JP6069203B2 - Method and apparatus for evaluating pigment dispersion - Google Patents

Method and apparatus for evaluating pigment dispersion Download PDF

Info

Publication number
JP6069203B2
JP6069203B2 JP2013531406A JP2013531406A JP6069203B2 JP 6069203 B2 JP6069203 B2 JP 6069203B2 JP 2013531406 A JP2013531406 A JP 2013531406A JP 2013531406 A JP2013531406 A JP 2013531406A JP 6069203 B2 JP6069203 B2 JP 6069203B2
Authority
JP
Japan
Prior art keywords
pigment dispersion
light
pigment
specific wavelength
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013531406A
Other languages
Japanese (ja)
Other versions
JPWO2013031917A1 (en
Inventor
準治 赤羽
準治 赤羽
和宏 竹山
和宏 竹山
神守 功
功 神守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Publication of JPWO2013031917A1 publication Critical patent/JPWO2013031917A1/en
Application granted granted Critical
Publication of JP6069203B2 publication Critical patent/JP6069203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、顔料分散体の評価方法および評価装置に関する。より詳細には、顔料分散体に含まれる顔料の粒子径等のパラメータを、該顔料分散体を希釈せずに短時間で評価することが可能な評価方法および評価装置に関する。
本願は、2011年8月30日に出願された特願2011−187526号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a pigment dispersion evaluation method and an evaluation apparatus. More specifically, the present invention relates to an evaluation method and an evaluation apparatus capable of evaluating parameters such as a particle diameter of a pigment contained in a pigment dispersion in a short time without diluting the pigment dispersion.
This application claims priority based on Japanese Patent Application No. 2011-187526 for which it applied on August 30, 2011, and uses the content here.

顔料を含む塗料の製造においては、塗装して得られる塗膜の外観を良くするために、塗料中の着色材である顔料を、小粒子径に分散させて安定化させることが重要である。顔料を小粒子径に分散する場合、同一の配合の原料を同一の装置で分散しても、温度又は粘度等の影響で粒子径が変動するため、時間管理も難しい。特許文献1には、着色剤の前駆物質を分散プロセスで粉砕する際に、所定の波長領域の光を混合物中へ入射させ、混合物を透過した光、混合物から反射した光および混合物により散乱した光の少なくとも一方を検出し、この検出によって測定される試料スペクトルの変化を時間的に監視して、所定の基準指標に達した際に分散プロセスを停止することにより、分散プロセスを制御する方法が記載されている。   In the production of paints containing pigments, in order to improve the appearance of the coating film obtained by painting, it is important to stabilize the pigments, which are colorants in the paints, by dispersing them in a small particle diameter. When the pigment is dispersed in a small particle diameter, even if raw materials having the same composition are dispersed in the same apparatus, the particle diameter varies due to the influence of temperature, viscosity, etc., so that time management is difficult. In Patent Document 1, when a colorant precursor is pulverized by a dispersion process, light in a predetermined wavelength region is incident on the mixture, light transmitted through the mixture, light reflected from the mixture, and light scattered by the mixture. A method for controlling a dispersion process is described by detecting at least one of the two, monitoring a change in a sample spectrum measured by this detection over time, and stopping the dispersion process when a predetermined reference index is reached. Has been.

塗料の調製に使用する顔料分散体では、顔料の粒子径が数nm〜数百nmのオーダーとなることもあるため、粒度ゲージのような簡便な方法が使用できない。このように小さな粒子径の測定方法としては、遠心沈降法又は動的光散乱法等が知られているが、測定時間がかかること、又は、測定を行う際に顔料分散体をさらに希釈することが必要なことから、顔料の分散状態を簡便に評価することができない。   In the pigment dispersion used for the preparation of the paint, the particle diameter of the pigment may be on the order of several nanometers to several hundred nanometers, so that a simple method such as a particle size gauge cannot be used. As a method for measuring such a small particle diameter, a centrifugal sedimentation method or a dynamic light scattering method is known. However, it takes a long time to measure or further dilutes the pigment dispersion when performing the measurement. Therefore, the dispersion state of the pigment cannot be easily evaluated.

特表2005−509720号公報JP 2005-509720 A

本発明は、上記事情に鑑みてなされたものであり、顔料分散体に含まれる顔料の粒子径等のパラメータを、該顔料分散体を希釈せずに短時間で評価することが可能な顔料分散体の評価方法および評価装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and a pigment dispersion capable of evaluating parameters such as the particle diameter of the pigment contained in the pigment dispersion in a short time without diluting the pigment dispersion. It is an object to provide a body evaluation method and an evaluation apparatus.

本発明の第一態様の評価方法は、媒質中に顔料が分散されてなる顔料分散体の評価方法であって、顔料の種類によって異なる波長を特定波長として選択し、あらかじめ媒質中に顔料が分散されてなる対照用の顔料分散体について測定された顔料分散体の状態を示すパラメータと顔料分散体の前記特定波長における反射率との関係を備えたデータベースを用意し、測定対象の顔料分散体の表面に、前記表面の法線に対して45°±15°以内の方向から光を照射し、前記表面の法線方向から±10°以内で反射光を受光して、前記測定対象の顔料分散体の前記特定波長における反射率を測定し、前記測定対象の顔料分散体の前記特定波長における反射率と前記データベースと照合して、前記測定対象の顔料分散体の分散状態を評価する。
本発明の第一態様の評価方法においては、前記対照用の顔料分散体の状態を示すパラメータが、前記対照用の顔料分散体における顔料の粒子径であることが好ましい。
本発明の第一態様の評価方法においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光のみを通過させる帯域フィルタを通した光を顔料分散体に照射して測定されることが好ましい。
本発明の第一態様の評価方法においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、顔料分散体から反射した光を分光して、前記特定波長の光のみを取り出して測定されることが好ましい。
本発明の第一態様の評価方法においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光を発する光源を用い、前記特定波長の光を顔料分散体に照射して測定されることが好ましい。
The evaluation method according to the first aspect of the present invention is a method for evaluating a pigment dispersion in which a pigment is dispersed in a medium, wherein a different wavelength is selected as a specific wavelength depending on the type of pigment, and the pigment is dispersed in the medium in advance. A database having a relationship between the parameter indicating the state of the pigment dispersion measured for the control pigment dispersion and the reflectance of the pigment dispersion at the specific wavelength is prepared. The surface is irradiated with light from a direction within 45 ° ± 15 ° with respect to the normal line of the surface, and the reflected light is received within ± 10 ° from the normal direction of the surface to disperse the pigment to be measured The reflectance at the specific wavelength of the body is measured, and the dispersion state of the pigment dispersion to be measured is evaluated by comparing the reflectance at the specific wavelength of the pigment dispersion to be measured with the database.
In the evaluation method of the first aspect of the present invention, the parameter indicating the state of the control pigment dispersion is preferably the particle diameter of the pigment in the control pigment dispersion.
In the evaluation method of the first aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are only light of the specific wavelength. It is preferably measured by irradiating the pigment dispersion with light passing through a band pass filter.
In the evaluation method of the first aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are the light reflected from the pigment dispersion. It is preferable to measure by measuring only the light of the specific wavelength.
In the evaluation method of the first aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured emit light of the specific wavelength. It is preferable to measure by irradiating the pigment dispersion with light of the specific wavelength using a light source.

また、本発明の第二態様の評価装置は、媒質中に顔料が分散されてなる顔料分散体の評価装置であって、顔料の種類によって異なる波長が特定波長として選択され、あらかじめ媒質中に顔料が分散されてなる対照用の顔料分散体について測定された顔料分散体の状態を示すパラメータと顔料分散体の前記特定波長における反射率との関係を備えたデータベースと、測定対象の顔料分散体の表面に、前記表面の法線に対して45°±15°以内の方向から光を照射する発光部と、前記測定対象の顔料分散体から反射した光を、前記表面の法線方向から±10°以内で受光する受光部と、前記発光部から照射した光の強度と前記受光部で受光した光の強度とを対比して前記測定対象の顔料分散体の前記特定波長における反射率を求め、前記測定対象の顔料分散体の前記特定波長における反射率と前記データベースと照合して、前記測定対象の顔料分散体の分散状態を評価する制御部とを備える。
本発明の第二態様の評価装置においては、前記対照用の顔料分散体の状態を示すパラメータが、前記対照用の顔料分散体における顔料の粒子径であることが好ましい。
本発明の第二態様の評価装置においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光のみを通過させる帯域フィルタを通した光を顔料分散体に照射して測定されることが好ましい。
本発明の第二態様の評価装置においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、顔料分散体から反射した光を分光して、前記特定波長の光のみを取り出して測定されることが好ましい。
本発明の第二態様の評価装置においては、前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光を発する光源を用い、前記特定波長の光を顔料分散体に照射して測定されることが好ましい。
The evaluation apparatus according to the second aspect of the present invention is an evaluation apparatus for a pigment dispersion in which a pigment is dispersed in a medium, and a different wavelength is selected as a specific wavelength depending on the type of the pigment, and the pigment is previously contained in the medium. A database having a relationship between a parameter indicating a state of the pigment dispersion measured for the control pigment dispersion in which the pigment is dispersed and the reflectance at the specific wavelength of the pigment dispersion, and a pigment dispersion to be measured A light emitting part that irradiates light on the surface from a direction within 45 ° ± 15 ° with respect to the normal of the surface, and light reflected from the pigment dispersion to be measured is ± 10 from the normal direction of the surface. The light receiving part that receives light within the range of °, the intensity of light emitted from the light emitting part and the intensity of light received by the light receiving part are compared to determine the reflectance at the specific wavelength of the pigment dispersion to be measured, Of the measurement object A controller that evaluates a dispersion state of the pigment dispersion to be measured by comparing the reflectance of the pigment dispersion at the specific wavelength with the database;
In the evaluation apparatus according to the second aspect of the present invention, it is preferable that the parameter indicating the state of the control pigment dispersion is a particle diameter of the pigment in the control pigment dispersion.
In the evaluation apparatus of the second aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are only light of the specific wavelength. It is preferably measured by irradiating the pigment dispersion with light passing through a band pass filter.
In the evaluation apparatus according to the second aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are the light reflected from the pigment dispersion. It is preferable to measure by measuring only the light of the specific wavelength.
In the evaluation apparatus according to the second aspect of the present invention, the reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured emit light of the specific wavelength. It is preferable to measure by irradiating the pigment dispersion with light of the specific wavelength using a light source.

本発明によれば、顔料分散体の反射率は、顔料の粒子が媒質中に高濃度で含まれていても測定することができるため、測定対象の顔料分散体を希釈する必要がない。これにより、顔料分散体を簡便に短時間で評価することが可能になる。   According to the present invention, the reflectance of the pigment dispersion can be measured even when the pigment particles are contained in the medium at a high concentration, so that it is not necessary to dilute the pigment dispersion to be measured. This makes it possible to easily evaluate the pigment dispersion in a short time.

本発明の顔料分散体の評価方法および評価装置の一例を示す模式図である。It is a schematic diagram which shows an example of the evaluation method and evaluation apparatus of the pigment dispersion of this invention. 測定セルの一例を示す断面図である。It is sectional drawing which shows an example of a measurement cell. 測定プローブの一例を示す斜視図である。It is a perspective view which shows an example of a measurement probe. 試料番号01〜03における粒子径と反射率との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter and reflectance in the sample numbers 01-03. 試料番号04〜06における粒子径と反射率との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter and reflectance in the sample numbers 04-06. 試料番号07〜09における粒子径と反射率との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter and reflectance in the sample numbers 07-09.

以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
図1は、本発明の一実施形態に係る粒子径の評価装置10と、それに付設される表示部11との構成を示す図である。評価装置10は、液体等の媒質3中に顔料粒子2が分散してなる顔料分散体1に光を照射し、顔料分散体1から反射された光を受光する計測部12と、データベース15等を備える制御部14を有する。計測部12は、顔料分散体1を収容する測定セル13と、照射光17を測定セル13に向けて照射する発光部16と、顔料分散体1から反射した反射光18を受光して電気信号に変換する受光部19を有する。
ここで、データベース15とは、顔料の粒子径(パラメータ)と反射率とが対応づけされた、例えば、換算表である。この換算表は、製品(液体に微粒子が含有されている製品)の種類に応じて使用される。
この換算表は、測定対象の顔料の反射率に基づいてその粒子径を測定又は評価する際(顔料分散体の分散状態を評価する際)に用いられる。本実施形態においては、換算表は、粒子径と反射率との関係が示されている表であって、測定の前に予め作成されている。また、このような換算表を用いて、測定対象の顔料の粒子径を求める場合には、測定対象の顔料を測定することによって得られた反射率の値(例えば、表示部11に表示された反射率の値)と、換算表に示されている反射率の値とを確認し、この反射率に対応する粒子径の値が換算表から得られる。これによって、測定対象の顔料の粒子径を推定する。また、このデータベース15は、制御部14に記憶されていてもよい。この場合、データベースは、制御部14に電気的に接続された記憶装置に記憶される。
The present invention will be described below based on preferred embodiments with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a particle diameter evaluation apparatus 10 according to an embodiment of the present invention and a display unit 11 attached thereto. The evaluation apparatus 10 includes a measuring unit 12 that irradiates light to a pigment dispersion 1 in which pigment particles 2 are dispersed in a medium 3 such as a liquid, and receives light reflected from the pigment dispersion 1, a database 15 and the like. It has control part 14 provided with. The measurement unit 12 receives the measurement cell 13 that contains the pigment dispersion 1, the light emitting unit 16 that irradiates the irradiation light 17 toward the measurement cell 13, and the reflected light 18 reflected from the pigment dispersion 1 to receive an electrical signal. It has the light-receiving part 19 converted into.
Here, the database 15 is, for example, a conversion table in which the particle diameter (parameter) of the pigment and the reflectance are associated with each other. This conversion table is used according to the type of product (product in which fine particles are contained in a liquid).
This conversion table is used when measuring or evaluating the particle diameter based on the reflectance of the pigment to be measured (when evaluating the dispersion state of the pigment dispersion). In the present embodiment, the conversion table is a table showing the relationship between the particle diameter and the reflectance, and is created in advance before the measurement. Moreover, when calculating | requiring the particle diameter of the pigment of a measuring object using such a conversion table, the reflectance value (for example, displayed on the display part 11) obtained by measuring the pigment of a measuring object is measured. The reflectance value) and the reflectance value shown in the conversion table are confirmed, and the value of the particle diameter corresponding to this reflectance is obtained from the conversion table. Thereby, the particle diameter of the pigment to be measured is estimated. The database 15 may be stored in the control unit 14. In this case, the database is stored in a storage device that is electrically connected to the control unit 14.

顔料分散体の反射率を測定する装置および方法は、特に限定されず、公知の適宜の装置および方法を利用可能である。
発光部16は、特定波長の光を発する光源であってもよいし、白色光等の、波長幅の広い光を発する光源であってもよい。
発光部16として、レーザー又は発光ダイオード(LED)等、特定波長の光を発する光源を用いる場合には、波長が350〜3600nmの範囲にある単一光を1種類または2種類以上発する発光部を用いることが好ましい。また、波長幅の広い光を発する光源としては、タングステンランプ、キセノンランプ等が挙げられる。
The apparatus and method for measuring the reflectance of the pigment dispersion are not particularly limited, and any known appropriate apparatus and method can be used.
The light emitting unit 16 may be a light source that emits light of a specific wavelength, or may be a light source that emits light having a wide wavelength width, such as white light.
When a light source that emits light of a specific wavelength, such as a laser or a light emitting diode (LED), is used as the light emitting unit 16, a light emitting unit that emits one type or two or more types of single light having a wavelength in the range of 350 to 3600 nm. It is preferable to use it. Examples of the light source that emits light having a wide wavelength range include a tungsten lamp and a xenon lamp.

顔料粒子2の粒子径等のパラメータを反射率と対応付けて評価できるようにするためには、パラメータに対して反射光強度の変化が大きい波長を特定波長として選択し、特定波長における反射率を測定することが好ましい。
例えば、黒顔料(一次粒子径が10nm以下)を用いる場合(黒顔料分散体の評価に用いる場合)は、590nm又は635nmなど、可視光の範囲が好ましく、他の顔料を用いる場合では、近赤外光の範囲が好ましい。透明性顔料(一次粒子径が100nm以下)のように粒子径が比較的小さい場合は、950nm又は1450nmなど、より短波長の特定波長が選択される。また、隠蔽性顔料のように粒子径が比較的大きい場合は、1650nm又は2000nmなど、より長波長の特定波長を選択することが好ましい。
なお、反射率の測定に用いられる波長は、測定対象の顔料(顔料の種類)によって変更することができる。
In order to be able to evaluate a parameter such as the particle diameter of the pigment particle 2 in association with the reflectance, a wavelength having a large change in reflected light intensity with respect to the parameter is selected as the specific wavelength, and the reflectance at the specific wavelength is determined. It is preferable to measure.
For example, when a black pigment (primary particle diameter of 10 nm or less) is used (when used for evaluation of a black pigment dispersion), a visible light range such as 590 nm or 635 nm is preferable. A range of ambient light is preferred. When the particle size is relatively small, such as a transparent pigment (primary particle size of 100 nm or less), a specific wavelength with a shorter wavelength such as 950 nm or 1450 nm is selected. In addition, when the particle diameter is relatively large, such as a concealing pigment, it is preferable to select a longer specific wavelength such as 1650 nm or 2000 nm.
In addition, the wavelength used for the measurement of reflectance can be changed according to the pigment to be measured (type of pigment).

受光部19としては、フォトダイオードなどの受光素子、光センサ、光検出器などが挙げられる。また、発光部16として、波長幅の広い光を発する光源を用いる場合には、発光部16と測定セル13との間に、特定波長の光のみを通過させる帯域フィルタを設置して、帯域フィルタを通した光を顔料分散体に照射したり、測定セル13と受光部19との間に、特定波長の光を選択可能な分光器又は特定波長の光のみを通すフィルタを設けて、特定波長の光のみを取り出したりすることが好ましい。   Examples of the light receiving unit 19 include a light receiving element such as a photodiode, an optical sensor, and a photodetector. When a light source that emits light having a wide wavelength range is used as the light emitting unit 16, a band filter that allows only light of a specific wavelength to pass is installed between the light emitting unit 16 and the measurement cell 13. A spectroscope that can select light of a specific wavelength or a filter that passes only light of a specific wavelength is provided between the measurement cell 13 and the light receiving unit 19, It is preferable to extract only the light.

発光部16は複数備えられてもよい。受光部19は、1つの発光部16と対応するように備えられてもよいし、複数の発光部16と対応するように備えられてもよい。
発光部16が複数備えられている場合、そのうち1つの発光部16を選択して発光させ、顔料分散体1から生じた反射光を共通の受光部19で受光させることもできる。
A plurality of light emitting units 16 may be provided. The light receiving unit 19 may be provided to correspond to one light emitting unit 16, or may be provided to correspond to a plurality of light emitting units 16.
When a plurality of light emitting units 16 are provided, one of the light emitting units 16 can be selected to emit light, and the reflected light generated from the pigment dispersion 1 can be received by the common light receiving unit 19.

発光部16から顔料分散体1に照射光17を入射させるとき、顔料分散体表面4の法線に対して45°(好ましくは±25°以内、より好ましくは±15°以内)の方向から光17を顔料分散体1に照射することが好ましい。この場合、セルの表面で正反射した光が発光部16に戻ることによる影響を抑制することができる。
また、受光部19が顔料分散体1から生じた反射光18を受光するとき、顔料分散体表面4の法線方向(好ましくは±30°以内、より好ましくは±10°以内)で反射光18を受光することが好ましい。特に顔料分散体表面4の法線に対して45°の方向から光17を顔料分散体1に照射し、表面4の法線方向で受光する場合は、受光部19にセル壁面から生じた正反射光が受光されにくく、顔料粒子から生じた散乱光を主として受光することができる。このような角度で光17を顔料分散体1に照射して反射光を受光する場合においては、表面4の法線方向から照射して表面4の法線方向で受光する場合と比較して、セルの表面等で反射した光が受光部に戻ることを抑制することができる。
なお、顔料分散体表面4の法線に対して0°の方向から光17を顔料分散体1に照射し、顔料分散体表面4の法線に対して45°の方向において顔料分散体1から生じた反射光を受光してもよい。このような角度で光17を顔料分散体1に照射して反射光を受光する場合においても、表面4の法線方向から照射して表面4の法線方向で受光する場合と比較して、セルの表面等で反射した光が受光部に戻ることを抑制することができる。
When the irradiation light 17 is incident on the pigment dispersion 1 from the light emitting portion 16, the light is emitted from a direction of 45 ° (preferably within ± 25 °, more preferably within ± 15 °) with respect to the normal of the pigment dispersion surface 4. Preferably, the pigment dispersion 1 is irradiated with 17. In this case, it is possible to suppress the influence caused by the light regularly reflected on the surface of the cell returning to the light emitting unit 16.
Further, when the light receiving unit 19 receives the reflected light 18 generated from the pigment dispersion 1, the reflected light 18 in the normal direction of the pigment dispersion surface 4 (preferably within ± 30 °, more preferably within ± 10 °). Is preferably received. In particular, when the pigment dispersion 1 is irradiated with light 17 from a direction of 45 ° with respect to the normal line of the pigment dispersion surface 4 and received in the normal direction of the surface 4, the positive light generated from the cell wall surface on the light receiving unit 19 Reflected light is hardly received, and scattered light generated from the pigment particles can be mainly received. In the case of receiving the reflected light by irradiating the pigment dispersion 1 with the light 17 at such an angle, as compared with the case of irradiating from the normal direction of the surface 4 and receiving the light in the normal direction of the surface 4, It is possible to suppress the light reflected by the cell surface or the like from returning to the light receiving unit.
The pigment dispersion 1 is irradiated with light 17 from the direction of 0 ° with respect to the normal line of the pigment dispersion surface 4, and from the pigment dispersion 1 in the direction of 45 ° with respect to the normal line of the pigment dispersion surface 4. The generated reflected light may be received. Even when the reflected light is received by irradiating the pigment dispersion 1 with the light 17 at such an angle, compared to the case where the light is irradiated from the normal direction of the surface 4 and received in the normal direction of the surface 4, It is possible to suppress the light reflected by the cell surface or the like from returning to the light receiving unit.

顔料分散体1は、測定セル13に充填される。顔料分散体自体は不定形であり、その表面4の形状は、測定セル13の内面の形状によって決定される。この表面4は、平面であることが望ましい。
測定セル13は、ガラス、合成石英ガラス、プラスチック、準貴石等により構成することができる。照射光17が照射されない部分においては、金属などの不透明な材質を組み合わせることもできる。
顔料分散体1の反射率を測定する際、測定セル13内において、顔料分散体1を運動させる必要はないが、測定セル13が計測される顔料分散体1を流すフローセルであってもよい。温度制御して測定を行いたい場合には、水または高沸点溶剤をセル周りに設けられたジャケットに循環させることができる。
The pigment dispersion 1 is filled in the measurement cell 13. The pigment dispersion itself is indefinite, and the shape of the surface 4 is determined by the shape of the inner surface of the measuring cell 13. The surface 4 is preferably flat.
The measurement cell 13 can be made of glass, synthetic quartz glass, plastic, semi-precious stone, or the like. In the portion where the irradiation light 17 is not irradiated, an opaque material such as a metal can be combined.
When measuring the reflectance of the pigment dispersion 1, it is not necessary to move the pigment dispersion 1 in the measurement cell 13, but it may be a flow cell through which the pigment dispersion 1 is measured. When it is desired to perform measurement while controlling the temperature, water or a high-boiling solvent can be circulated through a jacket provided around the cell.

制御部14は、測定対象となる顔料分散体1についてあらかじめ測定された、顔料の粒子径と反射率との関係を示すデータを備えたデータベース15を具備する。制御部14は、反射率の測定結果をデータベース15と照合して、反射率の測定結果に対応する、顔料粒子2の粒子径を求めることができる。
粒子径と反射率との関係を示すデータは、対照用の顔料分散体を調製してその顔料の粒子径と顔料分散体の反射率を測定し、得られた粒子径と反射率とを対応付けることによって得られる。ここで、対照用の顔料分散体の反射率は、測定対象の顔料分散体の反射率と同様に本実施形態の評価装置10を用いて測定される。対照用の顔料分散体の粒子径は、別の装置および方法によって測定される。対照用の顔料分散体における顔料の粒子径の測定には、公知の粒子径の測定装置を使用でき、例えば、ミー散乱理論あるいはフラウンホーファー回折理論を利用したレーザー式粒子径測定装置、動的光散乱、レーザー回折、遠心沈降、超音波減衰、画像識別等を利用した粒子径測定装置が例示される。
対照用の顔料分散体について測定される粒子径は、粒子径分布ではなく、単一の数値からなる平均粒子径である。平均粒子径には種々の定義があるが、本発明においては、対照用の顔料分散体の平均粒子径を、特定の方法で測定すればよい。すなわち、測定対象の顔料分散体の反射率から後述のように換算される粒子径は、対照用の顔料分散体の平均粒子径の測定に採用した特定の方法により定義される平均粒子径として、与えられる。
The control unit 14 includes a database 15 including data measured in advance for the pigment dispersion 1 to be measured and indicating the relationship between the particle diameter of the pigment and the reflectance. The control unit 14 can collate the measurement result of the reflectance with the database 15 and obtain the particle diameter of the pigment particle 2 corresponding to the measurement result of the reflectance.
The data showing the relationship between the particle size and the reflectance is prepared by preparing a control pigment dispersion, measuring the particle size of the pigment and the reflectance of the pigment dispersion, and associating the obtained particle size with the reflectance. Can be obtained. Here, the reflectance of the control pigment dispersion is measured using the evaluation apparatus 10 of the present embodiment, similarly to the reflectance of the pigment dispersion to be measured. The particle size of the control pigment dispersion is measured by another apparatus and method. For measurement of the particle size of the pigment in the pigment dispersion for control, a known particle size measuring device can be used. For example, a laser particle size measuring device using the Mie scattering theory or Fraunhofer diffraction theory, dynamic light Examples thereof include a particle size measuring device using scattering, laser diffraction, centrifugal sedimentation, ultrasonic attenuation, image identification, and the like.
The particle size measured for the control pigment dispersion is not a particle size distribution but an average particle size consisting of a single numerical value. Although there are various definitions of the average particle size, in the present invention, the average particle size of the control pigment dispersion may be measured by a specific method. That is, the particle diameter converted as described below from the reflectance of the pigment dispersion to be measured is the average particle diameter defined by the specific method employed for measuring the average particle diameter of the pigment dispersion for control, Given.

対照用の顔料分散体について粒子径および反射率を測定する点数は、3点以上が好ましいが、2点以下とすることもできる。
データベース15に備えられる反射率と粒子径との関係は、測定範囲内で単調に減少または増加する関係であれば、一次式で表される線形的な関係であってもよく、二次式以上の高次の多項式で表される関係であってもよい。
The number of points for measuring the particle diameter and reflectance of the control pigment dispersion is preferably 3 or more, but can also be 2 or less.
The relationship between the reflectance and the particle diameter provided in the database 15 may be a linear relationship represented by a linear expression as long as it is a monotonically decreasing or increasing relationship within the measurement range. The relationship expressed by a higher-order polynomial may be used.

また、制御部14は、発光部16に対して、照射光17を発するように促す電気信号を送信する機能と、受光部19が受けた反射光18に基づく電気信号を受信し、顔料分散体1の反射率を演算する機能を有することが好ましい。これにより、反射率を照射光17と反射光18との強度比として、自動的に計算することができる。この場合、発光部16は、制御部14から発信された電気信号に基づいて、所望の強度の照射光17を発生する発光部であることが好ましい。   In addition, the control unit 14 receives the electric signal based on the reflected light 18 received by the light receiving unit 19 and the function of transmitting an electric signal that prompts the light emitting unit 16 to emit the irradiation light 17, and the pigment dispersion It is preferable to have a function of calculating a reflectance of 1. Thereby, the reflectance can be automatically calculated as the intensity ratio between the irradiation light 17 and the reflected light 18. In this case, the light emitting unit 16 is preferably a light emitting unit that generates irradiation light 17 having a desired intensity based on an electrical signal transmitted from the control unit 14.

表示部11は、制御部14によって得られた結果を表示できる表示部であれば特に限定されないが、文字、図形、音、又は光など、作業者が認識可能な方式によって結果を出力可能であることが好ましい。異常な結果が得られたときに警告又は警報など特に作業者の注意を喚起できる方式による出力を可能にすることもできる。   The display unit 11 is not particularly limited as long as the display unit 11 can display the result obtained by the control unit 14, but the result can be output by a method that can be recognized by the operator, such as characters, figures, sounds, or light. It is preferable. It is also possible to enable output in a manner that can particularly alert the worker when an abnormal result is obtained, such as a warning or alarm.

評価装置10による、粒子径の評価方法は、例えば、次の(1)〜(4)のような手順によって行うことができる。
(1)まず、制御部14から発信された電気信号を発光部16により照射光17に変換し、かつ照射光17を測定セル13内の顔料分散体1に照射する。
(2)次に、顔料分散体1から反射した反射光18を受光部19により受光し、反射光18を電気信号に変換する。
(3)次に、制御部14により反射光18から得られた電気信号と、発光部16に発信された電気信号とを比較して、顔料分散体1の反射率を演算して導く。
(4)そして、データベース15に備えられている反射率と粒子径との関係を参照して、測定で得られた顔料分散体1の反射率に対応する、顔料粒子2の粒子径を求める。
The particle diameter evaluation method by the evaluation apparatus 10 can be performed, for example, by the following procedures (1) to (4).
(1) First, the electrical signal transmitted from the control unit 14 is converted into the irradiation light 17 by the light emitting unit 16, and the irradiation light 17 is irradiated to the pigment dispersion 1 in the measurement cell 13.
(2) Next, the reflected light 18 reflected from the pigment dispersion 1 is received by the light receiving unit 19, and the reflected light 18 is converted into an electrical signal.
(3) Next, the electrical signal obtained from the reflected light 18 by the control unit 14 and the electrical signal transmitted to the light emitting unit 16 are compared, and the reflectance of the pigment dispersion 1 is calculated and derived.
(4) The particle diameter of the pigment particles 2 corresponding to the reflectance of the pigment dispersion 1 obtained by measurement is obtained with reference to the relationship between the reflectance and the particle diameter provided in the database 15.

反射率は、顔料粒子2が高濃度で顔料分散体1に含まれていても測定可能であるため、顔料分散体1を希釈する必要がない。したがって、本実施形態の評価装置および評価方法は、希釈により不安定となる液体に対して適用可能である。また、プロセス中に希釈したくない顔料分散体1に対しても適用可能である。   Since the reflectance can be measured even when the pigment particles 2 are contained in the pigment dispersion 1 at a high concentration, it is not necessary to dilute the pigment dispersion 1. Therefore, the evaluation apparatus and the evaluation method of the present embodiment can be applied to a liquid that becomes unstable due to dilution. It is also applicable to the pigment dispersion 1 that is not desired to be diluted during the process.

以上、本発明を好適な実施の形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
上記実施形態では、顔料分散体における顔料の粒子径を測定する場合に基づいて説明したが、本発明は粒子径の評価に限定されない。顔料分散体の密度、濃度、色合い等、顔料分散体の反射率に対して有意な差をもたらすパラメータであれば、顔料分散体の状態に関する他のパラメータに適用することも可能である。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
In the said embodiment, although demonstrated based on the case where the particle diameter of the pigment in a pigment dispersion was measured, this invention is not limited to evaluation of a particle diameter. Any parameter that causes a significant difference with respect to the reflectance of the pigment dispersion, such as the density, concentration, and hue of the pigment dispersion, can be applied to other parameters relating to the state of the pigment dispersion.

塗料の調製に使用する顔料分散体は、塗料調製時にビヒクル形成成分である樹脂成分又はその他の添加物等と混合し、さらに希釈されるため、通常は顔料を高濃度で含有する。本発明は高濃度の顔料分散体にも適用可能であるが、このような顔料分散体を取り扱う場合、測定又は洗浄等の取り扱いが容易な分散体を採用することが望ましい。
なお、上述した実施形態においては、データベース15を参照して反射率の測定結果に対応する顔料粒子2の粒子径を求めた。本発明は、この方法に限定されず、換算表を使用して、製造現場(例えば、塗料を製造する工程等)で測定された顔料分散体の反射率に基づいて、その粒子径を評価してもよい。
The pigment dispersion used in the preparation of the paint is usually mixed with a resin component that is a vehicle-forming component or other additives at the time of preparation of the paint, and is further diluted. The present invention can be applied to a pigment dispersion having a high concentration. However, when handling such a pigment dispersion, it is desirable to employ a dispersion that is easy to handle such as measurement or washing.
In the above-described embodiment, the particle diameter of the pigment particle 2 corresponding to the measurement result of the reflectance is obtained with reference to the database 15. The present invention is not limited to this method, and using a conversion table, the particle diameter is evaluated based on the reflectance of the pigment dispersion measured at the production site (for example, a process for producing a paint, etc.). May be.

図2は、前記計測部として使用可能な計測装置20の一例を示す断面図である。
この計測装置20は、透明板21の上に周壁部22を設置して測定セル13を構成し、透明板21の下方に、発光部16および受光部19を透明板21に対して所定の角度で支持するプローブ23を備える。プローブ23が透明板21に当接する当接面24の中央部には、上向きの凹部25が形成されている(当接面24の中央部と凹部25の開口部とが一致している)。また、プローブ23の外面27,28から凹部25に向かって、発光部16および受光部19が設置される穴26,29が形成されている。
FIG. 2 is a cross-sectional view showing an example of a measuring device 20 that can be used as the measuring unit.
In this measuring device 20, a peripheral wall portion 22 is installed on a transparent plate 21 to constitute a measurement cell 13, and a light emitting portion 16 and a light receiving portion 19 are placed at a predetermined angle with respect to the transparent plate 21 below the transparent plate 21. The probe 23 supported by An upward recess 25 is formed at the center of the contact surface 24 where the probe 23 contacts the transparent plate 21 (the center of the contact surface 24 and the opening of the recess 25 coincide). Further, holes 26 and 29 in which the light emitting unit 16 and the light receiving unit 19 are installed are formed from the outer surfaces 27 and 28 of the probe 23 toward the recess 25.

透明板21は、周壁部22の範囲内において測定セル13の底壁部21cを構成し、反射光の測定波長である前記特定波長において透明であればよい。透明板21の材質としては、ガラス、合成石英ガラス、プラスチック、準貴石等が挙げられる。図示例では、透明板21は、両面21a、21bが平行な平坦面とされた板状である。この場合、透明板21の顔料分散体1に接する側(位置)である底壁部21cの内面(図2では透明板21の上面21a)が平坦であることにより、測定セル13内に収容される顔料分散体1が平坦な表面4を形成する。また、プローブ23(詳しくはプローブ23の上面24)に接する側(位置)である底壁部21cの外面(図2では透明板21の下面21b)が平坦であり、下面21bに接触するプローブ23の当接面である上面24も平坦であることにより、水平方向の位置決めが不要となる。   The transparent plate 21 may constitute the bottom wall portion 21c of the measurement cell 13 within the range of the peripheral wall portion 22 and be transparent at the specific wavelength that is the measurement wavelength of the reflected light. Examples of the material of the transparent plate 21 include glass, synthetic quartz glass, plastic, and semi-precious stones. In the illustrated example, the transparent plate 21 has a plate shape in which both surfaces 21a and 21b are parallel flat surfaces. In this case, the inner surface of the bottom wall portion 21c (the upper surface 21a of the transparent plate 21 in FIG. 2), which is the side (position) in contact with the pigment dispersion 1 of the transparent plate 21, is accommodated in the measurement cell 13. The pigment dispersion 1 forms a flat surface 4. Further, the outer surface of the bottom wall portion 21c (the lower surface 21b of the transparent plate 21 in FIG. 2) that is the side (position) in contact with the probe 23 (specifically, the upper surface 24 of the probe 23) is flat, and the probe 23 that contacts the lower surface 21b. Since the upper surface 24, which is the contact surface, is also flat, horizontal positioning is not necessary.

周壁部22には、照射光17が照射されないため、金属などの不透明な材質を用いることができる。透明板21と周壁部22との間は、周壁部22自身の重量又は、顔料分散体1から透明板21と周壁部22との境界面に浸透する液体の表面張力等によって密着することができる。測定が終了した後は、透明板21と周壁部22とを簡単に分離できるので、顔料分散体1が粘稠であっても洗浄が容易である。周壁部22の下部は、外周方向に突出するフランジ部22aを形成すると、透明板21との接触面積が増大して、安定性が向上する(傾きにくい)ため、好ましい。周壁部22の水平面に沿った断面形状は、例えば、円形、正方形、矩形、多角形等であるが、特に限定されない。   Since the peripheral wall portion 22 is not irradiated with the irradiation light 17, an opaque material such as metal can be used. The transparent plate 21 and the peripheral wall portion 22 can be in close contact with each other by the weight of the peripheral wall portion 22 itself or the surface tension of the liquid penetrating from the pigment dispersion 1 to the boundary surface between the transparent plate 21 and the peripheral wall portion 22. . After the measurement is completed, since the transparent plate 21 and the peripheral wall portion 22 can be easily separated, cleaning is easy even if the pigment dispersion 1 is viscous. The lower portion of the peripheral wall portion 22 is preferably formed with a flange portion 22a protruding in the outer peripheral direction because the contact area with the transparent plate 21 is increased and stability is improved (not easily tilted). Although the cross-sectional shape along the horizontal surface of the surrounding wall part 22 is a circle, a square, a rectangle, a polygon, etc., for example, it is not specifically limited.

なお、測定セル13は、図2に示す形態に限られず、少なくとも発光部16および受光部19に面する壁部の一部または全部が透明であればよい。測定セルの周壁部の少なくとも一部が透明である場合には、周壁部に向かって照射光を照射することもできるが、測定セルの底壁部に向かって照射光を照射する場合は、顔料分散体の液面の高さの影響を考慮する必要がなく、好ましい。
本発明は、底壁部と周壁部とを有する測定セルを、発光部と受光部とを備えるプローブの上に直接設置する場合に限定されず、プローブの上または周囲に測定セルを支持する支持部を設けることで、プローブに対して測定セルを間接的に位置決めすることもできる。例えば、図2に示す周壁部22の内側に顔料分散体1を直接注入する代わりに、顔料分散体を充填した測定セルを差し込んでも良い。
Note that the measurement cell 13 is not limited to the form shown in FIG. When at least a part of the peripheral wall portion of the measurement cell is transparent, the irradiation light can be irradiated toward the peripheral wall portion, but when irradiating the irradiation light toward the bottom wall portion of the measurement cell, the pigment It is not necessary to consider the influence of the liquid level of the dispersion, which is preferable.
The present invention is not limited to the case where a measurement cell having a bottom wall portion and a peripheral wall portion is directly installed on a probe including a light emitting portion and a light receiving portion, and a support for supporting the measurement cell on or around the probe. By providing the portion, the measurement cell can be indirectly positioned with respect to the probe. For example, instead of directly injecting the pigment dispersion 1 into the inside of the peripheral wall portion 22 shown in FIG. 2, a measurement cell filled with the pigment dispersion may be inserted.

図3にプローブ23の外観構成の一例を示す。このプローブ23は、当接面24(図3の下面)と平行に形成された頂面28の周囲に、当接面24に対して斜めに形成された斜面27を複数有する多面体状である。頂面28には、1または複数の受光部設置穴29が開口され、各斜面27には、1または複数の発光部設置穴26が開口されている。
このような構成によれば、1つのプローブ23に複数の発光部16および複数の受光部19の少なくとも一方を支持させ、測定に用いる発光部16および受光部19を適宜切り替えて使用することができる。
FIG. 3 shows an example of the external configuration of the probe 23. The probe 23 has a polyhedral shape having a plurality of inclined surfaces 27 formed obliquely with respect to the contact surface 24 around a top surface 28 formed in parallel with the contact surface 24 (the lower surface in FIG. 3). One or more light receiving portion installation holes 29 are opened in the top surface 28, and one or more light emitting portion installation holes 26 are opened in each inclined surface 27.
According to such a configuration, at least one of the plurality of light emitting units 16 and the plurality of light receiving units 19 can be supported by one probe 23, and the light emitting unit 16 and the light receiving unit 19 used for measurement can be switched appropriately and used. .

特に、受光部19が顔料分散体表面4の法線方向で反射光を受光することにより、1つの受光部19と複数の発光部16との間で、発光部16と受光部19との組を構成することが可能になる。すなわち、それら複数の発光部16のうちいずれの発光部16を選択して発光させても、該発光部16から顔料分散体1の表面4に向けて照射光17を照射して得られた反射光18を、同一の受光部19で受光することができる。
波長の異なる複数の照射光を顔料分散体に照射するために多数の発光部16が必要なとき、あらかじめ複数の発光部16をプローブ23に取り付けておくことにより、発光部16を交換することなく、単に発光させる発光部16を切り替えるだけで、照射光の波長を変更し、測定を引き続いて行うことができ、作業性が向上する。
顔料分散体1の種類を変更する場合には、透明板21を周壁部22と共に持ち上げるだけで、測定セル13をプローブ23から容易に取り外し、また、新たな測定セル13をプローブ23の当接面24に載せることで容易に行うことができる。発光部16および受光部19に対する距離および角度がプローブ23において適切に設定されているため、測定セル13を発光部16および受光部19に対して位置決め等の調整も不要となり、測定をより簡便且つ迅速に行うことができる。
In particular, when the light receiving unit 19 receives reflected light in the normal direction of the pigment dispersion surface 4, a set of the light emitting unit 16 and the light receiving unit 19 between one light receiving unit 19 and the plurality of light emitting units 16. Can be configured. That is, the reflection obtained by irradiating the irradiation light 17 from the light emitting part 16 toward the surface 4 of the pigment dispersion 1, no matter which light emitting part 16 is selected from the light emitting parts 16. The light 18 can be received by the same light receiving unit 19.
When a large number of light emitting units 16 are required to irradiate the pigment dispersion with a plurality of irradiation lights having different wavelengths, the light emitting units 16 can be exchanged by attaching the plurality of light emitting units 16 to the probe 23 in advance. By simply switching the light emitting unit 16 that emits light, the wavelength of the irradiation light can be changed and the measurement can be continuously performed, thereby improving workability.
When the type of the pigment dispersion 1 is changed, the measurement cell 13 can be easily detached from the probe 23 simply by lifting the transparent plate 21 together with the peripheral wall portion 22, and the new measurement cell 13 can be removed from the contact surface of the probe 23. It can be easily performed by placing it on 24. Since the distance and angle with respect to the light emitting unit 16 and the light receiving unit 19 are appropriately set in the probe 23, it is not necessary to adjust the positioning or the like of the measurement cell 13 with respect to the light emitting unit 16 and the light receiving unit 19, thereby making measurement easier and more convenient. Can be done quickly.

以下、実施例をもって本発明を具体的に説明する。なお、本発明は、これらの実施例のみに限定されない。また、特に断りのない場合、「部」は質量部を意味する。   Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited only to these Examples. Further, unless otherwise specified, “part” means part by mass.

(隠蔽性顔料の測定例)
隠蔽性顔料として酸化鉄顔料を用いて、試料番号01〜03の顔料分散体を次のように調製した。
試料番号01では、アクリディックA−838(商品名、DIC社製、弱溶剤可溶アクリル系分散樹脂)20部、トダカラーKN−O(商品名、戸田工業社製、酸化鉄顔料)35部、トルエン45部を混合し、DASH2000−K Dispenser(商品名、LAU社製、振とう型ペイントコンディショナー)を用い、分散時間を0.5時間として、顔料分散体を調製した。
試料番号02では、分散時間を1時間とする以外は試料番号01と同様にして、顔料分散体を調製した。
試料番号03では、分散時間を2時間とする以外は試料番号01と同様にして、顔料分散体を調製した。
(Measurement example of hiding pigment)
Using an iron oxide pigment as a hiding pigment, pigment dispersions of sample numbers 01 to 03 were prepared as follows.
In sample number 01, 20 parts of Acrydic A-838 (trade name, manufactured by DIC, weak solvent-soluble acrylic dispersion resin), 35 parts of Todacolor KN-O (trade name, manufactured by Toda Kogyo, iron oxide pigment), A pigment dispersion was prepared by mixing 45 parts of toluene and using a DASH2000-K Dispenser (trade name, manufactured by LAU, shake type paint conditioner) with a dispersion time of 0.5 hour.
For sample number 02, a pigment dispersion was prepared in the same manner as sample number 01 except that the dispersion time was 1 hour.
For sample number 03, a pigment dispersion was prepared in the same manner as sample number 01 except that the dispersion time was 2 hours.

試料番号01〜03の顔料分散体における顔料の平均粒子径の測定においては、各顔料分散体を、遠心沈降式によって測定可能な顔料濃度である50倍に希釈して均一になるように攪拌して測定試料を準備し、BI−DCP(商品名、日機装社製、遠心沈降式粒度分布測定装置)を用いて30分の測定時間で測定した。測定試料の希釈溶媒には、トルエンを用いた。
試料番号01〜03の顔料分散体の反射率は、図2に示した測定セル13に顔料分散体1を静かに入れ、顔料分散体表面4の法線に対して45°の角度から光17を照射し、顔料分散体表面4の法線方向で反射光18を受光して、波長1650nmで測定した。発光部16の光源には浜松ホトニクス社製赤外LED(L10823)を、受光部19の受光素子には浜松ホトニクス社製PINフォトダイオード(G8372)を用いた。
試料番号01〜03の顔料分散体における顔料の平均粒子径と顔料分散体の反射率との関係を図4に示す。図4のグラフより、顔料の粒子径が大きくなるほど、顔料分散体の反射率が大きくなる、正の相関関係があることが確認された。すなわち、同種の顔料分散体において測定された反射率から、顔料の粒子径を一義的に求められることが分かる。
In the measurement of the average particle diameter of the pigments in the pigment dispersions of sample numbers 01 to 03, each pigment dispersion was diluted to 50 times, which is a pigment concentration that can be measured by a centrifugal sedimentation method, and stirred to be uniform. A measurement sample was prepared and measured with a measurement time of 30 minutes using BI-DCP (trade name, manufactured by Nikkiso Co., Ltd., centrifugal sedimentation type particle size distribution measuring device). Toluene was used as a dilution solvent for the measurement sample.
The reflectance of the pigment dispersions of sample numbers 01 to 03 is determined by gently placing the pigment dispersion 1 in the measurement cell 13 shown in FIG. 2 and light 17 from an angle of 45 ° with respect to the normal of the pigment dispersion surface 4. And the reflected light 18 was received in the normal direction of the pigment dispersion surface 4 and measured at a wavelength of 1650 nm. An infrared LED (L10823) manufactured by Hamamatsu Photonics was used as the light source of the light emitting unit 16, and a PIN photodiode (G8372) manufactured by Hamamatsu Photonics was used as the light receiving element of the light receiving unit 19.
FIG. 4 shows the relationship between the average particle diameter of the pigments in the pigment dispersions of sample numbers 01 to 03 and the reflectance of the pigment dispersion. From the graph of FIG. 4, it was confirmed that there is a positive correlation that the reflectance of the pigment dispersion increases as the particle diameter of the pigment increases. That is, it can be seen that the particle diameter of the pigment can be uniquely determined from the reflectance measured in the same type of pigment dispersion.

(透明性顔料の測定例)
透明性顔料としてフタロシアニン青顔料を用いて、試料番号04〜06の顔料分散体を次のように調製した。
試料番号04では、アクリディックA−838(商品名、DIC社製、弱溶剤可溶アクリル系分散樹脂)20部、CYANIN BLUE G−314(商品名、山陽色素社製、フタロシアニン青顔料)8部、SOLSPERSE 5000(商品名、ルブリゾール社製、顔料分散剤)0.8部、DISPERBYK−2001(商品名、ビックケミー社製、顔料分散剤)2部、トルエン72部を混合し、DASH2000−K Dispenser(商品名、LAU社製、振とう型ペイントコンディショナー)を用い、分散時間を0.5時間として、顔料分散体を調製した。
試料番号05では、分散時間を1時間とする以外は試料番号04と同様にして、顔料分散体を調製した。
試料番号06では、分散時間を2時間とする以外は試料番号04と同様にして、顔料分散体を調製した。
(Measurement example of transparent pigment)
Using phthalocyanine blue pigment as the transparent pigment, pigment dispersions of sample numbers 04 to 06 were prepared as follows.
In sample number 04, 20 parts of ACRICID A-838 (trade name, manufactured by DIC, weak solvent-soluble acrylic dispersion resin), 8 parts of CYANIN BLUE G-314 (trade name, manufactured by Sanyo Dye, phthalocyanine blue pigment) SOLSOLSE 5000 (trade name, manufactured by Lubrizol, Pigment Dispersant) 0.8 part, DISPERBYK-2001 (trade name, manufactured by Big Chemie, Pigment Dispersant) 2 parts, 72 parts of toluene are mixed, and DASH2000-K Dispenser ( A pigment dispersion was prepared using a trade name (manufactured by LAU, shaking paint conditioner) and a dispersion time of 0.5 hour.
For Sample No. 05, a pigment dispersion was prepared in the same manner as Sample No. 04 except that the dispersion time was 1 hour.
For Sample No. 06, a pigment dispersion was prepared in the same manner as Sample No. 04 except that the dispersion time was 2 hours.

試料番号04〜06の顔料分散体における顔料の平均粒子径の測定においては、各顔料分散体を、遠心沈降式によって測定可能な顔料濃度である50倍に希釈して均一になるように攪拌して測定試料を準備し、BI−DCP(商品名、日機装社製、遠心沈降式粒度分布測定装置)を用いて60分の測定時間で測定した。測定試料の希釈溶媒には、トルエンを用いた。
試料番号04〜06の顔料分散体の反射率は、図2に示した測定セル13に顔料分散体1を静かに入れ、顔料分散体表面4の法線に対して45°の角度から光17を照射し、顔料分散体表面4の法線方向で反射光18を受光して、波長1450nmで測定した。発光部16の光源には浜松ホトニクス社製赤外LED(L10660)を、受光部19の受光素子には浜松ホトニクス社製PINフォトダイオード(G8372)を用いた。
試料番号04〜06の顔料分散体における顔料の平均粒子径と顔料分散体の反射率との関係を図5に示す。図5のグラフより、顔料の粒子径が大きくなるほど、顔料分散体の反射率が大きくなる、正の相関関係があることが確認された。すなわち、同種の顔料分散体において測定された反射率から、顔料の粒子径を一義的に求められることが分かる。
In the measurement of the average particle diameter of the pigments in the pigment dispersions of sample numbers 04 to 06, each pigment dispersion was diluted to 50 times, which is a pigment concentration that can be measured by a centrifugal sedimentation method, and stirred uniformly. A measurement sample was prepared and measured with a measurement time of 60 minutes using BI-DCP (trade name, manufactured by Nikkiso Co., Ltd., centrifugal sedimentation type particle size distribution measuring device). Toluene was used as a dilution solvent for the measurement sample.
The reflectance of the pigment dispersions of Sample Nos. 04 to 06 was determined by gently placing the pigment dispersion 1 in the measurement cell 13 shown in FIG. , The reflected light 18 was received in the normal direction of the pigment dispersion surface 4 and measured at a wavelength of 1450 nm. An infrared LED (L10660) manufactured by Hamamatsu Photonics was used as the light source of the light emitting unit 16, and a PIN photodiode (G8372) manufactured by Hamamatsu Photonics was used as the light receiving element of the light receiving unit 19.
FIG. 5 shows the relationship between the average particle diameter of the pigment and the reflectance of the pigment dispersion in the pigment dispersions of sample numbers 04 to 06. From the graph of FIG. 5, it was confirmed that there is a positive correlation that the reflectance of the pigment dispersion increases as the particle diameter of the pigment increases. That is, it can be seen that the particle diameter of the pigment can be uniquely determined from the reflectance measured in the same type of pigment dispersion.

(黒顔料の測定例)
黒顔料としてカーボンブラック顔料を用いて、試料番号07〜09の顔料分散体を次のように調製した。
試料番号07では、アクリディックA−838(商品名、DIC社製、弱溶剤可溶アクリル系分散樹脂)20部、RAVEN 5000 ULTRA III(商品名、コロンビアカーボン社製、カーボンブラック顔料)4部、DISPERBYK−2001(商品名、ビックケミー社製、顔料分散剤)20部、トルエン56部を混合し、DASH2000−K Dispenser(商品名、LAU社製、振とう型ペイントコンディショナー)を用い、分散時間を0.5時間として、顔料分散体を調製した。
試料番号08では、分散時間を1時間とする以外は試料番号07と同様にして、顔料分散体を調製した。
試料番号09では、分散時間を2時間とする以外は試料番号07と同様にして、顔料分散体を調製した。
(Black pigment measurement example)
Using a carbon black pigment as a black pigment, pigment dispersions of sample numbers 07 to 09 were prepared as follows.
In sample number 07, 20 parts of ACRICID A-838 (trade name, manufactured by DIC, weak solvent-soluble acrylic dispersion resin), 4 parts of RAVEN 5000 ULTRA III (trade name, manufactured by Columbia Carbon Co., carbon black pigment), Mix 20 parts of DISPERBYK-2001 (trade name, manufactured by Big Chemie, pigment dispersant) and 56 parts of toluene, and use DASH2000-K Dispenser (trade name, manufactured by LAU, shake type paint conditioner), and set the dispersion time to 0. A pigment dispersion was prepared for .5 hours.
For Sample No. 08, a pigment dispersion was prepared in the same manner as Sample No. 07 except that the dispersion time was 1 hour.
For sample number 09, a pigment dispersion was prepared in the same manner as sample number 07 except that the dispersion time was 2 hours.

試料番号07〜09の顔料分散体における顔料の平均粒子径の測定においては、各顔料分散体を、遠心沈降式によって測定可能な顔料濃度である50倍に希釈して均一になるように攪拌して測定試料を準備し、BI−DCP(商品名、日機装社製、遠心沈降式粒度分布測定装置)を用いて60分の測定時間で測定した。測定試料の希釈溶媒には、トルエンを用いた。
試料番号07〜09の顔料分散体の反射率は、図2に示した測定セル13に顔料分散体1を静かに入れ、顔料分散体表面4の法線に対して45°の角度から光17を照射し、顔料分散体表面4の法線方向で反射光18を受光して、波長590nmで測定した。発光部16の光源には0ptoSupply社製LED(OSYL511A)を、受光部19の受光素子には浜松ホトニクス社製Siフォトダイオード(S2386)を用いた。
試料番号07〜09の顔料分散体における顔料の平均粒子径と顔料分散体の反射率との関係を図6に示す。図6のグラフより、顔料の粒子径が大きくなるほど、顔料分散体の反射率が大きくなる、正の相関関係があることが確認された。すなわち、同種の顔料分散体において測定された反射率から、顔料の粒子径を一義的に求められることが分かる。
In the measurement of the average particle size of the pigments in the pigment dispersions of sample numbers 07 to 09, each pigment dispersion was diluted to 50 times, which is a pigment concentration measurable by a centrifugal sedimentation method, and stirred uniformly. A measurement sample was prepared and measured with a measurement time of 60 minutes using BI-DCP (trade name, manufactured by Nikkiso Co., Ltd., centrifugal sedimentation type particle size distribution measuring device). Toluene was used as a dilution solvent for the measurement sample.
The reflectances of the pigment dispersions of sample numbers 07 to 09 were measured by placing the pigment dispersion 1 gently in the measurement cell 13 shown in FIG. And the reflected light 18 was received in the normal direction of the pigment dispersion surface 4 and measured at a wavelength of 590 nm. An LED (OSYL511A) manufactured by 0 ptoSupply was used as the light source of the light emitting unit 16, and a Si photodiode (S2386) manufactured by Hamamatsu Photonics was used as the light receiving element of the light receiving unit 19.
FIG. 6 shows the relationship between the average particle diameter of the pigments in the pigment dispersions of sample numbers 07 to 09 and the reflectance of the pigment dispersion. From the graph of FIG. 6, it was confirmed that there is a positive correlation that the reflectance of the pigment dispersion increases as the particle diameter of the pigment increases. That is, it can be seen that the particle diameter of the pigment can be uniquely determined from the reflectance measured in the same type of pigment dispersion.

表1は、上述した顔料分散体の構成要素をまとめた表である。表1の左欄が構成要素の名称を示し、右欄が各構成要素の質量部数を示している。
表2は、上述した顔料分散体の分散時間をまとめた表である。分散時間の長短により、同一の原料から顔料の平均粒子径が異なる顔料分散体を調製することができる。
Table 1 is a table summarizing the components of the pigment dispersion described above. The left column of Table 1 shows the names of the components, and the right column shows the number of parts by mass of each component.
Table 2 summarizes the dispersion times of the pigment dispersions described above. Depending on the length of the dispersion time, pigment dispersions having different average particle diameters of pigments can be prepared from the same raw material.

Figure 0006069203
Figure 0006069203

Figure 0006069203
Figure 0006069203

以上の実施例より、測定対象の顔料分散体を希釈しなくても、顔料分散体の粒子径を簡便に短時間で評価することが可能であることが示された。   From the above examples, it was shown that the particle diameter of the pigment dispersion can be easily and quickly evaluated without diluting the pigment dispersion to be measured.

1…顔料分散体、2…顔料粒子、3…媒質、4…顔料分散体の表面、10…評価装置、11…表示部、12…計測部、13…測定セル、14…制御部、15…データベース、16…発光部、17…照射光、18…反射光、19…受光部、20…計測装置、21…透明板、21a…上面、21b…下面、21c…底壁部、22…周壁部、22a…フランジ部、23…プローブ、24…当接面、25…凹部、26…発光部設置穴、27…斜面、28…頂面、29…受光部設置穴。 DESCRIPTION OF SYMBOLS 1 ... Pigment dispersion, 2 ... Pigment particle, 3 ... Medium, 4 ... Surface of pigment dispersion, 10 ... Evaluation apparatus, 11 ... Display part, 12 ... Measurement part, 13 ... Measurement cell, 14 ... Control part, 15 ... Database, 16 ... Light emitting part, 17 ... Irradiated light, 18 ... Reflected light, 19 ... Light receiving part, 20 ... Measuring device, 21 ... Transparent plate, 21a ... Upper surface, 21b ... Lower surface, 21c ... Bottom wall part, 22 ... Peripheral wall part , 22a ... flange portion, 23 ... probe, 24 ... abutting surface, 25 ... concave portion, 26 ... light emitting portion installation hole, 27 ... slope, 28 ... top surface, 29 ... light receiving portion installation hole.

Claims (10)

媒質中に顔料が分散されてなる顔料分散体の評価方法であって、
顔料の種類によって異なる波長を特定波長として選択し、
あらかじめ媒質中に顔料が分散されてなる対照用の顔料分散体について測定された顔料分散体の状態を示すパラメータと顔料分散体の前記特定波長における反射率との関係を備えたデータベースを用意し、
測定対象の顔料分散体の表面に、前記表面の法線に対して45°±15°以内の方向から光を照射し、前記表面の法線方向から±10°以内で反射光を受光して、前記測定対象の顔料分散体の前記特定波長における反射率を測定し、
前記測定対象の顔料分散体の前記特定波長における反射率と前記データベースと照合して、前記測定対象の顔料分散体の分散状態を評価する
ことを特徴とする顔料分散体の評価方法。
A method for evaluating a pigment dispersion in which a pigment is dispersed in a medium,
Select a different wavelength as the specific wavelength depending on the type of pigment,
Preparing a database having a relationship between a parameter indicating the state of the pigment dispersion measured for the pigment dispersion for control in which the pigment is dispersed in the medium in advance and the reflectance at the specific wavelength of the pigment dispersion;
The surface of the pigment dispersion to be measured is irradiated with light from a direction within 45 ° ± 15 ° with respect to the normal to the surface, and the reflected light is received within ± 10 ° from the normal to the surface. , Measuring the reflectance at the specific wavelength of the pigment dispersion to be measured,
A method for evaluating a pigment dispersion, comprising: comparing a reflectance of the pigment dispersion to be measured at the specific wavelength with the database to evaluate a dispersion state of the pigment dispersion to be measured.
請求項1に記載の顔料分散体の評価方法であって、
前記対照用の顔料分散体の状態を示すパラメータが、前記対照用の顔料分散体における顔料の粒子径である
ことを特徴とする顔料分散体の評価方法。
A method for evaluating a pigment dispersion according to claim 1,
The method for evaluating a pigment dispersion, wherein the parameter indicating the state of the control pigment dispersion is a particle diameter of the pigment in the control pigment dispersion.
請求項1に記載の顔料分散体の評価方法であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光のみを通過させる帯域フィルタを通した光を顔料分散体に照射して測定される
ことを特徴とする顔料分散体の評価方法。
A method for evaluating a pigment dispersion according to claim 1,
The reflectance at the specific wavelength of the pigment dispersion for control and the reflectance at the specific wavelength of the pigment dispersion to be measured are determined by passing the light through the band-pass filter that allows only the light of the specific wavelength to pass through the pigment dispersion. A method for evaluating a pigment dispersion, comprising:
請求項1に記載の顔料分散体の評価方法であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、顔料分散体から反射した光を分光して、前記特定波長の光のみを取り出して測定される
ことを特徴とする顔料分散体の評価方法。
A method for evaluating a pigment dispersion according to claim 1,
The reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are obtained by spectroscopically analyzing the light reflected from the pigment dispersion, and obtaining only the light of the specific wavelength. A method for evaluating a pigment dispersion, characterized by being measured after being taken out.
請求項1に記載の顔料分散体の評価方法であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光を発する光源を用い、前記特定波長の光を顔料分散体に照射して測定される
ことを特徴とする顔料分散体の評価方法。
A method for evaluating a pigment dispersion according to claim 1,
The reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are determined by using a light source that emits light of the specific wavelength and dispersing the light of the specific wavelength with the pigment dispersion. A method for evaluating a pigment dispersion, characterized by being measured by irradiating the body.
媒質中に顔料が分散されてなる顔料分散体の評価装置であって、
顔料の種類によって異なる波長が特定波長として選択され、あらかじめ媒質中に顔料が分散されてなる対照用の顔料分散体について測定された顔料分散体の状態を示すパラメータと顔料分散体の前記特定波長における反射率との関係を備えたデータベースと、
測定対象の顔料分散体の表面に、前記表面の法線に対して45°±15°以内の方向から光を照射する発光部と、
前記測定対象の顔料分散体から反射した光を、前記表面の法線方向から±10°以内で受光する受光部と、
前記発光部から照射した光の強度と前記受光部で受光した光の強度とを対比して前記測定対象の顔料分散体の前記特定波長における反射率を求め、前記測定対象の顔料分散体の前記特定波長における反射率と前記データベースと照合して、前記測定対象の顔料分散体の分散状態を評価する制御部と
を備えることを特徴とする顔料分散体の評価装置。
An apparatus for evaluating a pigment dispersion in which a pigment is dispersed in a medium,
A different wavelength is selected as the specific wavelength depending on the type of pigment, and the parameter indicating the state of the pigment dispersion measured for the control pigment dispersion in which the pigment is dispersed in the medium in advance and the specific wavelength of the pigment dispersion at the specific wavelength. A database with a relationship with reflectance,
A light emitting unit that irradiates light on the surface of the pigment dispersion to be measured from a direction within 45 ° ± 15 ° with respect to the normal of the surface ;
A light receiving unit that receives the light reflected from the pigment dispersion to be measured within ± 10 ° from the normal direction of the surface ;
The reflectance at the specific wavelength of the pigment dispersion to be measured is determined by comparing the intensity of light emitted from the light emitting unit and the intensity of light received by the light receiving unit, and the pigment dispersion of the measurement target is obtained. An apparatus for evaluating a pigment dispersion, comprising: a controller that compares the reflectance at a specific wavelength with the database and evaluates a dispersion state of the pigment dispersion to be measured.
請求項6に記載の顔料分散体の評価装置であって、
前記対照用の顔料分散体の状態を示すパラメータが、前記対照用の顔料分散体における顔料の粒子径である
ことを特徴とする顔料分散体の評価装置。
An apparatus for evaluating a pigment dispersion according to claim 6,
The apparatus for evaluating a pigment dispersion, wherein the parameter indicating the state of the pigment dispersion for control is a particle diameter of the pigment in the pigment dispersion for control.
請求項6に記載の顔料分散体の評価装置であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光のみを通過させる帯域フィルタを通した光を顔料分散体に照射して測定される
ことを特徴とする顔料分散体の評価装置。
An apparatus for evaluating a pigment dispersion according to claim 6,
The reflectance at the specific wavelength of the pigment dispersion for control and the reflectance at the specific wavelength of the pigment dispersion to be measured are determined by passing the light through the band-pass filter that allows only the light of the specific wavelength to pass through the pigment dispersion. An apparatus for evaluating a pigment dispersion, characterized by being measured by irradiating with water.
請求項6に記載の顔料分散体の評価装置であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、顔料分散体から反射した光を分光して、前記特定波長の光のみを取り出して測定される
ことを特徴とする顔料分散体の評価装置。
An apparatus for evaluating a pigment dispersion according to claim 6,
The reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are obtained by spectroscopically analyzing the light reflected from the pigment dispersion, and obtaining only the light of the specific wavelength. An apparatus for evaluating a pigment dispersion, characterized by being taken out and measured.
請求項6に記載の顔料分散体の評価装置であって、
前記対照用の顔料分散体の前記特定波長における反射率及び前記測定対象の顔料分散体の前記特定波長における反射率は、前記特定波長の光を発する光源を用い、前記特定波長の光を顔料分散体に照射して測定される
ことを特徴とする顔料分散体の評価装置。
An apparatus for evaluating a pigment dispersion according to claim 6,
The reflectance at the specific wavelength of the reference pigment dispersion and the reflectance at the specific wavelength of the pigment dispersion to be measured are determined by using a light source that emits light of the specific wavelength and dispersing the light of the specific wavelength with the pigment dispersion. An apparatus for evaluating a pigment dispersion, characterized by being measured by irradiating the body.
JP2013531406A 2011-08-30 2012-08-30 Method and apparatus for evaluating pigment dispersion Active JP6069203B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011187526 2011-08-30
JP2011187526 2011-08-30
PCT/JP2012/072057 WO2013031917A1 (en) 2011-08-30 2012-08-30 Assessment method and assessment device for pigment dispersion

Publications (2)

Publication Number Publication Date
JPWO2013031917A1 JPWO2013031917A1 (en) 2015-03-23
JP6069203B2 true JP6069203B2 (en) 2017-02-01

Family

ID=47756395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531406A Active JP6069203B2 (en) 2011-08-30 2012-08-30 Method and apparatus for evaluating pigment dispersion

Country Status (3)

Country Link
JP (1) JP6069203B2 (en)
CN (1) CN103765190B (en)
WO (1) WO2013031917A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626621B2 (en) * 2015-02-27 2019-12-25 紀本電子工業株式会社 Suspended particulate matter measuring device by optical method
JP6938986B2 (en) * 2017-03-15 2021-09-22 住友金属鉱山株式会社 Particle shape evaluation method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8000349A (en) * 1980-01-18 1981-08-17 Rijksuniversiteit Broerstraat OPTICAL REFLECTION METER.
JPS63121729A (en) * 1986-11-11 1988-05-25 Kowa Co Measuring instrument for fine grains in liquid
DD297241A5 (en) * 1990-08-14 1992-01-02 Technische Hochschule Leipzig,De METHOD FOR POINTLY DETERMINING THE SPECTRAL REMISSIONING FUNCTION BY MEANS OF AN OPTOELECTRONIC COLOR MEASURING HEAD
JPH06288892A (en) * 1993-03-31 1994-10-18 Japan Tobacco Inc Grain-size measuring apparatus
JP2001133385A (en) * 1999-11-05 2001-05-18 Shimadzu Corp Laser diffraction/scatter type particle-size distribution measuring device
JP3689278B2 (en) * 1999-05-19 2005-08-31 株式会社堀場製作所 Particle size distribution measuring apparatus and particle size distribution measuring method
DE10103163A1 (en) * 2001-01-19 2002-08-01 Steag Eta Optik Gmbh measuring device
EP1286152B1 (en) * 2001-08-07 2005-10-26 Sysmex Corporation Apparatus and method for measuring particle size
JP2003121337A (en) * 2001-08-07 2003-04-23 Sysmex Corp Apparatus and method for measuring particle size
JP2006258540A (en) * 2005-03-16 2006-09-28 Seiko Epson Corp Particle discriminator, particle discrimination method and program
JP2007078590A (en) * 2005-09-15 2007-03-29 Seishin Enterprise Co Ltd Particle property analysis display device
EP1959250A4 (en) * 2006-01-20 2011-10-12 Sumitomo Electric Industries Analyzer, authenticity judging device, authenticity judging method, and underground searching method
JP2009229239A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Particle size measuring device and method
CN101813624B (en) * 2009-02-25 2012-04-11 中国科学院微电子研究所 Method for on-line detection of form of silicon nanocrystals
JP2011007605A (en) * 2009-06-25 2011-01-13 Shimadzu Corp Particle size measurement apparatus and particle size measurement method
JP2011080819A (en) * 2009-10-06 2011-04-21 Shimadzu Corp Particle-size measuring instrument
CN102033036B (en) * 2010-10-20 2013-11-27 上海理工大学 Light full-scattering type on-line granularity measurement device

Also Published As

Publication number Publication date
CN103765190B (en) 2018-04-20
JPWO2013031917A1 (en) 2015-03-23
CN103765190A (en) 2014-04-30
WO2013031917A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
Navarro et al. Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels
Rosi et al. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques
US20160140734A1 (en) Coloring inspection apparatus and coloring inspection method
US8582103B2 (en) Bulbless spectrometer
US20150092191A1 (en) Systems and Methods for Measuring Spectra of Skin and Other Objects and Materials and Making Predictions Based Thereon
Bergmann et al. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 2: experiments
JP6069203B2 (en) Method and apparatus for evaluating pigment dispersion
US11619549B2 (en) Liquid color, haze, and clarity instrument, and method of measurement
JP2019531488A (en) Sensor for substantially simultaneous measurement of transmission and / or forward scattering and / or re-radiation of a liquid sample and for simultaneous measurement of transmission and forward scattering or transmission and re-radiation
US8368747B2 (en) Device for optical characterization
EP0041348B1 (en) A method of assessing the colour in diamonds and other gems
JP6240794B1 (en) Carbon black measuring device, carbon black measuring program, and carbon black measuring method
US6636315B2 (en) Method for estimating the quality of distribution of pigments in a matrix
ES2959839T3 (en) Multi-fiber optical probe
Gualda et al. Third-harmonic generation and multi-photon excitation fluorescence imaging microscopy techniques for online art conservation diagnosis
EP3564656A1 (en) Portable device for measuring photocatalytic activity and method for measuring photocatalytic activity
JP4499416B2 (en) Manufacturing method of color paste
CN1282419A (en) Methods and apparatus for color calibration and verification
Steuwe et al. Rapid and label‐free optical detection of individual carbon air pollutant nanoparticulates in biomedical samples
Strehse et al. Rapid prototyping development of an in-situ sensor system for open ocean aquaculture
JP6100161B2 (en) Particle diameter evaluation method and evaluation apparatus
CN109324031B (en) Method for distinguishing Raman signal through specific modulated exciting light
JP2015203587A (en) Color evaluation method of sheet and the like using transmission light
JP3093728U (en) Portable multi-item water quality measurement device
Taylor The Properties of Iron Oxide Nanoparticle Pigments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6069203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250