JP6068570B2 - Annealing process for high strength steel sheet - Google Patents

Annealing process for high strength steel sheet Download PDF

Info

Publication number
JP6068570B2
JP6068570B2 JP2015141101A JP2015141101A JP6068570B2 JP 6068570 B2 JP6068570 B2 JP 6068570B2 JP 2015141101 A JP2015141101 A JP 2015141101A JP 2015141101 A JP2015141101 A JP 2015141101A JP 6068570 B2 JP6068570 B2 JP 6068570B2
Authority
JP
Japan
Prior art keywords
steel sheet
alloy steel
phase
temperature
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015141101A
Other languages
Japanese (ja)
Other versions
JP2016223003A (en
Inventor
ツァイ,ミン−チン
ファン,チン−ユアン
ヤン,ジェー−レン
オオイ,スティーブ
バーデシア,エイチ.ケー.ディー.エイチ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Steel Corp
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Publication of JP2016223003A publication Critical patent/JP2016223003A/en
Application granted granted Critical
Publication of JP6068570B2 publication Critical patent/JP6068570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、鋼板の焼きなましプロセスに関し、特に高強度鋼板の焼きなましプロセスに関する。   The present invention relates to a steel plate annealing process, and more particularly to a high strength steel plate annealing process.

近年、省エネルギー・低炭素化の要求が高まるにつれて、燃料消費量を削減することで省エネルギー・低炭素化の目標を達成するために、自動車産業界では車体の軽量化に向けて力を入れている。車体を軽量化するための有効な手段として車体用鋼板の薄肉化が知られているが、鋼板を薄肉化する一方で、車体の安全性を維持しなければならず、したがって、車用鋼板の強度を向上しなければならない。更に、車用鋼板の強度と鋼板の延性を両立させるために、高強度・高延性の車用鋼板を開発する必要がある。   In recent years, as the demand for energy saving and carbon reduction has increased, the automobile industry is making efforts to reduce the weight of the vehicle body in order to achieve the goal of energy saving and carbon reduction by reducing fuel consumption. . Although it is known to reduce the thickness of the steel plate for the vehicle body as an effective means for reducing the weight of the vehicle body, it is necessary to maintain the safety of the vehicle body while reducing the thickness of the steel plate. Strength must be improved. Furthermore, in order to achieve both the strength of the steel plate for automobiles and the ductility of the steel plate, it is necessary to develop a high strength and high ductility automotive steel plate.

過去数年、鉄鋼産業では所謂第一世代(1st generation)及び第二世代(2nd generation)の車用高強度鋼(advanced high strength steel,AHSS)が開発されている。第一世代の車用高強度鋼は、主に変態誘起塑性鋼(TRIP−assisted steels)を指し、その引張強度が約600〜1000MPaである一方で、伸び率が20〜40%であり、抗張積(即ち引張強度と伸び率との積)が20GPa%未満である。変態誘起塑性鋼の引張強度及び伸び率が自動車産業界の要求より低いため、第二世代の車用高強度鋼が開発された。   In the past few years, the steel industry has developed so-called 1st generation and 2nd generation advanced high strength steel (AHSS). The first-generation high-strength steel for vehicles mainly refers to TRIP-assisted steels, and its tensile strength is about 600 to 1000 MPa, while its elongation is 20 to 40%, The tension (that is, the product of tensile strength and elongation) is less than 20 GPa%. Due to the lower tensile strength and elongation of transformation-induced plastic steel than required by the automotive industry, a second generation high strength steel for vehicles was developed.

第二世代の車用高強度鋼は、主に双晶誘起塑性鋼(TWIP steels)を指し、高マンガン合金鋼であり、そのマンガン含有量は約20〜30wt%である。双晶誘起塑性鋼は極めて優れた強度を有し、その引張強度が約600〜1100MPaで、60〜95%の伸び率を保つことができるため、抗張積が60GPa%までに達し得る。双晶誘起塑性鋼は既に10年近く発展してきたが、自動車産業界に受け入れられておらず、その要因として、必要なマンガン含有量が非常に高いので、コスト面から好ましくないことにある。   The second-generation high-strength steel for vehicles mainly refers to twinning induced plastic steel (TWIP steels), is a high manganese alloy steel, and its manganese content is about 20-30 wt%. The twinning-induced plastic steel has extremely excellent strength, its tensile strength is about 600-1100 MPa, and can maintain an elongation of 60-95%, so that the tensile product can reach up to 60 GPa%. Although twin-induced plastic steel has already been developed for nearly 10 years, it has not been accepted by the automobile industry, and the factor is that the required manganese content is very high, which is undesirable from a cost standpoint.

第一世代の車用高強度鋼は抗張積が低すぎて、車用鋼板に求められる性質を満足できず、また第二世代の車用高強度鋼は、マンガン合金の使用量が高すぎるので、コストから好ましくないため、自動車産業界では、第三世代の車用高強度鋼の開発に取り組んでいる。   The first-generation high-strength steel for cars is too low in tensile strength to satisfy the properties required for automotive steel plates, and the second-generation high-strength steel for cars uses too much manganese alloy Therefore, because it is not preferable from the cost, the automobile industry is working on the development of high-strength steel for third-generation vehicles.

図1は、第三世代の車用高強度鋼の目標性質範囲図を示す。図1に示されるように、第三世代の車用高強度鋼は、抗張積が約20〜40GPa%である。しかしながら、自動車産業界では、第三世代の車用高強度鋼の製造方法はまだ開発段階に留まっており、特に、如何に鋼板の焼きなましプロセスを設計すれば、鋼板が目標抗張積に達し得るかが、今日の自動車産業界において非常に重要な課題となっている。   FIG. 1 shows a target property range diagram of a third-generation high-strength steel for vehicles. As shown in FIG. 1, the third-generation high-strength steel for vehicles has a tensile product of about 20 to 40 GPa%. However, in the automotive industry, the third-generation high-strength steel production methods are still in the development stage, especially if the steel sheet annealing process is designed, the steel sheet can reach the target tensile product. However, it is a very important issue in today's automobile industry.

したがって、第三世代の車用高強度鋼に要求される性質を満足できる鋼板を製造することができるように、革新的で進歩性を備えた高強度鋼板の焼きなましプロセスを提供することが必要である。   Therefore, it is necessary to provide an innovative and inventive annealing process for high-strength steel sheets so that steel sheets that satisfy the properties required for third-generation high-strength steels for vehicles can be manufactured. is there.

本発明は、0.1−0.4質量%の炭素、1−3質量%のマンガン、1−2質量%のケイ素、0.1−0.2質量%のチタン、及び残部の鉄と不可避的不純物からなる組成を有する合金鋼板を提供するステップと、該合金鋼板にオーステナイト相が形成するように、該合金鋼板をオーステナイト生成温度に加熱するステップと、該合金鋼板に界面ナノ析出物及びフェライト相が形成するように、該合金鋼板をフェライト生成温度に冷却するステップと、該合金鋼板にベイナイト相が形成するように、該合金鋼板をベイナイト生成温度に冷却するステップと、複相微細組織を有する高強度鋼板が製造されるように、該合金鋼を常温に冷却するステップと、を含む高強度鋼板の焼きなましプロセスを提供する。 The present invention relates to 0 . 1-0.4 wt% carbon, 1-3 wt% manganese, 1-2 wt% silicon, 0.1-0.2 wt% of titanium, and with balance of iron and unavoidable impurities Providing an alloy steel sheet, heating the alloy steel sheet to an austenite formation temperature so that an austenite phase is formed in the alloy steel sheet, and forming interfacial nanoprecipitates and a ferrite phase in the alloy steel sheet. A step of cooling the alloy steel sheet to a ferrite forming temperature; a step of cooling the alloy steel sheet to a bainite forming temperature so that a bainite phase is formed in the alloy steel sheet; and a high-strength steel sheet having a multiphase microstructure is manufactured. And cooling the alloy steel to room temperature, and providing an annealing process for the high strength steel sheet.

本発明の焼きなましプロセスによれば、引張強度が815MPaで、伸び率が26%で、抗張積が21.2GPa%である高強度鋼板を製造することができ、このような鋼板の性質は第三世代の車用高強度鋼に要求される性質を満たす。   According to the annealing process of the present invention, a high-strength steel sheet having a tensile strength of 815 MPa, an elongation of 26%, and a tensile product of 21.2 GPa% can be produced. It meets the properties required for three-generation high-strength steel for vehicles.

第三世代の車用高強度鋼の目標性質範囲図を示す。The target property range diagram of the 3rd generation high strength steel for cars is shown. 本発明に係る高強度鋼板の焼きなましプロセスのフローチャートを示す。3 shows a flowchart of an annealing process for a high-strength steel sheet according to the present invention. 本発明の昇温速度が5℃/秒である場合のAc1(鋼板加熱時のオーステナイト形成開始温度)及びAc3(鋼板加熱時のフェライトの完全オーステナイト化温度)の温度測定曲線を示す。The temperature measurement curve of Ac1 (austenite formation start temperature at the time of steel plate heating) and Ac3 (complete austenitization temperature of the ferrite at the time of steel plate heating) in case the temperature increase rate of this invention is 5 degrees C / sec is shown. (a)及び(b)は、それぞれ本発明の鋼板の2階段における温度−時間−相変態曲線及び連続冷却相変態曲線を示す。(A) And (b) shows the temperature-time-phase transformation curve and continuous cooling phase transformation curve in the two steps of the steel plate of this invention, respectively. 実施例の焼きなましプロセスの温度−時間曲線図を示す。The temperature-time curve figure of the annealing process of an Example is shown. 実施例の鋼板の顕微鏡組織写真を示す。The microscopic structure photograph of the steel plate of an Example is shown. 実施例の鋼板のフェライト内の炭化チタンナノ析出物の顕微鏡写真を示す。The microscope picture of the titanium carbide nanoprecipitate in the ferrite of the steel plate of an example is shown. 実施例の鋼板の目標性質範囲図を示す。The target property range figure of the steel plate of an Example is shown.

本発明の技術的構成をより明確に理解し、明細書の内容に従って実施することができるようにするために、且つ本発明の上述した目的、特徴及び利点をより明確で容易に理解することができるようにするために、以下に好ましい実施例を意図的に挙げて、図面を参照しながら、次のように詳細に説明する。   To more clearly understand the technical configuration of the present invention and to be able to carry out according to the contents of the specification, and to more clearly and easily understand the above-described objects, features, and advantages of the present invention. In order to be able to do so, a preferred embodiment will be described below in detail and will be described in detail with reference to the drawings.

図2は本発明の高強度鋼板の焼きなましプロセスのフローチャートを示す。図2のステップS21に示すように、成分として、0.1−0.4質量%の炭素、1−3質量%のマンガン、1−2質量%のケイ素、0.1−0.2質量%のチタン、及び残部の鉄と不可避的不純物を含む合金鋼板を提供する。このステップでは、0.1−0.4質量%の炭素によって、鋼板強化及び残留オーステナイトの量を変更して、鋼板の伸び率を増加させることができる。1−3質量%のマンガンによって、鋼板の硬化能力を向上させ、焼きなまし時の冷却速度を低下させ、かつ冷却速度のプロセス条件を緩和することができる。1−2質量%のケイ素によって、ベイナイト相でのセメンタイト炭化物の生成を抑制して、鋼板の延性を高め、また固溶強化により鋼板の強度を高めることができる。0.1−0.2質量%のチタンによって、界面ナノ析出チタン炭化物を生成して、鋼板を強化する。あるいは、ほかの実施例において、バナジウム、ニオビウム、モリブデンまたはタングステンでチタンを置換してもよい。 FIG. 2 shows a flowchart of the annealing process of the high strength steel sheet of the present invention. As shown in step S21 of FIG. 2, 0.1-0.4% by mass of carbon, 1-3% by mass of manganese, 1-2% by mass of silicon, 0.1-0.2% by mass as components . An alloy steel sheet containing titanium and the balance iron and inevitable impurities is provided. In this step, the steel sheet reinforcement and the amount of retained austenite can be changed with 0.1-0.4 mass % carbon to increase the elongation of the steel sheet. With 1-3% by mass of manganese, the hardening ability of the steel sheet can be improved, the cooling rate during annealing can be reduced, and the process conditions of the cooling rate can be relaxed. By 1-2 mass % of silicon, the production | generation of the cementite carbide in a bainite phase can be suppressed, the ductility of a steel plate can be improved, and the strength of a steel plate can be improved by solid solution strengthening. 0.1-0.2 mass % titanium produces interfacial nano-deposited titanium carbide to strengthen the steel sheet. Alternatively, in other examples, titanium may be replaced with vanadium, niobium, molybdenum, or tungsten.

また、このステップにおいて、圧延板を形成するように、該合金鋼板を熱間圧延または冷間圧延してもよい。   In this step, the alloy steel plate may be hot-rolled or cold-rolled so as to form a rolled plate.

ステップS22に示すように、該合金鋼板をオーステナイト生成温度に加熱して、該合金鋼板にオーステナイト相を形成させる。本実施例において、オーステナイト生成温度は800〜1100℃で、保温時間は60〜300秒である。   As shown in step S22, the alloy steel plate is heated to an austenite generation temperature to form an austenite phase on the alloy steel plate. In this example, the austenite generation temperature is 800 to 1100 ° C., and the heat retention time is 60 to 300 seconds.

ステップS23に示すように、該合金鋼板をフェライト生成温度に冷却して、該合金鋼板に界面ナノ析出物及びフェライト相を形成させる。このステップにおいて、好ましくは、冷却速度は5〜40℃/秒で、フェライト生成温度は580〜750℃で、且つ保温時間は60秒以下である。また、このステップで形成された界面ナノ析出物はチタン炭化物である。   As shown in step S23, the alloy steel sheet is cooled to a ferrite formation temperature to form interfacial nano precipitates and a ferrite phase on the alloy steel sheet. In this step, preferably, the cooling rate is 5 to 40 ° C./second, the ferrite formation temperature is 580 to 750 ° C., and the heat retention time is 60 seconds or less. Moreover, the interface nanoprecipitate formed in this step is titanium carbide.

ステップS24に示すように、該合金鋼板をベイナイト生成温度に冷却して、該合金鋼板にベイナイト相を形成させる。このステップにおいて、好ましくは、冷却速度は5〜40℃/秒で、ベイナイト生成温度は300〜500℃で、且つ保温時間は300秒以下である。   As shown in step S24, the alloy steel plate is cooled to a bainite forming temperature to form a bainite phase on the alloy steel plate. In this step, preferably, the cooling rate is 5 to 40 ° C./second, the bainite formation temperature is 300 to 500 ° C., and the heat retention time is 300 seconds or less.

ステップS25に示すように、該合金鋼板を常温に冷却して、複相顕微鏡組織を有する高強度鋼板を製造する。このステップにおいて、好ましくは、冷却速度は0.5〜40℃/秒であり、前記複相顕微鏡組織は60〜80%のフェライト相、20%以下のベイナイト相、40%以下の残留オーステナイト相及び20%以下のマルテンサイト相を含む。   As shown in step S25, the alloy steel plate is cooled to room temperature to produce a high-strength steel plate having a multiphase microstructure. In this step, preferably, the cooling rate is 0.5 to 40 ° C./second, and the double phase microstructure has 60 to 80% ferrite phase, 20% or less bainite phase, 40% or less residual austenite phase, and Contains a martensite phase of 20% or less.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に開示された内容に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to the content disclosed by these Examples.

図3は、本発明の昇温速度が5℃/秒である場合のAc1(鋼板加熱時のオーステナイト形成開始温度)及びAc3(鋼板加熱時のフェライトの完全オーステナイト化温度)の温度測定曲線を示す。図4(a)及び(b)はそれぞれ本発明の鋼板の2階段における温度−時間−相変態曲線及び連続冷却相変態曲線を示す。   FIG. 3 shows temperature measurement curves of Ac1 (austenite formation start temperature when heating the steel sheet) and Ac3 (complete austenite forming temperature of ferrite when heating the steel sheet) when the temperature increase rate of the present invention is 5 ° C./second. . 4 (a) and 4 (b) show a temperature-time-phase transformation curve and a continuous cooling phase transformation curve in two steps of the steel sheet of the present invention, respectively.

本発明は、鉄、0.11質量%の炭素、1.5質量%のマンガン、1.44質量%のケイ素、0.1質量%のチタンを含む合金鋼板を例とするものであり、図3で、完全オーステナイト化温度が970℃と示されているが、更に鋼板の完全オーステナイト化を保つために、オーステナイト化及び析出物の固溶化温度を1000〜1100℃にする。オーステナイト化した後、20℃/秒の冷却速度で鋼板を図4に示されるフェライト形成温度域(即ち580〜750℃の範囲)に冷却して、温度が低いほど、オーステナイトからフェライトへの相変態時間が長くなるため、フェライトが生成する時に界面ナノ析出物が析出する強化効果を有する。 The present invention exemplifies an alloy steel plate containing iron, 0.11% by mass of carbon, 1.5% by mass of manganese, 1.44% by mass of silicon, and 0.1% by mass of titanium. 3 shows that the complete austenitizing temperature is 970 ° C. In order to further maintain the complete austenitizing of the steel sheet, the austenitizing and precipitation solid solution temperatures are set to 1000 to 1100 ° C. After austenitization, the steel sheet was cooled to a ferrite formation temperature range shown in FIG. 4 (that is, a range of 580 to 750 ° C.) at a cooling rate of 20 ° C./second, and the lower the temperature, the phase transformation from austenite to ferrite Since the time becomes longer, it has the strengthening effect that the interface nanoprecipitate precipitates when ferrite is formed.

図5は、実施例の焼きなましプロセスの温度−時間曲線図を示す。図5を例として、フェライトの恒温形成温度を600℃にし、且つ12〜22秒保温して、約70%の界面ナノ析出により強化されたフェライト組織を得る。次に、ベイナイト相変態領域(450℃)まで冷却して200秒保温し、最後にさらに常温まで冷却して、フェライト、ベイナイト及びオーステナイトの複相相変態を強化させ、残留オーステナイトが材料塑性変形時に新生マルテンサイトに変態されて、応力誘起相変態により鋼板の延性を向上させる。   FIG. 5 shows a temperature-time curve diagram of the annealing process of the example. Taking FIG. 5 as an example, the constant temperature formation temperature of ferrite is 600 ° C. and the temperature is kept for 12 to 22 seconds to obtain a ferrite structure reinforced by about 70% interfacial nanoprecipitation. Next, it is cooled to a bainite phase transformation region (450 ° C.) and kept for 200 seconds. Finally, it is further cooled to room temperature to reinforce the multiphase transformation of ferrite, bainite and austenite, and the residual austenite is deformed during material plastic deformation. It is transformed into new martensite and the ductility of the steel sheet is improved by stress-induced phase transformation.

図6は、実施例の鋼板の顕微鏡組織写真を示す。図7は、実施例の鋼板のフェライト内の炭化チタンナノ析出物の顕微鏡写真を示す。   FIG. 6 shows a micrograph of the steel sheet of the example. FIG. 7 shows a photomicrograph of titanium carbide nanoprecipitates in the ferrite of the steel sheet of the example.

図6及び図7に示すように、該鋼板の顕微鏡組織は、70%のフェライト、15%のベイナイト、12%のマルテンサイト及び3%の残留オーステナイトを含む複相顕微鏡組織であり、鋼板の伸び率(El)を26%まで向上させることができ、図7に示される炭化チタンナノ析出物がフェライトを強化させて、更に鋼板の引張強度を815MPaまで向上させることができる。また、その抗張積は21.2GPa%に達し得る。   As shown in FIGS. 6 and 7, the microstructure of the steel sheet is a multiphase microstructure containing 70% ferrite, 15% bainite, 12% martensite and 3% retained austenite, and the elongation of the steel sheet. The rate (El) can be improved to 26%, and the titanium carbide nanoprecipitates shown in FIG. 7 can strengthen the ferrite and further improve the tensile strength of the steel sheet to 815 MPa. Also, its tensile product can reach 21.2 GPa%.

図8は、実施例の鋼板の目標性質範囲図を示す。図8に示されるように、実施例の鋼板の性質は第三世代の車用高強度鋼に要求される性質を満たす。   FIG. 8 shows a target property range diagram of the steel plate of the example. As shown in FIG. 8, the properties of the steel plates of the examples satisfy the properties required for the third-generation high-strength steel for vehicles.

上記実施例は、本発明の原理及びその効果を説明するためのものに過ぎず、本発明を限定するものではない。そのため、当業者が上記実施例に対して行う修正や変更も本発明の趣旨から逸脱するものではない。本発明の請求の範囲は後述する請求の範囲に記載されたとおりである。   The above embodiments are merely for explaining the principle of the present invention and its effects, and do not limit the present invention. Therefore, modifications and changes made by those skilled in the art to the above-described embodiments do not depart from the spirit of the present invention. The claims of the present invention are as described in the claims to be described later.

Ac1 鋼板加熱時のオーステナイト形成開始温度
Ac3 鋼板加熱時のフェライトの完全オーステナイト化温度
S21〜S25 ステップ
Ac1 Austenite formation start temperature when heating steel plate Ac3 Complete austenitization temperature of ferrite when heating steel plate S21 to S25

Claims (2)

高強度鋼板の焼きなましプロセスであって、
(a)0.1−0.4質量%の炭素、1−3質量%のマンガン、1−2質量%のケイ素、0.1−0.2質量%のチタン、及び残部の鉄と不可避的不純物からなる組成を有する合金鋼板を提供するステップと、
(b)前記合金鋼板にオーステナイト相が形成するように、前記合金鋼板をオーステナイト生成温度に加熱するステップと、
(c)前記合金鋼板に界面ナノ析出物及びフェライト相が形成するように、前記合金鋼板をフェライト生成温度に冷却するステップと、
(d)前記合金鋼板にベイナイト相が形成するように、前記合金鋼板をベイナイト生成温度に冷却するステップと、
(e)複相微細組織を有する高強度鋼板が製造されるように、前記合金鋼板を常温に冷却するステップと、を含
ステップ(b)において、オーステナイト生成温度が800〜1100℃であり、保温時間が60〜300秒であり、
ステップ(c)において、冷却速度が5〜40℃/秒であり、フェライト生成温度が580〜750℃であり、保温時間が12〜60秒であり、界面ナノ析出物がチタン炭化物であり、
ステップ(d)において、冷却速度が5〜40℃/秒であり、ベイナイト生成温度が300〜500℃であり、保温時間が300秒以下であり、
ステップ(e)において、冷却速度が0.5〜40℃/秒であり、複相微細組織が面積率で、60〜80%のフェライト相、20%以下のベイナイト相、40%以下の残留オーステナイト相及び20%以下のマルテンサイト相を含み、
各ステップを(a)〜(e)の順に行う、高強度鋼板の焼きなましプロセス。
An annealing process for high-strength steel sheets,
(A ) 0 . 1-0.4 wt% carbon, 1-3 wt% manganese, 1-2 wt% silicon, 0.1-0.2 wt% of titanium, and with balance of iron and unavoidable impurities Providing an alloy steel plate having ;
(B) heating the alloy steel plate to an austenite generation temperature so that an austenite phase is formed in the alloy steel plate;
(C) cooling the alloy steel sheet to a ferrite formation temperature so that interfacial nanoprecipitates and a ferrite phase are formed in the alloy steel sheet;
(D) cooling the alloy steel sheet to a bainite forming temperature so that a bainite phase is formed in the alloy steel sheet;
As (e) high-strength steel sheet having a dual phase microstructure is produced, it viewed including the steps of: cooling the alloy steel plate to room temperature,
In step (b), the austenite generation temperature is 800 to 1100 ° C., the heat retention time is 60 to 300 seconds,
In step (c), the cooling rate is 5 to 40 ° C./second, the ferrite formation temperature is 580 to 750 ° C., the heat retention time is 12 to 60 seconds, and the interface nanoprecipitate is titanium carbide,
In step (d), the cooling rate is 5 to 40 ° C./second, the bainite generation temperature is 300 to 500 ° C., and the heat retention time is 300 seconds or less,
In step (e), the cooling rate is 0.5 to 40 ° C./second, the multiphase microstructure is area ratio, 60 to 80% ferrite phase, 20% or less bainite phase, 40% or less residual austenite Phase and 20% or less martensite phase,
An annealing process for high-strength steel sheets in which each step is performed in the order of (a) to (e) .
ステップ(a)が、前記合金鋼板を熱間圧延又は冷間圧延して、圧延板を形成することを更に含む、請求項1に記載の高強度鋼板の焼きなましプロセス。   The annealing process for high-strength steel sheets according to claim 1, wherein step (a) further comprises hot rolling or cold rolling the alloy steel sheets to form rolled sheets.
JP2015141101A 2015-05-28 2015-07-15 Annealing process for high strength steel sheet Expired - Fee Related JP6068570B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104117090 2015-05-28
TW104117090A TWI534274B (en) 2015-05-28 2015-05-28 Method of Annealing Process for High Strength Steel

Publications (2)

Publication Number Publication Date
JP2016223003A JP2016223003A (en) 2016-12-28
JP6068570B2 true JP6068570B2 (en) 2017-01-25

Family

ID=56509333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141101A Expired - Fee Related JP6068570B2 (en) 2015-05-28 2015-07-15 Annealing process for high strength steel sheet

Country Status (2)

Country Link
JP (1) JP6068570B2 (en)
TW (1) TWI534274B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522618B (en) * 2020-11-24 2022-02-18 首钢集团有限公司 Full-ferrite high-strength steel and preparation method thereof
CN112501396B (en) * 2020-11-30 2022-03-18 北京航空航天大学 Isothermal quenching heat treatment process method for third-generation bearing steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP5056556B2 (en) * 2008-04-11 2012-10-24 住友金属工業株式会社 Thin steel plate and manufacturing method thereof
JP5798740B2 (en) * 2010-12-08 2015-10-21 新日鐵住金株式会社 High-strength cold-rolled steel sheet with excellent formability and manufacturing method
JP5845837B2 (en) * 2011-11-15 2016-01-20 Jfeスチール株式会社 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
KR20140048348A (en) * 2011-11-15 2014-04-23 제이에프이 스틸 가부시키가이샤 Thin steel sheet and process for producing same
TWI468534B (en) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp High-strength cold rolled steel sheet and manufacturing method thereof
JP5829977B2 (en) * 2012-06-05 2015-12-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
CN102952996A (en) * 2013-01-04 2013-03-06 鞍钢股份有限公司 High-elongation cold-rolled TRIP (Transformation-Induced Plasticity) steel plate and preparation method thereof

Also Published As

Publication number Publication date
TWI534274B (en) 2016-05-21
TW201641712A (en) 2016-12-01
JP2016223003A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5668337B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP5873385B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5883350B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
Moallemi et al. Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel
CA3133435A1 (en) High strength and high formability steel sheet and manufacturing method
US11104974B2 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
JP6161597B2 (en) Martensitic steel with very high yield point and method for producing the steel sheet or part thus obtained
CA3042120C (en) Medium-manganese steel product for low-temperature use and method for the production thereof
WO2021104417A1 (en) Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor
TW201502286A (en) Hot-rolled steel sheet
US11519050B2 (en) Method for producing a re-shaped component from a manganese-containing flat steel product and such a component
JP4983082B2 (en) High-strength steel and manufacturing method thereof
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
JP2021531405A (en) High-strength steel plate with excellent collision resistance and its manufacturing method
Cho et al. Influence of rolling temperature on the microstructure and mechanical properties of secondary hardening high Co–Ni steel bearing 0.28 wt% C
WO2020058747A1 (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2013051714A1 (en) Steel plate and method for producing same
JP2006161139A (en) Hot rolled steel sheet suitable to warm forming and its production method
FI3853387T3 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
US11214846B2 (en) Method for producing a shaped component from a medium-manganese flat steel product and such a component
JP6068570B2 (en) Annealing process for high strength steel sheet
JP2016141888A (en) Method for producing high strength high ductility steel sheet
US20190071747A1 (en) Method of heat treating steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees