端に設けられたピエゾ抵抗部を含む拡散層と、前記拡散層に電気的に接続された一対の配線部と、前記拡散層を覆う第1の絶縁層と、前記第1の絶縁層に積層された第2の絶縁層と、を備えており、前記第1の絶縁層の線膨張係数は、前記カンチレバー部を構成する材料の線膨張係数に対して相対的に小さく、前記第2の絶縁層の線膨張係数は、前記第1の絶縁層の線膨張係数に対して相対的に大きい差圧検出素子である。
[2]上記発明において、前記カンチレバー部は、シリコンから構成されており、前記第1の絶縁層は、シリコン酸化層であり、前記第2の絶縁層は、シリコン窒化層であってもよい。
[3]上記発明において、下記の(1)式を満たしてもよい。
Figure 0006073512
但し、上記の(1)式において、wは第1の絶縁層の厚さであり、wは前記第2の絶縁層の厚さである。
[4]上記発明において、前記拡散層は、一対の前記配線部と前記ピエゾ抵抗部を電気的に直列接続するリード部を含んでおり、前記リード部における不純物の濃度は、前記ピエゾ抵抗部における不純物の濃度に対して相対的に高くてもよい。
[5]本発明に係る流量計測装置は、主流路を流れる流体の流量を検出する流量計測装置であって、上記の差圧検出素子と、一対の連通口を介して前記主流路に連通していると共に、前記差圧検出素子が設けられたバイパス路と、前記差圧検出素子の出力に基づいて前記流体の流量を演算する流量演算部と、を備えた流量計測装置である。
[6]本発明に係る差圧検出素子の製造方法は、上記の差圧検出素子の製造方法であって、SOI基板の一方のシリコン層に不純物をドーピングすることで、前記拡散層を形成する第1のステップと、前記拡散層の上に前記第1の絶縁層を形成する第2のステップと、前記第1の絶縁層上に前記第2の絶縁層を形成する第3のステップと、を備えており、前記第2のステップの成膜温度は、1200℃以下であり、前記第3のステップの成膜温度は、800℃以下である差圧検出素子の製造方法である。
[7]上記発明において、下記の(2)式を満たしてもよい。
Figure 0006073512
但し、上記の(2)式において、αは前記カンチレバー部を構成する材料の線膨張係数であり、αは前記第1の絶縁層の線膨張係数であり、vは前記第1の絶縁層のポアソン比であり、Eは前記第1の絶縁層のヤング率であり、dTは前記第1の絶縁層の成膜後の冷却過程における温度差であり、wは前記第1の絶縁層の厚さであり、αは前記第2の絶縁層の線膨張係数であり、vは前記第2の絶縁層のポアソン比であり、Eは前記第2の絶縁層のヤング率であり、dTは前記第2の絶縁層の成膜後の冷却過程における温度差であり、wは前記第2の絶縁層の厚さである。
[8]上記発明において、前記第1のステップは、前記シリコン層に対して熱酸化処理を行うことで熱シリコン酸化層を形成することを含み、前記第2のステップは、CVD法によって前記熱シリコン酸化層上に堆積シリコン酸化層を形成することと、前記熱シリコン酸化層及び前記堆積シリコン酸化層に対してアニール処理を行うことで、前記第1の絶縁層を形成することと、を含み、前記第3のステップは、CVD法によって前記シリコン窒化層を形成することを含んでおり、前記第2のステップの成膜温度は、前記第2のステップでの前記アニール処理の温度であり、前記第3のステップの成膜温度は、前記第3のステップでの前記CVD法の温度であってもよい。
本発明では、差圧検出素子は、第1の絶縁層に積層された第2の絶縁層を備えており、第1の絶縁層の線膨張係数は、カンチレバー部を構成する材料の線膨張係数に対して相対的に小さく、第2の絶縁層の線膨張係数は、第1の絶縁層の線膨張係数に対して相対的に大きくなっている。このため、オフセット状態でカンチレバー部に発生する初期そりが低減するので、差圧検出素子のオフセット電圧を小さくすることができる。
図1は、本発明の実施形態における差圧検出素子を用いた流量計測装置の構成を示す図である。 図2は、本発明の実施形態における差圧検出素子の平面図である。 図3は、図2のIII-III線に沿った断面図である。 図4(a)及び図4(b)は、本発明の実施形態における差圧検出素子の反り量を示すグラフであり、図4(c)は、従来の差圧検出素子の反り量を示すグラフである。 図5は、本発明の実施形態におけるバイパス路の変形例を示す図である。 図6は、本発明の実施形態における差圧検出素子の製造方法を示す工程図である。 図7(a)〜図7(g)は、図6の各ステップを示す断面図である。 図8(a)〜図8(f)は、図6の各ステップを示す断面図である。
以下、本発明の実施形態を図面に基づいて説明する。
図1は本実施形態における差圧検出素子を用いた流量計測装置の構成を示す図である。
本実施形態における流量計測装置1は、図1に示すように、主流路2を流れる流体の流量を計測する装置である。この流量計測装置1は、主流路2から分岐するバイパス路4に設けられた差圧検出素子10と、当該差圧検出素子10に電気的に接続された流量演算部20と、を備えている。主流路2内を流れる流体の具体例としては、例えば、空気などの気体や、水などの液体を例示することができる。
なお、図1では、流体が主流路2内を右側から左側に向かって流れている状況を図示しているが、流体の流通方向は特にこれに限定されない。流体が主流路2内を左側から右側に向かって流れる場合もある。
この流量計測装置1は、差圧検出素子10のカンチレバー部12の弾性変形によって、バイパス路4の上流開口5と下流開口6との間の圧力差を検出し、流量演算部20がその圧力差に基づいて主流路2を流れる流体の流量を演算する。
なお、図1に示す例では、当該圧力差を積極的に発生させるために、オリフィス3を有する絞り機構が主流路2に設けられているが、特にこれに限定されない。例えば、こうした絞り機構に代えて、整流ガイドを主流路2に設けてもよいし、或いは、絞り機構を省略してもよい。
図2及び図3は本実施形態における差圧検出素子の平面図及び断面図である。また、図4(a)及び図4(b)は本実施形態における差圧検出素子の反り量を示すグラフ、図4(c)は従来の差圧検出素子の反り量を示すグラフである。
差圧検出素子10は、図2及び図3に示すように、支持基板11と、カンチレバー部12と、拡散層13と、第1の絶縁層14と、第2の絶縁層15と、配線部16,17と、を備えたMEMS(Micro Electro Mechanical Systems)素子である。本実施形態における支持基板11が、本発明における支持部の一例に相当する。
後述するように、支持基板11とカンチレバー部12は、SOI(Silicon on Insulator)ウェハ30を加工することで一体的に形成されている。支持基板11は、第1のシリコン層31、シリコン酸化層32、及び、第2のシリコン層33からなる積層体で構成されている。この支持基板11には、当該支持基板11を貫通する矩形形状の開口111が形成されている。
一方、カンチレバー部12は、第1のシリコン層31のみから構成されている。このカンチレバー部12は、支持基板11の開口111に突出するように当該カンチレバー部12の固定端121で支持基板11に片持ち支持されている。このため、カンチレバー部12の固定端121を除いて、カンチレバー部12の外縁と貫通孔111の内壁面との間に、隙間(ギャップ)122が確保されている。特に限定されないが、この隙間122は、例えば、1μm〜100μm程度の幅を有している。
拡散層13は、ピエゾ抵抗部131,132とリード部133〜135を含んでおり、リード部133〜135によって、一対のピエゾ抵抗部131,132が、後述する配線部16,17と電気的に直列接続されている。ピエゾ抵抗部131,132は、p型の不純物を第1のシリコン層31(n型半導体)にドーピングすることで形成されている。このピエゾ抵抗部131,132は、圧力印加時にカンチレバー部12において応力が最大となる固定端121に設けられており、カンチレバー部12の弾性変形に伴って当該ピエゾ抵抗部131,132の抵抗値が変化する。
拡散層13の配線部133〜135も、p型の不純物を第1のシリコン層31にドーピングすることで形成されているが、このリード部133〜135における不純物の濃度は、ピエゾ抵抗部131,132における不純物の濃度に対して相対的に高くなっている。すなわち、本実施形態では、拡散層13のピエゾ抵抗部131,132は、p型の半導体で構成されているのに対し、当該拡散層13のリード部133〜135は、p型の半導体で構成されている。これにより、ピエゾ抵抗部131,132の電気的な抵抗値が、リード部133〜135の電気的な抵抗値に対して相対的に高くなっている。
第1のリード部133は、一方のピエゾ抵抗部131の一端(図2における上端)と、他方のピエゾ抵抗部132の一端(図2における上端)とを電気的に接続している。一方、第2のリード部134は、一方のピエゾ抵抗部131の他端(図2における下端)と、第1の配線部16とを電気的に接続している。また、第3のリード部135は、他方のピエゾ抵抗部132の他端(図2の下端)と、第2の配線部17とを電気的に接続している。
なお、n型の不純物を第1のシリコン層31(p型半導体)にドーピングすることで、拡散層13を形成してもよい。この場合には、ピエゾ抵抗部131,132は、n型の半導体で構成され、配線部133〜135は、n型の半導体で構成される。
この拡散層13は、第1の絶縁層14によって覆われており、ピエゾ抵抗部131,132、リード部133〜135、及び、配線部16,17の電気絶縁性が確保されている。この第1の絶縁層14は、シリコンの線膨張係数よりも小さな線膨張係数を有する層から構成されており、具体的にはシリコン酸化(SiO)層から構成されている。この第1の絶縁層14は、例えば、0.5nm〜200nm程度の厚さwを有している。本実施形態では、この第1の絶縁層14は、拡散層13を含むカンチレバー部12の固定端121と支持基板11上に形成されている。
さらに、本実施形態では、この第1の絶縁層14の上に第2の絶縁層15が積層されている。この第2の絶縁層15は、第1の絶縁層14の線膨張係数よりも大きな線膨張係数を有する層から構成されており、具体的にシリコン窒化(SiN)層から構成されている。この第2の絶縁層15は、例えば、3nm〜100nm程度の厚さwを有している。
上述のように、シリコンの線膨張係数よりも小さな線膨張係数を有するシリコン酸化層で絶縁膜を構成すると、当該絶縁膜の成膜後の冷却過程において、カンチレバーが絶縁膜と比較して大きく収縮してしまう。このため、第2の絶縁層を有しない従来構造の差圧検出素子では、カンチレバーが絶縁膜とは反対側に反ってしまう。このようにオフセット状態においてカンチレバーが大きく反ってしまうと、カンチレバーの根元に形成されたピエゾ抵抗部に大きな初期応力が生じることで、オフセット電圧(オフセット状態における差圧検出素子の出力電圧)が大きくなってしまう。オフセット電圧が大きくなると、差圧検出素子の出力の補正等に悪影響を及ぼし、差圧検出素子の検出精度が劣ってしまう場合がある。
これに対し、本実施形態では、第1の絶縁層14の上に第2の絶縁層15が積層されており、この第2の絶縁層15の線膨張係数は第1の絶縁層14の線膨張係数よりも大きくなっている。このため、第2の絶縁層15の成膜後の冷却過程において、第2の絶縁層15も第1の絶縁層14と比較して大きく収縮する。これにより、カンチレバー部12の反りを相殺することができるので、差圧検出素子10のオフセット電圧を小さくすることができる。
この際、本実施形態では、第1の絶縁層14の厚さwと第2の絶縁層15の厚さwとの関係が、下記の(3)式を満たしている。このため、第2の絶縁層15によってカンチレバー部12の反りをより適切に相殺することができ、差圧検出素子10の圧力印加方向に対する感度の対称性の一層の向上を図ることができる。
Figure 0006073512
具体的には、図4(c)に示すように、厚さ200nmのシリコン酸化層を有し、シリコン窒化層を有しない従来構造の差圧検出素子の場合には、オフセット状態(常温においてカンチレバー部に圧力を印加しない状態)において、カンチレバー部の先端が−Z方向に6μm程度反っている。
これに対し、図4(a)に示すように、差圧検出素子10が、厚さ100nmのシリコン酸化層14と、厚さ50nmのシリコン窒化層15を有する場合(w/w=1/2)には、オフセット状態において、カンチレバー部12の先端の反りは、+Z方向に6μm程度となる。
さらに、図4(b)に示すように、厚さ100nmのシリコン酸化層14と、厚さ25nmのシリコン窒化層15を有する場合(w/w=1/4)には、オフセット状態において、カンチレバー部12の先端の反りは、+Z方向に1μm程度となり、カンチレバー部12の反りをほとんど抑えることができる。
なお、図4(a)〜図4(c)において、縦軸は、オフセット状態でのカンチレバー部12のZ軸(図2及び図3参照)に沿った変位量を示す。また、同図において、横軸は、カンチレバー部12の先端からの−Y方向(図2及び図3参照)に沿った距離を示している。
第1の配線部16は、第2のリード部134の端部(図2における下端)と接するように、第1及び第2の絶縁層14,15の開口141,151を介して、支持基板11の上面112に設けられており、第2のリード部134と電気的に接続されている。第2の配線部17も、第3のリード部135の端部(図2における下端)と接するように、第1及び第2の絶縁層14,15の開口142,152を介して、支持基板11の上面112に設けられており、第3のリード部135と電気的に接続されている。これらの配線部16,17は、特に図示しない配線部等を介して、上述の流量演算部20に電気的に接続されている。なお、複数の配線部、リード部、及び、ピエゾ抵抗部を用いてブリッジ回路を構成してもよい。この場合、少ない抵抗値変化を大きな出力として取り出すことが可能となる。
以上に説明した差圧検出素子10は、図1に示すように、カンチレバー部12の延在方向がバイパス路4の延在方向(すなわち、バイパス路4内における流体の流通方向)に対して実質的に直交すると共に、支持基板11の開口111の軸方向がバイパス路4の延在方向に対して実質的に平行となるように、バイパス路4内に設置されている。なお、図1に示す例では、バイパス路4が途中で折れ曲がっているが、バイパス路4の形状は特にこれに限定されない。例えば、図5に示すように、バイパス路4が途中で折れ曲がっていない形状を有してもよい。図5はバイパス路4の変形例を示す図である。
主流路2を流体が流れている場合、壁面との摩擦等に起因して圧力損失が生じ、下流側ほど圧力が小さくなるので、バイパス路4の下流開口6の圧力が上流開口5の圧力と比較して低くなる。一方、差圧検出素子10の隙間122は流体がほとんど流れない程度に狭くなっている。そのため、カンチレバー部12の上流側には上流開口5の圧力が加わるのに対し、カンチレバー部12の下流側には下流開口6の圧力が加わる。そして、この開口5,6間の圧力差に応じて差圧検出素子10のカンチレバー部12が弾性変形し、ピエゾ抵抗部131,132に歪みが生じる。
流量演算部20は、上記の差圧に対応したピエゾ抵抗部131,132の抵抗値の変化を、配線部16,17を介して検出する。そして、当該流量演算部20は、流体の圧力損失と流量との間に相関関係があることを利用して、主流路2内の差圧に基づいて流体の流量を演算する。この流量演算部20は、例えば、コンピュータやアナログ回路等で構成することができる。
以下に、本実施形態における差圧検出素子10の製造方法について、図6〜図8を参照しながら説明する。
図6は本実施形態における差圧検出素子の製造方法を示す工程図、図7(a)〜図8(f)は図6の各ステップを示す断面図である。
先ず、図6のステップS11において、図7(a)に示すように、SOIウェハ30を準備する。このSOIウェハ30は、第1のシリコン層31(活性層)と、シリコン酸化層32(BOX(Buried Oxide)層)と、第2のシリコン層33(ハンドル層)と、を有しており、2つのシリコン層31,33の間にシリコン酸化層32を挟むように3つの層31〜33が積層されている。本実施形態におけるSOIウェハ30が、本発明におけるSOI基板の一例に相当する。
こうしたSOIウェハ30を形成する手法としては、例えば、シリコン酸化層が形成されたシリコン基板に別のシリコン基板を貼り合わせる方法や、SIMOX(Separation by Implanted Oxygen)法、スマートカット法等を例示することができる。
次いで、図6のステップS12において、SOIウェハ30の第1のシリコン層31に拡散層13を形成する。
具体的には、図7(b)に示すように、SOIウェハ30に対して熱酸化処理を行うことで、第1のシリコン層31に熱シリコン酸化層41を形成する。なお、この熱シリコン酸化層41は、上述の第1の絶縁層16の一部を構成することになると共に、後述の拡散層13の形成時のイオン注入時のイオンのチャネリングを抑制する機能と、イオン注入後のアニール処理時のイオンの外方拡散を抑制する機能と、を有する。
次いで、図7(c)に示すように、熱シリコン酸化層41上に第1のレジスト層51を形成する。この第1のレジスト層51は、拡散層13のリード部133〜135の形状に対応した開口を有している。
次いで、同図に示すように、第1のレジスト層51の開口を介して、p型の不純物を第1のシリコン層31にドーピングすることで、リード部133〜135を形成し、その後、第1のレジスト層51を除去する。
次いで、図7(d)に示すように、SOIウェハ30上に第2のレジスト層52を形成する。この第2のレジスト層52は、ピエゾ抵抗部131,132を含めた拡散層13全体の形状に対応した開口を有している。
次いで、同図に示すように、第1のレジスト層51の開口を介して、p型の不純物を第1のシリコン層31にドーピングすることで、ピエゾ抵抗部131,132を形成し、その後、第1のシリコン層31を除去する。
SOIウェハ30の第1のシリコン層31に不純物をドーピングする手法としては、例えば、イオン注入法(Ion Implantation)等を例示することができる。この際、配線部133〜135における不純物の濃度が、ピエゾ抵抗部131,132における不純物の濃度よりも高くなるように、イオン注入を制御する。
次いで、図6のステップS13に示すように、拡散層13を覆う第1の絶縁層14をSOIウェハ30の全面に形成する。
具体的には、図7(e)に示すように、CVD(Chemical Vapor Deposition)法によって、熱シリコン酸化層41の上にシリコン酸化膜をさらに堆積させて、堆積シリコン酸化層42を形成する。
次いで、図7(f)に示すように、相互に積層された熱シリコン酸化層41と堆積シリコン酸化層42に対してアニール処理を行って、これら2つのシリコン酸化層41,42を一体化することで、第1の絶縁層14を形成する。このステップS13におけるアニール処理では、例えば、900℃〜1200℃程度まで上昇させる。なお、このアニール処理の温度が、本発明における第1の絶縁層の成膜温度の一例に相当する。
次いで、図6のステップS14において、図7(g)に示すように、LPCVD(Low Pressure Chemical Vapor Deposition)法によって、第1の絶縁層14の上にシリコン窒化膜を堆積させることで、第2の絶縁層15を形成する。このステップS14におけるLPCVD法では、例えば、500℃〜800℃程度まで上昇させる。なお、このLPCVD法の温度が、本発明における第2の絶縁層の成膜温度の一例に相当する。
ここで、線膨張係数が温度に対して一定であると仮定すると、第1の絶縁層14の成膜後(すなわち、上述のステップS13におけるアニール処理後)の冷却過程において第1の絶縁層14に生じる熱応力σは、下記の(4)式で表すことができる。
Figure 0006073512
但し、上記の(4)式において、αはカンチレバー部12を構成する材料の線膨張係数であり、αは第1の絶縁層14の線膨張係数であり、vは第1の絶縁層14のポアソン比であり、Eは第1の絶縁層14のヤング率であり、dTは第1の絶縁層14の成膜後の冷却過程における温度差(すなわち、上述のステップS13におけるアニール処理での最高温度と室温との差)である。
一方、第2の絶縁層15の成膜後(すなわち、上述のステップS14におけるLPCVD法によって第2の絶縁層15を形成した後)の冷却過程において第2の絶縁層15に生じる熱応力σは、下記の(5)式で表すことができる。
Figure 0006073512
但し、上記の(5)式において、αは第2の絶縁層15の線膨張係数であり、vは第2の絶縁層15のポアソン比であり、Eは第2の絶縁層15のヤング率であり、dTは第2の絶縁層15の成膜後の冷却過程における温度差(すなわち、上述のステップS14におけるLPCVD法での最高温度と室温との差)である。
そして、第1及び第2の絶縁層14,15はいずれも薄膜であるので、膜応力が膜断面に一様に分布していると近似すると、以下の(6)式のようなつり合いの式が導かれる。この(6)式が満たされる場合に、膜応力のつり合いによりカンチレバー部12の反り量がゼロになる。
Figure 0006073512
そこで、本実施形態では、上記の(3)〜(6)式に基づいて、下記の(7)式を満たすように、上記のステップS13,S14を実行する。これにより、第2の絶縁層15によってカンチレバー部12の反りをより適切に相殺することができ、差圧検出素子10の圧力印加方向に対する感度の対称性の一層の向上を図ることができる。
Figure 0006073512
なお、本実施形態では、上記の(6)式及び(7)式における第1の絶縁層14の厚さwは、上述のステップS12で形成された熱シリコン酸化層41の厚さと、上述のステップS13で形成された堆積シリコン酸化層42の厚さと、を合計した厚さである。
次いで、図6のステップS15において、配線部16,17を形成する。
具体的には、図8(a)に示すように、第2の絶縁層15上に第3のレジスト層53を形成する。この第3のレジスト層53は、配線部16,17の形状に対応した開口を有している。
次いで、同図に示すように、第3のレジスト層53の開口を介して、第1及び第2の絶縁層14,15に対してエッチング処理を行うことで、第1及び第2の絶縁層14,15の開口141,142,151,152を形成する。
次いで、図8(b)に示すように、第1及び第2の絶縁層14,15の開口141,142,151,152の中に導電性材料を充填し、その後、第3のレジスト層53を除去する。これにより、配線部16,17が形成される。こうした導電性材料としては、例えば、銅、アルミニウム、金等の金属材料を例示することができる。また、導電性材料を充填する手法としては、例えば、スパッタリング、真空蒸着、めっき等を例示することができる。
次いで、図6のステップS16において、カンチレバー部12を形成する。
具体的には、図8(c)に示すように、第2の絶縁層15と配線部16,17の上に、第4のレジスト層54を形成する。この第4のレジスト層54は、第1のシリコン層31において固定端121を除くカンチレバー部12を包含する領域に対応した開口を有している。
次いで、同図に示すように、第4のレジスト層54の開口を介して、第1及び第2の絶縁層14,15に対してエッチング処理を行う。これにより、第1のシリコン層31において固定端121を除くカンチレバー部12を包含する領域が、第1及び第2の絶縁層14,15から露出する。
次いで、図8(d)に示すように、第1のシリコン層31、第2の絶縁層15及び配線部16,17の上に、第5のレジスト層55を形成する。この第5のレジスト層55は、支持基板11とカンチレバー部12との間の上述の隙間122の形状に対応した開口を有している。
次いで、同図に示すように、第5のレジスト層55の開口を介して、第1のシリコン層31に対してエッチング処理を行う。これにより、隙間122によってカンチレバー部12が画定される。この際、SOIウェハ30のシリコン酸化層32がエッチングストッパとして機能する。
次いで、図6のステップS17において、支持基板11を形成する。
具体的には、図8(e)に示すように、SOIウェハ30の下面に第6のレジスト層56を形成する。この第6のレジスト層56は、上述の支持基板11の開口111の形状に対応した開口を有している。
次いで、同図に示すように、第2のシリコン層33に対して下方からエッチング処理を行う。この際、SOIウェハ30のシリコン酸化層32がエッチングストッパとして機能する。
次いで、第6のレジスト層56を除去した後、図8(f)に示すように、シリコン酸化層32に対して下方からエッチング処理を行うことで、開口111を有する支持基板11が形成される。
以上に説明したステップS11〜S17を実行することで、一枚のSOIウェハ30に多数の差圧検出素子10が一括で形成される。このため、図6のステップS18において、当該多数の差圧検出素子10をダイシングによって個片化することで、個々の差圧検出素子10が完成する。
以上のように、本実施形態では、第1の絶縁層14の上に第2の絶縁層15が積層されており、この第2の絶縁層15の線膨張係数は第1の絶縁層14の線膨張係数よりも大きくなっている。このため、カンチレバー部12の反りを相殺することができ、差圧検出素子10のオフセット電圧を小さくすることができる。
また、本実施形態では、シリコン酸化層14の上にシリコン窒化層15が積層されていることで、湿気がシリコン酸化層14に浸透し、シリコン酸化層が膨張することで、カンチレバー部が経時的に撓んでしまう現象を防ぐことができる。これにより、例えば、オフセット状態におけるカンチレバー部12の位置が経時的に変動してしまうのを抑制することができる。
本実施形態における図6のステップS12が本発明における第1のステップの一例に相当し、本実施形態における図6のステップS13が本発明における第2のステップの一例に相当し、本実施形態における図6のステップS14が本発明における第3のステップの一例に相当する。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
例えば、上述の実施形態では、熱酸化処理によって形成した熱シリコン酸化層41と、CVD法によって形成した堆積シリコン酸化層42と、の2層をアニール処理することで、第1の絶縁層14を形成したが、第1の絶縁層14を形成する方法は特にこれに限定されない。例えば、熱酸化法、CVD法、又は、スピンコート法等のいずれかの手法によって形成された1層のシリコン酸化層によって第1の絶縁層14を構成してもよい。
1…流量計測装置
2…主流路
3…オリフィス
4…バイパス路
5…上流開口
6…下流開口
10…差圧検出素子
11…支持基板
111…貫通孔
112…上面
12…カンチレバー部
121…固定端
122…隙間
13…拡散層
131,132…ピエゾ抵抗部
133〜135…リード部
14…第1の絶縁層
141,142…開口
15…第2の絶縁層
151,152…開口
16,17…配線部
20…流量演算部
30…SOIウェハ
31…第1のシリコン層
32…シリコン酸化層
33…第2のシリコン層
41…熱シリコン酸化層
42…堆積シリコン酸化層
51〜56…第1〜第6のレジスト層

Claims (8)

  1. 開口を有する支持部と、
    前記開口に突出するように前記支持部に片持ち支持されたカンチレバー部と、
    前記カンチレバー部の固定端に設けられたピエゾ抵抗部を含む拡散層と、
    前記拡散層に電気的に接続された一対の配線部と、
    前記拡散層を覆う第1の絶縁層と、
    前記第1の絶縁層に積層された第2の絶縁層と、を備えており、
    前記第1の絶縁層の線膨張係数は、前記カンチレバー部を構成する材料の線膨張係数に対して相対的に小さく、
    前記第2の絶縁層の線膨張係数は、前記第1の絶縁層の線膨張係数に対して相対的に大きい差圧検出素子。
  2. 請求項1に記載の差圧検出素子であって、
    前記カンチレバー部は、シリコンから構成されており、
    前記第1の絶縁層は、シリコン酸化層であり、
    前記第2の絶縁層は、シリコン窒化層である差圧検出素子。
  3. 請求項1又は2に記載の差圧検出素子であって、
    下記の(1)式を満たす差圧検出素子。
    Figure 0006073512
    但し、上記の(1)式において、wは第1の絶縁層の厚さであり、wは前記第2の絶縁層の厚さである。
  4. 請求項1〜3のいずれか一項に記載の差圧検出素子であって、
    前記拡散層は、一対の前記配線部と前記ピエゾ抵抗部を電気的に直列接続するリード部を含んでおり、
    前記リード部における不純物の濃度は、前記ピエゾ抵抗部における不純物の濃度に対して相対的に高い差圧検出素子。
  5. 主流路を流れる流体の流量を検出する流量計測装置であって、
    請求項1〜4のいずれか一項に記載の差圧検出素子と、
    一対の連通口を介して前記主流路に連通していると共に、前記差圧検出素子が設けられたバイパス路と、
    前記差圧検出素子の出力に基づいて前記流体の流量を演算する流量演算部と、を備えた流量計測装置。
  6. 請求項1〜4のいずれか一項に記載の差圧検出素子の製造方法であって、
    SOI基板の一方のシリコン層に不純物をドーピングすることで、前記拡散層を形成する第1のステップと、
    前記拡散層の上に前記第1の絶縁層を形成する第2のステップと、
    前記第1の絶縁層上に前記第2の絶縁層を形成する第3のステップと、を備えており、
    前記第2のステップの成膜温度は、1200℃以下であり、
    前記第3のステップの成膜温度は、800℃以下である差圧検出素子の製造方法。
  7. 請求項6に記載の差圧検出素子の製造方法であって、
    下記の(2)式を満たす差圧検出素子の製造方法。
    Figure 0006073512
    但し、上記の(2)式において、
    αは前記カンチレバー部を構成する材料の線膨張係数であり、
    αは前記第1の絶縁層の線膨張係数であり、
    は前記第1の絶縁層のポアソン比であり、
    は前記第1の絶縁層のヤング率であり、
    dTは前記第1の絶縁層の成膜後の冷却過程における温度差であり、
    は前記第1の絶縁層の厚さであり、
    αは前記第2の絶縁層の線膨張係数であり、
    は前記第2の絶縁層のポアソン比であり、
    は前記第2の絶縁層のヤング率であり、
    dTは前記第2の絶縁層の成膜後の冷却過程における温度差であり、
    は前記第2の絶縁層の厚さである。
  8. 請求項6又は7に記載の差圧検出素子の製造方法であって、
    前記第1のステップは、前記シリコン層に対して熱酸化処理を行うことで熱シリコン酸化層を形成することを含み、
    前記第2のステップは、
    CVD法によって前記熱シリコン酸化層上に堆積シリコン酸化層を形成することと、
    前記熱シリコン酸化層及び前記堆積シリコン酸化層に対してアニール処理を行うことで、前記第1の絶縁層を形成することと、を含み、
    前記第3のステップは、CVD法によって前記シリコン窒化層を形成することを含んでおり、
    前記第2のステップの成膜温度は、前記第2のステップでの前記アニール処理の温度であり、
    前記第3のステップの成膜温度は、前記第3のステップでの前記CVD法の温度である差圧検出素子の製造方法。
JP2016047102A 2016-03-10 2016-03-10 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法 Expired - Fee Related JP6073512B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016047102A JP6073512B1 (ja) 2016-03-10 2016-03-10 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法
PCT/JP2017/003593 WO2017154424A1 (ja) 2016-03-10 2017-02-01 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法
US15/557,018 US10175073B2 (en) 2016-03-10 2017-02-01 Differential pressure detection element, flow rate measurement device, and method of manufacturing differential pressure detection element
EP17762769.2A EP3428601A4 (en) 2016-03-10 2017-02-01 DIFFERENTIAL PRESSURE DETECTION ELEMENT, FLOW MEASURING DEVICE, AND METHOD FOR MANUFACTURING DIFFERENTIAL PRESSURE DETECTION ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047102A JP6073512B1 (ja) 2016-03-10 2016-03-10 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法

Publications (2)

Publication Number Publication Date
JP6073512B1 true JP6073512B1 (ja) 2017-02-01
JP2017161401A JP2017161401A (ja) 2017-09-14

Family

ID=57937644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047102A Expired - Fee Related JP6073512B1 (ja) 2016-03-10 2016-03-10 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法

Country Status (4)

Country Link
US (1) US10175073B2 (ja)
EP (1) EP3428601A4 (ja)
JP (1) JP6073512B1 (ja)
WO (1) WO2017154424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063224A (ja) * 2016-10-14 2018-04-19 株式会社フジクラ 差圧検出素子及び流量計測装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241600B (zh) * 2015-08-17 2017-12-29 中国科学院地质与地球物理研究所 一种mems压力计芯片及其制造工艺
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10809139B2 (en) 2018-02-14 2020-10-20 Carefusion 303, Inc. Integrated sensor to monitor fluid delivery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149166A (ja) * 2013-01-31 2014-08-21 Fujikura Ltd 差圧検出素子
JP2014238273A (ja) * 2013-06-06 2014-12-18 株式会社フジクラ 流量センサ及び流量検出システム
JP5650360B1 (ja) * 2014-06-25 2015-01-07 セイコーインスツル株式会社 圧力変化測定装置及び圧力変化測定方法
JP5656191B2 (ja) * 2011-01-07 2015-01-21 国立大学法人 東京大学 流速センサ
JP5674167B2 (ja) * 2011-01-28 2015-02-25 国立大学法人 東京大学 差圧センサ
JP5778619B2 (ja) * 2012-05-02 2015-09-16 セイコーインスツル株式会社 圧力センサ
JP5867821B2 (ja) * 2012-03-08 2016-02-24 セイコーインスツル株式会社 圧力センサ
JP5867820B2 (ja) * 2012-03-08 2016-02-24 セイコーインスツル株式会社 圧力センサ
JP6026963B2 (ja) * 2013-06-24 2016-11-16 株式会社フジクラ 流量センサ及び流量検出システム
JP6041308B2 (ja) * 2013-03-08 2016-12-07 セイコーインスツル株式会社 圧力センサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953814B1 (en) * 2005-11-25 2017-09-06 Panasonic Intellectual Property Management Co., Ltd. Wafer level package structure and method for manufacturing same
JP4739164B2 (ja) * 2006-10-20 2011-08-03 三菱電機株式会社 車両用エンジンの吸入空気圧力測定用の半導体感歪センサ
CN101837943B (zh) * 2009-10-30 2011-11-09 北京工业大学 定量测试力电性能与显微结构的传感器及制作方法
JP5445196B2 (ja) * 2010-02-10 2014-03-19 セイコーエプソン株式会社 応力検出素子、触覚センサー、および把持装置
US20140183669A1 (en) * 2010-03-26 2014-07-03 Wayne State University Resonant sensor with asymmetric gapped cantilevers
IT1402181B1 (it) * 2010-09-13 2013-08-28 Fond Istituto Italiano Di Tecnologia Dispositivo microelettromeccanico elettro-attivo e relativo procedimento di rivelazione
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656191B2 (ja) * 2011-01-07 2015-01-21 国立大学法人 東京大学 流速センサ
JP5674167B2 (ja) * 2011-01-28 2015-02-25 国立大学法人 東京大学 差圧センサ
JP5867821B2 (ja) * 2012-03-08 2016-02-24 セイコーインスツル株式会社 圧力センサ
JP5867820B2 (ja) * 2012-03-08 2016-02-24 セイコーインスツル株式会社 圧力センサ
JP5778619B2 (ja) * 2012-05-02 2015-09-16 セイコーインスツル株式会社 圧力センサ
JP2014149166A (ja) * 2013-01-31 2014-08-21 Fujikura Ltd 差圧検出素子
JP6041308B2 (ja) * 2013-03-08 2016-12-07 セイコーインスツル株式会社 圧力センサ
JP2014238273A (ja) * 2013-06-06 2014-12-18 株式会社フジクラ 流量センサ及び流量検出システム
JP6026963B2 (ja) * 2013-06-24 2016-11-16 株式会社フジクラ 流量センサ及び流量検出システム
JP5650360B1 (ja) * 2014-06-25 2015-01-07 セイコーインスツル株式会社 圧力変化測定装置及び圧力変化測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063224A (ja) * 2016-10-14 2018-04-19 株式会社フジクラ 差圧検出素子及び流量計測装置

Also Published As

Publication number Publication date
EP3428601A4 (en) 2019-10-16
US20180245955A1 (en) 2018-08-30
JP2017161401A (ja) 2017-09-14
US10175073B2 (en) 2019-01-08
EP3428601A1 (en) 2019-01-16
WO2017154424A1 (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6073512B1 (ja) 差圧検出素子、流量計測装置、及び、差圧検出素子の製造方法
TWI506278B (zh) High Voltage Resistive MEMS Sensors
KR100812996B1 (ko) 마이크로 가스 센서 및 그 제조방법
EP3581903B1 (en) N-implant electrical shield for piezo-resistor sensor
US20180299335A1 (en) Mems strain gauge sensor and manufacturing method
JP5299254B2 (ja) 半導体圧力センサ及びその製造方法
US20150008544A1 (en) Physical quantity sensor
EP3540398B1 (en) All silicon capacitive pressure sensor
US9557237B2 (en) MEMS pressure sensor field shield layout for surface charge immunity in oil filled packaging
US7527997B2 (en) MEMS structure with anodically bonded silicon-on-insulator substrate
KR102278929B1 (ko) 피에조 저항형 센서
KR101652369B1 (ko) 습식 및 건식 식각공정을 이용한 압저항형 압력센서 제조방법
JP6652479B2 (ja) 差圧検出素子及び流量計測装置
CN114684774A (zh) 一种硅压阻式压力传感器芯片及其制备方法
JP6218330B2 (ja) 圧力センサ及びその製造方法
JP6068168B2 (ja) 差圧検出素子
JP2010032389A (ja) 物理量センサ及びその製造方法
JP2006030158A (ja) 半導体装置およびその製造方法
JP5067295B2 (ja) センサ及びその製造方法
US20230088319A1 (en) Pressure sensor with high stability
JP6785689B2 (ja) 圧力センサ
JP2008170271A (ja) 外力検知センサ
JP2009049026A (ja) 半導体圧力センサ
JP2015194443A (ja) 差圧検出素子の製造方法
US8421240B2 (en) Sensor device and method of manufacturing the sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161123

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161123

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R151 Written notification of patent or utility model registration

Ref document number: 6073512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees