JP6067111B2 - Manufacturing method of electrical contact material - Google Patents

Manufacturing method of electrical contact material Download PDF

Info

Publication number
JP6067111B2
JP6067111B2 JP2015523999A JP2015523999A JP6067111B2 JP 6067111 B2 JP6067111 B2 JP 6067111B2 JP 2015523999 A JP2015523999 A JP 2015523999A JP 2015523999 A JP2015523999 A JP 2015523999A JP 6067111 B2 JP6067111 B2 JP 6067111B2
Authority
JP
Japan
Prior art keywords
alloy powder
mass
oxide particles
oxide
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015523999A
Other languages
Japanese (ja)
Other versions
JPWO2014208419A1 (en
Inventor
貴之 見持
貴之 見持
善和 中野
善和 中野
荒木 健
健 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6067111B2 publication Critical patent/JP6067111B2/en
Publication of JPWO2014208419A1 publication Critical patent/JPWO2014208419A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H2001/02378Composite material having a noble metal as the basic material and containing oxides containing iron-oxide as major component

Description

本発明は、電気接点材料及びその製造方法に関する。詳細には、本発明は、気中用遮断器、開閉器等に用いられる電気接点材料及びその製造方法に関する。   The present invention relates to an electrical contact material and a manufacturing method thereof. In detail, this invention relates to the electrical contact material used for the circuit breaker for air | atmosphere, a switch, etc., and its manufacturing method.

気中用遮断器、開閉器に用いられる電気接点材料には、導電率及び熱伝導率が高く、耐酸化性にも優れるAgを主成分とし、耐火質の高融点金属、炭化物、酸化物等を含有する合金からなる電気接点材料が用いられている(例えば、特許文献1〜3参照)。   Electrical contact materials used in air circuit breakers and switches are composed mainly of Ag, which has high electrical conductivity and thermal conductivity, and excellent oxidation resistance, and refractory refractory metals, carbides, oxides, etc. An electrical contact material made of an alloy containing bismuth is used (see, for example, Patent Documents 1 to 3).

特開昭58−55546号公報JP 58-55546 A 特開昭59−14206号公報JP 59-14206 特開昭59−14207号公報JP 59-14207 A

上記のような電気接点材料は、電気接点としての性能(耐溶着性、耐消耗性、接触抵抗等)を向上させる観点から、酸化物、炭化物等を含有させている。酸化物を含有させる場合、一般に内部酸化法による金属の酸化処理が行われている。ところが、内部酸化法では、酸化させる金属の量を増加すると、酸化反応が十分に進まないため、酸化物の量を増大させることが難しく、また、酸化処理後の加工性も低下するという問題がある。   The electrical contact material as described above contains an oxide, a carbide or the like from the viewpoint of improving the performance as an electrical contact (welding resistance, wear resistance, contact resistance, etc.). When an oxide is contained, a metal oxidation process is generally performed by an internal oxidation method. However, in the internal oxidation method, if the amount of the metal to be oxidized is increased, the oxidation reaction does not proceed sufficiently, so that it is difficult to increase the amount of the oxide, and the workability after the oxidation treatment is lowered. is there.

酸化物の量は、一般に電気接点材料のコストに大きな影響を与える。特に近年、政治的又は経済的な問題、及び新興国における需要の増加に伴い、Agの価格が上昇傾向にあることから、内部酸化法によって製造される電気接点材料のコストが増加している。そのため、酸化物の量を増大させることによって電気接点材料のコストを低減することが強く望まれている。
また、内部酸化法は、一般的に製造工程が多い上、酸化時間、圧延等に膨大な時間を要するため、コスト増加の要因となっている。
The amount of oxide generally has a significant impact on the cost of electrical contact materials. Particularly in recent years, the cost of electrical contact materials produced by the internal oxidation method has increased due to the increasing price of Ag with political or economic problems and increasing demand in emerging countries. Therefore, it is highly desirable to reduce the cost of electrical contact materials by increasing the amount of oxide.
In addition, the internal oxidation method generally has many manufacturing processes and requires an enormous amount of time for oxidation time, rolling, and the like, which causes an increase in cost.

電気接点材料のコストを低減する方策として、近年、合金を所望の接点形状とした後に内部酸化する後酸化法に対して、合金を内部酸化した後に所望の接点形状とする前酸化法が、量産性に優れていることから工業的に広く用いられてきている。
しかしながら、この方法により製造される電気接点材料は、内部酸化後に、所望の接点形状とするために伸線、ヘッダー加工等の塑性変形を加えているため、Agと酸化物との界面の結合力が脆弱となり、耐溶着性等の特性が低下するという問題がある。
また、内部酸化法では、一般に、酸化させる金属の量及び酸化条件が適切でないと、酸化物が層状又は針状になることがあり、合金中で酸化物が不均一に存在する結果、電気接点材料の性能が低下するという問題もある。
As a measure to reduce the cost of electrical contact materials, in recent years, the pre-oxidation method, in which the alloy is internally oxidized after the alloy is formed into a desired contact shape, is now mass-produced. It has been widely used industrially because of its excellent properties.
However, since the electrical contact material produced by this method is subjected to plastic deformation such as wire drawing and header processing to form a desired contact shape after internal oxidation, the bonding force at the interface between Ag and oxide Becomes fragile and there is a problem that characteristics such as welding resistance are deteriorated.
Also, in the internal oxidation method, in general, if the amount of metal to be oxidized and the oxidation conditions are not appropriate, the oxide may be layered or needle-like, and the oxide is unevenly present in the alloy. There is also a problem that the performance of the material is reduced.

本発明は、上記のような問題を解決するためになされたものであり、酸化物の量を増大させること及び低コストで製造することが可能であり、且つ電気接点としての性能及び加工性に優れる電気接点材料及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can increase the amount of oxides and can be manufactured at low cost, and can improve performance and workability as an electrical contact. An object of the present invention is to provide an excellent electrical contact material and a manufacturing method thereof.

本発明者らは、上記のような問題を解決すべく鋭意研究した結果、Ag以外の金属の酸化物粒子を含有するガスを溶融Agに吹き付けながら微粒化して急冷凝固させることにより、従来の内部酸化法に比べて、電気接点材料に含有される酸化物の量を増大させることができ、しかもAgと酸化物との結合強度を高めつつ酸化物が微細に分散した合金粉末を得ることができ、このようにして得られた合金粉末を熱間押出加工することで、電気接点としての性能及び加工性が向上することを見出した。   As a result of diligent research to solve the above problems, the inventors of the present invention have made it possible to atomize a gas containing metal oxide particles other than Ag onto molten Ag and rapidly solidify it by spraying. Compared with the oxidation method, the amount of oxide contained in the electrical contact material can be increased, and an alloy powder in which the oxide is finely dispersed can be obtained while increasing the bonding strength between Ag and oxide. The present inventors have found that the performance and workability as an electrical contact are improved by subjecting the alloy powder thus obtained to hot extrusion.

すなわち、本発明は、Ag以外の金属の酸化物粒子を含有するガスを溶融Agに吹き付けながら微粒化して急冷凝固し、該酸化物粒子が微細に分散した合金粉末を得る工程であって、該酸化物粒子の平均粒子径を500nm以上5μm以下、及び該ガス中の該酸化物粒子と該溶融Agとの合計質量に対する該ガス中の酸化物粒子の質量割合が10質量%以上30質量%以下である工程と、該合金粉末を熱間押出加工する工程とを含むことを特徴とする電気接点材料の製造方法である That is, the present invention is a step of atomizing and rapidly solidifying while blowing a gas containing oxide particles of metal other than Ag to molten Ag to obtain an alloy powder in which the oxide particles are finely dispersed, The average particle diameter of the oxide particles is 500 nm or more and 5 μm or less, and the mass ratio of the oxide particles in the gas to the total mass of the oxide particles and the molten Ag in the gas is 10% by mass or more and 30% by mass or less. And a process of hot extruding the alloy powder, and a method for producing an electrical contact material .

本発明によれば、酸化物の量を増大させること及び低コストで製造することが可能であり、且つ電気接点としての性能及び加工性に優れる電気接点材料及びその製造方法を提供することができる。   According to the present invention, it is possible to provide an electrical contact material that can increase the amount of oxide and can be manufactured at a low cost, and is excellent in performance and workability as an electrical contact, and a method for manufacturing the electrical contact material. .

実施の形態1による溶融Agの微粒化に用いられるノズルの先端の断面模式図である。2 is a schematic cross-sectional view of a tip of a nozzle used for atomization of molten Ag according to Embodiment 1. FIG. 実施の形態1による合金粉末の断面模式図である。2 is a schematic cross-sectional view of an alloy powder according to Embodiment 1. FIG. 合金粉末の熱間押出加工に用いられる押出加工装置の断面模式図である。It is a cross-sectional schematic diagram of the extrusion apparatus used for the hot extrusion process of an alloy powder. 実施の形態2による溶融金属の微粒化に用いられるノズルの先端の断面模式図である。6 is a schematic cross-sectional view of the tip of a nozzle used for atomization of molten metal according to Embodiment 2. FIG. 実施の形態2による合金粉末の断面模式図である。6 is a schematic cross-sectional view of an alloy powder according to Embodiment 2. FIG.

実施の形態1.
本実施の形態の電気接点材料の製造方法は、Ag以外の金属の酸化物粒子を含有するガスを溶融Agに吹き付けながら微粒化して急冷凝固し、該酸化物粒子が微細に分散した合金粉末を得る工程(以下、「第1工程」という。)と、該合金粉末を熱間押出加工する工程(以下、「第2工程」という。)とを含む。
以下、本実施の形態の電気接点材料の製造方法について図面を用いて説明する。
Embodiment 1 FIG.
The manufacturing method of the electrical contact material according to the present embodiment uses an alloy powder in which the oxide particles are finely dispersed by atomizing and rapidly solidifying while spraying a gas containing metal oxide particles other than Ag onto molten Ag. A step of obtaining (hereinafter referred to as “first step”) and a step of hot-extruding the alloy powder (hereinafter referred to as “second step”).
Hereinafter, the manufacturing method of the electrical contact material of this Embodiment is demonstrated using drawing.

第1工程では、Ag以外の金属の酸化物粒子を含有するガスを溶融Agに吹き付けながら微粒化して急冷凝固し、該酸化物粒子が微細に分散した合金粉末を得る。
図1は、この第1工程を説明するための図であり、溶融Agの微粒化に用いられるノズルの先端の断面模式図を示す。なお、図1のノズル1は、Ag以外の金属の酸化物粒子を含有するガス(以下、「酸化物粒子含有ガス3」と略す。)を溶融Ag2に吹き付けながら微粒化して合金粉末4を得る手段の1つを例示したに過ぎず、当該合金粉末4を得ることが可能な手段であれば他の手段を用い得ることは言うまでもない。
In the first step, a gas containing metal oxide particles other than Ag is sprayed on molten Ag and atomized and rapidly solidified to obtain an alloy powder in which the oxide particles are finely dispersed.
FIG. 1 is a view for explaining the first step, and shows a schematic cross-sectional view of the tip of a nozzle used for atomization of molten Ag. 1 is atomized while spraying a gas containing metal oxide particles other than Ag (hereinafter abbreviated as “oxide particle-containing gas 3”) onto molten Ag 2 to obtain alloy powder 4. It is needless to say that other means can be used as long as only one means is illustrated and the alloy powder 4 can be obtained.

図1において、ノズル1は、溶融Ag2を噴霧する部分と、酸化物粒子含有ガス3を吹き付ける部分とを備えている。このノズル1を用い、酸化物粒子含有ガス3を吹き付けながら溶融Ag2を噴霧すると、溶融Ag2と酸化物粒子含有ガス3が合流する領域において、溶融Ag2中に酸化物粒子が導入されると同時に溶融Ag2が急冷されて凝固し、合金粉末4が生成する。   In FIG. 1, the nozzle 1 includes a portion for spraying molten Ag 2 and a portion for spraying the oxide particle-containing gas 3. When the molten Ag 2 is sprayed using the nozzle 1 while spraying the oxide particle-containing gas 3, the oxide particles are introduced into the molten Ag 2 and melted at the region where the molten Ag 2 and the oxide particle-containing gas 3 merge. Ag2 is quenched and solidified to produce alloy powder 4.

ここで、ノズル1を用いて作製される合金粉末4の断面模式図を図2に示す。なお、図2の合金粉末4は、形状の1つとして球状を例示したに過ぎず、球状以外の形状を有してもよいことは言うまでもない。
図2において、合金粉末4は、Ag5とAg5以外の金属の酸化物粒子(以下、「酸化物粒子6」と略す。)とから構成され、Ag5中に酸化物粒子6が微細に分散した構造を有する。
Here, the cross-sectional schematic diagram of the alloy powder 4 produced using the nozzle 1 is shown in FIG. It is needless to say that the alloy powder 4 in FIG. 2 only has a spherical shape as one of the shapes, and may have a shape other than the spherical shape.
In FIG. 2, the alloy powder 4 is composed of Ag5 and oxide particles of metal other than Ag5 (hereinafter abbreviated as “oxide particles 6”), and the oxide particles 6 are finely dispersed in Ag5. Have

溶融Ag2は、Ag5を高周波誘導加熱等の公知の手段によって溶融させることで得ることができる。溶融温度は、Ag5の融点以上の温度であれば特に限定されず、一般に1,000℃以上2,000℃以下である。ただし、溶融温度が高すぎると、溶融Ag2に酸化物粒子含有ガス3を吹き付けた際に酸化物粒子6が分解してしまう可能性があるため、酸化物粒子6が分解しないような溶融温度を選択することが好ましい。   Molten Ag2 can be obtained by melting Ag5 by a known means such as high-frequency induction heating. The melting temperature is not particularly limited as long as it is a temperature equal to or higher than the melting point of Ag5, and is generally 1,000 ° C. or higher and 2,000 ° C. or lower. However, if the melting temperature is too high, the oxide particles 6 may be decomposed when the oxide particle-containing gas 3 is sprayed on the molten Ag 2, so the melting temperature is such that the oxide particles 6 do not decompose. It is preferable to select.

酸化物粒子含有ガス3は、酸化物粒子6及びキャリアガスを含有する。
酸化物粒子含有ガス3に用いられるキャリアガスとしては、特に限定されず、各種ガスを用いることができる。その中でもキャリアガスは、各種化学反応等を防止する観点から、アルゴンガス、窒素ガス等の不活性ガスが好ましい。
The oxide particle-containing gas 3 contains oxide particles 6 and a carrier gas.
The carrier gas used for the oxide particle-containing gas 3 is not particularly limited, and various gases can be used. Among them, the carrier gas is preferably an inert gas such as argon gas or nitrogen gas from the viewpoint of preventing various chemical reactions.

酸化物粒子含有ガス3に用いられる酸化物粒子6としては、Ag5よりも融点が高く、Ag5を主成分とする電気接点材料に一般に用いられ得る金属酸化物の粒子であれば特に限定されない。酸化物粒子6の例としては、Cu、Si、Cd、Co、Cr、Fe、Ge、Mn、Mo及びNi等の金属の酸化物粒子が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。   The oxide particles 6 used in the oxide particle-containing gas 3 are not particularly limited as long as they are metal oxide particles that have a melting point higher than that of Ag5 and can be generally used for electrical contact materials mainly composed of Ag5. Examples of the oxide particles 6 include metal oxide particles such as Cu, Si, Cd, Co, Cr, Fe, Ge, Mn, Mo, and Ni. These can be used alone or in combination of two or more.

酸化物粒子6の平均粒子径としては、500nm以上5μm以下、好ましくは600nm以上4μm以下、より好ましくは700nm以上3μm以下である。ここで、本明細書において「平均粒子径」とは、レーザー回折・散乱式の粒子径・粒度分布測定装置を用いて測定されたD50(メジアン径)のことを意味する。酸化物粒子6の平均粒子径が500nm未満又は5μm超過であると、電気接点材料の耐消耗性が低下する。   The average particle diameter of the oxide particles 6 is 500 nm to 5 μm, preferably 600 nm to 4 μm, more preferably 700 nm to 3 μm. Here, the “average particle diameter” in the present specification means D50 (median diameter) measured using a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus. When the average particle diameter of the oxide particles 6 is less than 500 nm or more than 5 μm, the wear resistance of the electrical contact material is lowered.

酸化物粒子含有ガス3は、キャリアガス中に酸化物粒子6を導入することによって得ることができる。酸化物粒子6の導入方法は、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、所定の容器内に酸化物粒子6を入れて排気した後、キャリアガスを導入し、容器を加振器などによって振動させることにより、キャリアガス中に酸化物粒子6を分散させたエアロゾル(酸化物粒子含有ガス3)を発生させることができる。   The oxide particle-containing gas 3 can be obtained by introducing the oxide particles 6 into the carrier gas. The method for introducing the oxide particles 6 is not particularly limited, and methods known in the technical field can be used. For example, after the oxide particles 6 are put in a predetermined container and evacuated, a carrier gas is introduced, and the container is vibrated by a vibrator or the like, whereby the aerosol (6) is dispersed in the carrier gas. Oxide particle-containing gas 3) can be generated.

酸化物粒子含有ガス3を溶融Ag2に吹き付ける場合、酸化物粒子含有ガス3中の酸化物粒子6と溶融Ag2との合計質量に対する酸化物粒子含有ガス3中の酸化物粒子6の質量割合を10質量%以上30質量%以下に制御する。このような質量割合に制御することにより、形成される合金粉末4中の酸化物粒子6の含有量を10質量%以上30質量%以下とすることができる。酸化物粒子6の含有量が10質量%未満であると、電気接点材料の耐消耗性及び耐溶着性が低下することがある。一方、酸化物粒子6の含有量が30質量%を超えると、電気接点材料の脆化を招くことがある。   When the oxide particle-containing gas 3 is sprayed on the molten Ag2, the mass ratio of the oxide particles 6 in the oxide particle-containing gas 3 to the total mass of the oxide particles 6 and the molten Ag2 in the oxide particle-containing gas 3 is 10 It is controlled to be not less than 30% by mass and not more than 30% by mass. By controlling to such a mass ratio, the content of the oxide particles 6 in the alloy powder 4 to be formed can be 10 mass% or more and 30 mass% or less. When the content of the oxide particles 6 is less than 10% by mass, the wear resistance and welding resistance of the electrical contact material may be lowered. On the other hand, when the content of the oxide particles 6 exceeds 30% by mass, the electrical contact material may be embrittled.

溶融Ag2を急冷する場合、冷却効率を高める観点から、水等の冷却媒体を併用してもよい。水等の冷却媒体を用いる冷却方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。   When the molten Ag2 is rapidly cooled, a cooling medium such as water may be used in combination from the viewpoint of increasing the cooling efficiency. It does not specifically limit as a cooling method using cooling media, such as water, A well-known method can be used in the said technical field.

上記のようにして得られる合金粉末4の平均粒子径としては、特に限定されないが、好ましくは1μm以上100μm以下、より好ましくは2μm以上90μm以下、最も好ましくは3μm以上70μm以下である。合金粉末4の平均粒子径が1μm未満であると、電気接点材料の脆化を招くことがある。一方、合金粉末4の平均粒子径が100μmを超えると、電気接点材料の耐消耗性が低下することがある。   The average particle size of the alloy powder 4 obtained as described above is not particularly limited, but is preferably 1 μm to 100 μm, more preferably 2 μm to 90 μm, and most preferably 3 μm to 70 μm. When the average particle diameter of the alloy powder 4 is less than 1 μm, the electrical contact material may be embrittled. On the other hand, when the average particle diameter of the alloy powder 4 exceeds 100 μm, the wear resistance of the electrical contact material may be lowered.

第2工程では、合金粉末4を熱間押出加工する。
図3は、この第2工程を説明するための図であり、合金粉末4の熱間押出加工に用いられる押出加工装置の断面模式図を示す。なお、図3の押出加工装置10は、合金粉末4の熱間押出加工に用いられる装置の1つを例示したに過ぎず、合金粉末4を熱間押出加工し得るものであれば他の装置を用い得ることは言うまでもない。
In the second step, the alloy powder 4 is hot-extruded.
FIG. 3 is a diagram for explaining the second step, and shows a schematic cross-sectional view of an extrusion processing apparatus used for hot extrusion of the alloy powder 4. The extrusion apparatus 10 in FIG. 3 is merely an example of an apparatus used for hot extrusion of the alloy powder 4, and any other apparatus can be used as long as the alloy powder 4 can be hot extruded. It goes without saying that can be used.

図3において、押出加工装置10は、合金粉末4を収容する本体11と、収容された合金粉末4を加圧して押出加工するピストン12と、押出加工の際に加熱する加熱ヒータ13とを備えている。合金粉末4は、この押出加工装置の本体11に充填され、ピストン12によって加圧される。また、加圧の際、合金粉末4は加熱ヒータ13によって加熱される。このようにして熱間押出加工された合金粉末4は、押出材14(電気接点材料)となる。   In FIG. 3, the extrusion apparatus 10 includes a main body 11 that accommodates the alloy powder 4, a piston 12 that pressurizes and extrudes the accommodated alloy powder 4, and a heater 13 that heats during the extrusion process. ing. The alloy powder 4 is filled in the main body 11 of the extrusion processing apparatus and is pressurized by the piston 12. Further, the alloy powder 4 is heated by the heater 13 during pressurization. The alloy powder 4 thus hot-extruded becomes the extruded material 14 (electrical contact material).

熱間押出加工の際の条件は、特に限定されず、使用する押出加工装置10及び合金粉末4の種類に応じて適宜調整すればよい。
例えば、押出圧力は、特に限定されないが、一般に少なくとも100MPa、好ましくは100MPa以上1000MPa以下、より好ましくは100MPa以上700MPa以下である。押出圧力が100MPa未満であると、押出材14を十分に緻密化させることができない場合がある。
また、加熱温度は、特に限定されないが、一般に800℃未満、好ましくは200℃以上800℃未満、より好ましくは200℃以上600℃以下である。加熱温度が200℃未満では焼結が不十分となる場合がある。
The conditions during the hot extrusion are not particularly limited, and may be appropriately adjusted according to the type of the extrusion processing apparatus 10 and the alloy powder 4 to be used.
For example, the extrusion pressure is not particularly limited, but is generally at least 100 MPa, preferably 100 MPa to 1000 MPa, more preferably 100 MPa to 700 MPa. If the extrusion pressure is less than 100 MPa, the extruded material 14 may not be sufficiently densified.
Moreover, although heating temperature is not specifically limited, Generally it is less than 800 degreeC, Preferably it is 200 to 800 degreeC, More preferably, it is 200 to 600 degreeC. If the heating temperature is less than 200 ° C., sintering may be insufficient.

本実施の形態の電気接点材料の製造方法は、Ag5と酸化物粒子6との結合強度が高く且つ酸化物粒子6が微細に分散した合金粉末4を用いて熱間押出加工を行っているため、従来の電気接点材料よりも均一な金属組織を有し、電気接点としての性能(特に、耐消耗性及び耐溶着性)が向上する。
また、本実施の形態の電気接点材料の製造方法は、Ag5と酸化物粒子6とを含む合金粉末4を第1工程によって容易に得ることができるため、従来の内部酸化処理は不要となる。これにより、内部酸化処理に起因するコストを削減することができ、電気接点材料を低コストで製造することが可能となる。
In the manufacturing method of the electrical contact material of the present embodiment, hot extrusion is performed using the alloy powder 4 in which the bonding strength between Ag5 and oxide particles 6 is high and the oxide particles 6 are finely dispersed. It has a more uniform metal structure than conventional electrical contact materials, and the performance as an electrical contact (especially wear resistance and welding resistance) is improved.
Moreover, since the manufacturing method of the electrical contact material of the present embodiment can easily obtain the alloy powder 4 containing Ag5 and the oxide particles 6 by the first step, the conventional internal oxidation treatment becomes unnecessary. Thereby, the cost resulting from the internal oxidation treatment can be reduced, and the electrical contact material can be manufactured at a low cost.

さらに、本実施の形態の電気接点材料の製造方法は、Ag5と酸化物粒子6との結合強度が高いため、熱間押出加工の際に押出材14の割れ等が生じず、加工性に優れている。特に、本実施の形態の電気接点材料の製造方法では、酸化物粒子6の量を増大させても、Ag5と酸化物粒子6との結合強度を高めつつ酸化物粒子6が微細に分散した合金粉末4を得ることができるため、電気接点材料の加工性が損なわれ難い。したがって、従来の内部酸化法に対して、酸化物粒子6の量を増大させることができるため、高価なAg5の使用量を減らすことができ、電気接点材料を低コストで製造することが可能となる。   Furthermore, since the electrical contact material manufacturing method of the present embodiment has high bond strength between Ag5 and oxide particles 6, the extrudate 14 is not cracked during hot extrusion, and is excellent in workability. ing. In particular, in the manufacturing method of the electrical contact material of the present embodiment, an alloy in which oxide particles 6 are finely dispersed while increasing the bonding strength between Ag5 and oxide particles 6 even when the amount of oxide particles 6 is increased. Since the powder 4 can be obtained, the workability of the electrical contact material is not easily impaired. Therefore, since the amount of the oxide particles 6 can be increased with respect to the conventional internal oxidation method, the amount of expensive Ag5 used can be reduced, and the electrical contact material can be manufactured at a low cost. Become.

実施の形態2.
本実施の形態の電気接点材料の製造方法は、AgとAg以外の金属とを含有する溶融合金に酸素含有ガスを吹き付けながら微粒化して急冷凝固し、該Ag以外の金属の酸化物が微細に分散した合金粉末を得る工程(以下、「第1工程」という。)と、該合金粉末を熱間押出加工する工程(以下、「第2工程」という。)とを含む。
以下、本実施の形態の電気接点材料の製造方法について図面を用いて説明する。なお、本実施の形態では、実施の形態1と異なる部分について主に説明し、同一の部分については説明を省略する。
Embodiment 2. FIG.
The manufacturing method of the electrical contact material according to the present embodiment is such that the molten alloy containing Ag and a metal other than Ag is atomized and rapidly solidified while spraying an oxygen-containing gas, and the oxide of the metal other than Ag is finely formed. A step of obtaining a dispersed alloy powder (hereinafter referred to as “first step”) and a step of hot-extruding the alloy powder (hereinafter referred to as “second step”).
Hereinafter, the manufacturing method of the electrical contact material of this Embodiment is demonstrated using drawing. In the present embodiment, parts different from those in the first embodiment will be mainly described, and description of the same parts will be omitted.

第1工程では、AgとAg以外の金属とを含有する溶融合金に酸素含有ガスを吹き付けながら微粒化して急冷凝固し、該Ag以外の金属の酸化物が微細に分散した合金粉末を得る。
図4は、この第1工程を説明するための図であり、溶融金属の微粒化に用いられるノズルの先端の断面模式図を示す。なお、図4のノズル1は、溶融金属7に酸素含有ガスを吹き付けながら微粒化して合金粉末4を得る手段の1つを例示したに過ぎず、当該合金粉末4を得ることが可能な手段であれば他の手段を用い得ることは言うまでもない。
In the first step, the molten alloy containing Ag and a metal other than Ag is atomized while being blown with an oxygen-containing gas and rapidly solidified to obtain an alloy powder in which oxides of metals other than Ag are finely dispersed.
FIG. 4 is a diagram for explaining the first step, and shows a schematic cross-sectional view of the tip of a nozzle used for atomization of molten metal. The nozzle 1 in FIG. 4 is merely an example of means for obtaining an alloy powder 4 by atomizing the molten metal 7 while spraying an oxygen-containing gas, and is a means capable of obtaining the alloy powder 4. Needless to say, other means can be used.

図4において、ノズル1は、AgとAg以外の金属とを含有する溶融合金7を噴霧する部分と、酸素含有ガス8を吹き付ける部分とを備えている。このノズル1を用い、酸素含有ガス8を吹き付けながら溶融金属7を噴霧すると、溶融金属7と酸素含有ガス8が合流する領域において、溶融金属7が急冷されて凝固し、合金粉末4が生成する。このとき、Ag以外の金属が効率的に酸化され、Agと酸化物との結合強度が高く、酸化物が微細に分散した合金粉末4を得ることができる。   In FIG. 4, the nozzle 1 includes a portion for spraying a molten alloy 7 containing Ag and a metal other than Ag, and a portion for spraying an oxygen-containing gas 8. When the molten metal 7 is sprayed while spraying the oxygen-containing gas 8 using this nozzle 1, the molten metal 7 is rapidly cooled and solidified in a region where the molten metal 7 and the oxygen-containing gas 8 merge to produce an alloy powder 4. . At this time, it is possible to obtain an alloy powder 4 in which metals other than Ag are efficiently oxidized, the bond strength between Ag and oxide is high, and the oxide is finely dispersed.

ここで、合金粉末4の断面模式図を図5に示す。なお、図5の合金粉末4は、形状の1つとして球状を例示したに過ぎず、球状以外の形状を有してもよいことは言うまでもない。
図5において、合金粉末4は、初晶であるAg5と共晶9とから構成され、Ag5中に共晶9が微細に分散した構造を有する。共晶9は、Ag5とAg5以外の金属とを含み、Ag5以外の金属は、酸素含有ガス8の吹き付けによって酸化されている。溶融金属7を急冷すると、最初に初晶であるAg5が生成して成長し、最終段階でAg5とAg5以外の金属との共晶9が生成される。このとき、酸素含有ガス8によってAg5以外の金属は容易且つ効率的に酸化される。なお、標準生成自由エネルギーの観点から、Ag5は、Ag5以外の金属に比べて酸化し難く、酸素含有ガス8の吹き付けによっては酸化されない。
Here, the cross-sectional schematic diagram of the alloy powder 4 is shown in FIG. It is needless to say that the alloy powder 4 in FIG. 5 merely illustrates a spherical shape as one of the shapes, and may have a shape other than the spherical shape.
In FIG. 5, the alloy powder 4 is composed of primary crystals of Ag5 and a eutectic 9, and has a structure in which the eutectic 9 is finely dispersed in Ag5. The eutectic 9 contains Ag 5 and a metal other than Ag 5, and the metal other than Ag 5 is oxidized by spraying the oxygen-containing gas 8. When the molten metal 7 is rapidly cooled, Ag5 which is the primary crystal is first produced and grows, and eutectic 9 of Ag5 and a metal other than Ag5 is produced in the final stage. At this time, metals other than Ag5 are easily and efficiently oxidized by the oxygen-containing gas 8. Note that, from the viewpoint of the standard free energy of formation, Ag5 is not easily oxidized as compared with metals other than Ag5, and is not oxidized by the blowing of the oxygen-containing gas 8.

酸素含有ガス8としては、Ag5以外の金属を酸化させ得る酸素含有量を有するガスであれば特に限定されず、酸素以外のガスを含有していてもよい。一般に、酸素含有ガス8の酸素含有量は、Ag5以外の金属の種類等に応じて適宜調整すればよいが、一般に20質量%以上であればよい。また、本発明において最も好ましい酸素含有ガス8は純酸素ガスである。   The oxygen-containing gas 8 is not particularly limited as long as it has an oxygen content capable of oxidizing a metal other than Ag5, and may contain a gas other than oxygen. In general, the oxygen content of the oxygen-containing gas 8 may be appropriately adjusted according to the type of metal other than Ag5, but may generally be 20% by mass or more. The most preferable oxygen-containing gas 8 in the present invention is pure oxygen gas.

溶融金属7を急冷する場合、冷却効率を高める観点から、水等の冷却媒体を併用してもよい。水等の冷却媒体を用いる冷却方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。   When the molten metal 7 is rapidly cooled, a cooling medium such as water may be used in combination from the viewpoint of increasing the cooling efficiency. It does not specifically limit as a cooling method using cooling media, such as water, A well-known method can be used in the said technical field.

上記のようにして得られる合金粉末4の平均粒子径としては、特に限定されないが、一般に数μm以上数十μm以下、好ましくは2μm以上90μm以下、より好ましくは3μm以上70μm以下、最も好ましくは5μm以上50μm以下である。   The average particle diameter of the alloy powder 4 obtained as described above is not particularly limited, but is generally several μm to several tens μm, preferably 2 μm to 90 μm, more preferably 3 μm to 70 μm, and most preferably 5 μm. It is 50 μm or less.

溶融合金7に用いられるAg5以外の金属としては、Ag5よりも融点が高く、Ag5を主成分とする電気接点材料に一般に用いられ得る金属であれば特に限定されない。Ag5以外の金属の例としては、Cu、Si、Cd、Co、Cr、Fe、Ge、Mn、Mo及びNi等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。   The metal other than Ag5 used for the molten alloy 7 is not particularly limited as long as it has a melting point higher than that of Ag5 and can be generally used for an electrical contact material mainly composed of Ag5. Examples of metals other than Ag5 include Cu, Si, Cd, Co, Cr, Fe, Ge, Mn, Mo, and Ni. These can be used alone or in combination of two or more.

溶融合金7におけるAg5の含有量としては、特に限定されないが、好ましくは50質量%以上99.5質量%以下、より好ましくは60質量%以上90質量%以下、最も好ましくは65質量%以上75質量%以下である。
溶融合金7におけるAg5以外の金属の含有量としては、特に限定されないが、好ましくは0.5質量%以上50質量%以下、より好ましくは10質量%以上40質量%以下、最も好ましくは25質量%以上35質量%以下である。
The content of Ag5 in the molten alloy 7 is not particularly limited, but is preferably 50% by mass to 99.5% by mass, more preferably 60% by mass to 90% by mass, and most preferably 65% by mass to 75% by mass. % Or less.
The content of the metal other than Ag5 in the molten alloy 7 is not particularly limited, but is preferably 0.5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and most preferably 25% by mass. It is 35 mass% or less.

溶融合金7は、原料となる金属を高周波誘導加熱等の公知の手段によって溶融させることで得ることができる。溶融温度は、特に限定されず、原料となる金属の種類に応じて適宜調整すればよいが、一般に1,000℃以上2,000℃以下である。特に、溶融温度は高すぎると、溶融金属7に酸素含有ガス8を吹き付けた際に生成する酸化物が分解してしまう可能性があるため、酸化物が分解しないような溶融温度を選択することが好ましい。   The molten alloy 7 can be obtained by melting a metal as a raw material by a known means such as high frequency induction heating. The melting temperature is not particularly limited, and may be appropriately adjusted according to the type of metal used as a raw material, but is generally 1,000 ° C. or higher and 2,000 ° C. or lower. In particular, if the melting temperature is too high, the oxide generated when the oxygen-containing gas 8 is sprayed onto the molten metal 7 may be decomposed. Therefore, the melting temperature should be selected so that the oxide does not decompose. Is preferred.

第2工程では、合金粉末4を熱間押出加工する。本実施の形態の第2工程は、実施の形態1の第2工程と同じであるため、説明を省略する。   In the second step, the alloy powder 4 is hot-extruded. Since the second step of the present embodiment is the same as the second step of the first embodiment, description thereof is omitted.

本実施の形態の電気接点材料の製造方法は、Ag5以外の金属の酸化が十分に行われており、Ag5と酸化物との結合強度が高く且つ酸化物が微細に分散した合金粉末4を用いて熱間押出加工を行っているため、従来の電気接点材料よりも均一な金属組織を有し、電気接点としての性能(特に、耐消耗性)が向上する。
また、本実施の形態の電気接点材料の製造方法は、Ag5とAg5以外の金属の酸化物を含む合金粉末4を第1工程によって容易に得ることができるため、従来の内部酸化処理は不要となる。これにより、内部酸化処理に起因するコストを削減することができ、電気接点材料を低コストで製造することが可能となる。
The manufacturing method of the electrical contact material of the present embodiment uses an alloy powder 4 in which a metal other than Ag5 is sufficiently oxidized, the bond strength between Ag5 and the oxide is high, and the oxide is finely dispersed. Therefore, since the hot extrusion process is performed, the metal structure has a more uniform metal structure than that of the conventional electrical contact material, and the performance as an electrical contact (particularly wear resistance) is improved.
Moreover, the manufacturing method of the electrical contact material according to the present embodiment can easily obtain the alloy powder 4 containing Ag5 and an oxide of a metal other than Ag5 by the first step, so that the conventional internal oxidation treatment is unnecessary. Become. Thereby, the cost resulting from the internal oxidation treatment can be reduced, and the electrical contact material can be manufactured at a low cost.

さらに、本実施の形態の電気接点材料の製造方法は、Ag5とAg5以外の金属の酸化物との結合強度が高いため、熱間押出加工の際に押出材14の割れ等が生じず、加工性に優れている。特に、本実施の形態の電気接点材料の製造方法では、Ag5以外の金属の量を増大させても、Ag5以外の金属の酸化を効率的に行うことができ、しかもAg5と酸化物との結合強度を高めつつ酸化物が微細に分散した合金粉末4を得ることができるため、電気接点材料の加工性が損なわれ難い。したがって、従来、加工性が低下するためにAg5以外の金属の添加量の制限があった内部酸化法に対して、Ag5以外の金属の量を増大させることができるため、高価なAg5の使用量を減らすことができ、電気接点材料を低コストで製造することが可能となる。   Furthermore, since the manufacturing method of the electrical contact material of the present embodiment has high bond strength between Ag5 and an oxide of a metal other than Ag5, the extrudate 14 is not cracked during the hot extrusion process. Excellent in properties. In particular, in the manufacturing method of the electrical contact material of the present embodiment, even when the amount of metal other than Ag5 is increased, the metal other than Ag5 can be oxidized efficiently, and the bond between Ag5 and the oxide can be achieved. Since the alloy powder 4 in which the oxide is finely dispersed while increasing the strength can be obtained, the workability of the electrical contact material is hardly impaired. Therefore, since the amount of metal other than Ag5 can be increased with respect to the internal oxidation method that has conventionally limited the amount of addition of metal other than Ag5 due to the decrease in workability, the amount of expensive Ag5 used is increased. Thus, the electrical contact material can be manufactured at a low cost.

以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
(実施例1−1)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.5μmのZnO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、ZnOが約30質量%であった。
次に、図3に示す押出加工装置10を用い、得られた合金粉末を熱間押出加工して押出材(電気接点材料)を得た。ここで、熱間押出加工は、押出圧力を500MPa、加熱温度を500℃とした。得られた押出材は、割れ等が発生せず、加工性が良好であった。
Hereinafter, although an Example and a comparative example demonstrate the detail of this invention, this invention is not limited by these.
(Example 1-1)
Using the nozzle 1 shown in FIG. 1, oxide powder containing gas (carrier gas: argon gas, oxide particles: ZnO having an average particle size of 0.5 μm) is sprayed on the molten Ag, and the powder is rapidly cooled and solidified. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and ZnO was about 30 mass%.
Next, using the extrusion apparatus 10 shown in FIG. 3, the obtained alloy powder was hot-extruded to obtain an extruded material (electric contact material). Here, in the hot extrusion process, the extrusion pressure was 500 MPa and the heating temperature was 500 ° C. The obtained extruded material was free from cracks and had good workability.

次に、得られた押出材について、消耗量及び溶着の程度を評価した。評価に用いた試料としては、直径5mm、厚さ2mmの円板状の押出材を用いた。この押出材について、付加電圧200V、負荷電流100A(60Hz)、力率0.4、及び接点圧300gで6000回の条件下で開閉試験を行ったときの消耗量(mg)、並びに溶着の程度を「○、△、×」の3段階で評価した。ここで、溶着の程度が○とは、溶着が発生しなかったことを意味し、溶着の程度が△とは、溶着が発生することがあったことを意味し、溶着の程度が×とは、10%以上の確率で溶着が発生したことを意味する。その結果、消耗量は50mgであり、溶着の程度は「○」であった。   Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material. As a sample used for evaluation, a disk-shaped extruded material having a diameter of 5 mm and a thickness of 2 mm was used. About this extrusion material, the consumption amount (mg) when performing an open / close test under conditions of an additional voltage of 200 V, a load current of 100 A (60 Hz), a power factor of 0.4, and a contact pressure of 300 g under 6000 times, and the degree of welding Was evaluated in three stages, “◯, Δ, ×”. Here, the degree of welding ○ means that welding did not occur, and the degree of welding Δ means that welding occurred, and the degree of welding is ×. It means that welding occurred with a probability of 10% or more. As a result, the consumption amount was 50 mg, and the degree of welding was “◯”.

(実施例1−2)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を10質量%に制御したこと以外は実施例1−1と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は27μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約90質量%、ZnOが約10質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は90mgであり、溶着の程度は「○」であった。
(Example 1-2)
Except that the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 10% by mass, the same as in Example 1-1. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 27 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 90 mass% and ZnO was about 10 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 90 mg, and the degree of welding was “◯”.

(実施例1−3)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を25質量%に制御したこと以外は実施例1−1と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は29μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約75質量%、ZnOが約25質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は70mgであり、溶着の程度は「○」であった。
(Example 1-3)
Except that the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles in the oxide particle-containing gas and the molten Ag was controlled to 25% by mass, the same as in Example 1-1. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 29 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 75 mass% and ZnO was about 25 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 70 mg and the degree of welding was “◯”.

(実施例1−4)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.1μmのZnO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、ZnOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は40mgであり、溶着の程度は「○」であった。
(Example 1-4)
Using the nozzle 1 shown in FIG. 1, oxide particles containing gas (carrier gas: argon gas, oxide particles: ZnO with an average particle size of 0.1 μm) is sprayed on the molten Ag, and the particles are rapidly cooled and solidified. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and ZnO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 40 mg, and the degree of welding was “◯”.

(実施例1−5)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が5μmのZnO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は32μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、ZnOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は60mgであり、溶着の程度は「○」であった。
(Example 1-5)
Using the nozzle 1 shown in FIG. 1, oxide gas containing gas (carrier gas: argon gas, oxide particles: ZnO having an average particle diameter of 5 μm) is sprayed on molten Ag and atomized and rapidly solidified to obtain an alloy powder. It was. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 32 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and ZnO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 60 mg and the degree of welding was “◯”.

(実施例1−6)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.5μmのCuO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、CuOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は56mgであり、溶着の程度は「○」であった。
(Example 1-6)
Using the nozzle 1 shown in FIG. 1, oxide particles containing gas (carrier gas: argon gas, oxide particles: CuO having an average particle size of 0.5 μm) is blown into molten Ag, and then rapidly solidified by cooling. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and CuO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 56 mg, and the degree of welding was “◯”.

(実施例1−7)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を25質量%に制御したこと以外は実施例1−6と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は29μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約75質量%、CuOが約25質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は76mgであり、溶着の程度は「○」であった。
(Example 1-7)
Except that the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles in the oxide particle-containing gas and the molten Ag was controlled to 25% by mass, the same as in Example 1-6. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 29 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 75 mass% and CuO was about 25 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 76 mg and the degree of welding was “◯”.

(実施例1−8)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.1μmのCuO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、CuOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は56mgであり、溶着の程度は「○」であった。
(Example 1-8)
Using the nozzle 1 shown in FIG. 1, oxide powder containing gas (carrier gas: argon gas, oxide particles: CuO having an average particle diameter of 0.1 μm) is sprayed on molten Ag, and then rapidly solidified by cooling. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and CuO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 56 mg, and the degree of welding was “◯”.

(実施例1−9)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が5μmのCuO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は32μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、CuOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は76mgであり、溶着の程度は「○」であった。
(Example 1-9)
Using the nozzle 1 shown in FIG. 1, oxide gas containing gas (carrier gas: argon gas, oxide particles: CuO having an average particle size of 5 μm) is sprayed on molten Ag, and then rapidly solidified by solidification to obtain an alloy powder. It was. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 32 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and CuO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 76 mg and the degree of welding was “◯”.

(実施例1−10)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.5μmのSiO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、SiOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は53mgであり、溶着の程度は「○」であった。
(Example 1-10)
Using the nozzle 1 shown in FIG. 1, atomized powder (carrier gas: argon gas, oxide particles: SiO with an average particle size of 0.5 μm) is sprayed on molten Ag and atomized and rapidly solidified to form alloy powder. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and SiO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 53 mg, and the degree of welding was “◯”.

(実施例1−11)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を25質量%に制御したこと以外は実施例1−10と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は29μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約75質量%、SiOが約25質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は73mgであり、溶着の程度は「○」であった。
(Example 1-11)
Except having controlled the mass ratio of the oxide particle in the oxide particle containing gas with respect to the total mass of the oxide particle in the oxide particle containing gas and molten Ag to 25 mass%, it carried out similarly to Example 1-10. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 29 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 75 mass% and SiO was about 25 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 73 mg, and the degree of welding was “◯”.

(実施例1−12)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.1μmのSiO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、SiOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は43mgであり、溶着の程度は「○」であった。
(Example 1-12)
Using the nozzle 1 shown in FIG. 1, an oxide powder containing gas (carrier gas: argon gas, oxide particles: SiO having an average particle size of 0.1 μm) is blown into molten Ag and then rapidly solidified by cooling. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and SiO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption was 43 mg and the degree of welding was “◯”.

(実施例1−13)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が5μmのSiO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は32μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、SiOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は73mgであり、溶着の程度は「○」であった。
(Example 1-13)
The nozzle 1 shown in FIG. 1 is used to atomize and rapidly cool and solidify the molten Ag while spraying a gas containing oxide particles (carrier gas: argon gas, oxide particles: SiO having an average particle diameter of 5 μm) to obtain an alloy powder. It was. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 32 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and SiO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 73 mg, and the degree of welding was “◯”.

(比較例1−1)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を8質量%に制御したこと以外は実施例1−1と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は27μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約92質量%、ZnOが約8質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は150mgであり、溶着の程度は「×」であった。
(Comparative Example 1-1)
Except that the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles in the oxide particle-containing gas and the molten Ag was controlled to 8% by mass, the same as in Example 1-1. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 27 μm. Moreover, as a result of analyzing the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 92 mass% and ZnO was about 8 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 150 mg, and the degree of welding was “x”.

(比較例1−2)
酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を35質量%に制御したこと以外は実施例1−1と同様にして合金粉末を得た。得られた合金粉末の平均粒子径(D50)は31μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約65質量%、ZnOが約35質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は30mgであり、溶着の程度は「△」であった。
(Comparative Example 1-2)
Except that the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 35 mass%, the same as in Example 1-1. An alloy powder was obtained. The average particle diameter (D50) of the obtained alloy powder was 31 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 65 mass% and ZnO was about 35 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 30 mg, and the degree of welding was “Δ”.

(比較例1−3)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が0.3μmのZnO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、ZnOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は37mgであり、溶着の程度は「△」であった。
(Comparative Example 1-3)
Using the nozzle 1 shown in FIG. 1, oxide particles containing gas (carrier gas: argon gas, oxide particles: ZnO having an average particle size of 0.3 μm) is sprayed on the molten Ag, and the particles are rapidly cooled and solidified. Got. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and ZnO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 37 mg, and the degree of welding was “Δ”.

(比較例1−4)
図1に示すノズル1を用い、溶融Agに酸化物粒子含有ガス(キャリアガス:アルゴンガス、酸化物粒子:平均粒子径が6μmのZnO)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。ここで、酸化物粒子含有ガス中の酸化物粒子と溶融Agとの合計質量に対する酸化物粒子含有ガス中の酸化物粒子の質量割合を30質量%に制御した。得られた合金粉末の平均粒子径(D50)は33μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、ZnOが約30質量%であった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は70mgであり、溶着の程度は「△」であった。
(Comparative Example 1-4)
Using the nozzle 1 shown in FIG. 1, oxide gas containing gas (carrier gas: argon gas, oxide particles: ZnO having an average particle diameter of 6 μm) is sprayed on molten Ag and atomized and rapidly solidified to obtain an alloy powder. It was. Here, the mass ratio of the oxide particles in the oxide particle-containing gas to the total mass of the oxide particles and molten Ag in the oxide particle-containing gas was controlled to 30% by mass. The average particle diameter (D50) of the obtained alloy powder was 33 μm. Moreover, as a result of analyzing about the composition of the obtained alloy powder using EPMA (electron beam probe microanalyzer), Ag was about 70 mass% and ZnO was about 30 mass%.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the amount of consumption was 70 mg, and the degree of welding was “Δ”.

上記の実施例及び比較例の結果を表1にまとめる。   The results of the above examples and comparative examples are summarized in Table 1.

Figure 0006067111
Figure 0006067111

(実施例2−1)
図4に示すノズル1を用い、75質量%のAgと25質量%のCuと含有する溶融合金に酸素含有ガス(酸素含有量100質量%)を吹き付けながら微粒化して急冷凝固し、合金粉末を得た。得られた合金粉末の平均粒子径(D50)は、30μmであった。また、得られた合金粉末の組成について、EPMA(電子線プローブマイクロアナライザ)を用いて分析した結果、Agが約70質量%、Cuが約23.5質量%、Oが約6.5質量%であった。この結果から、得られた合金粉末は、Agが約70質量%、CuOが約30質量%の組成を有し、Cuがほぼ完全に酸化されていることがわかった。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生せず、加工性が良好であった。
次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は50mgであり、溶着の程度は「○」であった。
(Example 2-1)
Using the nozzle 1 shown in FIG. 4, the molten alloy containing 75% by mass of Ag and 25% by mass of Cu is atomized while spraying an oxygen-containing gas (oxygen content of 100% by mass) and rapidly solidified. Obtained. The average particle diameter (D50) of the obtained alloy powder was 30 μm. Further, the composition of the obtained alloy powder was analyzed using EPMA (electron probe microanalyzer). As a result, Ag was about 70% by mass, Cu was about 23.5% by mass, and O was about 6.5% by mass. Met. From this result, it was found that the obtained alloy powder had a composition of Ag of about 70% by mass and CuO of about 30% by mass, and Cu was almost completely oxidized.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was free from cracks and had good workability.
Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the consumption amount was 50 mg, and the degree of welding was “◯”.

(比較例2−1)
比較例1では、内部酸化法を用いて電気接点材料を作製した。
まず、75質量%のAgと25質量%のCuと含有する溶融合金を噴霧して合金粉末を得た。この合金粉末を700℃で50時間加熱して内部酸化処理を行った。
次に、上記で得られた合金粉末を用い、実施例1−1と同様にして押出材を得た。得られた押出材は、割れ等が発生し、加工性が十分でなかった。
(Comparative Example 2-1)
In Comparative Example 1, an electrical contact material was produced using an internal oxidation method.
First, a molten alloy containing 75% by mass of Ag and 25% by mass of Cu was sprayed to obtain an alloy powder. This alloy powder was heated at 700 ° C. for 50 hours for internal oxidation treatment.
Next, using the alloy powder obtained above, an extruded material was obtained in the same manner as in Example 1-1. The obtained extruded material was cracked and the workability was not sufficient.

次に、得られた押出材について、実施例1−1と同様にして消耗量及び溶着の程度を評価した。その結果、消耗量は250mgであり、溶着の程度は「×」であった。   Next, the amount of consumption and the degree of welding were evaluated for the obtained extruded material in the same manner as in Example 1-1. As a result, the amount of consumption was 250 mg, and the degree of welding was “x”.

上記の結果からわかるように、本発明によれば、酸化物の量を増大させること及び低コストで製造することが可能であり、且つ電気接点としての性能及び加工性に優れる電気接点材料及びその製造方法を提供することができる。   As can be seen from the above results, according to the present invention, an electrical contact material that can increase the amount of oxide and can be manufactured at low cost, and is excellent in performance and workability as an electrical contact, and its A manufacturing method can be provided.

1 ノズル、2 溶融Ag、3 酸化物粒子含有ガス、4 合金粉末、5 Ag、6 酸化物粒子、7 溶融合金、8 酸素含有ガス、9 共晶、10 押出加工装置、11 本体、12 ピストン、13 加熱ヒータ、14 押出材。   1 nozzle, 2 molten Ag, 3 oxide particle-containing gas, 4 alloy powder, 5 Ag, 6 oxide particle, 7 molten alloy, 8 oxygen-containing gas, 9 eutectic, 10 extrusion processing device, 11 body, 12 piston, 13 Heater, 14 Extruded material.

Claims (5)

Ag以外の金属の酸化物粒子を含有するガスを溶融Agに吹き付けながら微粒化して急冷凝固し、該酸化物粒子が微細に分散した合金粉末を得る工程であって、該酸化物粒子の平均粒子径を500nm以上5μm以下、及び該ガス中の該酸化物粒子と該溶融Agとの合計質量に対する該ガス中の酸化物粒子の質量割合が10質量%以上30質量%以下である工程と、
該合金粉末を熱間押出加工する工程と
を含むことを特徴とする電気接点材料の製造方法。
A process of obtaining an alloy powder in which the oxide particles are finely dispersed by spraying a gas containing oxide particles of a metal other than Ag onto the molten Ag and rapidly solidifying the powder, and the average particles of the oxide particles A step having a diameter of 500 nm to 5 μm, and a mass ratio of the oxide particles in the gas to a total mass of the oxide particles in the gas and the molten Ag of 10% by mass to 30% by mass;
A method of producing an electrical contact material, comprising a step of hot extruding the alloy powder.
前記Ag以外の金属は、Cu、Si、Cd、Co、Cr、Fe、Ge、Mn、Mo及びNiからなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の電気接点材料の製造方法。   2. The electricity according to claim 1, wherein the metal other than Ag is at least one selected from the group consisting of Cu, Si, Cd, Co, Cr, Fe, Ge, Mn, Mo, and Ni. Manufacturing method of contact material. 前記合金粉末の平均粒子径が1μm以上100μm以下であることを特徴とする請求項1又は2に記載の電気接点材料の製造方法。   The method for producing an electrical contact material according to claim 1 or 2, wherein the alloy powder has an average particle size of 1 µm or more and 100 µm or less. 前記ガスが不活性ガスであることを特徴とする請求項1〜3のいずれか一項に記載の電気接点材料の製造方法。   The said gas is an inert gas, The manufacturing method of the electrical contact material as described in any one of Claims 1-3 characterized by the above-mentioned. 前記溶融Agを噴霧する部分と、前記酸化物粒子を含有するガスを吹き付ける部分とを備えるノズルを用い、前記酸化物粒子を含有するガスを前記溶融Agに吹き付けながら微粒化して急冷凝固することを特徴とする請求項1〜4のいずれか一項に記載の電気接点材料の製造方法。   Using a nozzle comprising a portion for spraying the molten Ag and a portion for spraying a gas containing the oxide particles, and spraying the gas containing the oxide particles to the molten Ag and atomizing and rapidly solidifying The manufacturing method of the electrical contact material as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2015523999A 2013-06-24 2014-06-18 Manufacturing method of electrical contact material Expired - Fee Related JP6067111B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013131686 2013-06-24
JP2013131686 2013-06-24
PCT/JP2014/066166 WO2014208419A1 (en) 2013-06-24 2014-06-18 Electrical contact material and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP6067111B2 true JP6067111B2 (en) 2017-01-25
JPWO2014208419A1 JPWO2014208419A1 (en) 2017-02-23

Family

ID=52141759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523999A Expired - Fee Related JP6067111B2 (en) 2013-06-24 2014-06-18 Manufacturing method of electrical contact material

Country Status (3)

Country Link
JP (1) JP6067111B2 (en)
CN (1) CN105359241A (en)
WO (1) WO2014208419A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945295B (en) * 2016-06-29 2018-07-24 宁波科扬贵金属合金科技有限公司 A kind of process equipment and its processing technology of siller tin oxide
CN105921760B (en) * 2016-06-29 2018-08-14 宁波科扬贵金属合金科技有限公司 The process equipment and its processing technology of siller tin oxide
PE20220423A1 (en) 2018-03-01 2022-03-29 Aurum Integra Inc METHOD FOR SELECTIVELY OXIDIZING METALS OF AN ALLOY
CN110983096A (en) * 2019-12-07 2020-04-10 福达合金材料股份有限公司 Method for preparing silver matrix oxide electric contact material by internal oxidation method capable of improving fusion welding resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621835A (en) * 1985-06-26 1987-01-07 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-nio electric contact point material
JPS63149341A (en) * 1986-12-11 1988-06-22 Tokuriki Honten Co Ltd Production of silver-base metal oxide contact material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607183C1 (en) * 1996-02-27 1997-04-10 Degussa Sintered silver@-iron@ alloy for making electrical contacts
DE19903619C1 (en) * 1999-01-29 2000-06-08 Louis Renner Gmbh Powder metallurgical composite material, especially for high voltage vacuum switch contacts, comprises refractory solid solution or intermetallic phase grains embedded in a metal matrix
CN101596601B (en) * 2009-07-09 2010-11-10 中南大学 Atomizing nozzle for efficiently preparing fine metal and alloy powder
CN101798641B (en) * 2010-04-15 2011-05-11 宁波汉博贵金属合金有限公司 Spray atomization technology of silver tin oxide material
CN101984116B (en) * 2010-12-06 2012-12-05 西北有色金属研究院 Method for preparing AgSnO2 contact material by spray co-deposition reaction
CN102808097B (en) * 2012-08-20 2014-04-16 温州宏丰电工合金股份有限公司 Silver/nickel/metallic oxide electrical contact material preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621835A (en) * 1985-06-26 1987-01-07 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-nio electric contact point material
JPS63149341A (en) * 1986-12-11 1988-06-22 Tokuriki Honten Co Ltd Production of silver-base metal oxide contact material

Also Published As

Publication number Publication date
CN105359241A (en) 2016-02-24
WO2014208419A1 (en) 2014-12-31
JPWO2014208419A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4237730B2 (en) Manufacturing method of magnetic material
JP6067111B2 (en) Manufacturing method of electrical contact material
JP5124734B2 (en) Electrode material for vacuum circuit breaker and manufacturing method thereof
EP2492032B1 (en) Method for manufacturing a copper-based composite material for electrical contacts
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
CN106057526A (en) Laminated silver-copper-brazing-filler-metal three-composite electrical contact material manufactured by coating and sleeving method and manufacturing method thereof
WO2011003225A1 (en) Preparation method for silver metal oxide made electric contact material
US9779854B2 (en) Method for producing a semifinished product for electrical contacts and contact piece
JP5927848B2 (en) Manufacturing method of Heusler type iron-based thermoelectric material
CN101418393A (en) Novel method for preparing AgCuV alloy material
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JPWO2019039058A1 (en) Copper alloy powder for additive manufacturing, method for manufacturing additive product, and additive product
JP4752641B2 (en) Method for sintering amorphous soft magnetic material
JP2016216775A (en) Ag-ZnO-BASED ELECTRICAL CONTACT MATERIAL AND PRODUCTION METHOD THEREFOR
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
US11511368B2 (en) Electrically conductive tip member and method for producing the same
JPH0959726A (en) Production of alumina dispersion strengthened copper
KR101516483B1 (en) METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL
JP6447948B2 (en) Conductive support member and manufacturing method thereof
JP2006206963A (en) Alumina dispersion-strengthened silver rod, its production method, electric contact material and relay for electric vehicle
JP2005533175A (en) Electrical contact material and manufacturing method thereof
KR102084569B1 (en) METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL CONTAINING CARBON NANOTUBE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
JP6073054B2 (en) Method for producing cadmium-free material based on silver
US6056916A (en) Process for producing a product made of a contact material based on silver, contact material and product made of the contact material
JPH0355531B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6067111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees